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A new gigantic carnivore (Carnivora, Amphicyonidae) from the
late middle Miocene of France
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Serravallian terrestrial vertebrate are very uncommon in the northern margin of the
Pyrenean Mountains. A mandible of a new large sized amphicyonid (ca. 200 kg) is here
described from the marine deposits of Sallepisse (12.8-12.0 Mya). Despite that this new
taxon is close in size to some European amphicyonids from the Miocene (e.g., Magericyon,
Agnotherium, and Tomocyon), the unique morphology of its p4, unknown in this clade,
allows the erection of the new genus Tartarocyon cazanavei nov. gen. & sp. This taxon
may be derived from a Cynelos-type amphicyonine. The description of this new taxon
highlights the polyphased ecological and diversity erosion of the Amphicyonidae in
response to well-known Miocene events.
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18 Abstract

19 Serravallian terrestrial vertebrate are very uncommon in the northern margin of the 

20 Pyrenean Mountains. A mandible of a new large sized amphicyonid (ca. 200 kg) is here 

21 described from the marine deposits of Sallepisse (12.8-12.0 Mya). Despite that this new 

22 taxon is close in size to some European amphicyonids from the Miocene (e.g., 

23 Magericyon, Agnotherium, and Tomocyon), the unique morphology of its p4, unknown 

24 in this clade, allows the erection of the new genus Tartarocyon cazanavei nov. gen. & 

25 sp. This taxon may be derived from a Cynelos-type amphicyonine . The description of 
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26 this new taxon highlights the polyphased ecological and diversity erosion of the 

27 Amphicyonidae in response to well-known Miocene events.

28   

29 Key words. Miocene, Europe, Carnivora, Amphicyonidae, Ecology.

30

31 Introduction

32

33 The middle Miocene (15.97-11.63 Ma) is a period of great interest concerning climate 

34 change and faunal dispersal in Eurasia and Africa (Rögl, 1999; Hilgen, 2012). The 

35 Langhian (ca. 15.97-13.65 Mya) encompasses the Middle Miocene Climatic Optimum, a 

36 global increase in temperature of ca. 5°C, while during the Serravallian, cooler 

37 temperatures occurred (Hilgen, 2012). These events led to important environmental 

38 changes and faunal renewals and exchanges (Costeur, 2005). Despite the very 

39 abundant invertebrate fossil record, little is currently known about the faunal 

40 connections between the northern and southern part of the Pyrenees Mountain range 

41 during the middle Miocene due to a lack of continental vertebrate remains. Indeed, the 

42 Southwestern part of France was flooded by the sea several times during the early and 

43 middle Miocene (Cahuzac et al., 1992) and the continuing uplift of the Pyrenees formed 

44 a natural barrier between the Iberian Peninsula and the rest of Europe. 

45 The last transgression in the Aquitaine occurred during the Serravallian (middle 

46 Miocene, ca. 13.82-11.63 Mya). This sea deposited in the Orthez area (Southwestern 

47 France) a famous and abundant marine fauna found in shelly sandy deposits named 

48 “Faluns bleus” (Delbos, 1848), also known as Blue Faluns of Orthez (Lesport, Cluzaud 

49 & Verhecken, 2015). This formation attracted scientists early in paleontological history. 
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50 In 1833, the naturalist Dufour made an excursion in this area (Dufour, 1836) and gave 

51 indications to his palaeontologist friend Grateloup who soon after published new fossil 

52 gastropod species (Grateloup, 1835; 1845-1847). Since then, numerous authors have 

53 contributed to the knowledge of the malacofauna from the Orthez area, including in 

54 Sallespisse (see Lesport, Cluzaud & Verhecken, 2015 for an extensive literature). 

55 These bioclastic accumulations (thanatocenoses) may represent a nearshore 

56 environment in a subtropical to tropical climate. In 1993, JFL and Philippe Renard found 

57 a mandible of a very large carnivoran in a transgressive microconglomerate layer from 

58 the Crousquillière locality in Sallespisse. It was, at that time, the only terrestrial remain 

59 among the entire fauna in this layer. This specimen belongs to an Amphicyonidae 

60 (Carnivora, Caniformia). 

61 The Amphicyonidae, which are colloquially referred to as "bear-dogs", represent one 

62 of the most characteristic groups of carnivorans in the European faunas (Solé et al., 

63 2018). They first appeared during the Eocene (Priabonian, MP18, ca. 37-36 Ma; de 

64 Bonis, 1978; Sole et al. 2018). Nevertheless, the Miocene is particularly interesting for 

65 studying the evolution of this family. These carnivorous mammals included numerous 

66 species during the early and middle Miocene in Europe (Viranta, 1996), but went extinct 

67 before the end of the Miocene, the last European amphicyonids being known from the 

68 late Tortonian (Amphicyon pannonicus; Kretzoi, 1985; Viranta, 1996). Miocene 

69 amphicyonids are characterized by the presence of a pronounced, trenchant dentition 

70 (Morlo et al., 2020; Morales et al., 2021). 

71 Three subfamilies of Amphicyonidae are recognized in the Miocene of Europe: the 

72 Haplocyoninae, the Thaumastocyoninae, and the Amphicyoninae, which are 
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73 supposedly paraphyletic (Morales et al., 2021). The typical haplocyonines (Haplocyon, 

74 Haplocyonoides, and Haplocyonopsis) are unknown in Europe after MN3 (Peigné & 

75 Heizmann, 2003; Morlo et al., 2020) – although they might have survived until the end 

76 of the Serravallian in Asia (Jiangzuo et al., 2021). Based on phylogenetic analysis, 

77 Jiangzuo et al. (2021), proposed to include in the Haplocyoninae the genera Sarcocyon, 

78 Gobicyon, and Aktaucyon. Among these genera, only Gobicyon is known from Europe 

79 (G. serbiae in MN6; Pavlovic & Thenius, 1959; Ginsburg, 1999; Jiangzuo et al., 2018). 

80 The Thaumastocyoninae groups the genera Thaumastocyon, Ysengrinia, Tomocyon, 

81 Crassidia, Agnotherium, Ammitocyon, and possibly Amphicyonopsis (Morales et al., 

82 2019; 2021a,b; Morlo et al., 2020). The Amphicyoninae as defined by Peigné et al. 

83 (2008) is now considered to probably be paraphyletic, forming a grade and including 

84 several lineages more basal than the thaumastocyonines or included in this subfamily 

85 (Morales et al., 2019; 2021a,b). Whatsoever, Morales et al. (2021b) created two new 

86 tribes (Pseudarctini and Magericyonini) to clarify systematics of Miocene 

87 amphicyonines. Amphicyonini groups the genera Amphicyon, Cynelos, Euroamphicyon, 

88 Heizmannocyon, Megamphicyon, and Paludocyon. Pseudarctini groups the genera 

89 Ictiocyon, Dehmicyon, and Pseudarctos. Magericyonini comprises the hypercarnivorous 

90 genus Magericyon and with some doubt Pseudocyon.

91 European Miocene amphicyonids were also ecologically diverse: taxa ranged in body 

92 mass from 9 kg to 320 kg and displayed typical mesocarnivorous, omnivorous, bone-

93 crushing, and hypercarnivorous diets (Viranta, 1996; Ginsburg, 1999). They started to 

94 decline from MN7/8 with only a few taxa recorded during MN9-MN12 (Viranta, 1996). 

95 The amphicyonids may have suffered from the Vallesian Crisis, with only rare and 
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96 specialized taxa known in the late Vallesian and early Turolian in some parts of Central 

97 Europe (Agustí, Cabrera & Garcés, 2013; Viranta, 1996). Therefore, the description of 

98 this new Amphicyonidae from Serravallian of Southwestern Europe is crucial in order to 

99 better understand the diversity and geographic distribution of the last amphicyonids and 

100 their abrupt decline in Europe. 

101

102

103 Geological settings and location

104

105 Location and paleontological content. During the Serravallian, the sea expanded 

106 into the gulf of Chalosse (Southwestern France), which was delimited by the “Diapir de 

107 Dax”, the “Ride de Tercis”, and the “Dôme de Clermont”, and the anticline of Louer, and 

108 penetrated further south, constituting the Gulf of Orthez/Salies-de-Béarn. (Figure 1). 

109 The Blue Faluns in the area of Orthez are found in many places, mainly in the South 

110 part of Sallespisse, at an altitude comprised of 120 and 140 meters (Le Paren, Houssé, 

111 Pouchan, Labarthe, Carré; see Karnay, 1997). All these localities are in line with a 

112 southwest/northeast orientation. The proximity and a global similarity in the taxonomic 

113 composition of the fauna and the sedimentological content allowed previous authors to 

114 consider all these localities as synchronous and they were grouped under the locality 

115 name of Sallespisse (Daguin, 1948). Nevertheless, very small differences in proportions 

116 within the different mollusc communities are observed, indicating small local 

117 environmental differences (Degrange-Touzin, 1895). The most common gastropod 

118 families are the Naticidae, Epitoniidae, Ocenebrinae, Nassariidae, Cancellariidae, 
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119 Conidae, Turridae, and Acteonidae, which for the most part are predators, scavengers, 

120 or commensals. Among many species of bivalves, the most common genera are 

121 Acanthocardia, Megacardita, Anadara, Pecten, and Clausinella. These bivalves and the 

122 profusion of a species of scaphopod collected in a soft bioclastic sand matrix currently 

123 live on a sandy-muddy bottom of the SFBC type (“[Sables Fins Bien Calibrés” = fine 

124 sands well calibrated, Peres & Picard, 1964). The current SFBC biocenosis, which 

125 occupies large areas along the coasts and bottom of the Mediterranean gulf, are 

126 remarkable for the absence of algae and marine phanerogams, which seems to agree 

127 with the deposits at the Carré site. This is confirmed by the abundant associated marine 

128 life (e. g. Nolf & Steurbaut, 1979; Chaix & Cahuzac, 2005). However, some brackish 

129 and freshwater species (e.g. Theoxodus) may indicate sediments of continental origin.

130 The locality of Crousquillière (Figure 1), misspelled in Lesport, Cluzaud & Verhecken, 

131 2015 as La Croustillère, is located on the Carré farm property (also known as Carrey) 

132 owned by the Cazanave family in Sallespisse. The fossiliferous Blue Faluns, grey-blue 

133 sands may be found along a small stream that flows into a brook called Le Moussu, 

134 south to the Carré farm (coordinates 43.512705; -0.717866). This locality was poorly 

135 exploited for its fossiliferous contains before the 1990s. From 1993, J.-F. Lesport and P. 

136 Renard systematically excavated numerous fossils from these layers (crustaceans, 

137 bryozoans, echinoderms, foraminifers, scleratinians, fishes, and more than 200 species 

138 of molluscs; Lesport, Cluzaud & Verhecken, 2015). A new excavation campaign during 

139 the summer of 2021 completed the malacofauna but unfortunately did not bring new 

140 bone elements from carnivorous mammals.

141
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142 Sedimentological succession (Figure 2). The succession is relatively similar to the 

143 one observed in the other Blue Faluns outcrop from Sallespisse. The studied outcrop 

144 measures 3.5m. It is composed from base to top of:

145 - Molasse deposits observed represent more than 10 meters all along the stream. 

146 They are made of continental/lacustrine, whitish to greyish marly limestone with 

147 nodules. These sediments are apparently azoic. Nevertheless, the broad sedimentation 

148 of this molassic Formation may be dated between the middle Eocene and the 

149 Burdigalian in this area (Karnay, 1997). Being at the very end of this sequence may 

150 indicate an age between the late Oligocene and the early Miocene. The top of this 

151 formation is heterogeneous, incised by shallow depressions forming small bowl (ca. 1 

152 meter in depth).

153 - Blue Faluns of Orthez (1 to 2 meters) deposits with a variation of colour and 

154 sedimentation from base to top. The basal transition between the molasse deposits and 

155 the falun deposits is marked by broken molluscs and black pebbles that may be pierced 

156 by lithophagous bivalves, characteristic of a transgressive event. The studied mandible 

157 was found in this layer. New remains (an isolated molar and an astragalus) of a 

158 ruminant and cetaceans coming from this layer are currently under study. The basal 

159 basins are filled with blue to black clayey sand containing a diversified fauna of large 

160 molluscs (e.g. Pelecyora, Procardium, Megacardita, Hexaplex, Conus). This level is 

161 sealed with a few centimetres of fine blue to black sand containing rare fossils. Then, 

162 the grey-blue falun has a thickness of ca 1 meter, containing many well-preserved 

163 mollusks. The Faluns deposits end with a yellow to orange sandstone characteristic to 
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164 oxidating conditions. This Formation clearly corresponds to the Faluns de Sallespisse 

165 (Karnay, 1997). The age of these deposits is discussed below.

166 - A multicolored clay layer of 20 cm is found above the Faluns deposits. The top of 

167 the layer ends with fine ferruginous sandstone (2 cm), also called garluche. Lignified 

168 wood remains have been found during excavation in this section.

169 - Coarse yellowish clay sand (80 cm) ending with a ferruginous conglomerate (ca. 10 

170 cm) that may correspond to Pliocene deposits. Daguin (1948), without differentiating the 

171 different terrestrial levels, calls this formation "Sables Fauves".

172

173 Age of the la Crousquillière (in Sallespisse) locality. The age of the Falun deposits 

174 in Orthez area have been interpreted many times variously as from the late Eocene 

175 (d’Orbigny, 1852) to the late Miocene (Delbos, 1848; Raulin, 1852), including an early 

176 Miocene age (Grateloup, 1845-1847). Nevertheless, the very diverse mollusc fauna 

177 permits constraining the age attribution of these deposits to the middle Miocene, 

178 characterizing the lithofacies Vindobonian (Poignant, 1967); the Sallomacian, a local 

179 name for middle Miocene marine deposits (Fallot, 1893; Poignant, 1967; Nolf & 

180 Steurbaut, 1979); or the sedimentological facies “Helvetian”, which encompasses the 

181 Langhian and Serravallian (Benoist, 1884; Degrange-Touzin, 1895; Cossman & Peyrot, 

182 1909-1914; 1909-1924; 1917-1924; Peyrot 1925-1935; 1927-1932). Magné, Gourinard & 

183 Wallez (1987), Cahuzac & Poignant (1993), and Karnay (1997) proposed a Langhian age 

184 for these deposits. However, recent studies based on diverse marine fauna (benthic 

185 foraminifers, ostracods, pteropods) and strontium isotopic analyses have led to a 

186 revaluation of the age of the Faluns deposits from Sallespisse and Orthez to the 
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187 Serravallian (Cahuzac, Janin & Steurbaut, 1995; Cahuzac & Poignant, 1996; Ducasse & 

188 Cahuzac, 1997; Cahuzac & Janssen, 2010). These sediments are now attributed to the 

189 marine biozones Martini NN6/7, Blow N11/13, Janssen & King NSB19, with an isotopic 

190 age between 12.8 and 12.0 Mya. This corresponds to the European Land Mammal Ages 

191 MN7/8 (Duranthon & Cahuzac, 1997).

192

193

194 Materials & Methods

195

196 Specimen, nomenclature and measurements. The specimen has been donated by 

197 JFL to the Natural History Museum of Bordeaux (France): it is now registered under the 

198 number MHNBx 2020.20.1. A cast of the specimen is available at the Natural History 

199 Museum Basel. Moreover, MHNBx 2020.20.1 has been surface scanned. The 3D model 

200 of the specimen is downloadable from the open access article Mennecart et al. 

201 (accepted). 

202 The electronic version of this article in Portable Document Format (PDF) will 

203 represent a published work according to the International Commission on Zoological 

204 Nomenclature (ICZN), and hence the new names contained in the electronic version are 

205 effectively published under that Code from the electronic edition alone. This published 

206 work and the nomenclatural acts it contains have been registered in ZooBank, the 

207 online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) 

208 can be resolved and the associated information viewed through any standard web 

209 browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this 

210 publication is: urn:lsid:zoobank.org:pub:9FE7C271-9402-4062-B9B5-2087C8ACDC04. 
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211 The online version of this work is archived and available from the following digital 

212 repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

213 The dental nomenclature of premolars follows Ginsburg (1999). The measurements, 

214 taken by calipers, have an accuracy of 0.1 mm.

215 Body Mass. We used the equation of Van Valkenburgh (1990) for all Carnivora 

216 irrespective of familiar assignment in order to estimate the body mass of some 

217 amphicyonids including Tartarocyon cazanavei nov. gen. & sp.: Log10(BM) = [2,97 x 

218 Log10(Lm1)] – 2,27; with BM: the estimated body mass in kg; Lm1: the length of the first 

219 lower molar in millimeters.

220 Biochronology. The biostratigraphic framework is based on geological time scales 

221 for the Miocene provided by Hilgen et al. (2012).

222

223 Systematic Palaeontology

224

225 Order CARNIVORA Bowdich, 1821

226 Suborder CANIFORMIA Kretzoi, 1943

227 Family Amphicyonidae Trouessart, 1885

228 Tribe Amphicyonini Trouessart, 1885

229 Genus Tartarocyon nov. gen.

230 ZooBank LSID. urn:lsid:zoobank.org:act:70359DC0-49E9-4E87-BC90-

231 B02D5CFAFBB1

232 Type species. Tartarocyon cazanavei nov. gen. & sp.; monotypic, see below.
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233 Etymology. Tartaro is the name of a man-eater giant living in the Southwestern 

234 French Pyrenees, including the Bearn where the fossil has first been described. –cyon 

235 is the Greek for dog.

236 Diagnosis. As for the type and only species.

237

238 Species Tartarocyon cazanavei nov. gen. & sp.

239 Figure 3

240 ZooBank LSID. urn:lsid:zoobank.org:act:C7BE021C-6434-4715-AB89-

241 63E9A64E6178

242 Etymology. Dedicated to Mr Alain Cazanave, owner of the locality, who helped with 

243 the excavation during many years.

244 Diagnosis. Large size Amphicyoninae possessing a complete dental formula. The 

245 taxon is characterized by the following features: long diastemata between the 

246 premolars, low p2 and p3, absent anterior accessory cuspid on p4, large and 

247 individualized distal accessory cuspid on p4, and unreduced m2 and m3. The taxon 

248 differs from all the European amphicyonids from the Miocene by the individualization of 

249 the distal accessory cuspid from the main cuspid on p4 and the extreme reduction of the 

250 distal shelf and cingulid.

251 Specimen. MHNBx 2020.20.1, right mandible bearing p2-p4, alveoli of i1-i3, c, p1, 

252 m1-m3.

253 Measurements. Tables 1 & 2.

254 Description. The mandible is mesiodistally elongated. Large diastemata are present 

255 between the canine, p1, p2, p3, and p4; the longest diastema is between the p2 and p3. 
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256 The symphysis is oval and nearly horizontally oriented; it is high and extends posteriorly 

257 up to the distal root of p2. A mental foramen lies beneath the p1-p2 diastema; it is in a 

258 high position on the mandibular ramus. The ramus of the mandible is shallower 

259 anteriorly than posteriorly, the highest portion being below the m3. The ventral margin of 

260 the ramus below the toothrow is relatively straight, but beneath the anterior extremity of 

261 the large, deep masseteric fossa it becomes convex. An incisura vasorum is present on 

262 the ventral margin of the mandible anterior to the angular process. The angular process 

263 is robust but very short; it projects medially. The mandibular condyle is at the level of 

264 the tooth row. It is cylindrical and mediolaterally elongate. The coronoid process is tall 

265 and distinctly oriented backwards; it arises at a 50° angle relative to the horizontal 

266 ramus. The posterior margin of the coronoid is vertical and straight, while the cranial 

267 margin is rounded. The masseteric fossa, on its labial side, is deep and wide. The 

268 mandibular foramen is relatively circular, standing at the level of the incisura vasorum, 

269 at mid-height between the base of the mandible and the level formed by the toothrow. 

270 The mandibular foramen opens midway between the m3 and the mandibular condyle. 

271 The lower incisors are not preserved, but the alveoli of the i1, i2, and i3 are visible. 

272 Considering the size of the tooth sockets, the i3 seems to have been the largest and the 

273 i1 the smallest. The canine is also not preserved. It was ovoid in section and of large 

274 size. Its root extends in the mandible to between p2 and p3. The p1 is not preserved; a 

275 single alveolus is visible but it appears that two, mainly fused, roots were present. The 

276 other teeth are two-rooted, except the m3, which is single-rooted. The p2 and p3 are 

277 very low in height. There is a prominent ridge on the mesial and distal margins of the 

278 main cuspid of these teeth. The main cuspid is low and located mesially, which results 
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279 in an asymmetric morphology in lateral view. Mesial to the main cuspid, the lingual 

280 cingulid is thicker, but no individualized anterior cuspid is present. On p3 and p4, the 

281 distal shelf forms the widest part of the crown; it is less clear on p2. There is a short 

282 distal cingulid, but no cuspid is present. The p4 is distinctly longer and mediolaterally 

283 wider than the p2 and p3. However, the main cuspid remains low. The tooth is less 

284 asymmetric, the apex of the main cuspid being more mesiodistally centered. No real 

285 anterior accessory cuspid is present mesial to the main cuspid. A distal accessory 

286 cuspid is present: it is mostly individualized from the main cuspid. The distal accessory 

287 cuspid is mediolaterally centered. The distal cingulid is thin on the labial and lingual 

288 parts and is almost completely absent at the distal part; it does not form a distal shelf. 

289 The molars are not present, but the m1 was the largest tooth of the tooth-row. The m2 is 

290 larger than the m3. 

291 Comparison. The premolars of the typical haplocyonines (Haplocyon, 

292 Haplocyonoides, Haplocyonopsis; de Bonis, 1966; Peigné & Heizmann, 2003; Morlo et 

293 al., 2020) differ from those of MHNBx 2020.20.1 in being tall (i.e., tall main cuspid) and 

294 short. Like the typical haplocyonines, the premolars of Gobicyon serbiae (MN6) differ 

295 from those of MHNBx 2020.20.1 in being tall and short. Moreover, the p2 and p3 of G. 

296 serbiae possesses an individualized and large distal accessory cuspid. Additionally, 

297 typical haplocyonines and Gobicyon have a short toothrow lacking diastemata. These 

298 amphicyonids are thus relatively short-snouted compared to the taxon from Sallespisse.

299 All the thaumastocyonines differ from MHNBx 2020.20.1 in having relatively shorter 

300 diastemata between the premolars. The p2 and p3 preserved on MHNBx 2020.20.1 are 

301 similar to those of the oldest thaumastocyonines (Ysengrinia, Crassidia) in being low 
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302 (i.e., their main cuspid is noticeably lower than the p4 main cuspid). The p4 of MHNBx 

303 2020.20.1 also shares with the thaumastocyonines the presence of a strong distal 

304 accessory cuspid (Figure 4); the youngest thaumastocyonines (e.g., Agnotherium, 

305 Ammitocyon) shares with the p4 of MHNBx 2020.20.1 the reduced distal shelf and 

306 cingulid (Figure 4). However, the p4 of the thaumastocyonines differs from that of 

307 MHNBx 2020.20.1 in having a leaning backward p4 main cuspid (Figure 4). The 

308 youngest thaumastocyonines – Ammitocyon and Agnotherium – moreover, differ from 

309 MHNBx 2020.20.1 in having no p1, p2, and p3 (Morlo et al., 2020; Morales et al., 2021). 

310 Compared to the fossil from Sallespisse, the thaumastocyonines have a reduced m3 

311 relative to m1; the youngest thaumastocyonines (Thaumastocyon. Ammitocyon, 

312 Agnotherium) have even reduced m2 relative to m1 as well lacking m3 (Morlo et al., 

313 2020; Morales et al., 2021). As a consequence, MHNBx 2020.20.1 differs in having 

314 more developed premolars, a mesially elongated snout (i.e., diastemata between the 

315 premolars), and less reduced postcarnassial molars. 

316 Three amphicyonines are regarded to be separate from those recorded in the 

317 Miocene: Ictiocyon, Dehmicyon, and Pseudarctos (Ginsburg, 1992; Morales et al., 

318 2021b). They are all included among Pseudarctini (Morales et al., 2021b). These small 

319 amphicyonids are short-snouted (i.e., short diastemata between the premolars) and the 

320 p2 and p3 are distinctly taller than on MHNBx 2020.20.1. Moreover, the distal accessory 

321 cuspid on p4 is reduced to lost in Dehmicyon, Ictiocyon, and Pseudarctos (Ginsburg, 

322 1992; Morales et al., 2032b) (Figure 4).

323 The hypercarnivorous Magericyon (Peigné et al., 2008), which belongs to the tribe 

324 Magericyonini (Morales et al., 2021b) differs from MHNBx 2020.20.1 in the absence of 
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325 p2, in having a single-rooted p3, a p4 relatively shorter compared to the m1 (Table 3) 

326 and in the absence of a distal cuspid on p4 (Figure 4). The genus Pseudocyon is 

327 probably close to Magericyon according to Morales et al. (2021b). MHNBx 2020.20.1 is 

328 similar to the species of Pseudocyon in the presence of very long diastemata between 

329 the premolars and of low p2, p3. However, the p4 is relatively mesiodistally shorter 

330 (compared to the m1) in the Pseudocyon species than in MHNBx 2020.20.1; moreover, 

331 the distal part of the p4 of Pseudocyon is widened compared to that of the p4 of MHNBx 

332 2020.20.1 (Figure 4). 

333 The Miocene Amphicyonini Cynelos, Amphicyon, Megamphicyon, Euroamphicyon, 

334 Paludocyon, and Heizmannocyon share with MHNBx 2020.20.1 the presence of very 

335 long diastemata between the premolars, the presence of low p2, p3, and p4, and the 

336 unreduced m3 (the m3 indeed tends to reduce and is even absent in hypercarnivorous 

337 amphicyonids; Table 3) (Kuss, 1965; Peigné & Heizmann, 2003; Viranta, 1996). Despite 

338 sharing a characteristically slender ramus of the mandible, the p4 of MHNBx 2020.20.1 

339 differs from that of the Cynelos species by the absence of an anterior accessory cuspid 

340 (even if this structure is not individualized in Cynelos) and a much more reduced distal 

341 shelf (Figure 4). The case of Cynelos is interesting because its p4 does not display a 

342 widening of its distal part; in this regard, its p4 is similar to that of MHNBx 2020.20.1 in 

343 occlusal view (Figure 4). MHNBx 2020.20.1 shares with the species of Paludocyon, 

344 Amphicyon, Heizmannocyon, Megamphicyon, and Pseudocyon the reduction of the 

345 anterior accessory cuspid compared to Cynelos. However, the distal shelf of the p4 is 

346 more developed in these amphicyonines than in MHNBx 2020.20.1 and none of the 

347 above-mentioned species has a p4 that displays a distal accessory cuspid separated 
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348 from the main cuspid as it is on the p4 of MHNBx 2020.20.1. Moreover, these 

349 amphicyonine genera (see Megamphicyon carnutense and Paludocyon bohemicus in 

350 Morales et al., 2021b) possess a p4 that is characterized by a widening of the distal 

351 part. Additionally, the mandible of Amphicyon and Megamphicyon appears more 

352 massive than that of MHNBx 2020.20.1 (Kuss, 1965; Peigné & Heizmann, 2003; 

353 Viranta, 1996, Figure 4). 

354 A canine has been described from the locality of Rimbez (France, MN5), a locality 

355 that is located 100 km to the north-west of Sallespisse (Ginsburg, 1967); this locality is 

356 the closest one that has provided a Miocene amphicyonid specimen. This canine has 

357 been referred to Pseudocyon sansaniensis, an Amphicyonidae of similar size to MHNBx 

358 2020.20.1. It is at the moment impossible to compare this canine with MHNBx 

359 2020.20.1, but one can note that this tooth is close in size to the alveolus of the canine 

360 of MHNBx 2020.20.1. One can imagine that the taxon from Rimbez could also be 

361 closely related to the taxon from Sallespisse. 

362 To conclude, the fossil from Sallespisse shows striking similarities with Cynelos (i.e., 

363 presence of long diastemata between the premolars, unreduced premolars and m3, low 

364 p2 and p3, no widening of the distal part of the p4). The general morphology of the p4 

365 remain relatively stable within the Amphicyoninae, until now, having a distal accessory 

366 cuspid more or less individualized and a distal shelf present (Figure 4).  MHNBx 

367 2020.20.1 present a unique morphology among the Amphicyoninae in having an 

368 individualized distal accessory cuspid on p4 and a distal shelf extremely reduced, 

369 extending the morphology range of the p4 in this subfamily (Figure 4). Therefore, we 
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370 erect the new genus and species Tartarocyon cazanavei nov. gen. & sp. for MHNBx 

371 2020.20.1.

372

373 Discussion

374

375 Relationships of Tartarocyon cazanavei nov. gen. & sp. Because of the lack of 

376 information on the morphology of the molars, it is hard to discuss the relationships of 

377 Tartarocyon cazanavei nov. gen. & sp. within the amphicyonids; the molars actually 

378 provide numerous diagnostic features (see for instance the diagnoses in Kuss, 1965; 

379 Viranta, 1996; Heizmann & Kordikova, 2000; Peigné & Heizmann, 2003; Peigné et al., 

380 2008; Morales et al., 2019; 2021). Viranta (1996), Peigné et al. (2008), Morales et al. 

381 (2019, 2021a,b) tackled the relationships among European amphicyonids. However, the 

382 aims as well as the characters and taxa lists used for the phylogenetic analyses are 

383 different in each analysis. Phylogenetic analysis of Tartarocyon cazanavei nov. gen. & 

384 sp. did not provide statistically significant results, adding noise to the topology forming 

385 politomies, because the dentition of MHNBx 2020.20.1 is only represented by the p2, 

386 p3, and p4, including autapomorphic characters.

387 Nevertheless, as already highlighted, Tartarocyon cazanavei nov. gen. & sp. clearly 

388 differs from the Haplocyoninae, which possess tall and short premolars without 

389 diastemata. Tartarocyon cazanavei nov. gen. & sp. also does not belong to the 

390 Thaumastocyoninae, this family having reduced premolars and postcarnassial molars 

391 (Table 3). The youngest thaumastocyonine species, from the middle and late Miocene, 

392 are further characterized by the absence of m3 and of p1, p2, and p3, and a leaning 
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393 backward main cuspid on p4 (Figure 4, Table 3) (Morales et al., 2019; 2021; Morlo et 

394 al., 2020). A reduction of premolar size is also observed in amphicyonines; this is a 

395 common trend in European amphicyonids. However, as seen on Table 3 the premolar 

396 and molar ratios show that the premolars (except the p4) and postcarnassial molars 

397 tend to reduce more among the thaumastocyonines than in the amphicyonines 

398 amphicyonini Megamphicyon, Cynelos and Amphicyon (Table 3). The values estimated 

399 for Tartarocyon nov. gen. are similar to those of Cynelos, Megamphicyon, and 

400 Amphicyon (Table 3). Moreover, diastemata are still present between the premolars in 

401 these amphicyonines as in Tartarocyon cazanavei nov. gen. & sp. Interestingly, the ratio 

402 between the p4 and the m1 is greater in the thaumastocyonines (except for Ysengrinia 

403 depereti, Table 3) than in Megamphicyon, Amphicyon, and Tartarocyon nov. gen. 

404 The case of Magericyon is puzzling. This amphicyonid differs from the 

405 contemporaneous thaumastocyonines by the presence of an m3 but also by the 

406 presence of a reduced p4 compared to the m1 (Table 3) (Peigné et al., 2008; Morales et 

407 al., 2019; Morlo et al., 2020). In contrast, its shoulder anatomy is relatively primitive and 

408 generalized, being similar to that of Cynelos lemanensis. Its shoulder is intermediate 

409 between that of the ursid-like amphicyonines (Amphicyon major) and that of the 

410 markedly cursorial North American amphicyonids (Temnocyoninae and Daphoeninae) 

411 (Siliceo et al., 2015). Morales et al. (2021b) highlighted the originality of Magericyon in 

412 including this genus among the tribe Magericyonini. They also included, but with some 

413 doubt, the genus Pseudocyon in this tribe. One can note that this amphicyonine also 

414 has a reduced p4 compared to the m1 (Table 3).
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415 It appears that Tartarocyon cazanavei nov. gen. & sp. is morphologically similar to 

416 Cynelos, Amphicyon, and Megamphicyon in having premolars and postcarnassial 

417 molars that are only slightly reduced in length. However, one can note that the anterior 

418 accessory cuspid area and the distal shelf are more reduced in Tartarocyon cazanavei 

419 nov. gen. & sp. compared to Cynelos. Tartarocyon cazanavei nov. gen. & sp. also 

420 differs from Cynelos by its reduced p2, p3, and p4 (Table 3). This feature is shared with 

421 Amphicyon, Paludocyon, and Megamphicyon. However, Tartarocyon cazanavei nov. 

422 gen. & sp. recalls Cynelos in having a p4 that does not show a widening of its distal 

423 part; at the opposite, Amphicyon, Paludocyon, and Megamphicyon have p4 that is 

424 characterized by a widening of the distal part. Despite these similarities, Tartarocyon 

425 cazanavei nov. gen. & sp. differs from Cynelos and Amphicyon in the large and 

426 individualised distal cuspid that is positioned distally on the p4; moreover, the distal 

427 shelf and distal cingulid is more reduced in Tartarocyon cazanavei nov. gen. & sp. than 

428 in Cynelos and Amphicyon. As a consequence, we think that Tartarocyon cazanavei 

429 nov. gen. & sp. is derived from a Cynelos-type amphicyonine. 

430 Cynelos and Amphicyon are Amphicyonini known from the early Miocene (Ginsburg, 

431 1999). Tartarocyon nov. gen. seems to be more derived than Cynelos but more basal 

432 than Amphicyon. Tartarocyon cazanavei nov. gen. & sp. followed a distinct evolutionary 

433 path from the other amphicyonids due to geographic isolation, as shown by its unusual 

434 p4 morphology.

435

436 Ecology of Tartarocyon cazanavei nov. gen. & sp. The estimated body mass 

437 (based on the alveoli of the m1 of MHNBx 2020.20.1) is 194.91 kg. Tartarocyon 
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438 cazanavei nov. gen. & sp. is distinctly larger than the species of Cynelos, which range 

439 from 13 to 86 kg (Viranta, 1996, Table 4). In being close to 200 kg, the estimated body 

440 mass of Tartarocyon cazanavei nov. gen. & sp. recalls those of Amphicyon major (212 

441 kg, male), A. pannonicus (198 kg), Magericyon castellanus (198 kg), Megamphicyon 

442 carnutense (182 kg), and Tomocyon grivense (190 kg) (Viranta, 1996, Table 4). 

443 Amphicyonids that are significantly larger than Tartarocyon cazanavei nov. gen. & sp. 

444 are few: Amphicyon giganteus (317 kg, male), A. gutmanni (246 kg), A. 

445 eppelsheimensis (225 kg), Magericyon castellanus (246 kg), and Amphicyonopsis serus 

446 (270 kg) (Viranta, 1996, Table 4). In this regard, the amphicyonid from Sallespisse is 

447 one of the largest amphicyonids ever recorded in Europe. 

448 Viranta (1996) recognized four categories of amphicyonids based on feeding 

449 ecology: omnivores, mesocarnivores, bone-crusher mesocarnivores, and 

450 hypercarnivores. The presence of the four premolars as well as the presence of large 

451 m2 and m3 (relative to the m1) indicate that Tartarocyon cazanavei nov. gen. & sp. was 

452 not a hypercarnivore. Indeed, hypercarnivorous amphicyonids such as Magericyon 

453 castellanus, Pseudocyon caucasicus, Thaumastocyon spp. and Agnotherium spp. are 

454 characterized by a reduction of the premolars and of the m1 and m2 together with the 

455 development of slicing carnassials (i.e., P4 and m1) (Viranta, 1996). The high mass of 

456 Tartarocyon cazanavei nov. gen. & sp. contrasts with those of the omnivorous 

457 amphicyonids Pseudarctos bavaricus and Ictiocyon socialis, which were the smallest 

458 amphicyonids in the Miocene of Europe together with the mesocarnivorous Dehmicyon 

459 schlosseri (Viranta, 1996; Morales et al., 2021). Moreover, the Pseudarctini P. 

460 bavaricus, D. schlosseri, and I. socialis are characterized by high-crowned teeth with 
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461 blunt cuspids and closely appressed premolars; these two features distinguish these 

462 small amphicyonids from Tartarocyon cazanavei nov. gen. & sp. Viranta (1996) 

463 regarded Cynelos spp. as a typical mesocarnivore. This amphicyonid is notably 

464 characterized by a primitive dentition (e.g., canine not especially robust, a premolar row 

465 quite crowded). Tartarocyon cazanavei nov. gen. & sp. clearly differs in having large 

466 diastemata between the premolars as well as a robust canine. Viranta (1996) 

467 considered Amphicyon major and A. giganteus as bone-crushing mesocarnivores. As 

468 noted by Viranta (1996, p.46), “There are no modern analogues for the dentitions of 

469 these species. They have well-developed molars and a sparsely distributed, complete 

470 set of premolars.” These features are also found in Tartarocyon cazanavei nov. gen. & 

471 sp. Moreover, the body mass of Tartarocyon cazanavei nov. gen. & sp. and the 

472 Amphicyon species are close (see above). Therefore, Tartarocyon cazanavei nov. gen. 

473 & sp. can be reconstructed as a predator with bone-crushing habits (Figure 5). 

474

475 The evolution of European amphicyonids during the Miocene. Viranta (1996) 

476 carried out a comprehensive study on the systematics, ecology, and evolution of the 

477 European amphicyonids from the Miocene. The present discussion represents an 

478 update of the remarkable work of Viranta (1996) and underlines several periods to focus 

479 on. 

480 Viranta (1996) did not consider the Haplocyoninae in her study. The inclusion of the 

481 Haplocyoninae, which were only present in the Miocene of Europe until MN3, reveals a 

482 similar specific diversity during the entire lower Miocene with 9 to 12 contemporaneous 

483 Amphicyonidae species in Europe (Table 5). The diversity seen in MN4 and MN5 is thus 
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484 due to a diversification of the remaining amphicyonids (Amphicyoninae and 

485 Thaumastocyoninae) with a maximum of 11 species as already evidenced by Viranta 

486 (1996). 

487 Moreover, contrary to Viranta (1996), the diversity of the Amphicyoninae and 

488 Thaumastocyoninae is already observed in MN3 (11 species; Figure 6; Table 5). For 

489 instance, the locality of Tuchořice (Czech Republic) yielded one thaumastocyonine 

490 (Morales et al., 2019) and three amphicyonines (two Amphicyonini and one 

491 Pseudarctini; Morales et al., 2021b). At the European level, the amphicyonids were 

492 clearly taxonomically and ecologically diverse in MN3 (Figure 6; Table 5), as illustrated 

493 by the presence of the small omnivore Ictiocyon, the mesocarnivores Cynelos and 

494 Dehmicyon, the hypercanivore Peignecyon, and the large bone-crusher mesocarnivores 

495 Pseudocyon, Amphicyon, Megamphicyon, and Janvierocyon. 

496 The diversification of the Amphicyoninae and Thaumastocyoninae must be 

497 questioned because it was concomitant with the disappearance of the Haplocyoninae 

498 (the last European haplocyonines are from MN3; Peigné & Heizmann, 2003). The MN3 

499 biozone hosts some of the most important climatic and faunal events including the 

500 Proboscidean Datum Events and Asiatic dispersals (e.g., Tassy, 1989; Van der Made, 

501 1999). From arid environments throughout Western Europe during the Agenian, a 

502 latitudinal gradient developed, with wet and closed environments in France and 

503 Germany during the Orleanian (Costeur, 2005; Costeur & Legendre, 2008). Due to 

504 these environmental restructuring and the competition from the newcomers, nearly 60% 

505 of the ungulate fauna was replaced during that time (Scherler et al., 2013). The 
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506 restructuring of the community and of the environment may have been fatal to the 

507 Haplocyoninae but favored the Amphicyoninae and Thaumastocyoninae.

508 The amphicyonids remained diverse during MN5 (9 species), MN6 (10 species), 

509 MN7/8 (7 species), and MN9 (8 species) (Table 5). The bone-crushing mesocarnivorous 

510 amphicyonids are taxonomically well-diversified in MN6 (5 species) and MN7/8 (4 

511 species including Tartarocyon nov. gen.). On the other hand, mesocarnivorous 

512 amphicyonids are unknown in Europe after MN6. Additionally, no amphicyonid between 

513 50 kg and 100 kg is known after MN5 (Figure 6). The disappearance of the 

514 mesocarnivorous amphicyonids and of amphicyonids of 50-100 kg is related to the 

515 disappearance of Cynelos from Europe (Figure 6; Table 5). One can, however, note the 

516 reappearance of the haplocyonines in MN6 (occurrence of Gobicyon serbiae; Ginsburg 

517 et al., 1999; Jiangzuo et al., 2018; 2021). This taxon probably dispersed from Asia into 

518 Europe because this genus appeared earlier in Asia (ca. 17 Ma; Jiangzuo et al., 2021) 

519 than in Europe. Interestingly, its mass is close to that of the amphicyonids known in 

520 MN6 and not to those of the Cynelos species recorded in MN5. Therefore, it did not 

521 probably fill the same ecological niche. Nevertheless, Gobicyon was present in Europe 

522 only for a short period and is only known from one locality (Pavlovic & Thenius, 1959; 

523 Ginsburg, 1999). A small reorganization of the amphicyonid fauna thus occurred 

524 between MN5 and MN6. This biotic event might be related to the Middle Miocene 

525 Climatic Transition (Steinthorsdottir et al., 2021), which results for instance in an 

526 increase in aridity in Spain (Menéndez et al., 2017). 

527 From MN6 to MN11, the largest amphicyonids were all specialized as either 

528 hypercarnivorous or bone-crushing mesocarnivorous predators – except the case of the 
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529 monospecific omnivorous Pseudarctos. However, the taxonomic diversity of the bone-

530 crushing mesocarnivores starts to decrease after MN5, as exemplified by the presence 

531 of only three taxa during MN9 (Figure 6; Table 5). In contrast, hypercarnivorous 

532 amphicyonids were still taxonomically diverse in MN9 with 4 species. Viranta (1996) 

533 estimated that the decline of the Amphicyonidae started in MN7/8 and considered that 

534 MN9 marked the probable disappearance of amphicyonids in Western Europe. 

535 However, the recent descriptions of the amphicyonids Magerocyon anceps 

536 (Magericyonini; Peigné et al., 2008), Ammitocyon kainos (Thaumastocyoninae; Morales 

537 et al., 2021a) in MN9 and MN10 Spanish localities, and Tartarocyon nov. gen. have 

538 greatly changed our perception of the latest amphicyonid evolution (Figure 6; Table 5). 

539 Indeed, the amphicyonids, notably the Thaumastocyonines, were still diversified in 

540 MN7/8 (7 species) and MN9 (8 species) although less than in MN6.

541 The amphicyonid community changed considerably from MN9 to MN11 (Figure 6). 

542 The omnivorous amphicyonid Pseudarctos, which was also the smallest and only 

543 omnivorous amphicyonid at that time (and last representative of the Pseudarctini), 

544 disappeared from Europe (last record in MN9) (Figure 6; Table 5). As a consequence, 

545 the European amphicyonids are only represented by large to very large forms of at least 

546 100 kg body mass during MN10 and even 200 kg during MN11 (Figure 6). This 

547 modification of the amphicyonid fauna also resulted in the presence of only specialized 

548 amphicyonids: the latter were either hypercarnivores or bone-crushing mesocarnivores. 

549 Moreover, the number of hypercarnivorous amphicyonid species known during MN10 

550 and MN11 distinctly decreased in comparison to MN9 (Figure 6; Table 5). This 

551 modification of the amphicyonid fauna between MN 9 and MN10 could be related to the 
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552 Vallesian Crisis. This crisis coincided with the early/late Vallesian boundary (at 9.7 Ma) 

553 (Figure 6). At first recognized in Spain (Agustí and Moyà-Solà, 1990; Agustí, Cabrera & 

554 Garcès, 2013), the Vallesian Crisis is now described as the major extinction event in the 

555 history of the Western European mammalian faunas (Jaeger and Hartenberger, 1989) 

556 (but see Casanovas-Vilar et al., 2014 for a critical analysis). The Vallesian crisis was a 

557 time of major environmental change that led to a substantial turnover of mammals in 

558 Western Europe (Fortelius et al. 1996; Agustí, Cabrera & Garcès, 2013). The 

559 environmental change, notably characterized by an expansion of open habitats and 

560 retraction of forests, led to a decrease in the diversity of browsers. The opening of the 

561 environments led to the disappearance of small sized predators. 

562 Because Viranta (1996) extensively discussed the possible explanations for the 

563 decline of the amphicyonids (e.g., extinction of potential prey, competition), we will not 

564 develop these discussions herein. Agustí, Cabrera & Garcès (2013) noted that the 

565 amphicyonids were affected by this crisis in that only some poorly known amphicyonids 

566 persisted in the late Vallesian and early Turolian in some parts of Central Europe 

567 (Amphicyon gutmanni from Germany and Austria, and Amphicyon pannonicus from 

568 Hungary). Moreover, these amphicyonids were very large forms that display bone-

569 crushing mesocarnivorous dentition (Viranta, 1996; Figure 6). However, as mentioned 

570 above, the recent description of the hypercarnivorous amphicyonids Ammitocyon in a 

571 Spanish locality close to MN10 (Morales et al., 2021) and Magericyon from Spanish 

572 localities close to MN9 and MN10 (Peigné et al., 2008) indicate that amphicyonids were 

573 still present in Southwestern Europe at the end of the Vallesian. Therefore, despite a 

574 decrease in number of species, amphicyonids remained present across Europe and 
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575 display ecological diversity during MN10. As noted by Viranta (1996), only the largest 

576 amphicyonids were still present in Europe at the end of the Vallesian and beginning of 

577 the Turolian. No taxon that of a mass below 150 kg is known after MN9. As a 

578 consequence, it appears that the Vallesian crisis was, above all, critical for the small 

579 and omnivorous Pseudarctos due to the opening of the environment and the 

580 restructuring of the mammalian communities. Regarding the other amphicyonids (i.e., 

581 bone-crushing mesocarnivorous and hypercarnivorous), the Vallesian crisis seem to 

582 have had a profound effect (decrease in diversity) but was not fatal. However, because 

583 the decrease in taxonomic diversity is notable, the Vallesian crisis was not insignificant 

584 for the remaining hypercarnivorous amphicyonids. 

585

586

587 Conclusions

588

589 Tartarocyon cazanavei nov. gen. & sp. is a new large amphicyonid from the French 

590 locality Sallespisse (12.8-12.0 Ma, France). It differs morphologically from the 

591 Thaumastocyoninae and Haplocyoninae. It seems that this amphicyonid is a part of the 

592 radiation of a group of amphicyonines during the Miocene after MN3 (as exemplified by 

593 the genera Pseudocyon, Cynelos, Amphicyon, and Magericyon); it probably derived 

594 from a Cynelos-type amphicyonine.  

595 Tartarocyon nov. gen., moreover, illustrates the diversity of the amphicyonids in 

596 Europe: during MN7/8 amphicyonids were diversified in both the body mass and diet. 

597 However, the ecological and diversity reduction of the Amphicyonidae is polyphased. A 

598 new comprehensive analysis of the taxonomic and ecologic diversity of the 
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599 amphicyonids is necessary to better understand the impact of biotic and abiotic factors 

600 on the evolution of these predators.

601

602
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836 Figures

837

838 Figure 1. Geographic position of the fossiliferous locality of Sallespisse (Close-up of 

839 Southwest France redrawn from Cahuzac, Janin & Steurbaut, 1995). The light grey area 

840 represents the maximum extent of the Serravallian Sea.

841

842 Figure 2. Sedimentological succession of the Sallespisse outcrop with the location of 

843 the specimen MHNBx 2020.20.1.

844

845 Figure 3. Holotype (MHNBx 2020.20.1) of Tartarocyon cazanavei nov. gen. & sp. from 

846 Sallespisse (MN7/8, Southwest France), in occlusal, lingual, and labial views. Scale bar 

847 is 5 cm.

848

849 Figure 4. Mandibule and p4 comparison for several European amphycionids. The red 

850 circle indicates the p4 position on the mandible. Modified from Dehm 1950, Kuss 1965, 

851 Bergounioux & Crouzel 1973, Viranta 1996, Peigné & Heizmann 2003, Peigné et al. 

852 2008, Nagel et al. 2009, Morales et al. 2021.NMB TD1162 (Heizmannocyon 

853 steinheimensis), NMB SO4377 (Megamphicyon giganteus). The scale bare is 5 cm for 

854 the mandibles. The p4 are not to scale.

855

856 Figure 5. Reconstruction of Tartarocyon cazanavei nov. gen. & sp. feeding on a 

857 stranded dolphin along the Serravallian sea. We know only few on the inland 

858 environmental conditions where Tartarocyon lived. Then, this illustration combines all 
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859 the data from the site la Crousquillière in Sallespisse including the intertidal dark 

860 deposits, the abundance of the molluscs, and the mandibule of Tartarocyon in the high-

861 tide line. Drawing by Denny Navarra.

862

863 Figure 6. Body mass and diet distribution of the amphicyonids during the Miocene 

864 biozones. The horizontal dashed lines refer to the biotic events discussed in the text.

865
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866 Tables

867

868 Table 1. Measurements of the teeth of the holotype (MHNBx 2020.20.1) of Tartarocyon 

869 cazanavei nov. gen. & sp. from Sallespisse (MN7/8). *: based on alveoli.

870

871 Table 2. Several measurements of the teeth and mandible of the holotype (MHNBx 

872 2020.20.1) of Tartarocyon cazanavei nov. gen. & sp. from Sallespisse (MN7/8). MD: 

873 Mandible height.

874

875 Table 3. Ratios estimated based on premolars and molars for several amphicyonines 

876 and thaumastocyonines known from the Miocene of Europe. Grey: Thaumastocyoninae; 

877 white: Amphicyoninae. 

878

879 Table 4. List of Amphicyonidae known from the Miocene of Europe, with indication of 

880 their stratigraphic distribution, body mass, and diet. Diet estimated based on similarities 

881 with the ones proposed by Viranta (1996). The Haplocyoninae are here considered as 

882 hypercarnivores because they display a hypercarnivorous dentition (see Wang et al., 

883 2016). *: body mass and diet based on Viranta (1996, table 4), **: estimation based on 

884 the alveoli of the m1.

885

886 Table 5. Number of taxa by MN level in totality and based on diet, after Table 4. 
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Figure 1
Geographical position of the fossiliferous locality of Sallespisse (Close-up on the
Southwest France, redrawn from Cahuzac, Janin & Steurbaut, 1995).

The light grey area represents the maximum of extension of the Serravallian Sea.
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Figure 2
Sedimentological succession of the Sallespisse outcrop with the location where the
specimen MHNBx 2020.20.1.
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Figure 3
Holotype (MHNBx 2020.20.1) of Tartarocyon cazanavei nov. gen. & sp. from Sallespisse
(MN7/8, Southwest France), in occlusal, lingua, and labial views. Scale bare is 5 cm.
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Figure 4
Mandibule and p4 comparison for several European amphycionids.

The red circle indicates the p4 position on the mandible. Modified from Dehm 1950, Kuss
1965, Bergounioux & Crouzel 1973, Viranta 1996, Peigné & Heizmann 2003, Peigné et al.
2008, Nagel et al. 2009, Morales et al. 2021.NMB TD1162 (Heizmannocyon steinheimensis),
NMB SO4377 (Megamphicyon giganteus). The scale bare is 5 cm for the mandibles. The p4
are not to scale.
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If Dehm pictured a specimen with PAC, this verifies possible variability of this character in a single species and makes its use for a separation on genus level unsuitable.
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Figure 5
Reconstruction of Tartarocyon cazanavei nov. gen. & sp. feeding on a stranded dolphin
along the Serravallian sea.

We know only few on the inland environmental conditions where Tartarocyon lived. Then, this
illustration combines all the data from the site la Crousquillière in Sallespisse including the
intertidal dark deposits, the abundance of the molluscs, and the mandibule of Tartarocyon in
the high-tide line. Drawing by Denny Navarra.
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Figure 6
Body mass and diet distribution of the amphicyonids during the Miocene biozones.

The horizontal dashed lines refer to the biotic events discussed in the text.
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Table 1(on next page)

Measurements of the teeth of the holotype (MHNBx 2020.20.1) of Tartarocyon
cazanavei nov. gen. & sp. from Sallespisse (MN7/8).

*: based on alveoli.
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Tooth 

locus

Length Width

i1 7.58* 3.19*

i2 9.88* 5.02*

i3 11.51* 5.15*

c - 18.02*

p1 7.87* 3.86*

p2 8.27 4.63

p3 11.14 6.35

p4 18.58 9.67

m1 34.30* 13.88*

m2 24.26* 14.22*

m3 17.21* 11.93*

1 Table 1. Measurements of the teeth of the holotype (MHNBx 2020.20.1) of Tartarocyon 

2 cazanavei nov. gen. & sp. from Sallespisse (MN7/8). *: based on alveoli.

3
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Table 2(on next page)

Several measurements of the teeth and mandible of the holotype (MHNBx 2020.20.1) of
Tartarocyon cazanavei nov. gen. & sp. from Sallespisse (MN7/8).

MD: Mandible height.
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Length p1-p4 69.94

Length m1-

m3

78.67

MD below p2 39.69

MD below 

m1

48.97

MD below 

m3

53.25

1 Table 2. Several measurements of the teeth and mandible of the holotype (MHNBx 

2 2020.20.1) of Tartarocyon cazanavei nov. gen. & sp. from Sallespisse (MN7/8). MD: 

3 Mandible height.

4
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Table 3(on next page)

Ratios estimated based on premolars and molars for several amphicyonines and
thaumastocyonines known from the Miocene of Europe.

Grey: Thaumastocyoninae; white: Amphicyoninae.
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Taxon Stratigraphic 

distribution

Ratio 

Lp2/Lm1

Ratio 

Lp3/Lm1

Ratio 

Lp4/Lm1

Ratio 

Lm2/Lm1

Ratio 

Lm3/Lm1

Cynelos lemanensis

MNHNL-La85

MN1-MN2 0.43 - 0.67 0.63 -

Crassidia intermedia

SMNS 46684

MN1-MN2 0.47 0.43 0.63 0.58 0.38

Ysengrinia 

gerandiana

FSL 213828

MN1-MN2 0.44 0.47 0.62 - -

Cynelos rugosidens

BSP-1881-IX-14, 581

MN2 - - 0.67* 0.65 0.42

Peignecyon felinoides

TU 7391147

MN3 - - 0.55 0.49 -

Megamphicyon 

carnutense

Fs 6953

MN3 0.35 0.53 0.59 0.71 -

Cynelos helbingi

BSP-II-1937-12293

MN3-MN4 - - 0.57* 0.64 0.39

Ictiocyon socialis

Ginsburg (1992, p. 

311)

MN3-MN4 0.41 0.51 0.62 0.72 0.42

Ysengrinia depereti

MSNO.785

MN3-MN4 0.25 0.43 0.48 0.62 0.34

Dehmicyon schlosseri

BSP 13562

MN3-MN5 0.37 0.48 0.61 0.59 0.37

Paludocyon 

bohemicus

NM-PV 11723 

MN3-MN5 0.43 0.49 0.59 0.65 0.37

Pseudocyon 

sansaniensis

MN3-MN9 0.28 0.29 0.51 0.6 -
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MNHN.F.Sa207

Tomocyon grivense

UCBL-FSL 213797

MN3-MN9 - - - 0.6 -

Megamphicyon 

giganteus

Specimen from 

Vienna & Basel 

SO6521 (Hunt 2003, 

table 4.7)

MN4-MN6 0.3 0.42 0.58 0.71 -

Thaumastocyon 

bourgeoisi

Cast MNHN

MN5 ? ? - 0.45 No m3

Pseudocyon 

steinheimensis

SMNS 4808

MN5-MN7/8 - - 0.44 0.64 -

Pseudarctos 

bavaricus

Ginsburg (1992, p. 

309)

MN5-MN9 - - 0.61 0.71 0.61

Amphicyon major

MNHN.F.Sa844

MN6-MN9 0.31 0.36 0.54 0.7 0.56

Tartarocyon 

cazanavei

MHNBx 2020.20.1

MN7/8 0.24 0.32 0.54 0.71 0.5

A. eppelsheimensis

Holotype

MN9 - - 0.47 0.67 -

Magericyon 

castellanus

LVF 206y

MN9 No p2 - 0.42 0.45 -

Agnotherium 

antiquum

NMB CM 242 & 

MN9-MN10 No p2 No p3 0.62 0.37 No m3
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The new record (DOI: 10.1007/s12542-022-00610-0) questions the validity of "Megamphicyon" and shows that the species lasted until MN 7/8. 

michael
Eingefügter Text
mphicyon

michael
Notiz
I am not aware of any record of A. major in MN 9. Some authors regarded A. eppelsheim from MN 9 as a subspecies of A. major, and your reference may root in this misinterpretation?
It would be helpful to have the references  for your distributional information as a supplement.

michael
Notiz
see above for the questionable presence of Pseudarctos in MN9.

michael
Notiz
This is rather MN9/10 than MN 9 to MN 10. Reason is that the MN9/10 border is not to be seen in the Eppelsheim formation, creating some discussion about the age.



MNHM Epp 117-2017

Ammitocyon kainos

BAT-3’08 604

MN10 No p2 No p3 0.71 0.54 No m3

Magericyon anceps

Mean

MN10 No p2 0.15 0.38 0.54 -

1 Table 3. Ratios estimated based on premolars and molars for several amphicyonines 

2 and thaumastocyonines known in the Miocene of Europe. Grey font: 

3 Thaumastocyonina; white font: Amphicyoninae. 

4
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Table 4(on next page)

List of Amphicyonidae known from the Miocene of Europe, with indication of their
stratigraphic distribution, body mass, and diet.

Diet estimated based on similarities with the ones proposed by Viranta (1996). The
Haplocyoninae are here considered as hypercarnivores because they display a
hypercarnivorous dentition (see Wang et al., 2016). *: body mass and diet based on Viranta
(1996, table 4), **: estimation based on the alveoli of the m1.
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Family-subfamily Tribe Taxon Stratigraphic 

distribution

Body 

mass 

(in 

kg)

Diet

Amphicyoninae Amphicyonini Amphicyon 

astrei

MN1 112 Bone-crushing 

mesocarnivores

A. laugnacensis MN1-MN2 130 

(est.)

Bone-crushing 

mesocarnivores

A. lactorensis MN4-MN5 132 Bone-crushing 

mesocarnivores

A. major MN6-MN9 122-

212*

Bone-crushing 

mesocarnivores*

A. 

eppelsheimensis

MN9 225 Bone-crushing 

mesocarnivores

A. gutmanni MN11 246* Bone-crushing 

mesocarnivores*

A. pannonicus MN11-MN12 198* Bone-crushing 

mesocarnivores*

Cynelos 

lemanensis

MN1-MN2 42 Mesocarnivores*

C. rugosidens MN2 13 Mesocarnivores*

C. helbingi MN3-MN4 60-

86*

Mesocarnivores*

Euroamphicyon 

olisiponensis

MN3-MN4 147* Bone-crushing 

mesocarnivores*

Heizmannocyon 

steinheimensis

MN5-MN7/8 123* Bone-crushing 

mesocarnivores*

Janvierocyon 

pontignensis

MN3 162 Bone-crushing 

mesocarnivores

Megamphicyon 

carnutense

MN3 182 Bone-crushing 

mesocarnivores

M. giganteus MN4-MN6 157-

317*

Bone-crushing 

mesocarnivores*

Paludocyon MN3-MN5 86 Mesocarnivores
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bohemicus

Tartarocyon 

cazanavei

MN7/8 195** Bone-crushing 

mesocarnivores

Magerocyonini Magericyon 

castellanus

MN9 246 Hypercarnivores*

M. anceps MN10 171 Hypercarnivores

Pseudocyon 

sansaniensis

MN3-MN9 126* Bone-crushing 

mesocarnivores*

P. caucasicus MN6 130* Hypercarnivores*

P. styriacus MN6 118* Bone-crushing 

mesocarnivores*

Pseudarctini Dehmicyon 

schlosseri

MN3-MN5 23 Mesocarnivores*

Ictiocyon 

socialis

MN3-MN4 21 Omnivorous*

Pseudarctos 

bavaricus

MN5-MN9 9* Omnivorous*

Thaumastocyoninae Agnotherium 

antiquum

MN9-MN10 148 Hypercarnivores*

Ammitocyon 

kainos

MN10 120 Hypercarnivores

Crassidia 

intermedia

MN1-MN2 169 Hypercarnivores

Amphicyonopsis 

serus

MN6?-MN7/8 270 Hypercarnivores

Peignecyon 

felinoides

MN3 110 Hypercarnivores

Thaumastocyon 

bourgeoisi

MN5 72 Hypercarnivores 

*

T. dirus MN9 35 Hypercarnivores*

Tomocyon 

grivense

MN3-MN9 174 Hypercarnivores*

Ysengrinia MN1-MN2 72 Hypercarnivores*
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gerandiana

Y. depereti MN3-MN4 118 Hypercarnivores*

Y. valentiana MN4 106 Hypercarnivores*

Haplocyoninae Gobicyon 

serbiae

MN6 109 

kg

Hypercarnivores

Haplocyon 

crucians

MN1-MN2 45 kg Hypercarnivores

H. elegans MN1-MN2 29 kg Hypercarnivores

Haplocyonoides 

mordax

MN1-MN3 52 kg Hypercarnivores

H. suevicus MN2 42 kg Hypercarnivores

Haplocyonopsis 

crassidens

MN1 85 kg Hypercarnivores

1 Table 4. List of the Amphicyonidae known in the Miocene of Europe with indication of 

2 their stratigraphic distribution, body mass, and diet. Diet estimated based on similarities 

3 with the ones proposed by Viranta (1996). The Haplocyoninae are here considered as 

4 hypercarnivores because they display a hypercarnivorous dentition (see Wang et al., 

5 2016). *: bodymass and diet based on Viranta (1996).

6
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Table 5(on next page)

Number of taxa by MN level in totality and based on diet, after Table 4.
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MN level Omnivores Mesocarnivores Bone-crushing 

mesocarnivores

Hypercarnivores Totality

MN1 1 2 6 9

MN2 2 1 6 9

MN3 1 3 4 4 12

MN4 1 4 3 3 11

MN5 1 2 4 2 9

MN6 1 0 5 3 10

MN7/8 1 4 2 7

MN9 1 3 4 8

MN10 0 3 3

MN11 2 2

MN12 1 1

1 Table 5. Number of taxa by MN levels in totality and based on diet after Table 4. 

2
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