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ABSTRACT
Background: Public health research frequently requires the integration of
information from different data sources. However, errors in the records and the high
computational costs involved make linking large administrative databases using
record linkage (RL) methodologies a major challenge.
Methods:We present Tucuxi-BLAST, a versatile tool for probabilistic RL that utilizes
a DNA-encoded approach to encrypt, analyze and link massive administrative
databases. Tucuxi-BLAST encodes the identification records into DNA. BLASTn
algorithm is then used to align the sequences between databases. We tested and
benchmarked on a simulated database containing records for 300 million individuals
and also on four large administrative databases containing real data on Brazilian
patients.
Results: Our method was able to overcome misspellings and typographical errors in
administrative databases. In processing the RL of the largest simulated dataset (200k
records), the state-of-the-art method took 5 days and 7 h to perform the RL, while
Tucuxi-BLAST only took 23 h. When compared with five existing RL tools applied to
a gold-standard dataset from real health-related databases, Tucuxi-BLAST had the
highest accuracy and speed. By repurposing genomic tools, Tucuxi-BLAST can
improve data-driven medical research and provide a fast and accurate way to link
individual information across several administrative databases.
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INTRODUCTION
The major goal of epidemiology is to identify the factors associated with health-related
conditions and events in a given population. This goal can be achieved by integrating
medical, sociodemographic, and health data, which are often stored in separate databases.
Cross-referencing data records from different sources is advantageous to the study of
co-infections (Teixeira et al., 2019), disease recurrences (Aiona et al., 2015; Balieiro et al.,
2021), identification of transmission hotspots (Workneh, Bjune & Yimer, 2016), and
household transmission of leprosy (Teixeira et al., 2020) and can assist in health-related
decision making (Ali et al., 2019). Many countries such as England, Canada, Australia,
New Zealand, and Wales have invested in successful initiatives, including building large
centers for data integration and developing new strategies (Trudeau, 2017; Elias, 2018;
Eitelhuber et al., 2018; Chitty et al., 2020). Similarly, Brazilian initiatives have been
successfully applied to large government databases (Pita et al., 2018; Barbosa et al., 2020),
such as the Center for Data and Knowledge Integration for Health (CIDACS). CIDACS
currently has a database covering about 55% of the Brazilian population, with information
on 114 million individuals obtained by integrating administrative and health data, while
operating at an excellent level of security and privacy (Barreto et al., 2019). The integration
of administrative databases is achieved by a method known as record linkage (RL).
However, a major limitation to RL pertains to the high rates of typing errors, absence of
information, and inconsistencies in identification data (Sayers et al., 2016).

RL methods are divided into two categories: deterministic and probabilistic.
Deterministic techniques use a unique and individual key, such as a social security number
or other government identification codes (Barbosa et al., 2020). Although they are easy to
implement, cheap, and require low computational power, the absence of a common key
prevents the use of the deterministic approach for linking a large number of databases
(Pita et al., 2018; Ali et al., 2019). On the other hand, probabilistic approaches utilize the
identification data in records, such as patient’s full name, sex, race, place of birth, identity
number, date of birth, etc., to link data from the same individual across the database, and
estimates the probability of records from different databases belonging to the same
individual. The main advantage of probabilistic methods is the possibility of using
incomplete and erroneous data to perform the RL. However, implementing such methods
is often costly and requires trained professionals (Sayers et al., 2016).

Some recent attempts to perform RL between databases containing hundreds of
thousands of records required great investment in computational infrastructure (Harron
et al., 2017a). To decrease the number of comparisons and therefore the computational
demand, some RL programs utilize a strategy known as blocking (Enamorado, Fifield &
Imai, 2019). In this strategy, data are ordered and grouped using predefined blocks, such as
the first name or date of birth. Then, the probabilistic RL is performed only among
individuals belonging to the same group, significantly reducing the number of records
compared. Although fast, the blocking strategy requires manual curation to define the
appropriate identification keys/fields for blocking and often needs a phonetic algorithm
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(Enamorado, Fifield & Imai, 2019; Ali et al., 2019). In addition, mistypes and
inconsistencies in identification records limit the sensitivity of the blocking strategy.

Here, we present Tucuxi-BLAST (https://github.com/csbl-br/tucuxi_blast), a tool that
performs RL between administrative databases in an efficient and fast manner while
protecting the personal information of individuals. Our method is based on the basic local
alignment search tool (BLAST) (Altschul et al., 1990), widely used in bioinformatics to
compare large databases of biological sequences. Tucuxi-BLAST first translates the
individual’s data into DNA sequences using a codon wheel that dynamically changes over
different runs without impairing the efficiency of the process. This encoding scheme
enables on-the-fly data encryption, thus providing an additional layer of privacy during the
linking process. The comparison of the DNA-encoded identification fields is then
performed using BLAST, and machine learning algorithms automatically classify the final
results. Similar to comparative genomics where genes from different genomes are
compared to determine common and unique sequences (Emms & Kelly, 2019),
Tucuxi-BLAST also allows the simultaneous integration of data from multiple
administrative databases, without the need for complex data pre-processing. We tested
Tucuxi-BLAST on large databases containing real cases of patients infected with different
pathogens (tuberculosis–TB, meningitis–MEN, and HIV/AIDS–HIV) and one database
comprising mortality data. Tucuxi-BLAST outperformed other open-source probabilistic
RL tools frequently used in epidemiological studies in terms of accuracy and speed.
Applying Tucuxi-BLAST to a simulated database containing 300 million records, we
showed that its RAM consumption was 4 GB on average and the processing time
compatible with other blocking and indexing methods. The repositioning of
bioinformatics tools for RL holds a promising potential for epidemiological and medical
studies.

MATERIALS AND METHODS
Implementation and code availability
Tucuxi-BLAST was developed in Python 3 programming language (v.3.7.3) and the RL
between databases uses the BLAST algorithm (Altschul et al., 1990). The software was
implemented on Linux but developed using a multiplatform language and libraries, so it
can be easily adapted to run on any operating system such as Microsoft Windows and
MacOS. Tucuxi-BLAST is available and regularly updated in the CSBL (Computational
Systems Biology Laboratory, Los Angeles, CA, USA) repository on GitHub (https://github.
com/csbl-br/tucuxi_blast).

Data encoding to DNA sequences, preprocessing, and encryption
Four identification fields were used to perform RL in both the simulated and Brazilian
administrative databases. Initially, Tucuxi-BLAST converts all characters from strings (e.g.,
names and surnames) to upper-case and removes special characters and diacritics. In the
main repository, we provide the Tucuxi-clean-data module, which performs the
preprocessing separately from the main program. The identification fields were encoded
into DNA sequences in the following order: (1) individual’s name and surname; (2) date of
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birth; (3) sex; and (4) mother’s name and surname. Both query and reference (i.e., subject)
databases must be processed in the same manner.

To remove records that were duplicated in the databases, we developed Tucuxi-BW
(available at https://github.com/csbl-br/tucuxi_blast) using Python and the cluster
function of VSEARCH program (v.2.15.2) (Rognes et al., 2016). Additionally, to ensure
data privacy, an encrypted key containing a random mixture of alphanumeric digits is
generated on each Tucuxi-BLAST run. This key is used to encode the strings and numbers
in the identification fields into DNA sequences.

Sequence alignment using Tucuxi-BLAST
After encoding the identification records into DNA, we used the open source BLASTn
algorithm (v.2.10.0) (Altschul et al., 1990) to align the sequences between databases.
We used the following parameters in Tucuxi-BLAST: megablast and dc-megablast as a
task; “-dust no”; “-max_hsps 1”; “-strand plus”; and “-evalue 1e−10”. BLAST’s default
values were used for the remaining parameters of the search. The alignment of long
sequences often generates score values (bit-score and E-value) greater than from the
alignment of smaller sequences, even if the smaller sequences are identical to larger
queries. Such a bias could penalize people with short names. To prevent such an effect
caused by the size of the names in the analysis, the values of bit-score and E-value are
represented as the percentage of the best possible hit for each sequence (i.e., the sequence
against itself). This normalization approach enables the comparison of sequences with
different lengths.

Simulated databases
To generate a simulated database containing records for 300 million Brazilians, we
developed the Tucuxi-Curumim program (available at https://github.com/csbl-br/tucuxi_
curumim). Using a list comprising the names and surnames of Brazilians obtained from
the Brazilian Institute of Geography and Statistics (source: the 2010 official demographical
census), this program generates records containing the following fields: names and
surnames of the individual; names and surnames of the individual’s mother; date of birth;
and sex. To evaluate the processing capacity of Tucuxi-BLAST, we randomly selected 1, 10,
100, 1k, 10k, and 100k records from the 300M database (subject) and used them as queries.
An in-house Python script was developed to introduce errors to 10% of the records in the
simulated databases with more than 100 records. The introduced errors are often found in
administrative databases and include the substitution and/or deletion of a single character
in names/surnames or a digit in the date of birth, and missing surnames (e.g., due to
marriage). The simulated error rates were distributed as follows: 45% with random single-,
double-, or triple-character substitution; 49% with middle-name deletion; 5% with one or
more surname deletions; and 1% with completely blank field(s) (e.g., the name of the
mother). These error rates are similar to those found in the actual administrative
epidemiological databases analyzed in this work. Finally, we increased the same number of
records in sub-datasets (1, 10, 100, 1k, 10k, and 100k) that are not in the 300M database.
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The inclusion was intended to insert noise from unmatched records in the subject
database. The same datasets were used for the benchmark.

Large administrative databases containing data on Brazilian patients
Access to the Information System for Notifiable Diseases (SINAN, Sistema de Informações
de Agravos de Notificação) and the Mortality Information System (SIM, Sistema de
Informações sobre Mortalidade) databases from the State of Amazonas, Brazil, were
provided by Fundação de Vigilância em Saúde do Amazonas. Data usage for research
purposes was approved by the Ethics Committee of the Fundação de Medicina Tropical
Dr. Heitor Vieira Dourado, Amazonas, Brazil (Protocol no. 3.462.265). The SINAN
databases (data from 2012 to 2017) pertaining to tuberculosis (TB), HIV/AIDS (HIV) and
meningitis (MEN) include individual notifications accordingly. In the SINAN databases,
deaths can be registered as caused by the disease (deaths reported as caused by TB, HIV, or
MEN) or by other causes (such as motor vehicle traffic deaths, homicide, suicide, etc.).
Because of the well-known underreporting of deaths in the SINAN databases, the SIM
database (data from 2012 to 2018) that centralizes information on deaths was also included
in the analysis.

Using the Shiny Framework (v. 1.7.1), we also developed the Tucuxi-Tail platform
(https://tucuxi-tail.csbiology.org/), which facilitates a visual inspection of the record
linkage results obtained. This platform first displays identification information from two
given records that are potentially the same (herein defined by running Tucuxi-BLAST
without E-value cutoff and retrieving all hits). Then, users can decide if these two records
are the same entity in both databases (i.e., whether they are correctly linked) or not.
The Tucuxi-Tail platform was utilized to quickly curate 3,000+ pairs of records, thus
generating the gold-standard dataset used in our benchmark.

Classification models in machine learning
We applied machine learning algorithms for building classification models to optimize the
RL and reduce the false-positive rate of BLAST alignment results. Using Tucuxi-Curumim,
we created 75,000 simulated records, which were then distributed into four datasets:
training_query, training_subject, testing_query, and testing_subject. Matched records
(class 1) were generated by duplicating the records in both the query and subject datasets.
Unmatched records (class 0) were records that were uniquely found in a given dataset.
Each dataset contained 25,000 records, of which 12,500 were class 0 and 12,500 were class
1. To the class 1 records, we attributed an error rate of 15% (see the “Simulated databases”
section). The classification models were based on Random Forest (RF) and logistic
regression (LR) using the training sets (namely the training_query and training_subject
datasets). The models were then tested based on their linkage of the testing_query and
testing_subject datasets. We used the RF (n_estimators = 75; criterion = entropy) and LR
(default parameters) algorithms from the scikit-learn package (Pedregosa et al., 2012).

The classification model was carried out using the BLAST metrics drawn from the
comparison between the query sequence (dataset A) and the subject sequence (dataset B).
The metrics utilized in the model were (1) normalized bit-score, (2) mismatch (number of
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mismatches), (3) gapopen (number of gap openings), (4) qcovhsp (query coverage per
high-scoring pairs), (5) sstart (start of alignment in subject), and (6) qstart (start of
alignment in query). The normalized bit-score was calculated by dividing the bit-score
value between the query and the subject by the best possible bit score value for that same
query (i.e., the bit score value between the query and itself).

Computational structure and RL benchmarks
All analyses were performed on a Linux workstation, Intel Core i7-8700, with 32 GB.
The benchmark was implemented with five other RL tools using the default parameters:
Python Record Linkage Toolkit (De Bruin, 2019), RecordLinkage (Sariyar & Borg, 2010),
fastLink (Enamorado, Fifield & Imai, 2019), free-version of Dedupe (Gregg & Eder, 2019),
and CIDACS-RL (Barbosa et al., 2020). When blocking method was used, the individual’s
name and surname were employed for the blocking.

RESULTS AND DISCUSSION
The Tucuxi-BLAST approach
We repurposed the BLAST algorithm to efficiently handle the RL between large
administrative databases. An overview of the Tucuxi-BLAST workflow is summarized in
Fig. 1A. The first step initiated by Tucuxi-BLAST is to convert the identification records of
all patients into DNA sequences. This is achieved using a codon wheel that converts each
letter and number from the identification fields in a record into a codon (Fig. 1B).
The codon wheel was designed to be dynamically controlled by a key, which can be any
string of letters or numbers. The encrypted key spins the codon wheel without altering the
position of the characters and numbers to be encoded. Since keys are randomly generated
on each Tucuxi-BLAST run, the RL from one run cannot be directly used to decode further
runs. Results can be reproduced if the same key is manually set during the RL process. RL
software is usually not designed for encrypting sensitive personal information. Although
the encryption provided by our method was not designed to be completely secure,
Tucuxi-BLAST offers an extra layer of data protection making sensitive personal less
“readable” (Fig. 1B).

Once the identification records are converted into DNA sequences, the BLASTn
algorithm is used to establish the alignment between a query dataset and a subject dataset.
To classify BLAST alignments (Fig. 1C) as matched (class 1) or unmatched (class 0), we
used classification models built with machine learning algorithms (see Methods). We also
developed a module, named Tucuxi-BW, that can be applied to a single dataset (Fig. 1D).
The goal of Tucuxi-BW is to detect and remove duplicated records from a database.

Tucuxi-BLAST’s performance on a simulated database with 300M
records
To demonstrate the robustness, speed, and accuracy of Tucuxi-BLAST, we created over
300,000,000 simulated records (subject database) containing the same combinations of
names, surnames, dates of birth, and sex information commonly found in real databases
(see Methods and Fig. 1A). From the subject database, we created six query datasets with
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Figure 1 Tucuxi-BLAST workflow and data organization scheme. Four variables are selected in common between two datasets, then DNA coding
is performed. The coding result is submitted to the BLAST algorithm and, finally, ML is applied to classify the RL (A). Codon wheel used in DNA
coding (B), results of BLAST for RL (C), and Tucuxi-BW module for data deduplication (D). Full-size DOI: 10.7717/peerj.13507/fig-1
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sampled records of different sizes (1, 10, 100, 1k, 10k, and 100k). For each query-simulated
dataset, we randomly introduced misspellings, name omissions, and surname changes in
10% of the records. To evaluate the processing speed and accuracy of our method in
dealing with true negative records, we also added in the six query datasets the same
number of records that had no correspondence to the subject database (Fig. 2A). It has
been shown that the presence of true negative records significantly increases the processing
time for RL algorithms (Harron et al., 2017b).

Using the six query datasets containing 2–200k records against the reference subject
database comprising 300M records (Fig. 2A), we performed a benchmark with
Tucuxi-BLAST and five other RL methods (see Methods). Using the same PC with 32 GB
of RAM, we could only run CIDACS-RL and Tucuxi-BLAST due to the limited RAM
available. Before the linkage, both methods first created an index of the subject database.
Tucuxi-BLAST took ~55 min and used 3.8 GB of memory to convert the entire dataset into

Figure 2 Competence in handling big data. Tucuxi-Curumim was used to generate all simulated data with the data obtained from IBGE (Instituto
Brasileiro de Geografia e Estatística) (A). The execution time and use of RAMmemory for each RL simulation were evaluated (B and C, respectively).
All simulations were performed on a 32 GB Intel Core i7-8700 Linux workstation. Full-size DOI: 10.7717/peerj.13507/fig-2
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in silico DNA sequences to create the indexes. CIDACS-RL took ~80 min and used 1.7 GB
to compile the indexes. Performance was then assessed by monitoring the processing time
and RAM usage. Both methods’ processing times were similar when query datasets
included 20 records or less (Fig. 2B). In processing the RL of the largest query dataset (200k
records), Tucuxi-BLAST was 5.69 times faster than CIDACS-RL. For this dataset, while
CIDACS-RL took 5 days and 7 h to perform the RL, Tucuxi-BLAST only took 23 h
(Fig. 2B). In terms of RAM usage, the maximum consumption of Tucuxi-BLAST and
CIDACS-RL were 0.4 GB and 3 GB, respectively (Fig. 2C). These results are impressive and
demonstrate the speed and accuracy of the platform. Currently, discussions on applying
RL to big data have been raised although limitations on processing time are a concern.
Tucuxi-BLAST is clearly aligned with these approaches and allows researchers with limited
access to powerful servers or cloud services to perform RL in huge datasets in a timely
manner.

Tucuxi-BLAST applied to real administrative databases
We also performed RL on real administrative health-related databases from the Amazon
State. Four databases were assessed: three query databases related/pertaining to
tuberculosis (TB), HIV, or meningitis (MEN), and one subject database (SIM) dealing
death registers. The goal was to try to identify patients in the query databases who were
reported dead from a disease in the subject database.

For the benchmark, we used the Tucuxi-Tail platform to manually create a
gold-standard dataset that contains deaths registered in both the query and subject
databases. We found 2,382 individuals who were registered as dead in the query databases
(MEN–203; HIV–936; and TB–1,243). Of those, 2,183 were also registered in the SIM
database (91.6%). The remaining records (199) did not present a corresponding entry in
the SIM database. Thus, for evaluating the RL, our gold-standard dataset utilized 2,183 true
positive and 199 true negative cases.

We then used the true positive cases to investigate the errors between the query and
subject databases. For all query databases, most errors were found in the mother’s name
(Fig. 3A). Besides typographical errors, the middle and last names of the patient’s mother
were often omitted or substituted by the husband’s family name. Our results corroborate a
previous report that showed that, due to marriage, the field corresponding to the mother’s
name has more mistakes between two linked records (Dusetzina et al., 2014). If all
identification records were taken into account, a great proportion of patients (1,040 of
linked records out of 2,183) had records with at least one mismatch/indel in the BLAST
results (Fig. 3B). The MEN database showed the highest rate of records with at least one
error compared with that of HIV and TB (Fig. 3B). The higher error rate in the MEN
database may be due to several patients being newborns with meningitis. The names of
these newborns usually change from the moment they are registered in the MEN database
(which can be before the official birth registration) till they die (which is later registered in
the SIM database). We also calculated the most frequent errors in the digits found in dates
of birth. The most frequent errors were related to number-switches between the numbers
“1” and “0” (0.68%), “5” and “6” (0.60%), and “6” and “7” (0.53%) (Fig. 3C). Similarly, we
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identified that the letters that were mostly switched in the names of true positive records
were between “N” and “M”, “S” and “Z”, “G” and “Q”, and “I” and “E” (Fig. 3D). In some
cases (e.g., the switch between “N” and “M”), the switching is a typo caused by the

Figure 3 Exploration of databases. Counting the number of records with errors and in which variables
the errors occur (A). Total error rates in true positive linked records of SINAN databases against SIM
mortality databases identifying any type of error (B). The networks demonstrate the substitution rate
between numbers (C) and letters (D). The substitution rate between alphanumeric characters was
calculated using records showing only mismatches in the BLAST results, i.e. fields from both records
having the same length. The networks display the characters (nodes) and the frequency of substitutions
between them (edges). Full-size DOI: 10.7717/peerj.13507/fig-3
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proximity of the aforementioned letter keys in a keyboard. For other cases, this is due to
the use of letters that share similar phonetics in Brazilian Portuguese language. The codon
wheel can be easily adapted to the English language (or any other language). For this, the
corresponding positions for each character in the codon wheel must take into account the
phonetics and typos frequently found for the target language.

The analysis of the most frequent errors between the linked records was then performed
to improve the codon wheel that converts record information to DNA sequences (Fig. 1B).
We leveraged the degeneracy of the genetic code (Crick et al., 1961) so that the letters that
are commonly mistaken differ in only one nucleotide in the codon. For example, whereas
the difference between “V” (codon GAG) and “Z” (codon ATC) differs in all three
nucleotides, the difference between “S” (codon ATA) and “Z” (codon ATC) differs in only
one nucleotide. Thus, names commonly written as “Luiz” and “Luis” (pronounced the
same way in Portuguese) will have a more similar DNA sequence than “Luiz” and “Luiv”.
“Luiv” is not a common name in Brazil. Therefore, the codon wheel improved the scores of
the BLAST algorithm in the cases of substitution involving phonetically similar letters,
which are very common in administrative datasets. This approach adapted for Portuguese,
requires simpler and faster preprocessing steps compared with the phonetic SOUNDEX
method, originally developed for the English language (Jordão & Rosa, 2012; Marcelino,
2015). In fact, some RL tools rely on the preprocessing steps for applying phonetic-based
algorithms (Camargo & Coeli, 2015; Enamorado, Fifield & Imai, 2019). Errors related to
keyboard typos, such as switching the letter “M” with the letter “N” (which are close to
each other on the keyboard) are also frequent. Our method treats such typos the same way
it does for phonetically similar letters. It uses codons with only one nucleotide difference to
each letter.

The BLAST algorithm (Altschul et al., 1990) is optimized to handle sequences that do
not align perfectly with each other because most biological sequences carry genomic
variations (e.g., indels and SNPs) between individuals. Such differences are even bigger
when sequences from two different species are compared. Also, the algorithm that
compares nucleotide sequences (i.e., BLASTn) is very efficient in analyzing billions of
sequences in terms of precision and speed (Perkel, 2021). By leveraging the BLASTn
algorithm, Tucuxi-BLAST can quickly compare millions of records that are not identical
and achieve great accuracy and precision.

Benchmarking Tucuxi-BLAST against other RL tools
Since only our method and CIDACS-RL were able to run on the large simulated databases
(Fig. 2), we compared the performance of Tucuxi-BLAST and other RL tools using the
manually curated gold-standard actual administrative databases. While the biggest
simulated database had 200k records linked to a database with 300M records, the real
administrative databases contained only 2,382 records in total to be linked to a mortality
database with 106,613 records. All RL tools employed were open-source and required
neither high-performance computing infrastructure nor extensive preprocessing steps.
All RL algorithms (with the exception of Tucuxi-BLAST and RL Dedupe) were derived
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from the Jaro-Winkler method (Winkler, 1990) and/or the Damerau-Levenshtein method
(Levenshtein, 1966). We used the same computer to run all the algorithms.

For the benchmark, we used the receiver operating characteristic (ROC) curve and the
F-score to evaluate the performance of all RL methods. The RL was performed according
to the documentation of each method, and the default parameters were used.
Tucuxi-BLAST achieved an F-score and AUC above 98% for all three databases (Figs. 4A
and 4B). Random Forest and logistic regression classifiers had a mean accuracy of 98.68%
and 97.76% respectively (Table S1). Tucuxi-BLAST exhibited processing performance
similar to the methods that use blocking; however, the accuracy was higher (Figs. 4C and
4D). The fastLink program, together with Tucuxi-BLAST, obtained the best performance
(Fig. 4C). However, when considering the processing time, Tucuxi-BLAST is 100 times
faster and consumes less memory than fastLink (Figs. 4D and 4E). In general, the worst
performance was observed for programs that use the blocking approach. To speed up
processing, blocking methods must reduce the number of comparisons between databases,
which compromise the RL results (Sayers et al., 2016). Approaches combining blocking

Figure 4 Benchmark for the main record linkage tools. ROC curves for the linkage runs of real data
from disease databases of meningitis (MEN), HIV and tuberculosis (TB) using LR = Logistic Regression
and RF = Random Forest (A). Performance metrics for the ML approach for each database (B). Accuracy
percentage for each disease against death database using the different methods for the benchmark (C).
Execution time spent (in log10 s) (D). RAM memory consumption in GB (E). Runs for the
RecordLinkage R package applying non-blocking methods were not possible for the TB database using
the workstation mentioned in the methods. Full-size DOI: 10.7717/peerj.13507/fig-4
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and full-linkage methods were recently implemented. This approach has been shown to be
efficient in many studies due to good performance metrics and low computational
consumption (Pita et al., 2018; Barbosa et al., 2020). Although CIDACS-RL uses such a
mixed approach incorporating both blocking and full-linkage methods, Tucuxi-BLAST
was not only faster than CIDACS-RL but also demonstrated increased performance
(Fig. 4).

The main limitation to using Tucuxi-BLAST for databases containing more than 300M
records is the temporary storage on hard disk. DNA encoding and the BLAST software
processing require temporary storage of at least twice the sum of the query and subject
databases. In this case, if entries in both databases add up to a total of 5 GB, Tucuxi-BLAST
will require at least 10 GB of hard disk space to proceed with RL. Despite the limitation
concerning temporary storage, Tucuxi-BLAST scales well in terms of the usage of RAM
memory (Fig. 2C). As the cost per gigabyte for hard disks continues to drop and the
availability of large disks (>1 Tb) for general users is widespread, we believe that solving the
storage allocation problem is much easier than dealing with the high RAM demand. Such
low RAM demand makes Tucuxi-BLAST an effective long-term solution for the
record-linkage problem, which is expected to keep increasing as new databases are
continuously introduced.

CONCLUSIONS
Our findings showed a high-resolution performance in record linkage by using an in silico
DNA encoding system and the BLAST algorithm. The developed program was able to
overcome misspellings and typographical errors in administrative databases.
Tucuxi-BLAST does not require the installation of any dependencies, thus dispensing any
prior knowledge of software management on Linux systems. Moreover, our approach,
when compared with existing solutions, has clear advantages in terms of time and
accuracy, even when using only four identification fields. In addition, the DNA encoding
system introduces a layer of protection for securing personal information, helping to
ensure confidentiality throughout the RL process.
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