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The glacial climate in the Quaternary period affected the present species richness of
amphibians, limiting their activities and restoring diversity. In this study, we examined the
phylogenetic relationships of the Japanese toads (Bufo japonicus and B. torrenticola) and
the demography of each lineage from past to present based on the mitochondrial
sequences and the ecological niche models. The Japanese toads were a monophyletic
group with two main clades, one of which contained B. torrenticola. The main two clades
diverged at the Early Pliocene, and the genetic divergences within each main clade
occurred from the Late Pliocene to the Middle Pleistocene. Especially, the northernmost
clades in the Tohoku region were identified to be genetically diverged affected by the
glacial climate. Each lineage retreated to each refugium in low-elevation along the coastal
area in the glacial period, and effective population sizes have increased to construct the
current populations after the glacial period. The climate stability from the last glacial
maximum to the present likely affected the distribution of each lineage of the Japanese
toads.
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24 Abstract

25 The glacial climate in the Quaternary period affected the present species richness of amphibians, 

26 limiting their activities and restoring diversity. In this study, we examined the phylogenetic 

27 relationships of the Japanese toads (Bufo japonicus and B. torrenticola) and the demography of 

28 each lineage from past to present based on the mitochondrial sequences and the ecological niche 

29 models. The Japanese toads were a monophyletic group with two main clades, one of which 

30 contained B. torrenticola. The main two clades diverged at the Early Pliocene, and the genetic 

31 divergences within each main clade occurred from the Late Pliocene to the Middle Pleistocene. 

32 Especially, the northernmost clades in the Tohoku region were identified to be genetically 

33 diverged affected by the glacial climate. Each lineage retreated to each refugium in low-elevation 

34 along the coastal area in the glacial period, and effective population sizes have increased to 

35 construct the current populations after the glacial period. The climate stability from the last 

36 glacial maximum to the present likely affected the distribution of each lineage of the Japanese 

37 toads.

38

39 Introduction

40 One of the main aims of biogeography is understanding the biological and physical processes 

41 that lead to species evolution and distribution (Lomolino et al., 2010). Biogeographic studies 

42 have often emphasized the effects of Quaternary climate because glacial-interglacial repeated 

43 cycles have led to distribution changes in many species, affecting the present distribution (e.g. 

44 Taberlet et al., 1998; Hewitt, 2004). Amphibians are particularly vulnerable to climate change 

45 because of their limited migration capacity, ectotherms, and the strong influence of climate 

46 factors on reproduction (e.g. Carey & Alexander, 2003; Blaustein et al., 2010; LI, COHEN & 
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47 ROHR, 2013; Ficetola & Maiorano, 2016). As a result, the glacial climate strongly affected the 

48 present species richness of amphibians, limiting their activities, followed by restoration of 

49 diversity in herpetofauna after the Last Glacial Maximum (LGM; Araújo et al., 2008; Zeisset & 

50 Beebee, 2008; Martínez‐Monzón et al., 2021). Japan is endowed with rich amphibian faunas, 

51 with many taxa and high endemism (Nishikawa, 2017). The areas with high species richness are 

52 likely to function as refugia at the glacial period due to the climate stability (Sandel et al., 2011). 

53 In addition, the high endemism may have resulted from in situ diversification affected by the 

54 island-specific environment (Kubota, Shiono & Kusumoto, 2015; Kubota et al., 2017). In the 

55 Japanese archipelago, multiple refugia in glacial periods were formed along the latitude, mainly 

56 in low elevation areas such as coastal areas influenced by Quaternary climate (e. g., Tomaru et 

57 al., 1998; Nunome et al., 2010; Aoki, Kato & Murakami, 2011). Furthermore, amphibians widely 

58 distributed on the Japanese mainland (Hokkaido, Honshu, Shikoku, and Kyushu) are genetically 

59 more diverse in multiple refugia than previously thought (Tominaga et al., 2013; Dufresnes et al., 

60 2016; Matsui et al., 2019).

61 In this study, we focus on the Japanese toads (Genus Bufo, Bufonidae). There are two 

62 endemic Bufo species on the Japanese mainland, B. japonicus and B. torrenticola (Matsui & 

63 Maeda, 2018). Although the effects of Quaternary climate on the European toads have been well 

64 studied (e.g., Garcia-Porta et al., 2012; Arntzen et al., 2018; Chiocchio et al., 2021), the effects 

65 on B. japonicus and B. torrenticola have not been studied. Bufo japonicus is widely distributed in 

66 Honshu, Shikoku, Kyushu, and some adjacent islands and has a habit of lentic breeding as most 

67 other congeneric species. The species is divided into two subspecies, B. j. japonicus from 

68 western and B. j. formosus from eastern Japan. In contrast to B. japonicus, the range of B. 

69 torrenticola is limited to the mountainous area of the central Honshu, with the lotic breeding 
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70 habits exceptional for Bufo. Two subspecies of B. japonicus are distributed parapatrically. B. 

71 torrenticola is distributed sympatrically with B. j. formosus in several areas of the central 

72 Honshu (Matsui & Maeda, 2018). Igawa et al. (2006) suggested that the geological events 

73 during the formation of the Japanese archipelago had led to the genetic diversification in the 

74 Japanese toads.

75 Studies combining ecological niche models (ENM) with phylogeography have become 

76 mainstream in biogeography. Combining the gene-based estimates and analyses of the 

77 environmental effects allows for more robust results (Waltari et al., 2007; Hickerson et al., 

78 2010; Alvarado-Serrano & Knowles, 2014). Few quaternary fossils of amphibians have been 

79 found on the Japanese mainland, so combined genetic analyses with environmental analysis will 

80 provide more powerful insight into the Quaternary biogeography of the Japanese amphibians. 

81 Furthermore, these analyses will contribute to clarifying the factors that maintain the high 

82 endemism of Japanese amphibians. Here, we present the biogeographic processes for the 

83 diversification of the Japanese toads based on the mitochondrial sequences and explain the 

84 effects of the glacial climate on them by genetic analyses and ENM.

85

86 Materials & Methods

87 DNA sampling and sequencing

88 A total of 213 samples from 191 localities of B. japonicus and 27 samples from 25 localities of B. 

89 torrenticola were collected, covering each distribution range (Fig. 1). According to the 

90 manufacturer's instruction, we extracted DNA from frozen or ethanol-preserved tissue samples 

91 (e.g., muscles, livers, or skin) with Qiagen DNeasy Blood and Tissue Kit (Qiagen). Animal 
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92 Experimentation Ethics Committee in Graduate School of Human and Environmental Studies, 

93 Kyoto University provided full approval for this research (20-A-5, 20-A-7).

94 We amplified the mitochondrial DNA from the 3' region in tRNA-Glu to cytochrome b. 

95 We used the newly designed primer set (5’-TTCCTACAAGGACTTTAACCTAGAC-3'; 5’-

96 GTTGGGCTAGTTTGTTCTCTG-3') for PCR, with the length of the products being 1208 bp. 

97 The PCR protocol followed 2 min soak at 94°C, followed by 33 cycles with 15 s at 94°C, 15 s at 

98 53°C, and 90 s at 72°C, and final extension of 4 min at 72°C. Primers, dNTPs, and polymerase 

99 were separated from the successful PCR amplification products by precipitation with 

100 polyethylene glycol. We performed cycle sequencing reactions (CSR) by BigDye Terminator 

101 v.3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA). The same primers used 

102 for PCR and two more newly designed internal primers (5’-

103 CGAACTTGTTCAATGAATCTGAG-3', 5’-CTTGTCGAAGTTGGGGTTAAG-3') were used 

104 for CSR and then purified the products by ethanol precipitation. Amplified fragments were 

105 sequenced on ABI PRISM 3130 Genetic Analyzer (Applied Biosystems), assembled with 

106 ChromasPro v.1.34 (Technelysium Pty Ltd.), and aligned with MAFFT v7.222 (default 

107 parameters: Katoh & Standley, 2013). We got aligned 1071 bp cytochrome b sequences and 

108 submitted the haplotypes determined in this study to DNA Data Bank of Japan (DDBJ; accession 

109 numbers. LC581513–LC581757: Table S1). The cytochrome b regions were usually used in the 

110 previous studies on the Japanese toads and are known to have enough variation to evaluate the 

111 population genetics (e.g., Hase, Shimada & Nikoh, 2012; Iwaoka et al., 2021), so we used only 

112 the region to allow comparison with the previous studies.

113

114 Phylogenetic analyses
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115 We first built phylogenetic trees by maximum likelihood (ML) and Bayesian inference (BI) 

116 methods. We selected the optimum substitution models for each partition by Kakusan4 (Tanabe, 

117 2011) based on the Akaike information criterion (Akaike, 1974) for ML analysis and Schwarz's 

118 Bayesian information criterion (Schwarz, 1978) for BI analyses. The best-fit substitution models 

119 chosen for ML and BI analyses were GTR+G models. We performed the ML analyses with 

120 estimation node supports by 1,000 bootstrapping replications using RAxML v.8.2 (Stamatakis, 

121 2014). In the BI analyses, we conducted two independent runs of three million generations, each 

122 with four Markov chains, and sampled the resulting trees every 100 generations by MrBayes 

123 v3.2.6 (Ronquist et al., 2012). We checked the parameter estimates and convergence using 

124 Tracer v.1.7 (Rambaut et al., 2018). The initial 10% of trees were discarded as burn-in. 

125 Sequences from B. g. gargarizans, B. g. miyakonis, and B. bankorensis were used as outgroups, 

126 as these sister lineages are the closest relatives of the Japanese toads (Matsui, 1984, 1986; Igawa 

127 et al., 2006; Table S1).

128 Divergence dates for the Japanese toads were estimated using BEAST v.2.6 (Bouckaert et 

129 al., 2019). We reduced our dataset, maintaining solely one representative of each clade as 

130 appeared in our ML phylogeny. To introduce the calibration points, we added the sequences of 

131 four Bufo species and one species belonging to the family Bufonidae as outgroups (Genbank 

132 Accession numbers: B. gargarizans; NC_008410, B. stejnegeri; NC_027686, B. bufo; 

133 MN432913, B. verrucosissimus; MN432915, B. eichwaldi; JN647474, Epidalea calamita: 

134 MT483697). Two external nodes of the Japanese toads were calibrated: (1) the split between B. 

135 bufo and B. gargarizans species complexes as 12.33 million years ago (Mya; 95% highest 

136 posterior density [HPD], 8.81–16.36 Mya) according to the timetree of Garcia-Porta et al. 

137 (2012); (2) the oldest fossil record attributable to the B. verrucosissimus (1.81–2.59 Mya), setting 
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138 a lognormal prior with an offset of 1.81 Mya and 95% of the values between 2.0 and 4.5 Mya 

139 followed by Recuero et al. (2012). The analysis was run for 50 million generations, sampling 

140 every 100,000 using the HKY+G model with the strict clock model. Tracer v.1.7 (Rambaut et al., 

141 2018) was used to assess the stationarity and effective samples of parameters. Finally, we 

142 generated the maximum clade credibility consensus tree with median node heights using the 

143 TreeAnnotator program, discarding the first 10% of the tree as burn-in.

144

145 Demographic analyses

146 Haplotype (Hd) and nucleotide diversity (π) within each main clade were calculated in DnaSP 

147 v.6 (Rozas et al., 2017). To examine deviations from neutrality, which would be expected with 

148 population expansion, we calculated Fu's FS (Fu, 1997) with 10,000 permutations for 

149 significances using Arlequin ver 3.5 (Excoffier & Lischer, 2010). The mismatch distributions 

150 analyses were performed by computing observed pairwise differences to distributions simulated 

151 under demographic (Rogers & Harpending, 1992) and range expansions models (Ray, Currat & 

152 Excoffier, 2003; Excoffier, 2004) implemented in Arlequin. The observations were compared to 

153 model predictions based on 10,000 permutations of the data. We also tested the goodness-of-fit 

154 of simulated distribution with the expected distributions using a population expansion model by 

155 calculating the sum of square deviation (SSD). Genetic Landscape Shape interpolation analyses 

156 were performed using Alleles In Space (AIS; Miller, 2005; Miller et al., 2006) to obtain spatial 

157 patterns in genetic diversity. The analysis produces three-dimensional surface plots of 

158 interpolated genetic distances where X and Y coordinates correspond to geographical locations 

159 on the rectangular grid, and surface plot heights (Z) reflect genetic distances. We performed the 

160 analysis for each group with a grid of 150 × 150 and a distance weighting value of 1.0. All 
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161 analyses implemented in AIS used sequences as the input matrix (raw genetic distances) and 

162 UTM coordinates. We expected that areas shown by warm color in this analysis indicate high 

163 genetic diversity and thus represent refugia.

164 We estimated the shifts of the effective population size of each lineage in the Japanese 

165 toads based on Bayesian skyline plots (BSP: Drummond et al., 2005) by BEAST v.2.6 

166 (Bouckaert et al., 2019). We applied the HKY+G model of molecular evolution and a strict 

167 molecular clock model for BSP analyses. The analyses consisted of one Markov chain Monte 

168 Carlo analysis with the chain runs for 50 million generations, sampling every 100,000 

169 generations with discarding 10% as burn-in. We verified the effective sample sizes for each 

170 parameter and convergence of chains in Tracer v.1.7 (Rambaut et al., 2018). For BSP, we 

171 employed a rate calibration based on the calibration of the demographic transition method (CDT; 

172 Hoareau, 2016), which uses the timing of climatic changes over the late glacial warming period 

173 to calibrate expansions and provides a robust clock. The CDT is advanced the expansion dating 

174 (Crandall et al., 2012) based on the two-epoch demographic model (Shapiro et al., 2004) and 

175 enables us to overcome the problem that using older (< 1 Mya) or interspecific phylogenetic 

176 calibration leads to incorrect estimates for intraspecific demographic parameters (Ho & Larson, 

177 2006; Grant, 2015). We performed the rate calibration following default CDT procedures 

178 (Hoareau, 2016) using Beast v1.8.4 (Drummond et al., 2012). We considered no problem with 

179 the low sample size of the northernmost lineage for inferring past population size because we 

180 collected samples to cover their distribution range. BSP analyses were constructed for each 

181 lineage of the Japanese toads by using the calibrated rate.

182

183 Ecological niche models
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184 To trace the location of glacial refuge, we constructed ENM for each lineage of the Japanese 

185 toads and predicted their ranges under the present and LGM conditions. We gathered distribution 

186 localities with the known occurrence of B. japonicus and B. torrenticola, respectively, combining 

187 our sampling localities used for the phylogenetic analyses in this study and our records. This 

188 initial dataset was filtered to avoid spatial autocorrelation and duplication by randomly selected 

189 occurrence points more than 1 km apart from each other in 10 replicates using the R package 

190 spThin (Aiello‐Lammens et al., 2015). The final dataset comprised 422 and 26 records for B. 

191 japonicus and B. torrenticola, respectively (Table S2). We regarded the lineages of the record for 

192 B. japonicus based on their distribution.

193 We extracted 19 bioclimatic layers representative of the climatic date over 1970–2000 

194 from the WorldClim v.2.1 (Fick & Hijmans, 2017), featuring 30 arc seconds of spatial 

195 resolutions: 11 layers related to temperature and eight layers related to precipitation. First, 

196 Pearson correlation coefficients for all pairs of bioclimatic variables were calculated using 

197 ENMTools v.1.4.4 (Warren, Glor & Turelli, 2010) to eliminate predictor collinearity before 

198 generating the model. Then, variables of correlated pairs with |r| > 0.85 were excluded, 

199 considering that they were biologically less important based on known preferences of the 

200 Japanese toads. The resulting data set contained eight bioclimatic variables: BIO 2 (mean diurnal 

201 range), BIO 3 (isothermality; BIO 2/BIO 7), BIO 8 (mean temperature of the wettest quarter), 

202 BIO 10 (mean temperature of the warmest quarter), BIO 11 (mean temperature of the coldest 

203 quarter), BIO 15 (precipitation seasonality; CV), BIO 18 (precipitation of warmest quarter), and 

204 BIO 19 (precipitation of coldest quarter).

205 Distribution models were built with ten replicates using the default setting in Maxent 

206 v.3.4.4 (Phillips, Anderson & Schapire, 2006). We used the areas under the receiving operator 
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207 characteristics curve (AUC) to evaluate the models’ performances. Ecological niche models were 

208 constructed according to current environmental factors and projected for present and LGM. To 

209 project the current ecological niches of the Japanese toads on climate conditions during LGM 

210 (21,000 years ago), we applied two widely-used general circulation climate models with species-

211 specific mask and 2.5 arc minutes spatial resolutions: the Community Climate System (CCSM4; 

212 Gent et al., 2011), and the Model for Interdisciplinary Research on Climate (MIROC-ESM 2010; 

213 Watanabe et al., 2011) from the WorldClim version 1.4 

214 (https://www.worldclim.org/data/v1.4/worldclim14.html). Logistic thresholds of 10 percentile 

215 training presence generated in the Maxent output were used to define the minimum probability of 

216 suitable habitat.

217 ENM were constructed for each lineage, considering the possibility of niche divergence 

218 between populations, and thus we tested niche overlap among the lineages. We used Schoener’s 

219 D (Schoener, 1968) and Hellinger’s I metric (Warren, Glor & Turelli, 2008) to test for niche 

220 conservatism and divergence. These metrics were computed from climatic variation under 

221 present conditions in ENMTools. We build niche models of identity and background tests based 

222 on 100 pseudoreplicates generated from a random sampling of data points pooled for each pair of 

223 groups. The Schoener’s D and Hellinger’s I of the true calculated niche between groups were 

224 compared with the null distribution by two-tailed t-tests.

225 We included the putative populations of introduced origin (see below in result) for the 

226 phylogenetic analysis to identify their haplotypes but excluded them for the demographic 

227 analysis and ENM because they might hinder estimating actual demography and suitable 

228 distribution area.

229
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230 Results

231 Phylogeny and divergence time

232 Our phylogenetic analyses of mitochondrial cytochrome b (1,071 bp) identified old but 

233 monophyletic radiation of the Japanese toads, including B. torrenticola and five mitochondrial 

234 lineages of B. japonicus, with varying degrees of divergence. ML and BI phylogenetic trees 

235 showed congruent topologies (Fig. 1), as those previously reported (Igawa et al., 2006; Hase, 

236 Shimada & Nikoh, 2012). We specified the possible phylogenetic boundaries between lineages 

237 with higher resolution than the previous studies. The distribution of each lineage overlapped at 

238 the boundary. The boundaries between the major clades, clade A and B, diverged 5.15 Mya 

239 (HPD: 6.68–3.50 Mya), located on the west side of Lake Biwa in the Kinki region.

240 The first clade (A) has a wide distribution across the eastern parts of the Japanese 

241 mainland and corresponds to B. j. formosus. This clade is further subdivided into three lineages 

242 distributed on the northern Tohoku region (clade A1), from the southern Tohoku to northern 

243 Kanto regions (clade A2), and from the southern Tohoku to Kinki regions (clade A3). The 

244 common ancestor of clade A1 and A2 diverged from clade A3 at 1.48 Mya (HPD: 2.13–0.94 

245 Mya), and clade A1 and A2 diverged 0.68 Mya (HPD: 1.01–0.40 Mya). In addition, two samples, 

246 which were identified as B. torrenticola morphologically, from Toyama and Ishikawa 

247 Prefectures (locality 81, 84) had the haplotype of clade A2, indicating that genetic introgression 

248 of B. j. formosus mtDNA may occur at the boundary between B. j. formosus and B. torrenticola 

249 as suggested in the previous studies (Yamazaki et al., 2008; Iwaoka et al., 2021).

250 The second clade (B) is distributed widely across the western parts of the Japanese 

251 mainland. This clade is further subdivided into three lineages: two lineages of B. j. japonicus, 

252 corresponding to B. j. japonicus, and one of B. torrenticola. Of B. japonicus, one lineage is 
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253 distributed in the Kinki, Chugoku, and Shikoku regions (clade B1), and another from the western 

254 end of Honshu to Kyushu (clade B2). The lineage of B. torrenticola is distributed along the 

255 mountain range northwest of Lake Biwa and from Hokuriku to the Kii Peninsula.  Bufo j. 

256 japonicus was paraphyletic because clade B2 and B. torrenticola made a sister group. Clade B1 

257 diverged 2.84 Mya (HPD: 3.94–2.12 Mya), and clade B2 and B. torrenticola diverged 2.11 Mya 

258 (HPD: 2.94–1.38 Mya).

259 Our phylogenetic analysis reconfirmed previously suggested artificially introduced 

260 populations in Hokkaido, Izu Islands, and the Kanto region (Matsui, 1984; Kawamura et al., 

261 1990; Igawa et al., 2006; Hase, Shimada & Nikoh, 2012; Matsui & Maeda, 2018; Suzuki et al., 

262 2020; Fig. 1).

263

264 Demographic analyses

265 The high genetic diversities (Hd = 0.967–0.995), low nucleotide diversities (π = 0.00486–

266 0.00805), and significantly negative Fu's FS values for all clades of B. japonicus and B. 

267 torrenticola indicated the experience of the historical demographic expansion (Fu, 1997; Grant 

268 & Bowen, 1998; Table 1).

269 MtDNAs from clade B1 showed a ragged mismatch distribution suggesting demographic 

270 equilibrium, whereas the unimodal distribution of the A1, A2, and B2 clearly indicated recent 

271 population expansions (Harpending, 1994; Fig. 2). Clade A3 and B. torrenticola had two peaks, 

272 suggesting the inclusion of multiple populations, each undergoing bottlenecks followed by 

273 expansion (Hayes et al., 2008). Based on the SSD, the fits to the demographic expansion models 

274 could never be rejected for clades A1 and A3 (Fig. 2). The mismatch distributions simulated 

275 under the models of spatial expansion were matched for clade A1, A3, and B. torrenticola.
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276 Genetic Landscape Shape interpolation analyses revealed the geographic gradient of 

277 genetic variation in each group (Fig. 3). The high genetic diversity areas for clade A1 were 

278 distributed in the southern and western range, while those for clade A2 had higher genetic 

279 diversity in the south of the range. The areas with high genetic diversity in clade A3 were 

280 distributed in the low elevations areas on both sides of the Japan Alps (Hida, Kiso, and Akaishi 

281 Mountains) at the center of Honshu. Clade B1 had high genetic diversity in the western area, 

282 some parts of Chugoku and Kinki districts, and clade B2 had high genetic diversity in the 

283 northern region. Bufo torrenticola had high genetic diversity, mainly in the southern area and 

284 scattered northwestern, northwestern, and central distribution regions. Because populations that 

285 remain in refugia during the glacial period have a longer dynamic history and greater genetic 

286 diversity than that have expanded during post-glacial age (Comes & Kadereit, 1998; Taberlet et 

287 al., 1998), it is possible to consider regions with high genetic diversities within clades as refugia.

288 The calibrated divergence rate by CDT was very large, 0.166 changes/site/million years, 

289 which could be considered reasonable compared with the result in Hoareau (2016), and other 

290 evolutionary rates estimated for recent time scale for mitochondrial cytochrome b (Ho et al., 

291 2005; Suzuki et al., 2015). BSP reconstructed the demographic histories of mtDNA lineages of 

292 the Japanese toads since the last glacial maximum (Fig. 2). All of the lineages presented signals 

293 of recent population expansions. The expansion was much stronger (more than 10-fold increase) 

294 for B. japonicus than B. torrenticola (less than 10-fold increase).

295

296 Ecological niche models
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297 Each ENM estimated under current climate conditions had mean test AUC values ≥ 0.9, 

298 indicating a better than random prediction. The predicted potential niche models under the 

299 current climate conditions for each lineage of the Japanese toads are shown in Fig. 4.

300 The extent of range shrinkage varies depending on the global circulation model for each 

301 clade in clade A. The predicted distributions showed that the suitable range for clade A1 almost 

302 vanished from all areas based on MIROC, while some small parts of the Japan Sea coastal area 

303 were left based on CCSM during the LGM. According to the CCSM model, the suitable 

304 environmental conditions for clade A2 during the LGM contracted to some areas along the coast 

305 of the Sea of Japan and the Pacific Ocean, to the contrary, based on MIROC, the suitable 

306 conditions were distributed along the Pacific coast from southern Tohoku to Shikoku. For clade 

307 A3, the predicted distribution range expanded mainly from Chubu and Kinki by CCSM and 

308 MIROC during both LGM and present. On the other hand, both the CCSM and MIROC models 

309 for each clade in clade B suggested that the projected potential niche models for the LGM were 

310 limited significantly southward of their ranges.

311 Niche overlap under present climate conditions between lineages ranged between 0.04 

312 and 0.59 for Schoener's D and between 0.18 and 0.85 for Hellinger's I metrics, respectively 

313 (Table 2). The null hypotheses of the niche identity test were rejected for all pairs of lineages (p 

314 < 2.2e-16), indicating the environmental niches of all adjacent phylogroup were not equivalent. 

315 The null hypotheses of the similarity test could not be rejected between clade A1 and A2 

316 based on the direction test of known localities of clade A2 to background range of clade A1 for 

317 Schoener's D and based on both directions for Hellinger's I. Additionally, the null hypotheses of 

318 the similarity test could not be rejected between clade A2 and A3 based on the direction test of 

319 known localities of clade A2 to the background range of clade A3 for Hellinger's I (Table 3). 
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320 (Table 3). The observed niche overlaps were significantly higher than expected under the null 

321 hypotheses between each pair of B. japonicus (except between clade A3 and B2 and not rejected 

322 pairs of clades described above) and between clade A1 and B torrenticola, indicating that each 

323 lineage was more similar than expected (Table 3). This opposite result between the identity test 

324 and similarity test is a false positive; that is, the identity test tends to unduly reject the null 

325 hypothesis of niche identity (Peterson, 2011). In addition, the background test is known to be 

326 more suitable for understanding speciation than the identity test (Smith & Donoghue, 2010). 

327 Therefore, because the null hypotheses of the identity tests were rejected for all of the lineages in 

328 this study, we focused on the similarity test like Collart et al. (2021).

329 The environmental niche of B. japonicus (except clade A1) and B. torrenticola was also 

330 more similar than expected based on the habitat available to B. japonicus but more diverged than 

331 expected based on the habitat available to B. torrenticola (Table 3). These opposite results were 

332 also confirmed between clade A3 and B2. This counterintuitive result is likely to be driven by 

333 the differences in the heterogeneity of the environmental background for the two species 

334 (Nakazato, Warren & Moyle, 2010), and their overall similarity is low.

335

336 Discussion

337 Phylogeography of the Japanese toads

338 The divergence time between clade A and B (c.a. 5.0 Mya) fell within the timeframe reported for 

339 the other Japanese frogs (5–7 Mya; Nishizawa et al., 2011; Dufresnes et al., 2016). The ancient 

340 basins, described as a divergence factor in the previous study (Igawa et al., 2006), were dammed 

341 in the Middle Miocene under warm and humid climates by the strength of the East Asia summer 

342 monsoon (Hatano & Yoshida, 2017). These dammed ancient basins were likely to limit the route 
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343 between eastern and western Japan. In addition to the ancient basins, the late Miocene global 

344 cooling related to an intensified East Asian winter monsoon (Herbert et al., 2016; Matsuzaki, 

345 Suzuki & Tada, 2020) may also restrict the activities of the frogs. The Japanese frogs may have 

346 diverged into eastern and western populations by being divided into allopatric refugia.

347 The divergence pattern and time in clade A are similar to those of the northern lineages of 

348 Cynops pyrrhogaster, a lentic breeder like B. japonicus, which diverged with the glacial cycles 

349 (Tominaga et al., 2013). The dry climate at LGM might have affected the lentic-breeding 

350 amphibians by limiting the breeding place. We could consider that the glacial cycles might affect 

351 the divergence between clade A1 and A2 in clade A. Assuming that the refugia at glacial age 

352 before LGM during Quaternary consisted with that at LGM, clade A1 and A2 could be diverged 

353 by utilizing the different refugia along the coastal areas of the Japan Sea and the Pacific Ocean, 

354 respectively. Clade A1 and A2 might diverge by genetic drift followed by isolation into different 

355 refugia (Provan & Bennett, 2008) just after the middle Pleistocene transition when the glacial 

356 cooling became severer (Lisiecki & Raymo, 2005; Clark et al., 2006) and the significant flora 

357 change also occurred on the Japanese mainland (Momohara, 2016). Our result of ENM 

358 recognized the suitable area in CCSM for clade A1 at LGM along the Japan Sea coast on the 

359 northern Tohoku, consisting of the region with high genetic diversity. We also found the high 

360 genetic diversity area of clade A1 in the southern part of the distribution, but this southern area 

361 was not suitable at LGM. The southeastern area of the present distribution on the Pacific Ocean 

362 side was also an unsuitable area despite the actual distribution. There might be areas that are not 

363 suitable based on the climate factors but can be inhabited. The refugia for clade A2 were along 

364 the Pacific coast on the southern Tohoku with high genetic diversity, indicating the reasonability 

365 of MIROC for clade A2. The refugia might be located slightly different enough to diverge, but 
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366 we cannot conclude that the common ancestor of clade A1 and A2 diverged from clade A3 in the 

367 different refugia because the refugia of clade A2 and A3 were located close together. 

368 We got high support for the divergence between clade B2 and B. torrenticola and the monophyly 

369 of B. torrenticola for the first time by increasing the number of samples. Clade B1 and B2 are 

370 paraphyletic, which may be due to incomplete lineage sorting caused by the recent speciation or 

371 ancient hybridization (Maddison, 1997; Funk & Omland, 2003; McKay & Zink, 2010; Toews & 

372 Brelsford, 2012). In the case of incomplete lineage sorting, speciation of B. torrenticola with 

373 morphological and ecological divergence occurred so recently that there might be no time for 

374 genetical divergence (McGuire et al., 2007). The divergence within clade B is estimated to have 

375 occurred from the Late Pliocene to the Early Pleistocene. We might overestimate this divergence 

376 time if there was incomplete lineage sorting (Angelis & Reis, 2015) and underestimate if there 

377 was gene flow on the contrary (Leaché et al., 2014), although the divergence times were similar 

378 to those for the other amphibians distributed in western Japan (Tominaga et al., 2006, 2013; 

379 Nishizawa et al., 2011). Indeed, it is also a problem that we set the calibration on the only 

380 external nodes of the Japanese toads (Ho et al., 2008) and used only a single mitochondrial 

381 marker. 

382  The niche similarities between clades of B. japonicus likely indicate their allopatric 

383 speciation. In contrast, the dissimilarities between B. japonicus and B. torrenticola indicate their 

384 sympatric speciation (Wiens & Graham, 2005), although, of course, it is not perfect to judge only 

385 by the niche similarity because ENM alone do not capture the local-scale niche differences 

386 between different lineages (McCormack, Zellmer & Knowles, 2010).

387

388 Demography from last glacial maximum to present
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389 The narrow suitable habitats at LGM for each clade in clade B were estimated based on only 

390 western Japan's current temperature and precipitation. If the present habitats are more limited by 

391 some factors such as interaction with other populations than solely by climate factors, then the 

392 suitable habitats area at LGM may be underestimated. We, therefore, adjusted the estimated area 

393 of suitable habitats at LGM for discussion based on the results of the niche similarity. 

394 Specifically, it is considered that the suitable habitat of one population can be applied to another 

395 population with a similar present niche. This idea could also apply to adjust the suitable habitat 

396 at LGM under the assumption that the niche has not changed from LGM to the present. 

397 Clade A1 and A2, distributed in the Tohoku region, shrank their ranges into refugia and 

398 expanded after the glacial period. Some amphibians sympatric with toads also diverged in the 

399 Tohoku region (Sumida & Ogata, 1998; Yoshikawa et al., 2008; Aoki, Matsui & Nishikawa, 

400 2013; Tominaga et al., 2013; Yoshikawa & Matsui, 2014; Matsui et al., 2020). Although the 

401 divergence times do not coincide, the maintenance of genetic structures within the Tohoku 

402 region suggests the presence of multiple refugia in this region. The amphibians diverged in the 

403 Tohoku region have cold tolerance and may have survived in multiple refugia by moving to 

404 lower elevation areas during the glacial periods. On the other hand, some sympatric amphibians 

405 do not diverge genetically in the region (Nishizawa et al., 2011; Matsui et al., 2019). They may 

406 have been unable to live in harshly cold and dry environments at the glacial, and they could only 

407 have one refugium in the south region even if there were refugia in the Tohoku region. These 

408 differences may reflect current ecological characteristics such as habitat elevation and breeding 

409 season. The divergence between clade A1 and A2, between Tohoku region clades and clade A3, 

410 and between clade B2 and B. torrenticola occurred in the Quaternary.

PeerJ reviewing PDF | (2022:01:70165:0:0:NEW 22 Jan 2022)

Manuscript to be reviewed



411 The effective population sizes of clade A3 and B. torrenticola increased around 10 

412 thousand years ago (Kya), sometime after the last glacial period. The region with high genetic 

413 diversity for clade A3 could be found on both sides of the high elevation area in central Japan, 

414 especially the eastern side, which is also demonstrated by the bimodal mismatch distribution, 

415 indicating a contemporary geographic barrier to gene flow (Bremer et al., 2005). The high 

416 elevation areas in central Japan were covered with glaciers followed by volcanic activities (Ono 

417 et al., 2005; Shiba, 2021), which may have prevented clade A3 from expanding the distribution 

418 soon after LGM. Even if the population of clade A3 was fragmented, we could not find any 

419 phylogroup in the clade, which may be due to the high mobility when their spatial and 

420 population expansion, as suggested by many other Bufo species (Yu, Lin & Weng, 2014; Borzée 

421 et al., 2017; Dufresnes et al., 2020).

422 The suitable area for B. torrenticola at LGM vanished except the southern end of their 

423 distribution, but we could consider that the coastal area of the Sea of Japan on the Hokuriku 

424 region also was the suitable habitat, applying the similar niche with clade A1. Genetic Landscape 

425 Shape interpolation analysis suggested that the highest genetic diversity area was a southern area, 

426 and the northern area also has high genetic diversity, and these regions may have become refugia. 

427 The expansion degree of the effective population size for B. torrenticola was lower than for B. 

428 japonicus, probably because the lotic environments were more available than the lentic 

429 environments under the dry climate in the glacial period, and B. torrenticola may be less affected 

430 by the glacial climate than B. japonicus. Considering that the northern and southern ends of the 

431 distribution have become refugia, the undistributed central region with high genetic diversity 

432 may indicate the separation between north and southern populations. There may have been some 

433 factors preventing the expansion to the present overlapped area until 10 Kya because B. 
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434 torrenticola increased their effective population size not immediately after LGM, as was the case 

435 with clade A3, and their distribution overlap now. Therefore, it would be appropriate to adopt 

436 MIROC as a suitable habit for clade A3 in LGM, which included the unsuitable areas from 

437 Hokuriku to the Kii Peninsula.

438 The suitable area for clade B1 at LGM in CCSM and MIROC has almost vanished from 

439 their present distribution area. We identified the high genetic diversity for clade B1 on the 

440 western side of their distribution and central area of the Kinki region, which were shown to be 

441 the suitable area for clade A3 with a similar niche to clade B1. The low-elevation areas in the 

442 central Chugoku region (Sonehara et al., 2020) also had high genetic diversity, although this 

443 area was not identified as suitable habitat for any clade with a niche similar to clade B1. These 

444 areas with high genetic diversity coincide with the region of the paleo-rivers (Sakaguchi et al., 

445 2021), indicating that clade B1 could keep their population along the paleo-rivers. 

446 For clade B2, the estimated area at LGM in MIROC is more suitable than CCSM because 

447 the suitable habitat in the region connected by land with Kyushu in CCSM vanished. The 

448 suitable area may be in the central and southern regions in Kyushu, considering the suitable 

449 habitat of clade B1, which had a similar niche. Contrary to the result of ENM, the areas with 

450 high genetic diversity were distributed in the northern and southern areas in Kyushu. The 

451 volcanic activities in the central area of Kyushu (Mahony et al., 2011) might prevent clade B2 

452 from inhabiting, which was also suggested by the increase of the effective population size after 

453 LGM. The vegetation at central Kyushu was also affected by the volcanic activity around LGM, 

454 adding to the cool climate (Miyabuchi et al., 2012; 2020). Hynobius yatsui distributed in Kyushu 

455 diverged into the northern and southern population by the central Kyushu (Sakamoto et al., 2009), 

456 indicating the volcanic activity has long restricted the amphibian migration. 
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457 The refugia are often consistent with the stable climate areas since LGM, and they 

458 frequently harbor highly endemic faunas (Sandel et al., 2011). The climate stability between the 

459 LGM and the present day is indicated to be a better predictor of species richness of the European 

460 amphibian species (Araújo et al., 2008). However, Lehtomäki et al. (2018) suggested that the 

461 historical climate stability was of relatively minor importance for the Japanese amphibians, 

462 though this previous study could not reflect the characteristics of each species. They also 

463 suggested that historical climate stability was predominantly important for plants species 

464 richness. Our identified refugia of the Japanese toads tended to coincide with the areas with plant 

465 species richness in Lehtomäki et al. (2018). Accordingly, the distributions of each lineage of the 

466 Japanese toads are likely to be affected by the climate stability after expansion from the refugia.

467

468 Conclusions

469 Our phylogeography of the Japanese toads provided insight into the diverged process of their 

470 lineages. Most of the divergence data and patterns between the lineages were similar to those of 

471 other amphibians. The tectonic events during the construction of the Japanese Archipelago and 

472 the glacial-interglacial cycle on the Quaternary may have diverged the lineages in each region. 

473 Furthermore, demographic analyses and ENM revealed the localities of refugia. Except for a 

474 clade influenced by volcanic activities, refugia were constructed in the areas with climate 

475 stability. The present distributions of genetic diversities have been formed by expansion from the 

476 refugia after LGM. The interactions between clades after expansion may also influence the 

477 current distribution, which will be revealed by examining the effects of gene flow on the 

478 secondary contact zones between clades.

479
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Figure 1
Phylogenetic relationships and distribution of Bufo japonicus and B. torrenticola based
on mitochondrial cytochrome b haplotypes.

Bootstrap supports (maximum-likelihood)/posterior probabilities (Bayesian inference) are
provided for major nodes. Arrows indicate estimated divergence times and 95% HPD (Mya).
Enlarged maps with locality numbers are available in Figure S1, and full haplotype names on
the phylogenetic trees are available in Figures S2, respectively. The map was created in QGIS
3.16 (https://qgis.org). The map layer was extracted from GADM database (www.gadm.org,
version 3.4). The source of the layer of inland water area was Digital Chart of the World. The
elevation layer was created by editing the source data from Geospatial Information Authority
of Japan (https://fgd.gsi.go.jp/download/mapGis.php?tab=dem).
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Figure 2
Demographic analyses of each clade of Bufo japonicus and B. torrenticola defined from
mitochondrial sequences data.

Left charts display the distribution of observed (histograms) and expected (bold dash lines:
under demographic expansion, and thin dash lines: under spatial expansion models) pairwise
nucleotide differences. The sums of squared deviations (SSD) and p-values are shown for
demographic and spatial expansion models. Asterisks indicate significant p-values (p < 0.05).
Right charts display Bayesian skyline plots (BSP) showing the evolution of effective
population size (Ne) over time (colored solid lines: median estimates, and colored dash lines:

95% confidence intervals of highest posterior densities). The vertical lines show the time to
the most recent common ancestor (solid lines: median, and dotted lines: lower estimates).
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Figure 3
Results of Genetic Landscape Shape interpolation analyses of each clade of Bufo
japonicus and B. torrenticola.

Warmer colors indicate higher genetic diversities between individuals. White circles indicate
the localities of samples used for Genetic Landscape Shape interpolation analyses. The maps
were created in QGIS 3.16 (https://qgis.org).
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Figure 4
Predicted suitable distributions under the last glacial maximum (LGM; CCSM and MIROC
scenarios) and present conditions for Bufo japonicus and B. torrenticola.

Warmer colors indicate higher probabilities of occurrence. The maps were created using R
package mapdata version 2.3.0 (Becker, Wilks & Brownrigg, 2018).
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Table 1(on next page)

Genetic diversity indices and neutrality tests for all populations of the five clades of
Bufo japonicus and Bufo torrenticola based on the cytochrome b genes.
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Fu’s FS

 N Na Hd ± SD π ± SD
FS p-value

clade A1 13 12 0.99 ± 0.04 0.006 ± 0.003 -5.46* 0.0061

clade A2 33 29 0.99 ± 0.01 0.006 ± 0.003 -24.10* 0

clade A3 83 57 0.98 ± 0.01 0.007 ± 0.004 -24.83* 0

clade B1 45 36 0.99 ± 0.01 0.008 ± 0.004 -23.06* 0

B
u
fo

 j
a
p
o
n
ic

u
s

clade B2 28 26 0.99 ± 0.01 0.005 ± 0.003 -24.34* 0

Bufo torrenticola 25 19 0.97 ± 0.02 0.006 ± 0.003 -8.15* 0.0018

1 N, number of individuals; Na, number of haplotypes; Hd, haplotype diversity; π, nucleotide 

2 diversity; SD, standard deviation. Asterisks indicate significant p-values (p < 0.01).
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Table 2(on next page)

Niche similarity score of Schoener's D (above diagonal) and Hellinger's I (below
diagonal) obtained from known occurrences between lineages of B. japonicus and B.
torrenticola.
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A1 A2 A3 B1 B2 torrenticola

A1 0.45 0.26 0.22 0.04 0.20

A2 0.72 0.57 0.47 0.16 0.37

A3 0.52 0.83 0.59 0.21 0.48

B1 0.48 0.77 0.85 0.37 0.51

B2 0.18 0.41 0.49 0.68 0.25

torrenticola 0.46 0.69 0.76 0.78 0.53

1
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Table 3(on next page)

Results of background similarity tests.

The t- and p-values in two-tailed t-tests, and whether the observed niche similarities are
more or less similar than expected by chance (p < 0.01) are shown.
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lineage for the background distribution

A1 A2 A3

t-value p-value similarity t-value p-value similarity t-value p-value similarity

A1 -4.06 1.E-04 more -8.48 2.E-13 more

A2 0.36 0.72 NS -3.43 9.E-04 more

A3 -20.32 2.E-16 more -8.69 8.E-14 more

B1 -15.20 2.E-16 more -837.44 2.E-16 more -29.88 2.E-16 more

B2 -32.92 2.E-16 more -29.73 2.E-16 more -13.25 2.E-16 moreS
ch

o
en

er
's

 D

torrenticola -26.40 2.E-16 more -23.64 2.E-16 more -69.19 2.E-16 more

A1 -1.10 0.27 NS -3.20 2.E-03 more

A2 -1.44 0.15 NS 1.52 0.13 NS

A3 -16.50 2.E-16 more -5.79 8.E-08 more

B1 -15.08 2.E-16 more -434.87 2.E-16 more -25.06 2.E-16 more

B2 -37.04 2.E-16 more -27.28 2.E-16 more -10.02 2.E-16 more

li
n
ea

g
e 

fo
r 

th
e 

o
b
se

rv
ed

 d
is

tr
ib

u
ti

o
n

H
el

li
n
g
er

's
 I

torrenticola -22.78 2.E-16 more -20.86 2.E-16 more -56.47 2.E-16 more

lineage for the background distribution

B1 B2 B. torrenticola

t-value p-value similarity t-value p-value similarity t-value p-value similarity

A1 -43.23 2.E-16 more 32.67 2.E-16 more -17.43 2.E-16 more

A2 -37.68 2.E-16 more -5.29 7.E-07 more 15.41 2.E-16 less

A3 -20.50 2.E-16 more 13.92 2.E-16 less 31.92 2.E-16 less

B1 -15.64 2.E-16 more 53.89 2.E-16 less

B2 -7.63 1.E-11 more 4.45 2.E-05 lessS
ch

o
en

er
's

 D

torrenticola -36.69 2.E-16 more -24.64 2.E-16 more

A1 -38.55 2.E-16 more -19.32 2.E-16 more -20.14 2.E-16 more

A2 -30.82 2.E-16 more -7.38 5.E-11 more 7.02 3.E-10 less

A3 -19.02 2.E-16 more 12.98 2.E-16 less 35.61 2.E-16 less

B1 -18.25 2.E-16 more 63.10 2.E-16 less

B2 -4.01 1.E-04 more 10.53 2.E-16 less

li
n
ea

g
e 

fo
r 

th
e 

o
b
se

rv
ed

 d
is

tr
ib

u
ti

o
n

H
el

li
n
g
er

's
 I

torrenticola -30.27 2.E-16 more -25.15 2.E-16 more

1
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