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ABSTRACT
Landscape structure affects animal movement. Differences between landscapes may
induce heterogeneity in home range size andmovement rates among individuals within
a population. These types of heterogeneity can cause bias when estimating population
size or density and are seldom considered during analyses. Individual heterogeneity,
attributable to unknown or unobserved covariates, is often modelled using latent
mixture distributions, but these are demanding of data, and abundance estimates are
sensitive to the parameters of the mixture distribution. A recent extension of spatially
explicit capture-recapture models allows landscape structure to be modelled explicitly
by incorporating landscape connectivity using non-Euclidean least-cost paths, improv-
ing inference, especially in highly structured (riparian & mountainous) landscapes.
Our objective was to investigate whether these novel models could improve inference
about black bear (Ursus americanus) density. We fit spatially explicit capture-recapture
models with standard and complex structures to black bear data from 51 separate study
areas. We found that non-Euclidean models were supported in over half of our study
areas. Associated density estimates were higher and less precise than those from simple
models and only slightly more precise than those from finite mixture models. Estimates
were sensitive to the scale (pixel resolution) at which least-cost paths were calculated,
but there was no consistent pattern across covariates or resolutions. Our results indicate
that negative bias associated with ignoring heterogeneity is potentially severe. However,
the most popular method for dealing with this heterogeneity (finite mixtures) yielded
potentially unreliable point estimates of abundance that may not be comparable across
surveys, even in data sets with 136–350 total detections, 3–5 detections per individual,
97–283 recaptures, and 80–254 spatial recaptures. In these same study areas with high
sample sizes, we expected that landscape features would not severely constrain animal
movements and modelling non-Euclidian distance would not consistently improve
inference. Our results suggest caution in applying non-Euclidean SCR models when
there is no clear landscape covariate that is known to strongly influence the movement
of the focal species, and in applying finite mixture models except when abundant data
are available.
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INTRODUCTION
Monitoring wildlife populations is fundamental to conserving threatened or endangered
species and managing game animals (Goldsmith, 1991). Monitoring allows practitioners to
assess population trends and detect declines (Yoccoz, Nichols & Boulinier, 2001), determine
the effectiveness of conservation or management actions (Campbell et al., 2002), and
ensure sustainable harvest (White et al., 2015; Fryxell, Sinclair & Caughley, 2014; Bender,
2006; Amstrup et al., 2005). Logistical, financial, and practical constraints dictate that
most population monitoring programs cannot count all individuals in a population since
detection is imperfect and probabilistic. Imperfect detection will not bias population size
estimates if detection rates for monitoring protocols are constant across time, space, and
individuals, but this is rarely the case (Howe, Obbard & Kyle, 2013; Sollmann et al., 2013).
Detectability of individuals may vary with age, sex, body mass, temperament, different
learning experiences, including prior exposure to humans, or behaviors related to life
history (Gimenez, Cam & Gaillard, 2018; Guillera-Arroita, 2017). Consequently, different
individuals of the same species, and even of the same age and sex, may have intrinsically
different probabilities of being detected during surveys, and the sources of heterogeneity
may not be observed. Individual heterogeneity in detectability can cause bias to estimates of
any metric relying on the detectability of individuals, including occupancy and abundance
(Gimenez, Cam & Gaillard, 2018; Guillera-Arroita, 2017; Kellner & Swihart, 2014; Efford &
Dawson, 2012; Pledger, 2000). Further, the existence of heterogeneity calls into question
inference on second-order estimates relating to, for example, habitat use, movement, and
population trends. Consequently, detection heterogeneity that is unaccounted for can
cause bias and is a general problem for monitoring programs (Kellner & Swihart, 2014;
Kéry & Schmidt, 2008).

Capture-recapture (CR) methods are widely used for estimating animal abundance.
Several variations have been proposed to avoid or account for individual heterogeneity
in detection probabilities, which causes negative bias in estimates of abundance when
not modelled (Pledger, Pollock & Norris, 2010; Pledger, Pollock & Norris, 2003; Pledger,
2000; Chao, 1987; Otis et al., 1978). Proper study design and the inclusion of covariates
of detectability (such as time of day, weather, age, and sex) can minimize unmodelled
heterogeneity in CR data and, therefore, negative bias in estimates (Gimenez, Cam &
Gaillard, 2018; Guillera-Arroita, 2017; Miller et al., 2015). However, important covariates
may not be observed. For example, age remains unknown in genetic surveys, and
different learning experiences of long-lived, intelligent species affect behaviour but
can rarely be quantified since all sources of heterogeneity can rarely be modelled using
covariates (Thandrayen & Wang, 2009; Noyce, Garshelis & Coy, 2001). Statistical methods
for accounting for heterogeneity due to unobserved or unobservable covariates have been
developed (Gimenez, Cam & Gaillard, 2018; Gimenez & Choquet, 2010; Royle, 2008; Royle,
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2006; Pledger, 2000; Chao, 1987; Otis et al., 1978). Finite mixture models have become the
most common approach to modelling heterogeneity from unobserved sources (Pledger,
2000). They assume that the population has two or more latent groups with different
detection parameters; the proportions of animals that belong to the different groups must
also be estimated (Pledger, 2000). However, their reliable application remains problematic
(Dorazio, 2014; Pledger & Phillpot, 2008; Link, 2004; Link, 2003).

Spatial capture-recapture (SCR) models explicitly account for one important source of
individual heterogeneity in capture probabilities; the placement of detectors relative to the
areas where individuals spend most of their time (i.e., their activity centers; Borchers &
Efford, 2008; Boulanger, Stenhouse & Munro, 2004) and are now preferred over non-spatial
CR models in many situations (Greenspan, Anile & Nielsen, 2020; Arandjelovic & Vigilant,
2018; Clutton-Brock & Sheldon, 2010; Obbard, Howe & Kyle, 2010). SCR models also allow
other sources of heterogeneity to be modelled using covariates or mixture distributions
(Royle et al., 2009; Borchers & Efford, 2008). As in CR models, it is not always clear whether
a dataset has sufficient information to accurately estimate the parameters of the mixture
distribution, potentially leading to more biased results than if heterogeneity was ignored
(Pledger & Phillpot, 2008; Link, 2004; Link, 2003). In the face of such uncertainty, it is
generally left to the practitioner to decide whether or how to account for unobserved
sources of detection heterogeneity within an appropriate statistical framework (Gimenez,
Cam & Gaillard, 2018; Miller et al., 2015; Royle et al., 2009). Therefore, it is preferable
to explicitly model specific, observable sources of heterogeneity rather than relying on
statistical approaches used tomodel heterogeneity due to unobserved sources. For example,
when heterogeneity is modelled using finite mixture distributions, the groupings of animals
into (usually only two) latent classes may have little biological meaning.

SCR models assume a monotonic decline in detection probability with distance from
the activity center; the form of this relationship is often assumed to follow a half-normal
probability or hazard distribution (Euclidean distance SCR models, Royle et al., 2009;
Borchers & Efford, 2008). However, in heterogeneous landscapes, Euclidean distance is not
a realisticmetric to describe the time, cost or effort required to travel between activity centers
and detectors. Euclidean distance SCRmodels assume that there are no features that impede
or promote movement and, therefore, movement capability is similar for all individuals.
However, the movement capability of nonvolant animals through structured landscapes
is not uniform. Landscape features such as lakes, mountains, or human development can
impede movement (landscape resistance), whereas other features offer little resistance and
may be used as corridors. Many animals have a detailed spatial memory of the landscape
they occupy; this allows them to reduce their movement cost and increase their fitness
(Halsey, 2016; Shepard et al., 2013). As a result, animals’ paths between locations are not
straight, and Euclidean distance is a poor measure of the movement cost to animals.

Royle et al. (2013) demonstrated that assuming a monotonic decline in detectability
with Euclidean distance could cause negative bias in SCR estimates of abundance in
structured landscapes (where mobility of animals is affected by landscape features) and
attributed the bias to unmodelled individual heterogeneity induced by the different
landscapes individuals were exposed to within their home ranges. They described methods
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for estimating population density by modelling detectability as a function of the movement
capability of a species within the SCR framework. More specifically, they modelled the
decline in detectability as a function of non-Euclidean distances. Most animals exhibit
variation in movements across a landscape; thus, the ability to incorporate movement
costs into SCR models is a significant development. Non-Euclidean distances are generally
calculated using the Dijkstra least-cost path algorithm (Dijkstra, 1959). This algorithm uses
a spatial layer or cost surface that assigns a cost of travelling through a pixel and finds the
least-cost path between locations. SCR models that account for the non-Euclidean nature
of movement cost offer an interpretable means of understanding heterogeneity rather than
attributing it to unobserved sources.

Sutherland, Fuller & Royle (2015) previously tested the non-Euclidean SCR approach
on simulated encounter histories of European otters (Lutra lutra) in a riparian habitat
system, showing improved density estimation. Since then, two studies of black bears (Ursus
americanus;Morin et al., 2017;Murphy et al., 2016), two studies of Americanmink (Neogale
vison; Sutherland, Fuller & Royle, 2015; Fuller et al., 2016), one of jaguars (Panthera onca;
Tobler et al., 2018), and one of snow leopards (Panthera uncia; Sharma et al., 2020) have
used this approach to account for individual heterogeneity in detectability. In all 6 cases,
the authors found support for non-Euclidean models. In most of these examples, the
landscapes were highly structured, and the movements of animals were accordingly
strongly influenced. Minks concentrate their movements near waterbodies (Fuller et al.,
2016). Snow leopard habitat is characterized by extreme variation in elevation such that
two-dimensional Euclidean distance is a poor measure of distance travelled (Sharma et
al., 2020). Black bear movements in fragmented landscapes in southern New York state
were facilitated by forest cover and hindered by developed areas (Morin et al., 2017). Black
bear movements in Kentucky followed the orientation of mountain ridges (Murphy et
al., 2016). Jaguars used roads as important movement corridors, and ignoring this effect
would have led to underestimating densities (Tobler et al., 2018). Thus, the application of
non-Euclideanmodels to species with dramatic or predictable effects of landscape structure
on their movement is both recommended and feasible. However, additional testing of these
models to identify situations in which they are most effective is still warranted because
animals do not move randomly, even in less structured landscapes.

We were interested in whether non-Euclidean models could improve inference where
obvious barriers and corridors were absent and where different landscape characteristics
could affect the cost of movement. In this study, we applied the non-Euclidean spatial-
capture recapture approach to data collected from 51 independent study areas sampled
in 2017 or 2018 as part of a broad-scale black bear monitoring program in Ontario,
Canada. Genetic SCR surveys have been used to monitor black bear populations in Ontario
since the early 2000s; estimates inform decision-making, including harvest management
(OMNRF, 2019). We expected the detectability of individual bears to vary, including
within sexes, for the reasons described above including landscape structure, and because
individual heterogeneity was apparent in SCR data from prior surveys of the female fraction
of the same population (Howe, Obbard & Kyle, 2013; Obbard, Howe & Kyle, 2010); data
were pooled across study areas for analysis, consequently some of the heterogeneity was
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likely attributable to differences among study areas). Non-Euclidean models provided
an opportunity to model one source of heterogeneity in an interpretable and explicit
manner, thereby improving inference about abundance while reducing reliance onmixture
distributions. Unlike prior applications of non-Euclidean SCR, most of Ontario’s forests do
not have obvious barriers or restrictions to bear movement (except in the south, where bear
habitat is fragmented). This system, therefore, provides a valuable test of the applicability of
non-Euclidean SCRmodels in situations other than where extreme landscape heterogeneity
or habitat specialism leads to strong and predictable effects of structure on movement.

Ourmain objective was to investigate whether SCRmodels with non-Euclidean distances
and models with two-point finite mixtures could improve inference about black bear
abundance relative to Euclidean SCR models without mixtures. We predicted that if the
covariates we chose to represent landscape structure had a meaningful influence on bear
movement, then: (1) non-Euclideanmodels would improve fit relative to Euclideanmodels,
(2) densities estimated from non-Euclideanmodels would be higher (less negatively biased)
than densities estimated from Euclidean models without mixtures, and (3) non-Euclidean
models would producemore precise estimates than Euclideanmodels withmixtures. Lastly,
we assessed how robust non-Euclidean models were to variation in the spatial resolution
at which landscape covariates were calculated.

MATERIALS AND METHODS
Study region
We monitored black bears in 51 study areas across Ontario in either 2017 or 2018 as
part of ongoing monitoring (Fig. 1). The landscape we sampled covered 15,344.4 km2;
the areas covered by our arrays averaged 300.9 km2 (Table S1). Most of our study areas
(35/51) were in the Boreal Forest, which is a relatively unproductive habitat for black bears
with a homogenous landscape dominated by coniferous tree species such as balsam fir
(Abies balsamea), jack pine (Pinus banksiana), tamarack (Larix laricina), black & white
spruce (Picea mariana and Picea glauca), and eastern white cedar (Thuja occidentalis; Rowe,
1972). Periodic logging and wildfires create a mosaic of different successional stages. The
remaining 16 study areas were in the Great Lakes-St Lawrence Forest (GLSL) transition
zone between the boreal and deciduous forest (Boucher et al., 2009). These forests are
a mix of hard and softwoods dominated by white pine (Pinus strobus), red pine (Pinus
resinosa), hemlock (Tsuga canadensis), American beech (Fagus grandifolia), yellow birch
(Betula alleghaniensis), and sugar maple (Acer saccharum) (Rowe, 1972). The GLSL forest is
a more productive habitat for black bears. It supports higher bear densities (Howe, Obbard
& Kyle, 2013), but human population densities and harvest pressure are also higher, and
busy roads and urban areas are more common, than in the Boreal Forest.

Survey design and field sampling
In each study area, we installed 40 to 45 noninvasive stations designed to sample hair from
black bears in curvilinear, branching arrays along secondary and tertiary roads or trails
(stations were >30 m from any road), for a total of 2091 stations. Prior surveys of the
same population used 20–25 traps at 2 km spacing; some study areas yielded insufficient
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Figure 1 The 51 study areas in Ontario, Canada, where we estimated black bear density for study ar-
eas sampled in 2017–2018. In this figure, bear densities were estimated with standard Euclidean spatially
explicit capture-recapture models where σ was a function of sex and g0 was a function of sex and a site-
specific-learned response to the detectors. RSE is the Relative Standard Error of the density estimate. For-
est region boundaries (Rowe, 1972) are demarcated by dashed lines.

Full-size DOI: 10.7717/peerj.13490/fig-1

data to fit biologically realistic models, and estimates lacked precision (Howe, Obbard &
Kyle, 2013; Obbard, Howe & Kyle, 2010). Since those surveys were designed, simulations
and testing showed that optimal trap spacing varies with detectability at the trap location
and that where detectability is low, as it is for black bears at hair corrals, optimal trap
spacing is similar to or less than the expected scale of movements (‘‘ σ ’’ in the data analysis
section below, Clark, 2019; Efford & Boulanger, 2019; Sun, Fuller & Royle, 2014; Wilton
et al., 2014; Sollmann, Gardner & Belant, 2012). Applications to black bears showed that
estimates of σ for females were consistently >1 km, shorter in the southern US than in other
environments, and usually around 2 km inCanada and the northernUS; estimates formales
were consistently >2 km and usually >3 km (Hooker et al., 2020; Clark, 2019; Humm et al.,
2017; Sun et al., 2017; Wilton et al., 2014; Howe, Obbard & Kyle, 2013; Sollmann, Gardner
& Belant, 2012; Gardner et al., 2010; Obbard, Howe & Kyle, 2010). We, therefore, increased
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sampling effort and intensity for 2017–2018 sampling relative to previous work, spacing
traps 1.5 km apart (slightly less than the expected scale of female movements) to provide
larger samples of recaptures and spatial recaptures in the hope of improving inference
about bear density.

At each station, we installed a barbed-wire corral to snag bear hair (Woods et al., 1999).
We attached a single strand of barbed-wire approximately 50 centimeters above the ground.
We assumed this height would avoid (or minimize) collecting hair from animals <two
years old because morphometric data from live-trapping studies in Ontario showed that
very few yearling bears reached 50 cm at shoulder height (Obbard et al., 2017; Obbard &
Howe, 2008). Thus, we consider our density estimates specific to bears aged ≥ 2 years. We
baited each corral with three partially opened tins of sardines in oil suspended at least 2
metres horizontal distance from any point along the barbed wire by a string from a board
nailed approximately 2.5 m high on a central tree. We rebaited corrals and collected hair
samples weekly from late May through early July for a total of 5 sampling occasions. If
corrals were destroyed or became inaccessible, we attempted to replace them the same or
the following week. We placed each sample, consisting of all the hairs on a single barb, into
its own paper envelope, which we air dried and stored at room temperature until DNA
extraction.

DNA extraction and analysis
We attempted to genotype all samples with at least five hairs. We genotyped all extracted
samples at 15 microsatellite loci and one sex-specific locus (see Pelletier et al., 2012). We
discarded samples with >14 missing alleles. Also, when there were more than two alleles at
a locus, the sample likely included DNA from more than one bear, therefore, we removed
samples that had more than two alleles present at more than two loci. We then grouped the
remaining samples into individual genotypes using ‘allelematch’ (Galpern et al., 2012). We
set the number of allelic mismatches allowed between genotypes as 6 to 11. We checked
all mismatches; if we could confirm the genotyping error, we corrected the genotypes;
otherwise, we discarded the sample. Individuals represented by single samples required
additional criteria for inclusion. We reamplified ambiguous samples, and if we could not
verify them, we discarded the sample. We then used the unique genotypes to generate
capture histories (For details see Appendix S2 in Howe et al., 2022).

Data analysis
We conducted separate, independent SCR analyses of data from each study area. Raw
movement data (i.e., distances between recaptures of individual) suggested that even male
bears rarely travelled as far as 15 km between traps in the same study area, suggesting
that home range diameters rarely exceeded this value. Consequently, we extended the
regions of integration for each study area 15 km around all traps to ensure that bears
with activity centers outside this region (i.e., with activity centers >their home range
radius from any trap) had very low to negligible probabilities of being detected (Borchers
& Efford, 2008). We discretized the regions of integration to meshes of points (at 1 km
spacing) that represented the possible activity center locations of individuals. We used
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spatial data depicting waterbodies to exclude points that fell in lakes. We used functions
implemented in the ‘secr’ R package (Efford, 2020) to ensure that this extent and resolution
were adequate, i.e., that density estimates were insensitive to increased extent or resolution
for all data sets.

We considered five candidate models of a half-normal spatial detection probability
function. All models included differences in both g 0 (detection probability at the activity
center) and σ (the scale parameter for the half normal detection probability function,
which describes the decline in capture probability as a trap is placed further from the
activity center) between sexes. An effect of prior detection at the same trap (bk) affecting
g 0 was also included in all models. These forms of variation in detectability are frequently
supported in SCR data from black bears sampled at baited barbed-wire corrals (Hooker et
al., 2020; Azad et al., 2019; Howe, Obbard & Kyle, 2013; Gardner et al., 2010). The simplest
model included only these effects (sex-specific g 0 and σ and the bk effect on g 0). A second
model also included an additive effect of individual heterogeneity modelled as a two-point
finite mixture distribution (h2) affecting σ . In these two models, detection probability
declined with the Euclidean distance between activity centers and traps. In the remaining
three models, detection probability declined with increasing non-Euclidean distance as
described below, and the mixture distribution was omitted.

Variable survey effort among sampling occasions caused by, for example, destruction of
traps by falling trees, road washouts, or changes to work schedules, was explicitly accounted
for in the SCR data (Efford, Borchers & Mowat, 2013). We fit the models by maximizing
the conditional likelihood for proximity detectors and calculated bear density as a derived
parameter from each model fitted to data from each study area. We estimated asymptotic
variances assuming an underlying homogeneous Poisson point process for the distribution
of activity centers (Efford, Borchers & Byrom, 2009; Borchers & Efford, 2008). We used R
version 3.6.0 (R Core Team, 2020) and version 4.2.0 of the ‘secr’ package (Efford, 2020).

To fit non-Euclidean models, we followed the procedures in Sutherland, Fuller & Royle
(2015) to dynamically transform the matrix that describes distances between each detector
and each point in the region of integration (see Data S1 for an example). We defined
the non-Euclidean distance as the accumulated cost of the least-cost path from activity
centers to traps with the Dijkstra (1959) algorithm implemented in the ‘gdistance’ R
package (Van Etten, 2017). These paths were calculated from a cost surface that was a
digital representation of a landscape covariate that was additionally transformed by an α2
parameter depending on whether the covariate impedes (α2 < 0) or facilitates (α2 > 0)
movement. We used estimates from the simplest model as starting values when fitting
models with mixtures or non-Euclidean distances.

Movement covariates
We chose a set of covariates for the non-euclidean model by reviewing the literature and
based on our knowledge of black bears that we hypothesized related to the cost or ease of
movement. Roads are generally an obstacle towildlife (Bennett, 2017), and high-traffic roads
are a high-risk obstacle for black bears (Ditmer et al., 2018; Karelus et al., 2017; McCown
et al., 2009; Beringer, Seibert & Pelton, 1990; Rogers & Allen, 1987). However, black bears
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also use roads to travel (Witmer, 2019; Lewis et al., 2011; Manville, 1983). Traffic intensity
and size of the road or even the density of roads is an important factor that promotes or
disrupts black bear movement (Ditmer et al., 2018). We calculated the areas occupied by
linear features such as highways, roads, and resource roads from spatial data describing the
road network of Ontario (OMNRF, 2015a;OMNRF, 2015b). We first rasterized all roads to
10-meter resolution and assigned all pixels that had roads a value of ‘‘1’’ and all other pixels
a value of ‘‘0’’. This allowed us to remove overlapping road segments between datasets.
For this movement covariate, we allowed the α2 parameter to explore both the positive and
negative parameter space. A negative value indicated that linear features facilitate black
bear movement, while a positive value indicated that roads impede movement.

Moving through rugged terrain requires more energy than travelling across flat terrain.
We calculated the Vector Ruggedness Measure, a proxy for landscape ruggedness (VRM;
Sappington, Longshore & Thompson, 2007), from a 30-meter resolution Digital Elevation
Model (OMNRF, 2015c). We used the ArcGIS Benthic Terrain Modeler to calculate Vector
Ruggedness Measure with a neighborhood size of 3 (Wright et al., 2012). We estimated the
α2 parameter for this movement covariate on the log scale since a negative value would
indicate that rugged terrain facilitates black bear movement.

Lastly, there was scant evidence of black bears crossing large waterbodies (but see
Rogers & Allen, 1987), and we expected that travelling through water would require bears
to expend more energy than when travelling overland. Consequently, across our study
areas large waterbodies acted as barriers to bear movement, and smaller waterbodies
hindered movement. We first quantified the cost of travelling through areas with water.
We calculated the area occupied by waterbodies in a 15-meter resolution land cover map
(OMNRF, 2014). We combined the ‘‘clear open water’’ and ‘‘turbid water’’ classes, to which
we assigned a value of ‘‘1’’ with all other classes assigned a value of ‘‘0’’. We also estimated
the α2 parameter for this movement covariate on the log scale since a negative value would
indicate that waterbodies facilitate black bear movement.

We aligned all raster surfaces to the terrain ruggedness layer. We then coarsened the
water and road layers to match the resolution of the terrain ruggedness layer (30 m). We
aggregated the water layer by a factor of two using a sum; this gave us a range of values
from zero to four, where we defined a value of one as 225 m2 of water, and a value of four
as 900 m2 of water. We aggregated the road layer by a factor of three using a sum, yielding
values from zero to nine, where a value of one was defined as 100 m2 of roads, and a value
of nine was 900 m2 of roads. We then scaled the values of each of these surfaces between
1–10 so that parameter estimates from all landscape covariates were comparable. We did
not allow for zeros in the cost surfaces since cost values >0 are necessary to compute the
least-cost paths. Finally, we created boundary layers for each study area by buffering 15
kilometers (matching the region of integration) from each detector and clipped all three
spatial layers using this boundary. We projected all layers to NAD83 / Ontario MNR
Lambert (EPSG:3161).
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Spatial resolution
To assess the influence of the spatial resolution at which costs, and therefore least-cost paths,
were calculated on our results, we spatially aggregated our data into coarser resolutions. Our
finest scale resolution was 30-meters. We aggregated movement covariates to resolutions
of 60, 120, 240, 520 and 960 m using the mean value across cells and refit the three
non-Euclidean models previously described. Therefore, we fit a total of 20 SCR models
to each data set: two Euclidean models and 18 non-Euclidean models (three covariates
calculated at each of six resolutions).

Model and estimate comparisons
For each study area and spatial resolution, we compared the goodness of fit of complex
models (i.e., finite mixture or non-Euclidean distance models) to the simplest model (the
Euclidean distance model without mixtures) using a likelihood-ratio test with an α level
of 0.05. We did not use model selection criteria (e.g., Akaike’s Information Criterion)
because we were not interested in minimizing the bias–variance tradeoff among a set of
models, which is the purpose of statistical regularization techniques such as model selection
(Hooten & Hobbs, 2015). Rather, we were interested in understanding whether elements
of the more complex models were redundant. We then summarized the change in density
and the associated change in relative standard error (RSE; calculated as the standard error
divided by the point estimate) when a more complex model significantly improved fit.
We also investigated changes in log-likelihood, density and RSE between Euclidean finite
mixture and non-Euclidean models that both significantly improved fit relative to their
simpler Euclidean model counterparts. We filtered out models with density estimates over
one bear per km2 since densities this high in Canada or the northern USA are unrealistic
and have not been reported (Welfelt, Beausoleil & Wielgus, 2019; Roy et al., 2012; Gardner
et al., 2010;Miller et al., 1997). We also filtered out models that had RSEs of density >40%
because they were too imprecise to inform management. Due to the large number of
models and computational requirements, we fit all models using a serial farm on several
computer clusters (computecanada.ca RRG gme-665-ab).

RESULTS
A total of 34,235 hair samples were collected, 11.3% were not processed because the
envelope did not contain enough hairs, 9.5% were excluded because DNA amplification or
genotyping failed, 4.4% were mixed samples from more than 1 bear, 0.2% were excluded
because they were unique genotypes or the sample wasmislabeled, and 25,534 (74.6%) were
successfully genotyped and assigned to an individual (Table S2). There were no obvious
spatial or temporal patterns in genotyping success rates. We identified 2,534 unique bears
with a total of 8,259 independent detections. The median number of detections of bears in
a study area was 145 and ranged from 38 to 350; the median number of individuals was 49
and ranged from 23 to 82. The median number of detections per individual ranged from
1.6 to 5.2 across study area. The median number of recaptures per study area was 100 and
ranged from 15 to 283. The median number of spatial recaptures was 83 and ranged from
10 to 254 (Table S2).
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Figure 2 The effect of sample size and two-point mixture models on black bear density estimates and
their associated Relative Standard Error (RSE).We estimated black bear density for 51 study areas sam-
pled in 2017–2018 in Ontario, Canada. Significance was calculated using a likelihood-ratio test between
the base model without mixture (null model) against the more complex model with mixture. Symbols in
red are mixture models that significantly improved fit. Grey lines indicate pairs of models, and the length
of the line is the change in the density estimate.

Full-size DOI: 10.7717/peerj.13490/fig-2

Across our study areas, RSEs of density estimates generally increased as the sample
size (as the mean number of detections per animal) decreased (Fig. 2). Consequently, we
removed 26 study areas from our analysis since study areas with detections per animal
(DPA) ≤ 3 were already problematic for mixture models (Fig. 2).

Finite mixtures and Euclidean models
For the 25 study areas with DPA >3, we compared mixture models to their simpler
counterparts using likelihood-ratio tests. We found that when we included a two-point
mixture, it significantly improved fit in 17 out of 25 cases (Table 1). One of these models
that outperformed the simpler model had an RSE >40%. The 16 remaining mixture models
yielded density estimates that were, on average, twice as high (mean increase = 100.4%),
with RSEs that were, on average, 44.7% larger, relative to estimates from the simple model
fit to data from the same study area.We reviewed estimates of the proportions of individuals
allocated to the different latent groups and of sex-specific σ for both groups and found that
in 11 of 16 cases, >64.1% of individuals were assigned to the group with lower σ (>80.1%
in 7 cases) and estimates of σ for this group was lower than expected for the species and
sex (<1 km for females or <2 km for males). These 11 mixture models yielded estimates
that were 124.8% higher, with RSEs that were 51.9% larger relative to estimates from the
simpler model.
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Table 1 Summary statistics for models that significantly improved fit over standard Euclideanmodels
without a two-point mixture. These models were used to estimate black bear density across 25 study areas
in Ontario, Canada, for 2017–2018. The average change in density and Relative Standard Error (RSE) was
only measured for models that significantly improved fit over their Euclidean counterparts without mix-
ture. Significance was calculated using a likelihood-ratio test between the base Euclidean model without
mixture (null model) against the more complex models.

Euclidean
mixture models

Non-Euclideanmodels with 120-meter
pixel resolution

Road
density

Terrain
ruggedness

Waterbody
density

Number of models 17 12 3 3
Number of models with
density >1 bear per km2

0 2 0 0

Number of models
with RSE >40%

1 4 0 0

Remaining after filtering 16 8 3 3
Average1Density % 100.4 65.6 −53.0 30.2
Average1 RSE% 44.7 29.8 −10.0 46.7

Non-Euclidean models
There was no general pattern in the performance of non-Euclidean models relative to
Euclidean models across spatial resolutions (Table 2). We found general agreement across
spatial resolution for the terrain ruggedness and waterbody density models, but they were
supported in a few study areas. In contrast, we found that road density models were more
often supported at a spatial resolution of 240-meters.

Non-Euclidean model support varied substantially depending on spatial resolution;
therefore, to provide a more detailed overview of our results, we discuss the patterns
found in models that were fit with spatial data at 120-meter resolution. At this spatial
resolution, there is a reasonable tradeoff between biological realism (i.e., the landscape is,
in fact, continuous) and computation time (<40 h Fig. S1). When we increased complexity
from Euclidean to non-Euclidean models, at least one of our three non-Euclidean models
significantly improved fit to data from 15 of 25 study areas. Modelling distance as a
function of road density improved fit in 12 cases, but 4 of these yielded unreasonable
density estimates of over one bear per km2 or RSE >40% (Table 1). The remaining eight
models yielded higher density estimates than simpler counterpart models, but the increase
(65.6%) was lower than for two-point mixtures. RSE also increased less than when we
modelled heterogeneity using finite mixtures. Terrain ruggedness and waterbody density
significantly improved fit to data for only three different study areas (Table 1). Density
estimates for terrain ruggedness models decreased relative to simpler models whereas
those from waterbody density models, increased; RSE decreased for terrain ruggedness and
increased for waterbody density.

We compared the log-likelihood, density estimates, and relative standard error of each
Euclidean two-point finitemixturemodel and each non-Euclideanmodel withoutmixtures
that significantly improved fit and had a reasonable density estimate (≤ 1 bears per km2)
and RSE (≤ 40%) over their simpler counterpart (Table 3). Both types of complex models
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Table 2 The number of non-Euclideanmodels that significantly improved fit over standard Euclidean
models without two-point mixture by pixel resolution. These models were used to estimate black bear
density across 25 study areas in Ontario, Canada, for 2017–2018 for 6 different pixel resolutions.

Movement
Covariate

Pixel resolution in meters

30 60 120 240 480 960

Road density 8 8 12 15 12 8
Terrain ruggedness 3 3 3 3 3 1
Waterbody density 2 2 3 2 3 2
Sum 13 13 18 20 18 11

significantly improved fit to data from seven study areas. A total of nine non-Euclidean
models improved fit to data from these study areas (four road density models, three terrain
ruggedness models, and two waterbody density models; Table 3). The non-Euclidean road
density models yielded higher density estimates and slightly lower RSE than Euclidean
mixture models, whereas non-Euclidean terrain ruggedness models yielded lower density
estimates and RSE. Waterbody density models had lower density estimates but higher RSE.

We estimated landscape resistance induced by movement covariates. We found that
there were three study areas where roads impeded movement, and there were five where
roads facilitated movement (Fig. 3A). We could not confidently associate this pattern to a
difference in traffic volume or intensity of human impact since the southern study areas
where high-traffic roads were most prevalent were removed from the analysis due to the
low sample size. For terrain ruggedness, some estimates of α2 were relatively high, and in
three cases, they significantly improved fit over their Euclidean counterpart (Fig. 3B). One
of these study areas was found in a relatively rugged area in Ontario, but the two others
were found in areas where terrain ruggedness was not substantially high compared to all
the other study areas. Generally, these terrain ruggedness models were driven by a few
clusters of rugged terrain that isolated a single detector. There were three study areas where
waterbody density models significantly improved fit over their Euclidean counterparts,
and the associated α2 estimates were generally high compared to the other study areas
(Fig. 3C). We did not find that these study areas had relatively high or low waterbody
density. However, waterbodies did separate stations, and their configuration isolated a
series of stations.

DISCUSSION
We predicted that non-Euclidean SCR models would account for otherwise unmodelled
detection heterogeneity; consequently, these models would improve fit relative to
conventional Euclidean models even where no dramatic landscape features obviously
influenced movement. Further, we predicted that non-Euclidean models would yield more
precise estimates than the more commonly used finite mixture methods for modelling
individual heterogeneity due to unobserved sources because they capture meaningful,
observable biological patterns related to movement. We found that 26 of 51 data sets could
not support the additional complexity required to model individual heterogeneity without
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Table 3 Summary statistics for the difference between non-Euclideanmodels and Euclideanmod-
els with a two-point mixture that significantly improved fit over standard Euclideanmodels without
a two-point mixture. These summaries were for black bear density estimated from seven study areas in
Ontario, Canada, for 2017–2018. The average change was measured as the average percent difference in
log-likelihood (LL), density, and Relative Standard Error (RSE) between non-Euclidean models with 120-
meter pixel resolution relative to Euclidean models with a two-point mixture that significantly improved
fit over Euclidean models without a two-point mixture.

Road density Terrain ruggedness Waterbody density

Number of models compared 4 3 2
Average1 log-likelihood% −0.7 −0.2 −1.2
Average1Density % 91.9 −75.3 −48.9
Average1 RSE% −0.5 −44.5 33.0

producing unrealistic estimates with high associated uncertainty. Even in larger data
sets (those with more than three detections per animal on average), results of modelling
individual heterogeneity on density estimates was highly variable amongmethods (mixtures
or non-Euclidean distances), landscape covariates, pixel resolutions, and study areas.
Furthermore, the precision of estimates from non-Euclidean models was poor, like that
from two-point mixture models.

Contrary to past applications of non-Euclidean models where a single landscape feature
or characteristic had strong and consistent effects on animal movement (Sharma et
al., 2020; Sutherland et al., 2018; Tobler et al., 2018; Morin et al., 2017; Fuller et al., 2016;
Murphy et al., 2016; Sutherland, Fuller & Royle, 2015), our results suggest caution must
be applied when using non-Euclidean models in landscapes and for species with less
clear predictors of movement. We did find that, in some cases, black bear detection
heterogeneity was explained by landscape heterogeneity, but for less mobile species and
species with low detection, these complex models should be used with caution. Particular
caution is required when using model selection approaches such as the Akaike information
criterion because it is more liberal in including variables compared to likelihood ratio tests
(Murtaugh, 2014). The most obvious impediments to bear movements in Ontario are areas
of human development, including large busy roads (also seeMorin et al., 2017). We hoped
that non-Euclidean models that considered road density would reveal patterns, showing
resistance only where roads were busier and occurred at higher densities. Unfortunately,
in areas of high human population density where black bear movement is restricted and
anthropogenic foods are often available, bears visited fewer traps such that sample sizes
and, therefore, power to detect effects of landscape structure was reduced. Consequently,
we did not acquire enough data to successfully fit non-Euclidean models in the same areas
where we expected the strongest effects of landscape structure.

Our surveys were not designed to detect landscape resistance, and they could not
have been realistically designed for this type of analysis because we considered multiple
possible landscape covariates with different spatial patterns. Furthermore, although we
obtained reasonably large sample sizes (detections, recaptures, and spatial recaptures), our
curvilinear arrays provided fewer opportunities to recapture animals at different locations
compared to a regular grid with the same trap spacing. In addition, we collected data
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b) 

Figure 3 Black bear non-Euclidean a2 parameter estimates for 25 different study areas. Study areas
were in Ontario, Canada and hair samples were collected between 2017–2018. We generated these non-
Euclidean models from spatial data with a pixel resolution of 120 m. (A) road density, (B) terrain rugged-
ness, and (C) waterbody density. Study areas with ‘‘*’’ were models that significantly improved fit over
their Euclidean counterparts using a likelihood-ratio test. Forest region boundaries (Rowe, 1972) are de-
marcated dashed lines.

Full-size DOI: 10.7717/peerj.13490/fig-3

on only five occasions; as a result, opportunities for recaptures and spatial recaptures
were limited. More intensive surveys might yield sufficient data to detect and effectively
model the effects of landscape structure on movements even outside of highly structured
environments. Pooling our data across study areas could provide greater power to detect
and model different sources of heterogeneity (Proffitt et al., 2020;Morin et al., 2018; Howe,
Obbard & Kyle, 2013), including landscape resistance, but we opted against this for several
reasons. First, we preferred to emphasize replication because many other surveys are
comparable in size and effort to our study-area specific surveys (i.e., a single array of 40–45
detectors), but relatively few researchers could reproduce what we might be able to achieve
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with our complete data set, which is part of a government funded monitoring program.
Second, detectability varies even among study areas in similar habitats (Howe et al., 2022);
therefore, we were concerned that pooling data would induce additional heterogeneity
in detectability which would also need to be modelled (Moqanaki et al., 2021). Third, we
suspected that road density could have qualitatively, different effects on different study
areas; consequently, pooling data could obscure rather than reveal the effects of roads.
Finally, fitting non-Euclidean SCRmodels is computationally intensive; fitting them to data
pooled across study areas could become prohibitively time-consuming and demanding of
computational resources.

When simple SCR models are fit to heterogeneous data, there is a risk of reporting
negatively biased estimates of abundance and underestimating the uncertainty
associated with those estimates. Modelling heterogeneity whenever possible is therefore
recommended. However, the shortcomings of finite mixture models and the need to
apply them with care are well known (Pledger & Phillpot, 2008). Although they can
reduce negative bias due to unmodelled detection heterogeneity, they have stringent
data requirements and may yield estimates of similar accuracy but reduced precision,
especially when fit to sparse data (Link, 2004; Link, 2003; Pledger, 2000). Here, there was no
consistent pattern in the magnitude of increase in density estimates when more complex
models were used (consistent with sensitivity of abundance estimates to the parameters of
the mixture distribution). Where finite mixture models significantly improved fit, density
estimates were twice as high as those estimated from models that explicitly accounted for
heterogeneity attributable to sex, prior detection, and spatially variable exposure to traps,
in an analysis that minimized the potential for spatial heterogeneity (Moqanaki et al., 2021)
by analyzing study area-specific data. Furthermore, in 11 of 16 cases where mixture models
significantly improved fit and yielded biologically plausible estimates of density, estimates
of σ for different sexes and latent groups indicated that most individuals with activity
centers within 2–5 km of our arrays were likely to go undetected because they were unlikely
to travel that far. Further, the estimates of σ equate to biologically implausible areas of
use for this species. We suggest that these inferences are potentially flawed, and possibly
an artifact of limited opportunities to detect animals and the fact that both activity center
locations and the proportions of animals in different groups are modelled as latent effects.
The risks associated with providing inflated and uncertain estimates of animal abundance
to decision-makers are potentially severe, including overharvest and the failure to provide
protection when and where it is needed. Therefore, we recommend that practitioners
use finite mixture models cautiously and inspect estimates of all model parameters for
biological realism before drawing inferences.

CONCLUSIONS
Accounting for individual heterogeneity in the scale of animal movements is critically
important when estimating animal abundance or density using SCR models. Developing
and testing methods for appropriately and mechanistically capturing this heterogeneity
is thus an important topic for basic and applied research programs aiming to use these
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methods. Non-Euclidean SCR models are a tantalizing advancement because we know
that animals do not move randomly throughout study areas and indeed have highly
structured movements that are influenced by the landscape. Our results suggest caution in
applying these models when there is not a large sample of spatial recaptures (total and per
individual) or when there is not a very clear landscape covariate that is known to influence
the movement of the focal species. However, caution is nuanced and likely dependent on
the spatial arrangement of the detectors. Studies combining GPS-telemetry and SCR data
could allow us to better understand how animals move through landscapes and how this
movement is captured in SCR data. Finally, individual random effect models show promise
for accounting for individual heterogeneity in CR models (White & Cooch, 2017); the next
step would be to incorporate this approach into SCR models.

ACKNOWLEDGEMENTS
Field surveys were conducted by the Ontario Ministry of Natural Resources and
Forestry’s Regional Operations Division. The authors would like to thank field crews,
field coordinators (Darren Elder, Emilie Kissler, Gillian Holloway, April Mitchell, Jay
Fitzsimmons, Lyle Walton, and Tim Cano), Katelyn Jackson, Emily Walker, Jade Black,
Sarah Langer, Linda Rutledge, andmany staff and students for assistance in the genetics lab,
Kelly Lauder, Ian Petreman, and Norm Mooyekind for data management solutions, and
Kevin Middel, Tore Buchanan, Peter Carter, BobWatt, Martyn Obbard, and Erica Newton
for their support during various stages of the project. We also would like to thank Dr. Pierre
Dupont and 4 anonymous reviewers for reviewing earlier versions of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Natural Sciences and Engineering Research Council of
Canada Discovery Grant to JosephM. Northrup. Also, this research was enabled by support
provided by Compute Canada (RRG gme-665-ab; www.computecanada.ca). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Natural Sciences and Engineering Research Council of Canada Discovery Grant.
Compute Canada (RRG gme-665-ab; www.computecanada.ca).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Robby R.Marrotte conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 17/25

https://peerj.com
www.computecanada.ca
http://dx.doi.org/10.7717/peerj.13490


• Eric J. Howe conceived and designed the experiments, authored or reviewed drafts of
the article, designed the surveys, and approved the final draft.
• Kaela B. Beauclerc conceived and designed the experiments, authored or reviewed drafts
of the article, coordinated and conducted the lab work, and approved the final draft.
• Derek Potter conceived and designed the experiments, authored or reviewed drafts of
the article, designed the surveys, coordinated the field surveys, and approved the final
draft.
• Joseph M. Northrup conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry.

Data Availability
The following information was supplied regarding data availability:

The data we used for this analysis were a subset of a much larger dataset available on
Dryad: Howe, Eric (2021), Spatially explicit genetic capture-recapture data from black bears
in Ontario, Canada, 2017-2019, Dryad, Dataset, https://doi.org/10.5061/dryad.7wm37pvtz.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13490#supplemental-information.

REFERENCES
Amstrup SC, Durner GM, Stirling I, McDonald TL. 2005. Allocating harvests among

polar bear stocks in the Beaufort Sea. Arctic 58(3):247–259.
Arandjelovic M, Vigilant L. 2018. Noninvasive genetic censusing and monitor-

ing of primate populations. American Journal of Primatology 80(3):e22743
DOI 10.1002/ajp.22743.

Azad S, McFadden K, Clark JD,Wactor T, Jachowski DS. 2019. Applying spatially
explicit capture–recapture models to estimate black bear density in South Carolina.
Wildlife Society Bulletin 43(3):500–507 DOI 10.1002/wsb.1007.

Bender LC. 2006. Uses of herd composition and age ratios in ungulate management.
Wildlife Society Bulletin 34(4):1225–1230
DOI 10.2193/0091-7648(2006)34[1225:UOHCAA]2.0.CO;2.

Bennett VJ. 2017. Effects of road density and pattern on the conservation of species and
biodiversity. Current LandScape Ecology Reports 2(1):1–11
DOI 10.1007/s40823-017-0020-6.

Beringer JJ, Seibert SG, PeltonMR. 1990. Incidence of road crossing by black bears
on Pisgah National Forest, North Carolina. Bears: Their Biology and Management
8:85–92.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 18/25

https://peerj.com
https://doi.org/10.5061/dryad.7wm37pvtz
http://dx.doi.org/10.7717/peerj.13490#supplemental-information
http://dx.doi.org/10.7717/peerj.13490#supplemental-information
http://dx.doi.org/10.1002/ajp.22743
http://dx.doi.org/10.1002/wsb.1007
http://dx.doi.org/10.2193/0091-7648(2006)34[1225:UOHCAA]2.0.CO;2
http://dx.doi.org/10.1007/s40823-017-0020-6
http://dx.doi.org/10.7717/peerj.13490


Borchers DL, EffordMG. 2008. Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64(2):377–385
DOI 10.1111/j.1541-0420.2007.00927.x.

Boucher Y, Arseneault D, Sirois L, Blais L. 2009. Logging pattern and landscape changes
over the last century at the boreal and deciduous forest transition in Eastern Canada.
Landscape Ecology 24(2):171–184 DOI 10.1007/s10980-008-9294-8.

Boulanger J, Stenhouse G, Munro R. 2004. Sources of heterogeneity bias when DNA
mark-recapture sampling methods are applied to grizzly bear (Ursus arctos) popu-
lations. Journal of Mammalogy 85(4):618–624 DOI 10.1644/BRB-134.

Campbell SP, Clark JA, Crampton LH, Guerry AD, Hatch LT, Hosseini PR, Lawler
JJ, O’Connor RJ. 2002. An assessment of monitoring efforts in endangered species
recovery plans. Ecological Applications 12(3):674–681
DOI 10.1890/1051-0761(2002)012[0674:AAOMEI]2.0.CO;2.

Chao A. 1987. Estimating the population size for capture-recapture data with unequal
catchability. Biometrics 43(4):783–791.

Clark JD. 2019. Comparing clustered sampling designs for spatially explicit estimation of
population density. Population Ecology 61(3):93–101 DOI 10.1002/1438-390X.1011.

Clutton-Brock T, Sheldon BC. 2010. Individuals and populations: the role of long-term,
individual-based studies of animals in ecology and evolutionary biology. Trends in
Ecology & Evolution 25(10):562–573 DOI 10.1016/j.tree.2010.08.002.

Dijkstra EW. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1(1):269–271 DOI 10.1007/BF01386390.

DitmerMA, Rettler SJ, Fieberg JR, Iaizzo PA, Laske TG, Noyce KV, Garshelis DL.
2018. American black bears perceive the risks of crossing roads. Behavioral Ecology
29(3):667–675 DOI 10.1093/beheco/ary020.

Dorazio RM. 2014. Accounting for imperfect detection and survey bias in statistical
analysis of presence-only data. Global Ecology and Biogeography 23(12):1472–1484
DOI 10.1111/geb.12216.

EffordMG. 2020. secr: spatially explicit capture-recapture models. R package version
4.2.0. Available at https://CRAN.R-project.org/package=secr .

EffordMG, Borchers DL, Byrom AE. 2009. Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In:Modeling demographic processes
in marked populations. Boston: Springer, 255–269.

EffordMG, Borchers DL, Mowat G. 2013. Varying effort in capture–recapture studies.
Methods in Ecology and Evolution 4(7):629–636 DOI 10.1111/2041-210X.12049.

EffordMG, Boulanger J. 2019. Fast evaluation of study designs for spatially ex-
plicit capture–recapture.Methods in Ecology and Evolution 10(9):1529–1535
DOI 10.1111/2041-210X.13239.

EffordMG, Dawson DK. 2012. Occupancy in continuous habitat. Ecosphere 3(4):1–15.
Fryxell JM, Sinclair AR, Caughley G. 2014.Wildlife ecology, conservation, and manage-

ment. 3rd edition. Oxford: John Wiley & Sons.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 19/25

https://peerj.com
http://dx.doi.org/10.1111/j.1541-0420.2007.00927.x
http://dx.doi.org/10.1007/s10980-008-9294-8
http://dx.doi.org/10.1644/BRB-134
http://dx.doi.org/10.1890/1051-0761(2002)012[0674:AAOMEI]2.0.CO;2
http://dx.doi.org/10.1002/1438-390X.1011
http://dx.doi.org/10.1016/j.tree.2010.08.002
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1093/beheco/ary020
http://dx.doi.org/10.1111/geb.12216
https://CRAN.R-project.org/package=secr
http://dx.doi.org/10.1111/2041-210X.12049
http://dx.doi.org/10.1111/2041-210X.13239
http://dx.doi.org/10.7717/peerj.13490


Fuller AK, Sutherland CS, Royle JA, Hare MP. 2016. Estimating population density
and connectivity of American mink using spatial capture–recapture. Ecological
Applications 26(4):1125–1135 DOI 10.1890/15-0315.

Galpern P, ManseauM, Hettinga P, Smith K,Wilson P. 2012. Allelematch: an R
package for identifying unique multilocus genotypes where genotyping error
and missing data may be present.Molecular Ecology Resources 12(4):771–778
DOI 10.1111/j.1755-0998.2012.03137.x.

Gardner B, Royle JA,WeganMT, Rainbolt RE, Curtis PD. 2010. Estimating black
bear density using DNA data from hair snares. The Journal of Wildlife Management
74(2):318–325 DOI 10.2193/2009-101.

Gimenez O, Cam E, Gaillard JM. 2018. Individual heterogeneity and capture–recapture
models: what, why and how? Oikos 127(5):664–686 DOI 10.1111/oik.04532.

Gimenez O, Choquet R. 2010. Individual heterogeneity in studies on marked animals us-
ing numerical integration: capture–recapture mixed models. Ecology 91(4):951–957
DOI 10.1890/09-1903.1.

Goldsmith FB (ed.) 1991.Monitoring for conservation and ecology. London: Chapman &
Hall.

Greenspan E, Anile S, Nielsen CK. 2020. Density of wild felids in Sonora, Mexico: a
comparison of spatially explicit capture-recapture methods. European Journal of
Wildlife Research 66(4):1–12 DOI 10.1007/s10344-019-1327-x.

Guillera-Arroita G. 2017.Modelling of species distributions, range dynamics and
communities under imperfect detection: advances, challenges and opportunities.
Ecography 40(2):281–295 DOI 10.1111/ecog.02445.

Halsey LG. 2016. Terrestrial movement energetics: current knowledge and its application
to the optimising animal. Journal of Experimental Biology 219(10):1424–1431
DOI 10.1242/jeb.133256.

Hooker MJ, Chandler RB, Bond BT, ChamberlainMJ. 2020. Assessing population
viability of black bears using spatial capture-recapture models. The Journal of Wildlife
Management 84(6):1100–1113 DOI 10.1002/jwmg.21887.

HootenMB, Hobbs NT. 2015. A guide to Bayesian model selection for ecologists.
Ecological Monographs 85(1):3–28 DOI 10.1890/14-0661.1.

Howe EJ, ObbardME, Kyle CJ. 2013. Combining data from 43 standardized surveys
to estimate densities of female American black bears by spatially explicit capture–
recapture. Population Ecology 55(4):595–607 DOI 10.1007/s10144-013-0389-y.

Howe EJ, Potter D, Beauclerc KB, Jackson KE, Northrup JM. 2022. Estimating animal
abundance at multiple scales by spatially explicit capture-recapture. Ecological
Applications DOI 10.1002/eap.2638.

Humm JM,McCown JW, Scheick BK, Clark JD. 2017. Spatially explicit population esti-
mates for black bears based on cluster sampling. The Journal of Wildlife Management
81(7):1187–1201 DOI 10.1002/jwmg.21294.

Karelus DL, McCown JW, Scheick BK, van de KerkM, Bolker BM, Oli MK.
2017. Effects of environmental factors and landscape features on movement

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 20/25

https://peerj.com
http://dx.doi.org/10.1890/15-0315
http://dx.doi.org/10.1111/j.1755-0998.2012.03137.x
http://dx.doi.org/10.2193/2009-101
http://dx.doi.org/10.1111/oik.04532
http://dx.doi.org/10.1890/09-1903.1
http://dx.doi.org/10.1007/s10344-019-1327-x
http://dx.doi.org/10.1111/ecog.02445
http://dx.doi.org/10.1242/jeb.133256
http://dx.doi.org/10.1002/jwmg.21887
http://dx.doi.org/10.1890/14-0661.1
http://dx.doi.org/10.1007/s10144-013-0389-y
http://dx.doi.org/10.1002/eap.2638
http://dx.doi.org/10.1002/jwmg.21294
http://dx.doi.org/10.7717/peerj.13490


patterns of Florida black bears. Journal of Mammalogy 98(5):1463–1478
DOI 10.1093/jmammal/gyx066.

Kellner KF, Swihart RK. 2014. Accounting for imperfect detection in ecology: a quantita-
tive review. PLOS ONE 9(10):e111436 DOI 10.1371/journal.pone.0111436.

KéryM, Schmidt BR. 2008. Imperfect detection and its consequences for monitoring for
conservation. Community Ecology 9(2):207–216 DOI 10.1556/ComEc.9.2008.2.10.

Lewis JS, Rachlow JL, Horne JS, Garton EO,WakkinenWL, Hayden J, Zager P. 2011.
Identifying habitat characteristics to predict highway crossing areas for black bears
within a human-modified landscape. Landscape and Urban Planning 101(2):99–107
DOI 10.1016/j.landurbplan.2011.01.008.

LinkWA. 2003. Nonidentifiability of population size from capture-recapture
data with heterogeneous detection probabilities. Biometrics 59(4):1123–1130
DOI 10.1111/j.0006-341X.2003.00129.x.

LinkWA. 2004. Individual heterogeneity and identifiability in capture–recapture models.
Animal Biodiversity and Conservation 27(1):87–91.

Manville AM. 1983.Human impact on the black bear in Michigan’s lower peninsula.
Bears: Their Biology and Management 5:20–33.

McCown JW, Kubilis P, Eason TH, Scheick BK. 2009. Effect of traffic volume on Ameri-
can black bears in central Florida, USA. Ursus 20(1):39–47 DOI 10.2192/08GR004R2.1.

Miller DA, Bailey LL, Grant EHC, McClintock BT,Weir LA, Simons TR. 2015. Per-
formance of species occurrence estimators when basic assumptions are not met: a
test using field data where true occupancy status is known.Methods in Ecology and
Evolution 6(5):557–565 DOI 10.1111/2041-210X.12342.

Miller SD,White GC, Sellers RA, Reynolds HV, Schoen JW, Titus K, Barnes Jr VG,
Smith RB, Nelson RR, BallardWB, Schwartz CC. 1997. Brown and black bear
density estimation in Alaska using radiotelemetry and replicated mark-resight
techniques.Wildlife Monographs 133:3–55.

Moqanaki EM,Milleret C, Tourani M, Dupont P, Bischof R. 2021. Consequences of ig-
noring variable and spatially autocorrelated detection probability in spatial capture-
recapture. Landscape Ecology 36(10):2879–2895 DOI 10.1007/s10980-021-01283-x.

Morin DJ, Fuller AK, Royle JA, Sutherland C. 2017.Model-based estimators of density
and connectivity to inform conservation of spatially structured populations.
Ecosphere 8(1):e01623 DOI 10.1002/ecs2.1623.

Morin DJ, Waits LP, McNitt DC, Kelly MJ. 2018. Efficient single-survey estimation of
carnivore density using fecal DNA and spatial capture-recapture: a bobcat case study.
Population Ecology 60(3):197–209 DOI 10.1007/s10144-018-0606-9.

Murphy SM, Cox JJ, Augustine BC, Hast JT, Guthrie JM,Wright J, Plaxico JH , et al.
2016. Characterizing recolonization by a reintroduced bear population using genetic
spatial capture–recapture. The Journal of Wildlife Management 80(8):1390–1407
DOI 10.1002/jwmg.21144.

Murtaugh PA. 2014. In defense of P values. Ecology 95(3):611–617 DOI 10.1890/13-0590.1.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 21/25

https://peerj.com
http://dx.doi.org/10.1093/jmammal/gyx066
http://dx.doi.org/10.1371/journal.pone.0111436
http://dx.doi.org/10.1556/ComEc.9.2008.2.10
http://dx.doi.org/10.1016/j.landurbplan.2011.01.008
http://dx.doi.org/10.1111/j.0006-341X.2003.00129.x
http://dx.doi.org/10.2192/08GR004R2.1
http://dx.doi.org/10.1111/2041-210X.12342
http://dx.doi.org/10.1007/s10980-021-01283-x
http://dx.doi.org/10.1002/ecs2.1623
http://dx.doi.org/10.1007/s10144-018-0606-9
http://dx.doi.org/10.1002/jwmg.21144
http://dx.doi.org/10.1890/13-0590.1
http://dx.doi.org/10.7717/peerj.13490


Noyce KV, Garshelis DL, Coy PL. 2001. Differential vulnerability of black bears to
trap and camera sampling and resulting biases in mark-recapture estimates. Ursus
12:211–225.

Ontario Ministry of Natural Resources and Forestry (OMNRF). 2014. Ontario Land
Cover Compilation v.2.0. Available at https://data.ontario.ca/dataset/ontario-land-
cover-compilation-v20 (accessed on 19 December 2019).

Ontario Ministry of Natural Resources and Forestry (OMNRF). 2015a. The Ontario
Road Network (ORN): segment with address. Available at https://data.ontario.ca/en/
dataset/ontario-road-network-segment-with-address (accessed on 19 December 2019).

Ontario Ministry of Natural Resources and Forestry (OMNRF). 2015b.Ministry of
Natural Resources and Forestry road segments. Available at https://geohub.lio.gov.
on.ca/datasets/49199425ea2a4bea9cc74879cf3ef6a0/about (accessed on 19 December
2019).

Ontario Ministry of Natural Resources and Forestry (OMNRF). 2015c. Provincial
digital elevation model. Available at https://data.ontario.ca/dataset/provincial-digital-
elevation-model (accessed on 19 December 2019).

Ontario Ministry of Natural Resources (OMNRF). 2019. Framework for enhanced black
bear management in Ontario. Available at https://www.ontario.ca/page/black-bear-
management-framework (accessed on 10 December 2019).

ObbardME, Howe EJ. 2008. Demography of black bears in hunted and unhunted areas
of the boreal forest of Ontario. The Journal of Wildlife Management 72(4):869–880
DOI 10.2193/2006-158.

ObbardME, Howe EJ, Kyle CJ. 2010. Empirical comparison of density estimators for
large carnivores. Journal of Applied Ecology 47(1):76–84
DOI 10.1111/j.1365-2664.2009.01758.x.

ObbardME, Newton EJ, Potter D, Orton A, Patterson BR, Steinberg BD. 2017. Big
enough for bears? American black bears at heightened risk of mortality during
seasonal forays outside Algonquin Provincial Park, Ontario. Ursus 28(2):182–194.

Otis DL, BurnhamKP,White GC, Anderson DR. 1978. Statistical inference from
capture data on closed animal populations.Wildlife Monographs 62:3–135.

Pelletier A, ObbardME, Mills K, Howe EJ, Burrows FG,White BN, Kyle CJ. 2012. De-
lineating genetic groupings in continuously distributed species across largely homo-
geneous landscapes: a study of American black bears (Ursus americanus) in Ontario,
Canada. Canadian Journal of Zoology 90(8):999–1014 DOI 10.1139/z2012-068.

Pledger S. 2000. Unified maximum likelihood estimates for closed capture–recapture
models using mixtures. Biometrics 56(2):434–442
DOI 10.1111/j.0006-341X.2000.00434.x.

Pledger S, Phillpot P. 2008. Using mixtures to model heterogeneity in ecological capture-
recapture studies. Biometrical Journal: Journal of Mathematical Methods in Biosciences
50(6):1022–1034 DOI 10.1002/bimj.200810446.

Pledger S, Pollock KH, Norris JL. 2003. Open capture-recapture models with
heterogeneity: I. Cormack-Jolly-Seber Model. Biometrics 59(4):786–794
DOI 10.1111/j.0006-341X.2003.00092.x.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 22/25

https://peerj.com
https://data.ontario.ca/dataset/ontario-land-cover-compilation-v20
https://data.ontario.ca/dataset/ontario-land-cover-compilation-v20
https://data.ontario.ca/en/dataset/ontario-road-network-segment-with-address
https://data.ontario.ca/en/dataset/ontario-road-network-segment-with-address
https://geohub.lio.gov.on.ca/datasets/49199425ea2a4bea9cc74879cf3ef6a0/about
https://geohub.lio.gov.on.ca/datasets/49199425ea2a4bea9cc74879cf3ef6a0/about
https://data.ontario.ca/dataset/provincial-digital-elevation-model
https://data.ontario.ca/dataset/provincial-digital-elevation-model
https://www.ontario.ca/page/black-bear-management-framework
https://www.ontario.ca/page/black-bear-management-framework
http://dx.doi.org/10.2193/2006-158
http://dx.doi.org/10.1111/j.1365-2664.2009.01758.x
http://dx.doi.org/10.1139/z2012-068
http://dx.doi.org/10.1111/j.0006-341X.2000.00434.x
http://dx.doi.org/10.1002/bimj.200810446
http://dx.doi.org/10.1111/j.0006-341X.2003.00092.x
http://dx.doi.org/10.7717/peerj.13490


Pledger S, Pollock KH, Norris JL. 2010. Open capture–recapture models with hetero-
geneity: II. Jolly–Seber model. Biometrics 66(3):883–890
DOI 10.1111/j.1541-0420.2009.01361.x.

Proffitt KM, Garrott R, Gude JA, Hebblewhite M, Jimenez B, Paterson JT, Rotella J.
2020. Integrated carnivore-ungulate management: a case study in West-Central
Montana.Wildlife Monographs 206(1):1–28 DOI 10.1002/wmon.1056.

R Core Team. 2020. R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing..

Rogers LL, Allen AW. 1987.Habitat suitability index models: black bear, upper Great Lakes
region (No. FWS-82 (10.144)). Colorado, USA: National Ecology Research Center
Fort Collins.

Rowe JS. 1972. Forest regions of Canada. Fisheries and Environment Canada, Canadian
Forest Service, Headquarters, Ottawa, Canada. 172 p.

Roy J, Yannic G, Côté SD, Bernatchez L. 2012. Negative density-dependent dispersal in
the American black bear (Ursus americanus) revealed by noninvasive sampling and
genotyping. Ecology and Evolution 2(3):525–537 DOI 10.1002/ece3.207.

Royle JA. 2006. Site occupancy models with heterogeneous detection probabilities.
Biometrics 62(1):97–102 DOI 10.1111/j.1541-0420.2005.00439.x.

Royle JA. 2008.Modeling individual effects in the Cormack–Jolly–Seber model: a state–
space formulation. Biometrics 64(2):364–370 DOI 10.1111/j.1541-0420.2007.00891.x.

Royle JA, Chandler RB, Gazenski KD, Graves TA. 2013. Spatial capture–recapture
models for jointly estimating population density and landscape connectivity. Ecology
94(2):287–294 DOI 10.1890/12-0413.1.

Royle JA, Karanth KU, Gopalaswamy AM, Kumar NS. 2009. Bayesian inference in
camera trapping studies for a class of spatial capture–recapture models. Ecology
90(11):3233–3244 DOI 10.1890/08-1481.1.

Sappington JM, Longshore KM, Thompson DB. 2007. Quantifying landscape
ruggedness for animal habitat analysis: a case study using bighorn sheep in
the Mojave Desert. The Journal of Wildlife Management 71(5):1419–1426
DOI 10.2193/2005-723.

Sharma RK, Sharma K, Borchers D, Bhatnagar YV, Suryawanshi KS, Mishra C.
2020. Spatial variation in population-density, movement and detectability of snow
leopards in a multiple use landscape in Spiti Valley, Trans-Himalaya. BioRxiv..

Shepard EL,Wilson RP, ReesWG, Grundy E, Lambertucci SA, Vosper SB. 2013.
Energy landscapes shape animal movement ecology. The American Naturalist
182(3):298–312 DOI 10.1086/671257.

Sollmann R, Gardner B, Belant JL. 2012.How does spatial study design influence
density estimates from spatial capture-recapture models? PLOS ONE 7(4):e34575
DOI 10.1371/journal.pone.0034575.

Sollmann R, Mohamed A, Samejima H,Wilting A. 2013. Risky business or simple
solution–Relative abundance indices from camera-trapping. Biological Conservation
159:405–412 DOI 10.1016/j.biocon.2012.12.025.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 23/25

https://peerj.com
http://dx.doi.org/10.1111/j.1541-0420.2009.01361.x
http://dx.doi.org/10.1002/wmon.1056
http://dx.doi.org/10.1002/ece3.207
http://dx.doi.org/10.1111/j.1541-0420.2005.00439.x
http://dx.doi.org/10.1111/j.1541-0420.2007.00891.x
http://dx.doi.org/10.1890/12-0413.1
http://dx.doi.org/10.1890/08-1481.1
http://dx.doi.org/10.2193/2005-723
http://dx.doi.org/10.1086/671257
http://dx.doi.org/10.1371/journal.pone.0034575
http://dx.doi.org/10.1016/j.biocon.2012.12.025
http://dx.doi.org/10.7717/peerj.13490


Sun CC, Fuller AK, Hare MP, Hurst JE. 2017. Evaluating population expansion of
black bears using spatial capture-recapture. The Journal of Wildlife Management
81(5):814–823 DOI 10.1002/jwmg.21248.

Sun CC, Fuller AK, Royle JA. 2014. Trap configuration and spacing influences pa-
rameter estimates in spatial capture-recapture models. PLOS ONE 9(2):e88025
DOI 10.1371/journal.pone.0088025.

Sutherland C, Fuller AK, Royle JA. 2015.Modelling non-Euclidean movement and
landscape connectivity in highly structured ecological networks.Methods in Ecology
and Evolution 6(2):169–177 DOI 10.1111/2041-210X.12316.

Sutherland C, Fuller AK, Royle JA, Madden S. 2018. Large-scale variation in den-
sity of an aquatic ecosystem indicator species. Scientific Reports 8(1):8958
DOI 10.1038/s41598-018-26847-x.

Thandrayen J, Wang Y. 2009. A latent variable regression model for capture–
recapture data. Computational Statistics & Data Analysis 53(7):2740–2746
DOI 10.1016/j.csda.2009.01.014.

Tobler MW, Anleu RG, Carrillo-Percastegui SE, Santizo GP, Polisar J, Hart-
ley AZ, Goldstein I. 2018. Do responsibly managed logging concessions ad-
equately protect jaguars and other large and medium-sized mammals? Two
case studies from Guatemala and Peru. Biological Conservation 220:245–253
DOI 10.1016/j.biocon.2018.02.015.

Van Etten J. 2017. R Package gdistance: distances and routes on geographical grids.
Journal of Statistical Software 76(13):1–21 DOI 10.18637/jss.v076.i13.

Welfelt LS, Beausoleil RA,Wielgus RB. 2019. Factors Associated with black bear
density and implications for management. The Journal of Wildlife Management
83(7):1527–1539 DOI 10.1002/jwmg.21744.

White GC, Cooch EG. 2017. Population abundance estimation with heterogeneous
encounter probabilities using numerical integration. The Journal of Wildlife Man-
agement 81(2):322–336 DOI 10.1002/jwmg.21199.

White HB, Decker T, O’BrienMJ, Organ JF, Roberts NM. 2015. Trapping and furbearer
management in North American wildlife conservation. International Journal of
Environmental Studies 72(5):756–769 DOI 10.1080/00207233.2015.1019297.

Wilton CM, Puckett EE, Beringer J, Gardner B, Eggert LS, Belant JL. 2014. Trap
array configuration influences estimates and precision of black bear density and
abundance. PLOS ONE 9(10):e111257 DOI 10.1371/journal.pone.0111257.

Witmer GW. 2019. Black bear use of forest roads in Western Washington. United States
Department of Agriculture. National Wildlife Research Center - Staff Publications,
2271.

Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C. 1999. Ge-
netic tagging of free-ranging black and brown bears.Wildlife Society Bulletin
27(3):616–627.

Wright DJ, PendletonM, Boulware J, Walbridge S, Gerlt B, Eslinger D, Sampson D,
Huntley E. 2012. ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 24/25

https://peerj.com
http://dx.doi.org/10.1002/jwmg.21248
http://dx.doi.org/10.1371/journal.pone.0088025
http://dx.doi.org/10.1111/2041-210X.12316
http://dx.doi.org/10.1038/s41598-018-26847-x
http://dx.doi.org/10.1016/j.csda.2009.01.014
http://dx.doi.org/10.1016/j.biocon.2018.02.015
http://dx.doi.org/10.18637/jss.v076.i13
http://dx.doi.org/10.1002/jwmg.21744
http://dx.doi.org/10.1002/jwmg.21199
http://dx.doi.org/10.1080/00207233.2015.1019297
http://dx.doi.org/10.1371/journal.pone.0111257
http://dx.doi.org/10.7717/peerj.13490


Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of
Coastal Zone Management. Available at http://esriurl.com/5754.

Yoccoz NG, Nichols JD, Boulinier T. 2001.Monitoring of biological diversity in space
and time. Trends in Ecology & Evolution 16(8):446–453
DOI 10.1016/S0169-5347(01)02205-4.

Marrotte et al. (2022), PeerJ, DOI 10.7717/peerj.13490 25/25

https://peerj.com
http://esriurl.com/5754
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.7717/peerj.13490

