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ABSTRACT
Background. Asthma is characterized as a chronic inflammatory airway disease.
Iron accumulation is related to asthma pathogenesis. Transferrin receptor 1(TFR1)
expression is associated with intracellular iron overload in macrophages. In our study,
we explored the association among TFR1 expression, the inflammatory macrophage
phenotype, and asthma severity.
Methods. Induced sputum was collected from 50 asthma patients. Real-time PCR was
used to evaluate mRNA expression. The status of inflammatorymacrophage phenotype
was assessed using flow cytometry.
Results. TFR1 levels were inversely correlated with forced expiratory volume in 1 s
(FEV1)/forced vital capacity (FVC) and FEV1/vital capacity (VC). Among inflammatory
cytokines, TFR1 expression was positively correlated with IL-1β, TNF-α, IL-6, IFN-γ,
and IL-17A mRNA expression in induced sputum. Moreover, TFR1 expression was
positively correlated with the number of proinflammatory M1 macrophages and iNOS
expression in induced sputum. Neutrophil counts in induced sputumwere significantly
and positively related to TFR1 expression. Furthermore, TFR1 expression showed an
increasing trend in asthma patients with no family history. Our findings indicated
that TFR1 expression was consistent with the asthma severity index, especially the
proinflammatory M1 macrophage phenotype. TFR1 expression may be a good marker
to indicate asthma severity.

Subjects Allergy and Clinical Immunology, Internal Medicine, Respiratory Medicine, Medical
Genetics
Keywords Asthma, TFR1, M1 macrophages, Asthma severity, Induced sputum, Inflammatory
cytokines, Neutrophilic inflammation, Family history, Pulmonary function index, Airway
inflammation

INTRODUCTION
Asthma is characterized as a chronic inflammatory airway disease driven by immune
cells that leads to symptoms such as wheezing, cough, shortness of breath, and chest
tightness (Lambrecht, Hammad & Fahy, 2019). There is a strong correlation between
asthma severity and acute asthmatic exacerbation, and most severe asthma patients
respond poorly to existing drugs including corticosteroids (CSs) (Bibi et al., 2014; Sullivan
et al., 2007). Thus, it is urgent to find an alternative treatment strategy for severe asthma
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patients. Some reports have indicated that asthma exacerbation is related to an increase in
the levels of reactive oxygen-derived species (ROS) and inflammatory cytokines (Henricks
& Nijkamp, 2001). In the development of ROS-induced inflammatory conditions, iron
serves as the main factor participating in hydroxyl radical production (Carrier et al., 2001).
Iron accumulation can result in oxidative stress, lipid peroxidation, andDNA damage (Paul
& Lill, 2015; Zhang, 2014). In particular, there is a strong association between dysregulated
iron homeostasis and several major respiratory diseases, including asthma (Khadem Ali et
al., 2017). Asthmatic lungs were reported to have higher levels of iron, and Zn/Ga−DFO
complexes, which are specific iron chelators, had therapeutic effects in a mouse model
of asthma (Bibi et al., 2014). In addition, iron overload may facilitate bacterial pathogen
invasion and contribute to asthma development (Molyneaux et al., 2014; Starkey et al.,
2013b; Starkey et al., 2013a). TFR1 is a type 2 membrane protein expressed in the cell
membrane that transfers extracellular iron into the cell (Kuhn, McClelland & Ruddle, 1984;
McClelland, Kuhn & Ruddle, 1984; Ghio et al., 2003). A high level of TFR1 expression in
the bronchoalveolar lavage fluid (BALF) cells of asthma patients was linked with impaired
lung function (Khadem Ali et al., 2020b). However, the specific mechanism by which TFR1
affects asthma exacerbation remains to be clarified.

Iron accumulation was reported to occur mostly in macrophages around the airways in
mice with house dust mite (HDM)-induced asthma (Bibi et al., 2014). TFR1+ cells were
enriched in an asthma mouse model and most TFR1+ cells were macrophages (Bibi et
al., 2014). These results indicated that macrophages play a crucial role in iron overload-
related asthma. There are two types of macrophages that play important roles in asthma:
M1 macrophages and M2 macrophages. M1 macrophages can secrete proinflammatory
mediators such as tumor necrosis factor (TNF)-α and IL-6 to aggravate lung injury (Kim
et al., 2007), while M2 macrophages are beneficial for lung tissue repair and homeostasis
in asthma (Moreira et al., 2010). In severe asthma, especially in the steroid-resistant
manifestation, M1 macrophages play a leading role in the pathogenesis (Liu et al., 2014).
In summary, targeting M1 macrophages may provide new insights for severe asthma
treatment.

To find a novel target for therapeutic treatment for severe asthma , our study for the
first time identified whether TFR1 expression was correlated with the asthma severity
index, especially the proinflammatory M1 macrophage phenotype in the induced sputum
of asthma patients.

MATERIALS & METHODS
Patients
We recruited 50 asthma patients from Xiangya Hospital, Central South University, China,
from June 2021 to November 2021. All asthma patients had a doctor’s diagnosis of
asthma and had a history of respiratory symptoms, such as wheezing, chest tightness,
cough, expectoration and shortness of breath. All recruited subjects in this study provided
written informed consent, and the research protocol was approved by the Medical Ethics
Committee of Xiangya Hospital of Central South University (committee reference number:
201803691).
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Acquisition of induced sputum
First, we asked the patients to gargle three times. Then, 4.5% hypertonic saline was used
for nebulization. The patients were instructed to expectorate deep sputum between each
atomization interval. Sputum mass was collected from the induced sputum. We processed
the sputum mass with a four fold volume of 0.1% dithiothreitol by shaking for 30 min
at room temperature. We filtered the sputum through 70 µm and 40 µm strainers and
centrifuged it at 1,400 rpm for 6 min. The supernatant was discarded, and the sputum cell
pellet was resuspended in 2 ml of fluorescence-activated cell sorting buffer (PBS plus 2%
fetal bovine serum). The sputum cells were separated into two parts. One part was used for
flow cytometry, and the other part was used for RNA extraction.

Flow cytometry
Sputum cells were blocked with anti-CD16/CD32 antibodies (BioLegend, USA) for
10 min and then stained with Live_Dead (Zomnie Aqua, BioLegend) for 20 min at 4 ◦C.
Human induced sputum cells were then stained with the following antibodies: anti-CD45
(APC/Cy7; BioLegend), anti-CD11c (APC; BioLegend), anti-CD68 (PE; Invitrogen, CN),
anti-CD86 (PE/Dazzle594; BioLegend), anti-CD16 (Percp/Cy5.5; BioLegend), anti-CD11b
(PE/Cy7; BioLegend), and anti-CD15 (FITC; BioLegend). Flow cytometry was performed
with a Cytek Dxp Athena flow cytometer, and the data were analyzed by using FlowJo
(version 10) software.

Quantitative RT–PCR analysis
Total RNA was extracted from sputum cells with trizol reagent (Invitrogen). cDNA
was synthesized with HiScript III All-in-One RT SuperMix Perfect for qPCR(Vazyme)
according to the manufacturer’s instructions. RT–qPCR was performed with ChamQ
Universal SYBR qPCR Master Mix (Vazyme). All primers were purchased from Tsingke
Biotechnology (Table 1).

Statistical analyses
All results were analyzed with GraphPad Prism 8. The differences between two groups
were evaluated using the Mann–Whitney test if the data were nonparametric; otherwise,
the unpaired t test was performed. Differences in more than two groups were analyzed
with one-way ANOVA followed by Tukey’s HSD post hoc test. When multiple hypothesis
testing was performed, Bonferroni adjustment was applied. For correlation analysis, if
the data were nonparametric, the Spearman r correlation test was performed; otherwise,
Pearson correlation tests were used for the analysis. Differences were considered significant
when p< 0.05.

RESULTS
Patient characteristics
The clinical characteristics of the 50 asthma patients are listed in Table 2. According to
the median mRNA expression of TFR1 relative to that of GAPDH, we divided the asthma
patients into a TFR1 low expression group and a TFR1 high expression group. There
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Table 1 RT–qPCR primers.

Primers Sequence (5′–3′)

IL-1β-F GGGATTCTCTTCAGCCAATCTT
IL-1β-R ACCACTTGTTGCTCCATATCC
TNF-α-F GCCTGTAGCCCATGTTGTAG
TNF-α-R TTGACCTTGGTCTGGTAGGA
TFR1-F ACCATTGTCATATACCCGGTTCA
TFR1-R CAATAGCCCAAGTAGCCAATCAT
IL-6-F CCCTGAGAAAGGAGACATGTAA
IL-6-R CTCAAATCTGTTCTGGAGGTACT
IFN-γ-F CTTTGGCTTAATTCTCTCGGAAAC
IFN-γ-R GTCACTCTCCTCTTTCCAATTCT
IL-17A-F GGAATCTCCACCGCAATGA
IL-17A-R TTTGAAGGATGAGGGTTCCTG
iNOS-F CAAGGTTGTCTGCATGGATAAG
iNOS-R GGGATCTGAATGTGCTGTTTG
GAPDH-F GGTCGGAGTCAACGGATTT
GAPDH-R TCTTGAGGCTGTTGTCATACTT

were no significant differences in age (P = 0.389), sex (P = 0.774), body mass index (BMI)
(P = 0.831), FEV1(%) (P = 0.295), FVC(%) (P = 0.871), FEV1/FVC (P = 0.125), FEV1/VC
(P = 0.117), smoking history (P = 0.774), asthma control test (ACT) (P = 0.382), induced
sputum eosinophil cell count (P = 0.747), peripheral white blood cell (WBC) count
(P = 0.563), peripheral neutrophil cell count (P = 0.779), or peripheral eosinophil cell
count (P = 0.344) between the two groups. Obviously, a significantly higher number of
neutrophils in induced sputum was observed in TFR1-high subjects than in TFR1-low
subjects (P = 0.021).

Association of the pulmonary function index and TFR1 expression
We assessed the relationship between TFR1 expression in induced sputum and the
pulmonary function index. TFR1 levels were not correlated with FEV1(%) or FVC(%)
(Fig. 1A, R = −0.2544, P = 0.1449; Fig. 1B, R =−0.0868, P = 0.6255). However, TFR1
levels were negatively correlated with FEV1/VC (Fig. 1C,R=−0.3826, P = 0.028). Negative
relationships were observed between TFR1 levels and FEV1/FVC (Fig. 1D, R = −0.3422,
P = 0.0476). Taken together, our results showed that TFR1 levels were associated with
declines in lung function in asthma patients, suggesting that TFR1 expression is implicated
in asthma severity.

Relationship of TFR1 expression and inflammatory cytokines
Inflammatory cytokines could promote asthma airway inflammatory cells infiltration, and
Th1 inflammatory cytokines (IFN-γ, TNF-α) or Th17 inflammatory cytokines (IL-17A)
are more likely to be associated with steroid-resistant asthma (Hansbro, Kaiko & Foster,
2011). We next assessed whether the levels of TFR1 in induced sputum correlated with
the inflammatory cytokines. We confirmed that TFR1 expression was moderately and
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Table 2 Clinical characteristics of subjects.

TFR1 low TFR1 high P value

No. of patients (n) 25 25
Age (y) 48.96± 11.42 50.24± 11.18 0.389
Sex (male/female), no. (%) 10(40)/15(60) 11(44)/14(56) 0.774
BMI 24.24± 3.81 24.17± 3.72 0.831
FEV1 (%) 83.67± 19.03 84.92± 19.01 0.295
FVC (%) 101.55± 14.36 102.11± 15.13 0.871
FEV1/FVC 80.82± 11.86 81.93± 12.37 0.125
FEV1/VC 85.96± 12.35 87.45± 12.63 0.117
Smoking history (never/somker), no. (%) 14(56)/11(44) 15(60)/10(40) 0.774
ACT 16.7± 4.03 16.31± 3.88 0.382
Induced sputumn differential count
Neutrophils (%) 66.19± 21.98 68.46± 22.04 0.021
Eosinophils (%) 12.68± 14.43 11.57± 13.99 0.747
Peripheral blood
WBC (×109/L) 6.63± 1.75 6.43± 1.79 0.563
Neutrophils (%) 50.35± 14.88 50.52± 15.01 0.779
Eosinophils (%) 5.07± 4.92 4.94± 4.93 0.344

Notes.
Data are presented as means± SDs.
BMI, Body Mass Index; FENO, Fractional Exhaled Nitric Oxide; ppb, parts per billion; FEV1, Forced Expiratory Volume in
1 s; % pred, %predicted; FVC, Forced Vital Capacity; VC, vital capacity.

positively correlated with IL-1β, TNF-α, IL-6, IFN-γ, and IL-17A expression in induced
sputum (Figs. 2A–2F). The specific correlation R values were 0.3767 (IL-1β, P = 0.0091),
0.3359 (TNF-α, P = 0.0277), 0.3880 (IL-6, P = 0.0093), 0.3626(IFN-γ, P = 0.0297) and
0.36183 (IL-17A, P = 0.0386) (Figs. 2A–2F). Collectively, these data provide evidence that
increased TFR1 expression may play a crucial role in asthma airway inflammation.

Correlation between TFR1 expression and M1 macrophages
It was reported that TFR1 was related to macrophages in an asthma mouse model (Bibi
et al., 2014). In addition, proinflammatory mediators including IL-1β, IL-6, and TNF-
α, are characteristic features of the M1 macrophage phenotype (Lu et al., 2015), and
proinflammatory mediator levels are positively associated with TFR1 expression. We
hypothesized that an increase in TFR1 expression might crosstalk with M1 macrophages.
First, we analyzed the macrophage population in induced sputum from asthma patients
using flow cytometry. Live cells were gated first, and then CD45+CD68+ cells were
gated as macrophages according to previously described methods (Kim et al., 2019).
M1 macrophages were then categorized based on the positive expression of CD11c and
CD86 among CD45+CD68+ macrophages (Fig. 3A). We confirmed that TFR1 expression
was moderately and positively correlated with the number of M1 macrophages in induced
sputum (R= 0.3792, P = 0.007, Fig. 3B). In particular, the TFR1 high expression group
showed more M1 macrophages than the TFR1 low expression group (P = 0.0223, Fig. 3C).
In addition, iNOS is an M1 macrophage marker. Notably, there was a positive correlation
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Figure 1 The correlation between TFR1mRNA expression in induced sputum and the pulmonary
function index. (A) Association between TFR1 expression and FEV1 (%). (B) Association between TFR1
expression and FVC (%). (C) Association between TFR1 expression and FEV1/VC. (D) Association be-
tween TFR1 expression and FEV1/FVC.

Full-size DOI: 10.7717/peerj.13474/fig-1

between iNOS expression andTFR1 expression in induced sputum(R= 0.3662,P = 0.0361,
Fig. 3D). Collectively, these novel findings provide evidence that inflammatory M1
macrophage polarization is associated with increased TFR1 expression in asthma patients.

Association of TFR1 expression with other clinical factors
Among CD45+ cells, neutrophils in induced sputum were categorized based on the positive
expression of CD15 andCD16, and eosinophils were categorized as CD15+CD16−, based on
previously described methods (Cossarizza et al., 2019). We showed that neutrophil counts
in induced sputumwere significantly and positively related to TFR1 expression (R= 0.3817,
P = 0.0138, Fig. 4A), while there was no correlation between eosinophil counts and TFR1
expression (R= 0.072, P = 0.656, Fig. 4B). Fractional exhaled nitric oxide (FENO) was
used to identify airway inflammation types according to American Thoracic Society
(ATS) clinical practice guidelines (Dweik et al., 2011). Three groups were designated based
on FENO: <25 ppb (noneosinophilic airway inflammation), 25-50 ppb (mixed airway
inflammation), and >50 ppb (eosinophilic airway inflammation). There was no significant
difference in TFR1 expression among the three FENO groups (Fig. 4C). Interestingly, we
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Figure 2 The correlation between TFR1mRNA expression in induced sputum and inflammatory cy-
tokines. (A) Correlation between TFR1 mRNA expression and IL-1βmRNA expression. (B) Correlation
between TFR1 mRNA expression and TNF-αmRNA expression. (C) Correlation between TFR1 mRNA
expression and IL-6 mRNA expression. (D) Correlation between TFR1 mRNA expression and IFN-γ
mRNA expression. (E) Correlation between TFR1 mRNA expression and IL-17A mRNA expression.

Full-size DOI: 10.7717/peerj.13474/fig-2

found that late-onset asthma (LOA) patients showed significantly higher TFR1 expression
than other patients, but the difference was not obvious (P = 0.167, Fig. 4D). In addition,
asthma patients with no family history showed higher TFR1 expression than asthma
patients with family history (P = 0.0031, Fig. 4E). Taken together, these findings provide
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Figure 3 The correlation between TFR1mRNA expression in induced sputum andM1macrophage
polarization. (A) Representative M1 gating strategy for the induced sputum of asthma patients. (B)
Correlation between TFR1 mRNA expression and the number of M1 macrophages. (C) Number of M1
macrophages in the TFR1high and TFR1low groups. (D) Correlation between TFR1 mRNA expression and
iNOS mRNA expression. *P < 0.05, **P < 0.01, ***P < 0.001.

Full-size DOI: 10.7717/peerj.13474/fig-3
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Figure 4 The correlation between TFR1mRNA expression in induced sputum and other clinical fac-
tors. (A) Correlation between TFR1 mRNA expression and neutrophils in induced sputum. (B) Corre-
lation between TFR1 mRNA expression and eosinophils in induced sputum. (C) TFR1 mRNA expres-
sion in the three FENO groups. (D) TFR1 mRNA expression in the late-onset asthma group and early-
onset asthma group. (E) TFR1 mRNA expression in the no family history asthma group and family history
asthma group. *P < 0.05, **P < 0.01, ***P < 0.001.

Full-size DOI: 10.7717/peerj.13474/fig-4

evidence that high expression of TFR1 may affect neutrophilic airway inflammation, and
the pathogenic effect of TFR1 may occur in patients with no family history.

DISCUSSION
Upregulated TFR1 expression facilitates iron overload in tissues, which could lead to
inflammation progression (Ganz & Nemeth, 2015; Park & Chung, 2019; Marques et al.,
2016). TFR1 expression was reported to play a crucial role in disease severity, including
asthma pathogenesis (Khadem Ali et al., 2020b). Induced sputum is a safe and noninvasive
tool to reflect airway inflammation and the inflammatory phenotype (Szefler et al., 2012).
We used induced sputum to examine airway inflammation in our study. In previous studies,
the frequency of asthma exacerbation was associated with lung function decline in asthma
patients (Bai et al., 2007; O’Byrne et al., 2009), and the loss of lung function reflects airway
remodeling (Pascual & Peters, 2005; Kasahara et al., 2002). TFR1 expression in BALF cells
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was reported to be negatively correlated with FEV1/FVC in asthma patients (Khadem Ali
et al., 2020b). Similar correlations were observed in our study. Our findings indicated that
TFR1 expression in induced sputumhad a significantly negative correlationwith FEV1/FVC
and FEV1/VC. These results indicate that a higher level of TFR1 expression in induced
sputum may be a marker of worse lung function index. However, little is known about
how TFR1 plays its important role in the development of asthma airway inflammation.

Inflammatory cytokine production can lead to chronic asthma airway inflammation.
IL-6 and IL-1β can amplify airway inflammation and lead to airway epithelial cell
dysfunction (Peters & Fahy, 2016; Peters et al., 2016). Studies have indicated that TNF-α
levels are increased in asthmatic airways (Bradding et al., 1994; Ying et al., 1991). IFN-γ
was reported to be prevalent in severe asthma (Duvall et al., 2017; Raundhal et al., 2015;
Oriss et al., 2017). IL-17A is more highly expressed in severe asthma patients than in
mild-to-moderate asthma patients and could be a driver of neutrophilic inflammation
in the asthmatic airway (Moore et al., 2014; Al-Ramli et al., 2009). Iron overload could
promote proinflammatory cytokine secretion to aggravate immune diseases (Wang et al.,
2018). Our study was the first to suggest that TFR1 expression has a significantly positive
correlation with the levels of Th1/Th17-related inflammatory cytokines (IL-1β, TNF-α,
IL-6, IFN-γ, and IL-17A) in induced sputum, indicating that increasing TFR1 expression
in induced sputum is related to inflammatory responses in asthma development.

Iron homeostasis in macrophages was reported to be disrupted by inflammation (Suku-
maran, Venkatraman & Jacob, 2012; Ganz, 2016). One study showed that higher levels of
macrophage infiltration and TFR1 were observed in more ruptured lesions of carotid
atheroma, and macrophage levels were significantly related to TFR1 expression (Yuan
et al., 2018). Furthermore, pulmonary fibrosis development and lung function decline
were related to an increase in TFR1+ macrophage counts (Khadem Ali et al., 2020a). M1
macrophages are a kind of macrophages with an inflammatory phenotype that have
been reported to have upregulated iron uptake and play a predominant role in severe
asthma pathophysiology (Oriss et al., 2017; Tacchini et al., 2008). However, the correlation
between M1 macrophage polarization and TFR1 expression remains to be clarified. To
identify the mechanism of TFR1 activity in asthma, we first showed that TFR1 expression
had a significantly positive association with M1 macrophages in the asthmatic airway.
In the TFR1 high expression group, a high number of M1 macrophages were observed.
Collectively, our findings are the first suggesting that higher levels of TFR1 expression
in the airways are related to higher levels of M1 program macrophages. The correlation
between TFR1 and inflammatory M1 macrophages may be a risk factor for severe asthma .

Asthma phenotypes are categorized as neutrophilic, eosinophilic, paucigranulocytic
and mixed (Wenzel, 2004). Neutrophilic inflammation in the airway is associated with
severe asthma attacks, especially steroid-resistance exacerbation (Moore et al., 2014). It
was reported that there was a communication network between Th1/Th17 responses
and neutrophilic inflammation in the asthmatic airway (Bullens et al., 2006). The
association between the inflammatory factor IL-17 and neutrophils was also observed
in the induced sputum of asthma patients (Agache et al., 2010). TNF-α was reported
to promote airway inflammation and attract neutrophilic inflammation in the airways
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(Barnes, 2018). Neutrophils can secrete neutrophil elastase to affect airway remodeling,
mucus hypersecretion and lung function decline (Nadel, 2000; Stănescu et al., 1996). Since
our results showed that TFR1 was positively related to TNF-α, IFN-γ, and IL-17A, our
study first explored whether TFR1 expression was associated with neutrophil counts in
induced sputum. Our findings indicated that neutrophil counts in induced sputum were
significantly and positively related to TFR1 expression, while there was no significant
association between eosinophil counts and TFR1 expression. Therefore, our study suggests
that a high level of TFR1 expression in induced sputummay be a risk factor for neutrophilic
asthma.

FENO is strongly recommended for monitoring asthma airway inflammation (Cowan et
al., 2010). One study reported that a low FENO value (<25 ppd) was more likely associated
with severe neutrophilic airway inflammation (Porsbjerg et al., 2009). In the present study,
we observed no significant difference in TFR1 expression among the three FENO groups.
The underlying reason may be that the assessment of FENO could be influenced by many
factors, including smoking status, age, anti-inflammatory drug use, and measurement
technique (Borrill et al., 2006). We will investigate this topic more comprehensively in
future studies.

The clinical status of patientswhodevelop asthma for the first time in adulthood is known
as LOA, but the age definition is not clear (Ayres, 1990). Increasing evidence indicates that
LOA patients are more likely to have a high proportion of airflow obstruction (Rossall
et al., 2012; Hsu et al., 2004). Another study also showed that LOA patients showed more
severe symptoms than early-onset asthma patients (Wu et al., 2015). In our study, the
clinical status of the patients who developed asthma at childhood was regarded as early-
onset asthma; otherwise, was regarded as LOA. Our results showed that LOA patients
had higher expression of TFR1 than early-onset asthma patients, but the difference was
not significant. Perhaps we should expand the number of asthma patients to confirm the
difference. Parental history, particularly in the case of two parents with asthma, is obviously
correlated with early-onset asthma (London et al., 2001). A parental history of asthma is
related to early-onset asthma (Panettieri Jr et al., 2008). Interestingly, our findings showed
that asthma patients with a family history have lower TFR1 expression than patients
with no family history. The underlying reason may be that 66.67% of patients with no
family history had nonallergic asthma, while 47% of patients with a family history had
nonallergic asthma in our study. Nonallergic asthma has more severe asthma symptoms
than allergic asthma (Moore et al., 2010). As for asthma-related exposure in our study
setting, we found that four asthma patients with no family history were exposed to a home
renovation environment, and two asthma patients with family history were exposed to
a home renovation environment. Overall, elevated TFR1 expression may contribute to
asthma severity in asthma patients with no family history.

CONCLUSIONS
In conclusion, TFR1 expression is negatively correlated with lung function and is in
good agreement with inflammatory cytokine levels. TFR1 expression is associated with
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proinflammatory M1 macrophage phenotypes and neutrophilic airway inflammation.
TFR1 may be a good marker to indicate asthma severity. TFR1 may serve as a potential
predictor for asthma severity among asthma patients without a family history.
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