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ABSTRACT

Precipitation and flood forecasting are difficult due to rainfall variability. The mean
of a delta-gamma distribution can be used to analyze rainfall data for predicting
future rainfall, thereby reducing the risks of future disasters due to excessive or too
little rainfall. In this study, we construct credible and highest posterior density (HPD)
intervals for the mean and the difference between the means of delta-gamma
distributions by using Bayesian methods based on Jeffrey’s rule and uniform priors
along with a confidence interval based on fiducial quantities. The results of a
simulation study indicate that the Bayesian HPD interval based on Jeffrey’s rule prior
performed well in terms of coverage probability and provided the shortest expected
length. Rainfall data from Chiang Mai province, Thailand, are also used to illustrate
the efficacies of the proposed methods.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Impacts

Keywords Credible intervals, Highest posterior density intervals, Jeffrey’s rule, Uniform priors,
Fiducial quantities, Chiang Mai, Simulation, Rainfall data

INTRODUCTION

Weather conditions can vary immensely each day and forecasting it accurately for up to 7
days in advance is greatly desired. The climate in a given area provides a broad picture
of temperature and rainfall variation over time and is categorized into seasons.

For example, Chiang Mai, a province in Northern Thailand, has three seasons: summer
(from March to June), the rainy season (from July to October), and winter (from
November to February). The major economic output from Chiang Mai is from agriculture,
for which rainfall is essential: insufficient or nonexistent rainfall (drought conditions)
causes crops to die, whereas excessive rainfall (flooding) destroys crops and can cause
disasters such as landslides. Therefore, predicting the amount of rainfall during each
period is very important because it would enable farmers to plan the proper use of water
resources accordingly. Thus, assessing rainfall dispersion in specific areas by using
statistical methods such as the mean is of great importance. Chiang Mai province has an
average rainfall of approximately 1,134 mm per year, with the highest rainfall in a day
being 166.5 mm (August 14, 1968). The rainiest month is August and the least rainy month
is January (Amatayakul & Chomtha, 2013). There can be zero millimeters of rainfall in a
month, and so a monthly rainfall series often includes zero values. When a rainwater series
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only contains positive values, they can be fitted to standard continuous probability
distributions such as a gamma distribution. For instance, Sangnawakij & Niwitpong (2017)
and Krishnmoorthy, Mathew & Mukherjee (2008) constructed confidence interval for a
gamma distribution of monthly rainfall data. However, a delta-gamma distribution (or a
zero-inflated gamma distribution) is more suitable for data containing both positive

and zero observations. The positive values comprise a gamma distribution with shape and
rate parameters while the zero values follow a binomial distribution with proportion

of zeros. Inference from a delta-gamma distribution applied to real data has been
conducted in many fields. For instance, the testing of body armor for stab resistance in
engineering during which a zero value was recorded when the armor was not pierced
(Zimmer, Park & Mathew, 2020) and ecological data for biomasses that often contain a
high proportion of zeros with skewed positive values (Lecomte et al., 2013).

The confidence interval is a range of observed values within which an unknown
population parameter value such as the population mean is known to reside, and a specific
confidence level is applied to conclude that the estimated interval contains the true value of
the parameter. As an example, Zimmer, Park ¢ Mathew (2020) estimated the coverage
probabilities of the 95% upper confidence limits of a zero-inflated gamma distribution for
confidence intervals constructed via bias-corrected and accelerated bootstrapping and the
bootstrap-calibrated delta method.

The mean of a statistical distribution with a continuous random variable (also known as
the expected value or expectation) is the long-running average value of random variables
obtained by integrating the product of the variable with its probability defined by the
distribution. Since the mean is the most popular measure of central tendency, we are
interested in constructing confidence intervals for estimating the population mean as well
as expanding the concept to analyze the difference between the means of two populations.
Several studies have investigated methods of constructing confidence intervals for
functions of the mean. Muralidharan ¢ Kale (2002) used the maximum likelihood concept
to estimate the parameters and construct confidence intervals for the mean of a
zero-inflated gamma mean population. Ren, Liu ¢ Pu (2021) used fiducial methods to
establish simultaneous confidence intervals for the mean of multiple zero-inflated gamma
distributions. Thangjai, Niwitpong ¢ Niwitpong (2017) proposed confidence intervals
for the mean and the difference between the means of two normal distributions with
unknown coefficients of variation. Niwitpong, Koonprasert ¢ Niwitpong (2012) provided
confidence intervals for the difference between normal population means with known
coefficients of variation. Maneerat, Niwitpong & Niwitpong (2019a) proposed Bayesian
methods to construct highest posterior density (HPD) intervals for the mean and the
difference between the means of two delta-lognormal distributions. Maneerat, Niwitpong
¢ Niwitpong (2019b) proposed confidence intervals for the mean of a delta-lognormal
distribution using the generalized confidence interval and the method of variance estimate
recovery based on a weighted beta distribution and variance stabilizing transformation,
respectively. Nonetheless, no publications have yet been forthcoming on constructing
confidence intervals for the mean and the difference between the means of two
delta-gamma distributions.
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Herein, we propose confidence intervals for both the mean and the difference between
the means of delta-gamma populations. We propose five methods comprising Bayesian
credible and HPD intervals based on the Jeffrey’s rule and uniform priors along with a
confidence interval based on FQs. The performances of the proposed confidence intervals
were evaluated using coverage probabilities and expected lengths via Monte Carlo
simulations and were then applied to estimate monthly rainfall data from Chiang Mai
province, Thailand, as a demonstration of their efficacy.

In this article, we propose the confidence intervals for the mean of delta-gamma
distribution and we expanded to establish confidence intervals for the difference between
delta-gamma means are presented in the ‘Methods’ section. The details of the simulation
study and the performances of the methods were compared in terms of their coverage
probabilities and expected lengths are included in the ‘Results and Discussion’ section.
An empirical application of the proposed methods with a monthly rainfall data from
Chiang Mai province Thailand are reported in ‘An empirical application’. The last section
contains ‘Conclusions’.

METHODS

Confidence intervals for the mean of a single delta-gamma distribution
Let X = (X1, X3, ..., Xu) be independent and identically distributed random sample from a
delta-gamma distribution denoted as X~DG(a, f3, 6). The distribution function of X is
given by

0 x=0
F(x;“’ﬁ>5):{5+(1—5)G(x;a,ﬁ) Jx>17 )

where G(x; o, ) is a gamma distribution with shape parameter o and rate parameter f$ and
0 = P(x = 0) follow binomial distribution #q)~bi(n, J). The maximum likelihood

.~ n
estimator of 8 is & = — % ;n = n(g) + n), where n() and n(;) are the number of zero and
n

positive observed values, respectively. The population mean of X is 7 = (1 — J) %, and so

the sample mean for 7 is T = (1 - 5) %

Krishnmoorthy, Mathew & Mukherjee (2008) showed that data can be transformed
using the cube root approximation to develop inferential procedures for a gamma
distribution. Suppose that G = (G, Ga, ..., G,) be independent and identically distributed
random variables from a gamma distribution, denoted as G(«, f8), and that Y = G'*~

N(u, 0?) is approximately normal with 4 and o* given by Krishnmoorthy ¢ Wang (2016)

1/3
1 1
U= <E> ( 1— —> and ¢ = 9Tﬂ2/3) respectively. Since the mean of a gamma
o

p 9u
distribution M = E, then we can rewrite u and ¢ to obtain
1 1
N VoY 2__
u=M (1 9ﬁM> and o oM (2)

By solving the set of equations in Eq. (2) for M, we obtain
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3
Thus, the mean of a delta-gamma distribution is T = (1 — J) (g + ,uzz + 0'2) .

Bayesian methods

Bayesian statistical methods use Bayes” theorem to explain the conditional probability

based on the prior distribution of the data. Hence, for the posterior (or conditional)

probability of 6 given sample x and prior p(6), the likelihood function p(x|6) can be
defined as

p(01x) o< p(0)p(x[0). (4)

For non-multimodal densities when p(6|x) is not symmetric, Box ¢ Tiao (1973) defined
the HPD interval as follows.

Suppose p(0|x) is a posterior distribution, then region R in the parameter space of 6 is
called the HPD region of content (1 — y) if the following two conditions are satisfied:

e Pr(0eRlx)=1-y.
e For 6, € Rand 0, ¢ R,p(0:]x) > p(01]x).

As stated earlier, a delta-gamma distribution is a combination of gamma and
binomial distributions. X; # 0;i = 1,2, ..., n(;) following a gamma distribution can be
transformed using cubed roots to a normal distribution denoted as Y~N(u, 0?). Suppose
that Y = (Y1, Y2, ...,Y,) be independent and identically distributed random variables
with probability density function, the likelihood function is p(y|4) o (62) "®/?

1 g . . .
exp <_ 262 Z;i i — u)2> and parameter A = (u, 0”). Thus, the Fisher information for A

can be obtained from the above equation as
, . gy na
103 = g "0 ") ;
() = diag "4 201 ©)
The delta-gamma distribution for three unknown parameters is denoted as 6 = (u, )
with likelihood function

”<1>
no 1/2 1/3 2
p(x]0) o< o™ ,:1 < oy (" — ) > (6)
Therefore, the Fisher information for 8 becomes
) n na  na)
I@=¢%bﬁfg‘g‘gﬂ- ()

In the following subsections, we cover the Jeffrey’s rule and uniform priors used to
construct Bayesian credible and HPD intervals for the mean of a delta-gamma population.
The Jeffrey’s rule prior is defined as the square root of Fisher information
= \/m . Harvey & Van Der Merwe (2012) introduced the Jeffrey’s rule prior for § in
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a binomial distribution p(J) « o121 - 5)1/ 2 and p(oz)  1/¢°. Thus, the joint posterior
density of 0 is defined as

1
pl0k) = 507 2(1 = 902

na) (8)

n n (x”(l))T 1 11(1) X,
1 N —l=7 n(
< rpen(- =) < )2 en(- )

~ 1 nay 1/3 (1) 1/3 2\ 2
where = mZizl X; and xn(l) = Zi:l (Xi - ,u) .

The marginal posteriors of u and o> for the Jeffrey’s rule prior are from normal
distribution (u|6?, x),~N(fi, 6> /n(1)) and inverse gamma distribution (¢*|x),~IG(n/2,
Xn,,/2), respectively. In addition, the marginal posterior of § is beta distribution

1 3
(0|x),~Beta (n(o) + 7 + E) Thus, the Bayesian credible interval based on the

Jeffrey’s rule prior for the mean of a delta-gamma population is obtained as

7=(1-0M= (1 — (5\x)])

(1), \/W,xf

2 1 ]+(62|x)] ) (9)

Therefore, the 100(1 — y)% two-sided interval for 7 is CI; = [L;, U] = [1(7/2), 77(1 —
7/2)] where 7/(y) denotes the (y)100th percentile of 7;.

The HPD interval has the property that every point within its region has a higher
probability than any point outside of it (Noyan ¢» Pham-Gia, 1993; Chen ¢ Shao, 1999).
Thus, to find the 100(1 — y)% HPD interval of 7;, we computed Clypp; = [Luppy,
Unppy] = [tuppy(7/2), Tupp (1 — 7/2)] by using the HPDinterval package in the R
software suite, defined by Box & Tiao (1973).

The uniform prior has a distribution that adds no information to the Bayesian
inference. According to Bolstad ¢ Curran (2016), the uniform prior for § of a binomial
distribution is p(8) « 1 while the priors for the mean and variance of a normal distribution
are p(u) 1 and p(c”) « 1, respectively. Thus, the joint posterior density function for
the uniform prior is defined as

1

Olx) = 5701 (1 — §)"
pOlx) Beta(n(o) +1,n0) + 1) ( )
71(1)73
(Xn(l)) 2 (10)
—_— n(1)73
x W op(— 20 (0 — )?) x 2

2\l =5 _ "(U)
/27'50'2 202 F<n(1) _ 3> (G ) exp 2062/’

.1 ny 1/3 13 -\2
where i = —Zl:i xi/ and x,, = S <xi/ — u) .
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Algorithm 1

« Step 1 generate x from DG(a, 3, 9);

« Step 2 compute x'%;

« Step 3 generate (u|0?,x);, (0%|x),, and (d]x);;
o Step 4 compute 7j;

« Step 5 repeat Step (3) and (4) 5,000 times;

« Step 6 compute the 95% Bayesian credible, as given in Eq. (9) from CI; and HPD interval for 7 from
Clypp> defined by Box & Tiao (1973);

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected
lengths.

Algorithm 2

« Step 1 generate x from DG(a, 3, 9);

« Step 2 compute x'%;

« Step 3 generate (u|6?, x),;, (6%]x),, and (|x) ;3

« Step 4 compute 7y;

o Step 5 repeat Step (3) and (4) 5,000 times;

« Step 6 compute the 95% Bayesian credible and HPD interval for 7 from CI; and Clypp 1

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected
lengths.

The marginal posteriors of 4 and ¢ for the uniform prior are (1|02, x);~N(, 6 /n())
for a normal distribution and (¢°|x);~IG((n(1) — 3)/2, %y, /2) for an inverse gamma
distribution. In addition, the marginal posterior of § is beta distribution (d|x) ~
Beta (n(o) +1L,nq) + 1). Thus, the Bayesian credible interval for the mean based on the
uniform prior is obtained as

= (1-0)M=(1-(3x),) (“’“22’ Yo \/(’”"Z’X)U + (), | - (11)

Therefore, the 100(1 — y)% two-sided credible interval for 7 is CIy = [Ly, Uy] =
[Tu('))/z),TU(l — '))/2)] and the 100(1 - )/)% HPD interval for Ty is CIHPD.U = [LHPD.U7
Unpp.u] = [tupp.u(/2), tarp.u(l — 7/2)].

Fiducial quantities

After Fisher (1930) introduced fiducial inference, many researchers have used it to
establish confidence limits (e.g., Krishnmoorthy & Wang, 2016; Yosboonruang, Niwitpong
¢ Niwitpong, 2019). The fiducial quantity concept depends on the fiducial generalized
pivotal quantity defined by Hannig, Iyer ¢ Patterson (2006).
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Suppose that X = (X1, X, ..., X,,) be independent and identically distributed random
variables with fx(x, 9, (), where J is the parameter of interest and ( is a nuisance parameter.
Thus, the percentile of generalized pivotal quantity R(X; x, 9, {) is only a function of 9
(a fiducial quantity) if it satisfies the following conditions:

e Given X, the R(X; x, 9, ) distribution is free of all parameters.
e Vx € R*, the observed R(X; x, 9, () = 9.

and

From Y~N(u, o?), the sample mean and variance of Yare Y ~ p+ Z
n(1)

N Xn ,» respectively, where Z and y,,  are standard normal and Chi-squared

dlstrlbutlons with n(;y_; degrees of freedom, respectively.
By estimating u and o” from the sample mean and variance, respectively, and replacing
(Y,S) with (7, s), the respective FQs for u and o” become

_ 2
” and F, = () = 1) (12)

=yt 2
\/ Xn X”(l)*l

Hence, the FQs for the gamma mean are given by

3

F F,\?
Fy= |- —H F.| . 13
=2y (2) 4. (13)

Yosboonruang, Niwitpong & Niwitpong (2019) used the FQs for 1 — § to obtain

1 1
Fl,(sNEBeta(n(l), no) + l) + EBeta(n(l) + 1, n(o)). (14)

Thus, the population mean of X is (1 — §)M and the FQs for a delta-gamma mean
are F; = (F,_;)Fy. Therefore, the 100(1 — y)% two-sided interval of the FQs for 7 is
Clpq = [Lrq, Urq) = [F:(y/2), F:(1 — y/2)], where F.(y) denotes the (y)100th percentiles
of F,.

Confidence intervals for the difference between delta-gamma means
In this section, we extend the ideas for the single delta-gamma mean confidence
intervals to create new ones for the difference between two delta-gamma means.

Let X = (X1, X3, ..., X,) and V = (V}, V,, ..., V,)) be independent and identically
distributed random samples from two delta-gamma distributions denoted as

X~DG(a, B, 6) and V~DG(a, B,, 0,), then the difference between their means is simply

l#:T—TZZ(l—é)M—(l—az)Mz, (15)

3

2

where M, = % + \/% + 0% . The maximum likelihood estimator of §, is

. m

0y = ﬁ; m = mg) + m(y), where mg) and m; are the number of zero and positive
m

observed values, respectively. Thus, confidence intervals for parameter y can be
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Algorithm 3

« Step 1 generate x from DG(a, 3, 9);

« Step 2 compute x'%;

+ Step 3 generate Z and ;,  ;

« Step 4 compute F,, Fp, Fi_s, Fy, and Fy;

« Step 5 repeat Step (4) 5,000 times;

« Step 6 compute the 95% confidence interval for 7 from Clpg;

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected

lengths.

constructed by using the FQs and Bayesian credible and HPD interval based on the
Jeffrey’s rule and uniform priors as follows.

The Bayesian methods

Xi #0;i=1,2,...,nq) and V; # 0;j = 1,2, ..., m(;) from gamma distributions can be
transformed to normal distributions denoted as Y~N(u, ¢*) and Y,~N (s, 03),
respectively, by using the cube roots of the data. Thus, the likelihood function is

- 1
POy2l0) o (o2) " Pexp <_EZ i = u)2>
i=1

- 1 o

my /2 2

x(03) w/ exP<—2—o_zz (2 — 1) ),
2]‘:1

with parameter ¢ = (p, 6%, 1, 63). Thus, the Fisher information for ¢ can be derived from

(16)

the above equation as

na  nay  m) @] (17)

I<¢>=dlag[? 20t o 200

We can apply the difference between the two independent means as the unknown
parameter denoted as ¢ = (i, 6%, 3, i, 03, ;) with likelihood function

pleld) a1 = 0 T (@) (= 5ps ol )

202

m i:}ﬂ“) ~1/2 IV 2 (18)
x 0, (1=8)"" [ (03) "\ =55 (" — 1) ).
=t 20,
Therefore, the Fisher information for ¢ becomes
— dige| —1— MW o) m my M
1(¢) = diag 6(1—90) a* 20* 6(1-06,) o5 205 } (19)

This can be used to construct confidence intervals for the difference between the means
of two delta-gamma populations using Bayesian credible and HPD intervals based on
Jeffrey’s rule and uniform priors as follows.
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Algorithm 4

o Step 1 generate x and v from DG(c, f3, 6) and DG(a, f3, 85);
« Step 2 compute x*° and v'/3;

» Step 3 generate (u|0%, x);, (0[x);, (9]x);, (1a]03,v) > (03|v) > and (2]v)3

o Step 4 compute y;

« Step 5 repeat Step (3) and (4) 5,000 times;

« Step 6 compute the 95% Bayesian credible and HPD interval for y from CI;; and CI; ypp 3

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected

lengths.

The Jeffrey’s rule prior for § and §, in a binomial distribution comprises p(8) « § -1z
(1 - 8)Y2, p(8,) o 8, /2(1 — 6,)'2, p(0®) « 1/0® and p(a?) o 1/a3. Hence, the joint
posterior density of ¢ is defined as

1 mo— 3 +1
PBl) = p(0)) x A (I AL
Beta m(0)+5,m(1)+5>

m) man) 2
>< _—— —
/—27'56% EXP( 20% (,“2 #2) > (20)

A 1 may 1/3 oMy (L1300 A 2
where [i, = % 1 Vi and vy, = > i (v- - ,u2> .
The marginal posteriors of u,, a3 and 8, for the Jeffrey’s rule prior of the difference

between two delta-gamma means are (|03, v),~N(fiy, 03 /my)), (03|v),~IG(m()/2,

1 3
Vg /2), and (02|v);~Beta (m(o) + 2 M) + —) , respectively. Thus, the Bayesian credible

2
interval based on the Jeftrey’s rule prior is obtained as

lp] =(1—=0)M — (1 —0,)M,
(1), \/w,x)i

3 2 + (02|x)]

= (1= (3]))
(21)

= (1= (32lv)))

3
(el ), \/@zwg,v)ﬁ |

2 4 + (J§|V)]

Therefore, the 100(1 — y)% two-sided credible interval for v is Cly; = [Laj, Ugj| =
[¥;(7/2),¥,(1 — 7/2)] and the 100(1 - y)% HPD interval of y; is Clyupp; =

[La.zppy, Udmppy] = [‘pHPD.}(V/Z)v lPHPD.](l - y/2)].
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Algorithm 5

o Step 1 generate x and v from DG(c, f3, 6) and DG(a, f3, 85);
« Step 2 compute x*° and v'/3;

« Step 3 generate (u|a*, x)y» (6%[x)y, (0%)ys (2103, V) > (93[v) > and (da]v) s

o Step 4 compute y;

« Step 5 repeat Step (3) and (4) 5,000 times;

« Step 6 compute the 95% Bayesian credible and HPD interval for y from CI,;y and CI; ypp s

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected

lengths.

The uniform prior for § and §, are from binomial distributions p(J) « 1 and p(J,) « 1,
respectively. The priors for the means are p(u) « 1 and p(u) « 1 and for the variances
are p(°) « 1 and p(c2) oc 1. Hence, the joint posterior density function for the uniform
prior can be defined as

1 m
x,v) = p(0lx) x 8, (1 — &,)"
P ) =) % o i 5
mey m .
X W P _—(2)(:“2—.“2)2
2163 205
m)—3 (22)

2
205

(me 2 -
o
2 21— =5 <_ me)

The marginal posteriors of u,, g3 and 8, for the uniform prior are (,uz]a%, v) U™
N(fiy, 05/m)), (a§|v) o~IG((my — 3)/2, v, /2), and (52|V)U~Beta(m(0) +1,
m() + 1). Thus, the Bayesian credible interval based on the uniform prior can be obtained

v, =0—-0M—(1-0)M,
(e )y \/W,xf

= (1 - (5’x)U) 2 4 Tt (OJ,X)U

3
(15173%), \/<uz|a§,v)§,

— (1= (@al)) [ L2 204 (),

(23)

Therefore, the 100(1 — y)% two-sided credible interval for v is Clyy = [Lau, Usu] =
[Wu(y/2),¥y(1 —v/2)] and the 100(1 — y)% HPD interval for yy is Clyppp.u =

[La.npp.u, Usrpp.u] = Wapp.u(7/2)s Yapp.u (1 — 7/2)).

FQs
—1)s? _ 2
The FQs for y, and 62 are given by F,, = y;, + —2 (012 g Fp = (m21)2

2
i1y —1 m) Lin1)—y

respectively where Z, and an(lH are standard normal and Chi-squared distributions with

>
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Algorithm 6

o Step 1 generate x and v from DG(c, f3, 6) and DG(a, f3, 85);
« Step 2 compute x*° and v'/3;

« Step 3 generate Z, Zy, 15, and 15, ;

-1’
« Step 4 compute F,, F,,, F, Fo, Fios Fi_s, Fan P, and Fy;
« Step 5 repeat Step (4) 5,000 times;
« Step 6 compute the 95% confidence interval for y from CI,; rq;

« Step 7 repeat Step (1)-(6) 15,000 times to compute the coverage probabilities and the expected

lengths.

my — 1 degrees of freedom, respectively. Hence, the FQs for 1 — §, and M, can respectively

be obtained as

1 1
Fl,(;szBeta(m(l), mg) + 1) —i—EBeta(m(l) +1, m(o)), (24)
and
. 3
F, F
Fy, = é - (%) +Fz | - (25)

Thus, the FQs for the difference between two delta-gamma means can be derived as
Fy =F, — F;, = (Fi_5)Fu — (F1-s,)Fum, - (26)

Therefore, the 100(1 — y)% two-sided confidence interval using the FQs for y is
Clirq = [Larq, Uirql = [E/,(V/Z),Fl/,(l — y/2)], where F,(y) denotes the (y)100th
percentiles of F,,.

SIMULATION STUDIES AND RESULTS

The five methods for establishing new confidence intervals for the mean and the difference
between the means of two delta-gamma distributions were tested via a Monte Carlo
simulation study conducted using the R statistical program (R Core Team, 2021).

The performances of the five proposed methods were compared in terms of their coverage
probabilities and expected lengths respectively derived as
_L<t oor Yy<U) (U~ Ly)

CP = and EL =

; (27)
15,000 15,000

where ¢(L <t or < U) is the number of simulation runs for 7 or y. The simulation
results are presented for significance level y = 0.05. The best-performing confidence
interval was chosen with a coverage probability greater than or close to the nominal
confidence level of 0.95 and the shortest expected length.

For the single delta-gamma mean, the data were generated for X~DG(«, f, §) with
sample sizes n = 30, 50, 100, or 200 and the probability of zeros § = 0.2, 0.5, or 0.7, for
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which we set a = 5.5 or 6.0, 2.0 or 2.5, and 1.25 or 1.5, respectively. Last, we set § = 1.0 or
2.0 for all cases. Subsequently, the performances of the confidence intervals at the nominal
confidence level of 95% for T were computed.

For the difference between two delta-gamma means, the data were generated for two
independent delta-gamma distributions, X~DG(a, f3, §) and V~DG(a,, 8, 8,). For equal
sample sizes (n = m), we used (30, 30), (50, 50), (100, 100), or (200, 200), and for
unequal sample sizes (n # m), we used (30, 50), (50, 100), or (100, 200). For probabilities
of zeros (6, §,) = (0.2, 0.2), we set (o, ) and (o, f32) as (5.5, 1.0), (5.5, 2.0), (6.0, 1.0),
or (6.0, 2.0); for (4, §,) = (0.5, 0.5), we set (a, ) and (ar, B5) as (2.0, 1.0), (2.0, 2.0),
(2.5, 1.0), or (2.5, 2.0); and for (4, &,) = (0.7, 0.7), we set (a, B) and (a,, B,) as (1.25, 1.0),
(1.25,2.0), (1.5, 1.0), or (1.5, 2.0). For all of the simulations, the number of replications was
set as 15,000 with 5,000 repetitions.

The coverage probabilities and expected lengths of the 95% confidence intervals for 7
are reported in Table 1. It can be seen that the coverage probabilities of the Bayesian HPD
interval based on the uniform prior and the FQ confidence interval were greater than or
close to the nominal confidence level of 0.95 in all cases where as those of the Bayesian
credible and HPD intervals based on the Jeffrey’s rule prior and the Bayesian credible
interval based on the uniform prior were less than the nominal confidence level for some
cases. However, the expected lengths of the Bayesian HPD interval based on the Jeffrey’s
rule prior were shorter than the other methods as shown in Fig. 1. Therefore, the Bayesian
HPD interval based on the Jeffrey’s rule prior is recommended for constructing the
confidence interval for the mean of a single delta-gamma distribution. The coverage
probabilities and expected lengths of the 95% two-sided confidence interval for y with
equal and unequal sample sizes are listed in Tables 2 and 3, respectively. The results show
that the Bayesian HPD interval based on the Jeffrey’s rule prior, the Bayesian credible and
HPD intervals based on the uniform prior, and the FQ confidence interval provided
coverage probabilities that were greater than or close to the nominal confidence level of
0.95 in all cases whereas the Bayesian credible interval on the Jeffrey’s rule prior with
(6, 8,) = (0.7, 0.7) provided ones that were less than the nominal confidence level for some
cases. Since the expected lengths of the Bayesian HPD interval based on the Jeffrey’s rule
prior were the shortest as shown in Figs. 2 and 3. Thus, we can recommend it for
constructing the confidence interval for the difference between the means of two
delta-gamma distributions with equal and unequal sample sizes. Furthermore, the results
for the difference between the means of two delta-gamma distributions for sample size
n > m yielded similar results to those for n < m.

AN EMPIRICAL APPLICATION

In this part of the study, we approximate the mean of monthly rainfall data from Chiang
Mai province, Thailand (https://www.hydro-1.net/), using the five confidence intervals
proposed in this paper to illustrate their efficacies. There are three cases as follows. Case 1
was used to test the mean of a delta-gamma distribution for which we used rainfall data
from only one rain station in Chiang Mai to provide a sample size consistent with that used
in the simulation study. The difference between the means of two delta-gamma
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Table 1 Coverage probabilities and expected lengths of the proposed methods for the 95% confidence intervals for the mean of a delta-gamma

distribution.
n ) (o, B) Coverage probability (Expected length)
CI, Cluppy Cly Clupp.u Clrq
30 0.2 (5.5, 1.0) 0.9441 0.9480 0.9454 0.9524 0.9842
(1.5459) (1.5247) (1.6236) (1.6064) (1.9300)
(5.5, 2.0) 0.9451 0.9488 0.9468 0.9532 0.9842
(0.7760) (0.7657) (0.8146) (0.8062) (0.9650)
(6.0, 1.0) 0.9494 0.9562 0.9508 0.9583 0.9857
(1.6776) (1.6530) (1.7575) (1.7377) (2.0448)
(6.0, 2.0) 0.9508 0.9569 0.9522 0.9588 0.9857
(0.8418) (0.8299) (0.8815) (0.8718) (1.0224)
0.5 (2.0, 1.0) 0.9552 0.9528 0.9700 0.9695 0.9830
(0.7596) (0.7531) (0.8553) (0.8392) (0.9711)
(2.0, 2.0) 0.9570 0.9550 0.9714 0.9705 0.9830
(0.3829) (0.3795) (0.4303) (0.4221) (0.4855)
(2.5, 1.0) 0.9690 0.9682 0.9796 0.9790 0.9873
(0.9209) (0.9150) (1.0102) (0.9972) (1.1159)
(2.5, 2.0) 0.9703 0.9696 0.9805 0.9797 0.9873
(0.4634) (0.4604) (0.5077) (0.5012) (0.5579)
0.7 (1.25, 1.0) 0.9455 0.9496 0.9643 0.9832 0.9784
(0.5091) (0.4872) (0.8029) (0.7002) (0.6961)
(1.25, 2.0) 0.9497 0.9531 0.9656 0.9841 0.9784
(0.2583) (0.2471) (0.4039) (0.3526) (0.3480)
(1.5, 1.0) 0.9585 0.9599 0.9758 0.9870 0.9829
(0.5814) (0.5615) (0.8665) (0.7708) (0.7654)
(1.5, 2.0) 0.9609 0.9623 0.9770 0.9877 0.9829
(0.2945) (0.2843) (0.4359) (0.3879) (0.3827)
50 0.2 (5.5, 1.0) 0.9485 0.9512 0.9484 0.9524 0.9838
(1.2119) (1.1988) (1.2452) (1.2333) (1.4736)
(5.5, 2.0) 0.9494 0.9520 0.9492 0.9533 0.9838
(0.6072) (0.6008) (0.6239) (0.6179) (0.7368)
(6.0, 1.0) 0.9582 0.9607 0.9561 0.9604 0.9856
(1.3166) (1.3017) (1.3512) (1.3376) (1.5606)
(6.0, 2.0) 0.9585 0.9620 0.9564 0.9606 0.9856
(0.6596) (0.6523) (0.6768) (0.6701) (0.7803)
0.5 (2.0, 1.0) 0.9580 0.9568 0.9649 0.9653 0.9840
(0.5840) (0.5807) (0.6138) (0.6093) (0.7172)
(2.0, 2.0) 0.9583 0.9571 0.9656 0.9650 0.9840
(0.2933) (0.2917) (0.3082) (0.3059) (0.3586)
(2.5, 1.0) 0.9694 0.9683 0.9754 0.9748 0.9865
(0.7109) (0.7076) (0.7390) (0.7347) (0.8283)
(2.5, 2.0) 0.9706 0.9691 0.9760 0.9746 0.9865
(0.3568) (0.3551) (0.3707) (0.3685) (0.4141)
(Continued)
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Table 1 (continued)

n ) (o, B) Coverage probability (Expected length)
Cr Clupp.y Cly Clupp.u CIrq
0.7 (1.25, 1.0) 0.9467 0.9480 0.9597 0.9676 0.9780
(0.3689) (0.3609) (0.4307) (0.4137) (0.4685)
(1.25, 2.0) 0.9490 0.9503 0.9612 0.9692 0.9780
(0.1861) (0.1820) (0.2167) (0.2082) (0.2342)
(1.5, 1.0) 0.9610 0.9634 0.9718 0.9762 0.9833
(0.4270) (0.4195) (0.4863) (0.4709) (0.5226)
(1.5, 2.0) 0.9630 0.9634 0.9725 0.9769 0.9833
(0.2151) (0.2113) (0.2445) (0.2368) (0.2613)
100 0.2 (5.5, 1.0) 0.9560 0.9569 0.9535 0.9567 0.9853
(0.8663) (0.8595) (0.8779) (0.8714) (1.0319)
(5.5, 2.0) 0.9562 0.9572 0.9536 0.9572 0.9853
(0.4336) (0.4302) (0.4394) (0.4361) (0.5159)
(6.0, 1.0) 0.9638 0.9643 0.9618 0.9636 0.9850
(0.9421) (0.9346) (0.9539) (0.9467) (1.0945)
(6.0, 2.0) 0.9640 0.9650 0.9618 0.9637 0.9850
(0.4715) (0.4677) (0.4774) (0.4738) (0.5472)
0.5 (2.0, 1.0) 0.9586 0.9576 0.9614 0.9606 0.9830
(0.4106) (0.4088) (0.4189) (0.4169) (0.4911)
(2.0, 2.0) 0.9588 0.9569 0.9618 0.9611 0.9830
(0.2057) (0.2048) (0.2099) (0.2088) (0.2455)
(2.5, 1.0) 0.9724 0.9724 0.9742 0.9732 0.9855
(0.5027) (0.5006) (0.5104) (0.5081) (0.5695)
(2.5, 2.0) 0.9726 0.9726 0.9744 0.9735 0.9855
(0.2518) (0.2507) (0.2556) (0.2545) (0.2847)
0.7 (1.25, 1.0) 0.9482 0.9476 0.9553 0.9576 0.9790
(0.2499) (0.2472) (0.2632) (0.2597) (0.3045)
(1.25, 2.0) 0.9493 0.9476 0.9560 0.9586 0.9790
(0.1255) (0.1241) (0.1321) (0.1303) (0.1522)
(1.5, 1.0) 0.9632 0.9635 0.9686 0.9684 0.9836
(0.2919) (0.2892) (0.3044) (0.3010) (0.3423)
(1.5, 2.0) 0.9642 0.9642 0.9694 0.9692 0.9836
(0.1465) (0.1451) (0.1527) (0.1510) (0.1711)
200 0.2 (5.5, 1.0) 0.9603 0.9612 0.9600 0.9620 0.9855
(0.6162) (0.6125) (0.6201) (0.6165) (0.7264)
(5.5, 2.0) 0.9602 0.9616 0.9598 0.9617 0.9855
(0.3082) (0.3064) (0.3102) (0.3084) (0.3632)
(6.0, 1.0) 0.9676 0.9676 0.9668 0.9678 0.9862
(0.6702) (0.6661) (0.6745) (0.6705) (0.7711)
(6.0, 2.0) 0.9678 0.9680 0.9668 0.9676 0.9862
(0.3352) (0.3332) (0.3374) (0.3354) (0.3855)
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Table 1 (continued)

n ) (o, B) Coverage probability (Expected length)
CLy Clupp.y Cly Clypp.u ClIrq
0.5 (2.0, 1.0) 0.9601 0.9591 0.9616 0.9607 0.9836
(0.2898) (0.2886) (0.2924) (0.2911) (0.3419)
(2.0, 2.0) 0.9604 0.9594 0.9616 0.9607 0.9836
(0.1450) (0.1444) (0.1463) (0.1457) (0.1709)
(2.5, 1.0) 0.9747 0.9736 0.9751 0.9746 0.9865
(0.3561) (0.3546) (0.3585) (0.3570) (0.3980)
(2.5,2.0) 0.9748 0.9739 0.9752 0.9751 0.9865
(0.1782) (0.1774) (0.1794) (0.1787) (0.1990)
0.7 (1.25, 1.0) 0.9526 0.9507 0.9551 0.9551 0.9792
(0.1731) (0.1719) (0.1769) (0.1755) (0.2069)
(1.25, 2.0) 0.9531 0.9514 0.9556 0.9568 0.9792
(0.0867) (0.0861) (0.0886) (0.0879) (0.1034)
(1.5, 1.0) 0.9658 0.9650 0.9678 0.9672 0.9840
(0.2036) (0.2023) (0.2071) (0.2057) (0.2343)
(1.5, 2.0) 0.9662 0.9651 0.9682 0.9678 0.9840
(0.1020) (0.1013) (0.1037) (0.1030) (0.1171)
(A) ®) 7
0.98+ by
é Methods w 281 Methods
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Figure 1 Graphs of (A) coverage probability and (B) expected length of the proposed methods for the mean of a delta-gamma distribution.
Full-size K&l DOT: 10.7717/peerj.13465/fig-1

distributions with equal sample sizes was investigated in Case 2 by using rainfall data over

a period of time at the same station in Chiang Mai for various months within the same

season. For Case 3, we compared the means of two delta-gamma distributions with uneven

sample sizes by combining data from several stations in Chiang Mai for the same month.

Example 1: testing the mean of a single delta-gamma distribution
Rainfall data were obtained from the Upper Northern Region Irrigation Hydrology Center
(2021). We used monthly rainfall data (mm) from Irrigation Office Station I, Chiang Mai
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Table 2 Coverage probabilities and expected lengths of the 95% confidence intervals for the difference between the means of two delta-gamma

distributions (n = m).

n, m (5, 85) (o, B) (02 B2) Coverage probability (Expected length)
Clyy Cliupp.y Cliu Cliupp.u Clirq
(30, 30) 0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9670 0.9629 0.9756 0.9725 0.9878
(1.1135) (1.1087) (1.1652) (1.1603) (1.3725)
(6.0, 2.0) (5.5, 1.0) 0.9586 0.9572 0.9674 0.9667 0.9860
(1.7761) (1.7643) (1.8603) (1.8492) (2.1877)
(5.5, 2.0) (6.0, 1.0) 0.9613 0.9613 0.9662 0.9676 0.9862
(1.8634) (1.8483) (1.9501) (1.9364) (2.2694)
(6.0, 1.0) (6.0, 1.0) 0.9735 0.9692 0.9802 0.9777 0.9899
(2.4093) (2.3990) (2.5172) (2.5067) (2.9070)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9549 0.9580 0.9691 0.9762 0.9842
(0.5474) (0.5447) (0.6175) (0.6132) (0.7070)
(2.5, 2.0) (2.0, 1.0) 0.9589 0.9610 0.9733 0.9756 0.9843
(0.8972) (0.8919) (1.0057) (0.9957) (1.1439)
(2.0, 2.0) (2.5, 1.0) 0.9660 0.9663 0.9751 0.9764 0.9853
(1.0026) (0.9972) (1.1055) (1.0958) (1.2338)
(2.5, 1.0) (2.5, 1.0) 0.9700 0.9716 0.9784 0.9826 0.9871
(1.3149) (1.3091) (1.4456) (1.4374) (1.6174)
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9486 0.9666 0.9787 0.9928 0.9824
(0.3820) (0.3770) (0.6247) (0.6049) (0.5358)
(1.5, 2.0) (1.25, 1.0) 0.9479 0.9594 0.9763 0.9910 0.9800
(0.6061) (0.5945) (0.9721) (0.9253) (0.8432)
(1.25, 2.0) (1.5, 1.0) 0.9579 0.9649 0.9824 0.9917 0.9834
(0.6527) (0.6404) (1.0082) (0.9609) (0.8841)
(1.5, 1.0) (1.5, 1.0) 0.9590 0.9721 0.9839 0.9939 0.9853
(0.8521) (0.8430) (1.3168) (1.2791) (1.1625)
(50, 50) (0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9669 0.9633 0.9724 0.9706 0.9871
(0.8672) (0.8636) (0.8901) (0.8864) (1.0457)
(6.0, 2.0) (5.5, 1.0) 0.9618 0.9620 0.9650 0.9652 0.9846
(1.3878) (1.3795) (1.4251) (1.4169) (1.6700)
(5.5, 2.0) (6.0, 1.0) 0.9636 0.9642 0.9662 0.9664 0.9854
(1.4569) (1.4466) (1.4947) (1.4850) (1.7289)
(6.0, 1.0) (6.0, 1.0) 0.9726 0.9704 0.9770 0.9747 0.9870
(1.8798) (1.8720) (1.9269) (1.9189) (2.2142)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9574 0.9589 0.9651 0.9666 0.9820
(0.4173) (0.4155) (0.4388) (0.4369) (0.5158)
(2.5, 2.0) (2.0, 1.0) 0.9620 0.9618 0.9699 0.9700 0.9854
(0.6871) (0.6840) (0.7205) (0.7167) (0.8374)
(2.0, 2.0) (2.5, 1.0) 0.9680 0.9682 0.9718 0.9722 0.9863
(0.7706) (0.7672) (0.8024) (0.7984) (0.9079)
(2.5, 1.0) (2.5, 1.0) 0.9754 0.9753 0.9804 0.9800 0.9884
(1.0093) (1.0051) (1.0496) (1.0452) (1.1857)
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Table 2 (continued)

n,m (8, 8,) (o, B) (o2 B2) Coverage probability (Expected length)
Clyy Cliuprp.y Cliy Clyupp.u Clirq
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9454 0.9564 0.9620 0.9752 0.9779
(0.2691) (0.2672) (0.3163) (0.3131) (0.3468)
(1.5, 2.0) (1.25, 1.0) 0.9482 0.9549 0.9653 0.9728 0.9794
(0.4325) (0.4282) (0.5045) (0.4961) (0.5522)
(1.25, 2.0) (1.5, 1.0) 0.9588 0.9638 0.9718 0.9773 0.9833
(0.4711) (0.4660) (0.5412) (0.5319) (0.5873)
(1.5, 1.0) (1.5, 1.0) 0.9630 0.9693 0.9746 0.9828 0.9848
(0.6156) (0.6120) (0.7057) (0.6996) (0.7696)
(100, 100) 0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9614 0.9590 0.9645 0.9632 0.9838
(0.6159) (0.6134) (0.6238) (0.6213) (0.7299)
(6.0, 2.0) (5.5, 1.0) 0.9604 0.9583 0.9638 0.9622 0.9849
(0.9894) (0.9842) (1.0019) (0.9969) (1.1692)
(5.5, 2.0) (6.0, 1.0) 0.9668 0.9668 0.9684 0.9680 0.9863
(1.0394) (1.0335) (1.0526) (1.0468) (1.2109)
(6.0, 1.0) (6.0, 1.0) 0.9702 0.9688 0.9718 0.9704 0.9863
(1.3384) (1.3330) (1.3553) (1.3498) (1.5500)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9598 0.9587 0.9634 0.9628 0.9842
(0.2921) (0.2910) (0.2979) (0.2967) (0.3505)
(2.5, 2.0) (2.0, 1.0) 0.9628 0.9622 0.9671 0.9660 0.9842
(0.4825) (0.4805) (0.4914) (0.4893) (0.5703)
(2.0, 2.0) (2.5, 1.0) 0.9720 0.9711 0.9730 0.9730 0.9861
(0.5441) (0.5418) (0.5527) (0.5504) (0.6223)
(2.5, 1.0) (2.5, 1.0) 0.9744 0.9738 0.9766 0.9764 0.9870
(0.7129) (0.7101) (0.7238) (0.7208) (0.8105)
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9508 0.9548 0.9561 0.9608 0.9778
(0.1797) (0.1788) (0.1894) (0.1884) (0.2204)
(1.5, 2.0) (1.25, 1.0) 0.9513 0.9531 0.9580 0.9616 0.9804
(0.2918) (0.2900) (0.3068) (0.3046) (0.3545)
(1.25, 2.0) (1.5, 1.0) 0.9618 0.9626 0.9672 0.9694 0.9834
(0.3193) (0.3172) (0.3338) (0.3313) (0.3788)
(1.5, 1.0) (1.5, 1.0) 0.9600 0.9644 0.9659 0.9692 0.9826
(0.4165) (0.4147) (0.4350) (0.4330) (0.4939)
(200, 200) (0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9638 0.9622 0.9652 0.9635 0.9858
(0.4370) (0.4352) (0.4398) (0.4380) (0.5142)
(6.0, 2.0) (5.5, 1.0) 0.9649 0.9630 0.9661 0.9651 0.9855
(0.7024) (0.6992) (0.7071) (0.7038) (0.8223)
(5.5, 2.0) (6.0, 1.0) 0.9675 0.9654 0.9682 0.9676 0.9863
(0.7387) (0.7350) (0.7433) (0.7396) (0.8524)
(6.0, 1.0) (6.0, 1.0) 0.9672 0.9656 0.9691 0.9676 0.9840
(0.9502) (0.9463) (0.9560) (0.9521) (1.0910)
(Continued)
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Table 2 (continued)

n,m (8, 8,) (o, B) (o2 B2) Coverage probability (Expected length)
Clyy Cliuprp.y Cliy Clyupp.u Clirq
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9581 0.9570 0.9603 0.9589 0.9829
(0.2054) (0.2046) (0.2073) (0.2064) (0.2428)
(2.5, 2.0) (2.0, 1.0) 0.9654 0.9645 0.9668 0.9655 0.9854
(0.3408) (0.3395) (0.3437) (0.3422) (0.3969)
(2.0, 2.0) (2.5, 1.0) 0.9721 0.9713 0.9731 0.9723 0.9851
(0.3845) (0.3830) (0.3872) (0.3857) (0.4336)
(2.5, 1.0) (2.5, 1.0) 0.9764 0.9748 0.9768 0.9760 0.9880
(0.5048) (0.5028) (0.5081) (0.5061) (0.5654)
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9526 0.9541 0.9553 0.9563 0.9797
(0.1235) (0.1229) (0.1261) (0.1256) (0.1482)
(1.5, 2.0) (1.25, 1.0) 0.9550 0.9550 0.9572 0.9586 0.9804
(0.2021) (0.2011) (0.2062) (0.2051) (0.2400)
(1.25, 2.0) (1.5, 1.0) 0.9622 0.9619 0.9654 0.9640 0.9836
(0.2219) (0.2208) (0.2259) (0.2247) (0.2576)
(1.5, 1.0) (1.5, 1.0) 0.9676 0.9681 0.9698 0.9698 0.9834
(0.2892) (0.2880) (0.2942) (0.2930) (0.3346)

city, comprising 50 observations in January from 1972 to 2021. The densities for the
rainfall data are shown in Fig. 4.

Next, we tested the distributions of positive rainfall datasets using the minimum Akaike
information criterion (AIC) defined as

AIC = —21InL + 2k, (28)

where L is the likelihood function and k is the number of parameters. The results in Table 4
show that the positive rainfall dataset for Irrigation Office Station I fit a gamma
distribution, as confirmed by the AIC because the AIC value for this distribution was the
smallest. The Q-Q plots of positive rainfall data showing that they follow gamma
distributions are exhibited in Fig. 5.

The zero values in rainfall data fitted a binomial distribution, and so the delta-gamma
distribution is suitable for this data. The summary statistics were computed for the rainfall
dataset from Irrigation Office Station I as n = 50, 1 = 27, ny = 23 with maximum
likelihood estimators o = 0.54, & = 5.30, ﬁ = 2.06, and 7 = 1.18. The 95% confidence
intervals for 7 are reported in Table 5. In accordance with the simulation results in the
previous section, the length of the Bayesian HPD interval based on the Jeftrey’s rule prior
was shorter than the other methods, thereby confirming its suitability for constructing the
confidence interval for the mean of a delta-gamma distribution.

Kaewprasert et al. (2022), PeerJ, DOI 10.7717/peerj.13465 18/27


http://dx.doi.org/10.7717/peerj.13465
https://peerj.com/

Peer/

Table 3 Coverage probabilities and expected lengths of the 95% confidence intervals for the difference between the means of two delta-gamma

distributions (n # m).

n, m (5, 85) (o, B) (02 B2) Coverage probability (Expected length)
Clyy Cliupp.y Cliu Cliupp.u Clirq
(30, 50) 0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9638 0.9605 0.9709 0.9682 0.9862
(0.9963) (0.9915) (1.0353) (1.0305) (1.2181)
(6.0, 2.0) (5.5, 1.0) 0.9646 0.9613 0.9708 0.9690 0.9852
(1.4907) (1.4837) (1.5392) (1.5320) (1.8000)
(5.5, 2.0) (6.0, 1.0) 0.9676 0.9658 0.9719 0.9715 0.9866
(1.5404) (1.5318) (1.5886) (1.5801) (1.8400)
(6.0, 1.0) (6.0, 1.0) 0.9704 0.9680 0.9761 0.9748 0.9874
(2.1567) (2.1462) (2.2383) (2.2277) (2.5790)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9616 0.9633 0.9720 0.9758 0.9855
(0.4872) (0.4847) (0.5353) (0.5307) (0.6183)
(2.5, 2.0) (2.0, 1.0) 0.9616 0.9628 0.9692 0.9722 0.9848
(0.7497) (0.7465) (0.8026) (0.7987) (0.9247)
(2.0, 2.0) (2.5, 1.0) 0.9719 0.9726 0.9775 0.9786 0.9878
(0.8133) (0.8098) (0.8629) (0.8589) (0.9762)
(2.5, 1.0) (2.5, 1.0) 0.9728 0.9733 0.9792 0.9812 0.9876
(1.1706) (1.1653) (1.2603) (1.2520) (1.4129)
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9488 0.9614 0.9719 0.9878 0.9796
(0.3276) (0.3226) (0.4785) (0.4504) (0.4437)
(1.5, 2.0) (1.25, 1.0) 0.9510 0.9615 0.9696 0.9847 0.9811
(0.4858) (0.4817) (0.6453) (0.6298) (0.6407)
(1.25, 2.0) (1.5, 1.0) 0.9572 0.9653 0.9730 0.9852 0.9836
(0.5123) (0.5080) (0.6670) (0.6523) (0.6628)
(1.5, 1.0) (1.5, 1.0) 0.9618 0.9706 0.9789 0.9900 0.9840
(0.7373) (0.7283) (1.0280) (0.9754) (0.9708)
(50, 100) (0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9626 0.9604 0.9658 0.9642 0.9836
(0.7508) (0.7470) (0.7671) (0.7633) (0.9011)
(6.0, 2.0) (5.5, 1.0) 0.9672 0.9643 0.9715 0.9685 0.9870
(1.0951) (1.0905) (1.1144) (1.1097) (1.2958)
(5.5, 2.0) (6.0, 1.0) 0.9698 0.9694 0.9738 0.9718 0.9890
(1.1266) (1.1215) (1.1456) (1.1403) (1.3217)
(6.0, 1.0) (6.0, 1.0) 0.9670 0.9654 0.9698 0.9689 0.9862
(1.6306) (1.6224) (1.6654) (1.6572) (1.9119)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9565 0.9570 0.9642 0.9644 0.9822
(0.3595) (0.3579) (0.3742) (0.3723) (0.4391)
(2.5, 2.0) (2.0, 1.0) 0.9656 0.9648 0.9696 0.9703 0.9862
(0.5468) (0.5445) (0.5623) (0.5600) (0.6498)
(2.0, 2.0) (2.5, 1.0) 0.9716 0.9720 0.9740 0.9743 0.9862
(0.5845) (0.5822) (0.5989) (0.5964) (0.6796)
(2.5, 1.0) (2.5, 1.0) 0.9732 0.9732 0.9764 0.9762 0.9858
(0.8749) (0.8712) (0.9022) (0.8981) (1.0145)
(Continued)
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Table 3 (continued)

n,m (8, 8,) (o, B) (o2 B2) Coverage probability (Expected length)
Clyy Cliuprp.y Cliy Clyupp.u Clirq
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9494 0.9551 0.9611 0.9710 0.9794
(0.2278) (0.2257) (0.2584) (0.2539) (0.2877)
(1.5, 2.0) (1.25, 1.0) 0.9527 0.9592 0.9629 0.9706 0.9810
(0.3343) (0.3326) (0.3657) (0.3632) (0.4128)
(1.25, 2.0) (1.5, 1.0) 0.9579 0.9622 0.9660 0.9723 0.9830
(0.3510) (0.3491) (0.3807) (0.3784) (0.4267)
(1.5, 1.0) (1.5, 1.0) 0.9621 0.9676 0.9706 0.9766 0.9842
(0.5244) (0.5205) (0.5828) (0.5748) (0.6417)
(100, 200) 0.2, 0.2) (5.5, 2.0) (5.5, 2.0) 0.9633 0.9614 0.9651 0.9632 0.9858
(0.5338) (0.5313) (0.5396) (0.5371) (0.6317)
(6.0, 2.0) (5.5, 1.0) 0.9678 0.9660 0.9694 0.9678 0.9868
(0.7782) (0.7750) (0.7851) (0.7819) (0.9105)
(5.5, 2.0) (6.0, 1.0) 0.9703 0.9688 0.9712 0.9700 0.9874
(0.8003) (0.7969) (0.8068) (0.8033) (0.9285)
(6.0, 1.0) (6.0, 1.0) 0.9697 0.9686 0.9710 0.9686 0.9866
(1.1591) (1.1538) (1.1711) (1.1658) (1.3397)
(0.5, 0.5) (2.0, 2.0) (2.0, 2.0) 0.9590 0.9582 0.9623 0.9623 0.9838
(0.2522) (0.2512) (0.2563) (0.2552) (0.3007)
(2.5, 2.0) (2.0, 1.0) 0.9658 0.9666 0.9686 0.9678 0.9874
(0.3851) (0.3836) (0.3895) (0.3880) (0.4475)
(2.0, 2.0) (2.5, 1.0) 0.9728 0.9721 0.9751 0.9734 0.9876
(0.4117) (0.4100) (0.4159) (0.4142) (0.4693)
(2.5, 1.0) (2.5, 1.0) 0.9734 0.9726 0.9750 0.9744 0.9865
(0.6177) (0.6151) (0.6255) (0.6229) (0.6984)
(0.7, 0.7) (1.25, 2.0) (1.25, 2.0) 0.9520 0.9546 0.9578 0.9616 0.9799
(0.1540) (0.1532) (0.1607) (0.1596) (0.1872)
(1.5, 2.0) (1.25, 1.0) 0.9544 0.9552 0.9588 0.9600 0.9805
(0.2286) (0.2276) (0.2356) (0.2346) (0.2726)
(1.25, 2.0) (1.5, 1.0) 0.9582 0.9597 0.9626 0.9637 0.9815
(0.2403) (0.2393) (0.2469) (0.2458) (0.2825)
(1.5, 1.0) (1.5, 1.0) 0.9640 0.9665 0.9678 0.9704 0.9825
(0.3577) (0.3559) (0.3703) (0.3681) (0.4198)

Example 2: testing the difference between the means of two
delta-gamma distributions with equal sample sizes

Since January and February are in the winter season, they have similar precipitation

profiles containing both positive and zero observations, and so the data were found to be

consistent with a delta-gamma distribution. Therefore, the data from these months

were chosen to compare the difference between the means of two delta-gamma

distributions in this study. For n = m, we used monthly rainfall data from the Mae Taeng
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Figure 4 The densities of the rainfall data from Irrigation Office Station I, Chiang Mai city.
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Project station, Mae Taeng district, Chiang Mai province. There were 46 observations

for comparing rainfall data from the same station in January and February from 1976 to

2021. The densities of the rainfall data are shown in Fig. 6.
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Table 4 AIC results to check the distributions of the positive rainfall datasets.

Rainfall station Densities
Normal Lognormal Cauchy gamma
Irrigation Office I 214.35 202.35 218.39 197.47
Mae Taeng Project (January) 214.66 198.63 225.36 195.98
Mae Taeng Project (February) 144.76 140.28 153.50 135.93
Mae Hong Huk 216.84 205.73 223.86 204.57
Mae Kuang 701.53 629.15 691.32 612.84
]
3
g
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o
£
(©
(o)
T
0 20 40 60 80 100

Theoretical quantiles

Figure 5 Q-Q plots for distribution fitting of the positive rainfall data from Irrigation Office Station
Full-size K&l DOT: 10.7717/peer;j.13465/fig-5

I, Chiang Mai city.

Table 5 The 95% confidence intervals for the mean for the rainfall dataset from Irrigation Office

Station I, Chiang Mai city.

Methods Confidence intervals for 7 Length of intervals
Lower bound Upper bound
Bayesian: The Jeffrey’s rule (Credible) 9.515 18.583 9.068
Bayesian: The Jeffrey’s rule (HPD) 9.295 18.229 8.934
Bayesian: The uniform (Credible) 10.185 21.117 10.932
Bayesian: The uniform (HPD) 9.469 20.059 10.590
Fiducial quantities (FQ) 7.248 19.671 12.423
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Figure 6 The densities of the rainfall data from Mae Taeng Project station, Mae Taeng district, Chiang Mai province, for (A) January and (B)
Full-size K&l DOT: 10.7717/peerj.13465/fig-6

February from 1976 to 2021.
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Figure 7 Q-Q plots for distribution fitting of the positive rainfall data from the Mae Taeng Project station, Mae Taeng district, Chiang Mai
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Table 6 95% confidence intervals for the difference between the means of the rainfall datasets from
the Mae Taeng Project station, Mae Taeng district, Chiang Mai province.

Methods Confidence intervals for y Length of intervals
Lower bound Upper bound

Bayesian: The Jeffrey’s rule (Credible) -5.709 7.533 13.242

Bayesian: The Jeffrey’s rule (HPD) -6.025 7.105 13.130

Bayesian: The uniform (Credible) -7.364 8.726 16.090

Bayesian: The uniform (HPD) -7.296 8.776 16.072

Fiducial quantities (FQ) -2.155 15.764 17.919

Next, we tested the distributions of the positive rainfall datasets from the Mae Taeng
Project station using AIC, the results of which are reported in Table 4. Q-Q plots of
positive rainfall data showing that they follow gamma distributions are exhibited in Fig. 7.

The summary statistics were computed for the rainfall in January dataset from the Mae
Taeng Project station as n = 46, ng, = 23, n(y, = 23, 6 = 0.50, & = 4.41, = 1.77, and
% = 1.25 and for the rainfall in February dataset as m = 46, mq) = 29, m(y, = 17, 0, = 0.63,
& = 4.96, ﬁz = 2.15, and 7, = 0.85. From the 95% confidence intervals for y (Table 6),
the expected length of the Bayesian HPD interval based on Jeffrey’s rule prior was shorter
than the other methods, which confirmed its suitability for constructing confidence
intervals for the difference between the means of delta-gamma distributions with equal
sample sizes.

Example 3: testing the difference between the means of two
delta-gamma distributions with unequal sample sizes

For n # m, we used monthly rainfall data from the Mae Hong Huk station, Doi Saket
district, Chiang Mai province (51 observations for January and March 2005-2021) and
the Mae Kuang station, Doi Saket district, Chiang Mai province (171 observations for
January and March 1965-2021) to compare the rainfall data from two stations in the same
district for the same months. The densities of the rainfall data are shown in Fig. 8.
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Figure 8 The densities of the rainfall data from the (A) Mae Hong Huk and (B) Mae Kuang station, Doi Saket district, Chiang Mai province.
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Figure 9 Q-Q plots for distribution fitting of the rainfall data from the (A) Mae Hong Huk and (B) Mae Kuang stations, Doi Saket district,
Chiang Mai province. Full-size Kal DOI: 10.7717/peerj.13465/fig-9

Table 7 95% confidence intervals for the difference between the means of the rainfall datasets from
the Mae Taeng Project station, Mae Taeng district, Chiang Mai province.

Methods Confidence intervals for y Length of intervals
Lower bound Upper bound

Bayesian: Jeffrey’s rule (Credible) -2.530 8.334 10.864

Bayesian: Jeffrey’s rule (HPD) -2.561 8.272 10.833

Bayesian: The uniform (Credible) -2.560 9.503 12.063

Bayesian: The uniform (HPD) -2.619 9.357 11.976

Fiducial quantities (FQ) -2.832 10.864 13.696

The results in Table 4 are from using AIC to test the suitability of distributions to fit the
positive rainfall datasets for the two stations, while the Q-Q plots of the positive rainfall
data in Fig. 9 show that they follow gamma distributions.

The summary statistics for the rainfall dataset were n = 51, n(g) = 28, n) = 23, 5=0.55,
& =9.01, ﬁ = 3.20, and 7 = 1.27 for the Mae Hong Huk station and m = 171, m) = 97,
mqy = 74, 32 =0.57, & = 3.91, ﬁz = 1.60, and 7, = 1.06 for the Mae Kuang station.

The 95% confidence intervals for y reported in Table 7 show that the length of the
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Bayesian HPD interval based on Jeffrey’s rule prior was shorter than the others, which
confirmed its appropriateness for constructing confidence intervals for the difference
between the means of delta-gamma distributions with unequal sample sizes.

DISCUSSION

We used Krishnmoorthy ¢ Wang’s (2016) approach for establishing confidence intervals
for the mean of a gamma distribution by using FQs in the case of the same distribution
with excess zeros. Furthermore, we extended Yosboonruang, Niwitpong & Niwitpong’s
(2019) approach for building confidence intervals for distributions containing some zero
observations by using Bayesian methods based on Jeftrey’s rule and uniform priors.

The results show that the Bayesian HPD interval with Jeftrey’s rule prior performed well in
terms of coverage probability and had the shortest expected lengths for estimating the
mean and the difference between the means of delta-gamma distributions with equal
sample sizes. For unequal sample sizes, the results of simulation for the difference between
the means of two delta-gamma distributions for n > m were similar to n < m. The proposed
strategy can be utilized to help mitigate droughts or floods caused by insufficient or
excessive rainfall, respectively. Similarly, the government could use our approach to
control the output from dams when there is insufficient or too much rain. However, a
limitation of the study is that we cannot apply our method to real-world data that does not
contain zero observations, such as often occurs in rainfall data observations during the
rainy season.

CONCLUSIONS

We constructed confidence intervals for the mean and difference between the means of
two delta-gamma distributions using FQs and Bayesian methods based on the Jeffrey’s rule
and uniform priors. The performances of the confidence intervals were evaluated in terms
of their coverage probabilities and expected lengths. The results of a simulation study show
that the coverage probabilities of the Bayesian HPD interval based on the Jeffrey’s rule
prior were greater than or close to the nominal confidence level of 0.95 in almost all cases
and its expected length was shorter than the other methods for both the mean and the
difference between the means of two delta-gamma distributions. When using rainfall
datasets to illustrate the efficacies of the proposed methods using real data, the Bayesian
HPD interval based on the Jeffrey’s rule prior performed better than the other methods in
terms of interval length, which is consistent with the simulation results. Therefore, the
Bayesian HPD interval based on the Jeffrey’s rule prior is recommended for constructing
confidence intervals for the mean and the difference between the means of two
delta-gamma distributions.
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