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ABSTRACT
Using a model organism (rabbits) that resembles a number of mammalian herbivores
in key aspects of its chewing behaviors, we examined how variation in dietary
mechanical properties affects food breakdown during mastication. Such data have
implications for understanding phenotypic variation in the mammalian feeding
apparatus, particularly with respect to linking jaw form to diet-induced repetitive
loading. Results indicate that chewing frequency (chews/s) is independent of food
properties, whereas chewing investment (chews/g) and chewing duration(s), which
are proportional to repetitive loading of the jaws, are positively related to food
stiffness and toughness. In comparisons of displacement-limited and stress-limited
fragmentation indices, which respectively characterize the intraoral breakdown of
tough and stiff foods, increases in chewing investment and duration are linked solely
to stiffness. This suggests that stiffer foods engender higher peak loads and increased
cyclical loading. Our findings challenge conventional wisdom by demonstrating
that toughness does not, by itself, underlie increases in cyclical loading and loading
duration. Instead, tough foods may be associated with such jaw-loading patterns
because they must be processed in greater volumes owing to their lower nutritive
quality and for longer periods of time to increase oral exposure to salivary chemicals.

Subjects Anthropology, Evolutionary Studies, Paleontology, Zoology, Anatomy and Physiology
Keywords Mammals, Masticatory system, Food mechanical properties, Diet, Cyclical/repetitive
loading, Jaw loading patterns, Chewing parameters, Mandibular morphology, Rabbits

INTRODUCTION
Prolonged oral preparation and processing of foodstuffs is a hallmark of mammals. The

functional complexity of the jaw-closing muscles and morphological diversity of the

dentition are designed to expose the nutritious portion of a food item to salivary chemicals

in the oral cavity. Biting and chewing serve to facilitate oral fragmentation, resulting in

increasingly smaller food particles that are eventually swallowed and then further exposed
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to digestive enzymes in the alimentary canal. Apart from dental specializations to augment

food fragmentation and maintain tooth function during an organism’s lifetime (Kay, 1975;

Lucas, 2004), a mechanically challenging diet may require larger bite and jaw-muscle forces

and/or a greater number of chewing cycles to break down a resistant item into sufficiently

small pieces for swallowing and further digestion. Variation in jaw-muscle activity patterns

affects the magnitude and frequency of muscle, and ultimately bite, forces imparted to a

food item and masticatory elements throughout a chewing sequence. For these reasons, it

has been long hypothesized that feeding behavior and jaw morphology are dictated by food

mechanical properties (Hylander, 1979a; Hylander, 1979b).

Understanding such functional relationships allows us to address evolutionary variation

in the mammalian masticatory complex. Indeed, jaw form is frequently employed to make

inferences about ecology and feeding behavior in extinct species (e.g., Demes & Creel,

1988; Daegling & Grine, 1991; Janis, 1995; Menegaz et al., 2009; Gill et al., 2014; Scott et al.,

2014a; Ravosa et al., 2015). This reflects the large literature linking diet and jaw form in

extant species (Hylander, 1979b; Bouvier & Hylander, 1981; Daegling, 1992; Lieberman et

al., 2004; Ravosa & Hogue, 2004; Ravosa et al., 2007; Scott, Hogue & Ravosa, 2012; Scott et

al., 2014a), and the fact that mandibles are one of the most commonly preserved elements

in the fossil record. Nonetheless, the strength of the connection between diet and jaw form

has been questioned, highlighting the intervening factors that undermine the generality of

such functional associations (Ross, Iriarte-Diaz & Nunn, 2012). Others have underscored

the limitations of morphological inference in paleobiology, advocating an experimental

and multifactorial perspective for understanding dietary effects on masticatory form

(Ravosa et al., 2015).

Thus, despite a sizable body of prior experimental and comparative work, there remain

a number of significant gaps in our understanding of the functional links among dietary

properties, chewing patterns, and jaw form in living and fossil mammals. Continued

difficulty with inferring the adaptive basis of phylogenetic transformations in the feeding

apparatus is related to two shortcomings of the current evidence regarding dietary

determinants of masticatory form and function. The first is the fact that infrequent,

high-magnitude forces imparted to bone are expected to engender the same physiological

and evolutionary responses as lower-magnitude, cyclical loading (Bouvier & Hylander,

1981; Lanyon & Rubin, 1985; Biewener, 1993; Turner, Forwood & Otter, 1994). A second and

related issue pertains to an incomplete understanding of the impact of food mechanical

properties on variation in chewing behaviors that may underlie load-related variation

in jaw morphology. Uncertainty in how dietary mechanical properties differentially

influence peak loads versus cyclical loading represents a significant impediment to

integrating existing experimental, comparative, and ecological information regarding

feeding behavior in mammals.

In terms of the respective roles of loading magnitude and repetitive loading on bone

formation in the masticatory complex, considerably more experimental information is

available regarding the former. In mammals, cortical bone modeling and remodeling

in the mandible is associated with routine oral processing of stiff and/or tough foods
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Table 1 Mean values for mandibular peak-strain data in mammals (available only for rabbits and primates) recorded while processing various
experimental foods, with corresponding mean food mechanical properties and fragmentation indicesa.

Species Food W–S corpus shear
strainb (γ )

Elastic modulusc

(E, MPa)
Toughnessd

(R,Jm−2)

Stress-limited indexe

([E ∗ R]0.5)
Displacement- limited
indexe ([R/E]0.5)

Rabbit Hay (wet/dry) 604 227.8/3,335.6 1,759.2/2,759.8 633.0/3,034.1 2.8/0.9

(Oryctolagus) Pellet 590 29.2 1,030.6 173.5 5.9

Carrot 297 6.9 343.9 48.7 7.1

Galago Monkey chow 1,459 50.4 1,030.6 228.0 4.5

(Otolemur) Gummy bear 1,140 0.1 1,709.7 10.9 156.3

Prune 565 0.5 345.7 12.8 27.1

Raisin 494 0.2 306.6 8.2 37.3

Owl monkey Gummy bear 1,107 0.1 1,709.7 10.9 156.3

(Aotus) Prune 1,063 0.5 345.7 12.8 27.1

Apple skin 733 12.9 662.9 92.4 7.2

Macaque Monkey chow 775 50.4 1,030.6 228.0 4.5

(Macaca) Popcorn kernel 705 325.4 2,978.8 984.5 3.0

Apple skin 509 12.9 662.89 92.4 7.2

Notes.
a By definition, stiff items exhibit a high elastic modulus (E). Because such food items experience little strain at high stresses, they influence oral fragmentation in a

particular way characterized as stress-limited (Lucas, 2004; Williams et al., 2005). In contrast, when a food item exhibits greater toughness (R) and thus requires higher
strains to fragment, oral breakdown of the bolus is displacement-limited. Fragmentation indices for displacement-limited ([R/E]

0.5) and stress-limited ([E ∗R]
0.5) foods

reflect the toughness and stiffness, respectively, of an item.
b Rabbit data for the working-side (W-S) mandibular corpus are from Weijs & De Jongh (1977), while similar data for primates are from Hylander et al. (1998).
c Data for hay and pellets are from Ravosa et al. (2007), while the remaining data are from Williams et al. (2005).
d Data for hay are from Ravosa et al. (2007), whereas the remaining data are from Williams et al. (2005). Data for monkey chow are used to represent toughness for pellets.
e Data are calculated based on mean values for stiffness and toughness presented in this table.

(e.g., Beecher & Corruccini, 1981; Bouvier & Hylander, 1981; Bouvier & Hylander, 1996; He

& Kiliaridis, 2003; Lieberman et al., 2004; Ravosa et al., 2007; Ravosa et al., 2015; Scott et

al., 2014a; Scott et al., 2014b). This research shows that postnatal variation in diet-related

jaw-loading patterns has a marked influence on masticatory bone formation on par with

levels of morphological variation between sister taxa that vary in dietary proclivities in the

wild (Scott et al., 2014a; Scott et al., 2014b; Ravosa et al., 2015).

In those mammals for which there are sufficient intraspecific data to evaluate the

influence of food mechanical properties on variation in peak-strain magnitudes along

the mandible, higher bone-strain levels tend to occur during the postcanine chewing

and biting of tough and/or stiff foods in comparison to weak, brittle foods (Table 1).

Bone strain on the working (i.e., chewing) side of the mandible is proportional to

variation in bite-force magnitudes (Weijs & De Jongh, 1977; Hylander, 1979a; Hylander,

1979b; Hylander, 1986; Hylander et al., 1998; Ross et al., 2007; Ravosa et al., 2010; Rafferty

et al., 2012). This finding, coupled with field data regarding food properties and bite

forces in bamboo lemurs (Vinyard, Yamashita & Tan, 2008) and peccaries (Kiltie, 1982),

highlights the positive association between dietary properties and peak masticatory loads.

Finally, experimental and comparative data indicate that mammals that routinely ingest

stress-limited (i.e., stiff) and/or displacement-limited (i.e., tough) foods typically exhibit

relatively larger jaws to counter elevated peak masticatory stresses (e.g., Freeman, 1979;

Ravosa et al. (2015), PeerJ, DOI 10.7717/peerj.1345 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1345


Figure 1 Relationships among bite-force magnitude, chewing cycle length and chewing frequency
when the latter two parameters are the same for hard or tough vs. soft foods (A) or different between
such foods (B). (A) Rate of force generation (= slope) is modified to produce a larger peak bite force for
hard foods, with chewing cycle and chewing frequency being similar. In this scenario, chewing frequency
will vary independent of chewing duration (and also chewing investment). (B) Rate of force generation
is constant, but chewing cycle and chewing frequency differ due to the disparity in peak forces used to
process hard/tough vs. soft foods. In this case, as chewing frequency is lower during the processing of
hard/tough foods, this will also result in consequent increases in overall chewing duration. In vivo strain
data for mammals support the model at left where chewing frequency is independent of food properties
and peak bite-force magnitudes (Ross et al., 2007).

Hylander, 1979b; Bouvier, 1986; Biknevicius & Ruff, 1992; Daegling, 1992; Spencer, 1995;

Ravosa & Hogue, 2004; Hogue, 2008; Taylor, Vogel & Dominy, 2008; Vinyard, Yamashita &

Tan, 2008). A similar argument exists regarding variation in mandibular symphyseal fusion

in mammals (Scott, Hogue & Ravosa, 2012).

During mastication of mechanically challenging food items, the generation of a

larger bite force during a chewing cycle can be attained by increasing the rate of force

generation (Fig. 1A) and/or by increasing the time to peak force (Fig. 1B). In the former

case, chewing frequency is independent of dietary properties, due perhaps to constraints

on the neuromotor control of rhythmic jaw movements (e.g., Ross et al., 2007). In the

latter scenario, chewing frequency is inversely correlated with food properties, which

results in greater overall chewing duration incurred processing tough and stiff items.

Food mechanical properties can also positively affect chewing duration by modulating

chewing investment, which is the number of chewing cycles during oral breakdown

of a given amount of food (Figs. 1 and 2A). Variation in all three chewing parameters

(frequency, investment, duration) directly determines the loading environment experienced

by masticatory elements like the mandible. Diet-induced alterations in jaw-loading

patterns are known to influence bone formation throughout the oral cavity, which

maps onto evolutionary variation in masticatory structures (Bouvier & Hylander, 1981;
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Figure 2 Controlling for variation in bite-force magnitudes, hypothesized relationships between
chewing cycle length and chewing frequency when both parameters are the same for hard/tough
vs. soft foods (A) or different between such foods (B). (A) Chewing cycle and chewing frequency are
both similar, which means that increases in chewing duration of hard/tough foods are due solely to
greater chewing investment and, in turn, cyclical loading. (B) Rate of force generation to orally process
hard/tough vs. soft foods differs, such that chewing cycle and chewing frequency differ. In this scenario,
chewing duration will be positively correlated with chewing cycle length and inversely related to chewing
frequency.

Lieberman et al., 2004; Ravosa et al., 2007; Ravosa et al., 2015; Menegaz et al., 2009;

Scott et al., 2014a; Scott et al., 2014b).

Independent of variation in bite-force levels, there are two ways that dietary properties

are hypothesized to affect cyclical or repetitive loading (Fig. 2). One is by modulating

chewing frequency, which would alter the number of chewing cycles over a given time

period and thus potentially increase the length of a chewing sequence or chewing

duration. The second way to influence cyclical loading is via the alteration of chewing

investment, which would modify the number of chewing cycles per unit of food mass

(i.e., chews/gram) and thus affect chewing duration; this need not result in the alteration of

chewing frequency.

Cyclical loading is commonly invoked to explain mandibular robusticity in mammals

(Hylander, 1979b; Hylander, 1988; Bouvier & Hylander, 1981; Demes & Creel, 1988;

Daegling & Grine, 1991; Ravosa & Hogue, 2004; Laden & Wrangham, 2005; Hogue, 2008;

Janis et al., 2010; Scott et al., 2014a; Scott et al., 2014b). However, in contrast to data on the

role of peak loads, there is no empirical evidence regarding the extent to which toughness

and stiffness influence variation in the number of chewing cycles required to orally process

a given food item and, thus, how these mechanical properties affect the duration of a given

chewing sequence (Fig. 2). This surprising lack of key behavioral data on cyclical loading

for any mammal represents a critical gap in our knowledge of feeding biology that has

Ravosa et al. (2015), PeerJ, DOI 10.7717/peerj.1345 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1345


hindered interpretations of phenotypic variation in diverse living and extinct taxa. For

example, data regarding the role of dietary properties on cyclical loading are central for

assessing ongoing debate about hominin evolution (Daegling et al., 2011; Daegling et al.,

2013; Strait et al., 2013; Macho, 2014; Scott et al., 2014a; Smith et al., 2015) and differences

in jaw form between artiodactyls and perissodactyls (Janis et al., 2010). In this study, we

examine how variation in dietary mechanical properties affects cyclical loading during

mastication in the New Zealand white rabbit (Oryctolagus cuniculus). Our results provide

the first experimental evidence linking cyclical loading, long-argued to be a major determi-

nant of jaw form in living and fossil mammals, to a specific food mechanical property.

MATERIALS & METHODS
Sample
Our sample consisted of adult white rabbits. This species is an excellent model organism

because it resembles many other mammalian herbivores in functionally important aspects

of its physiology and chewing behavior, including cortical bone modeling and remodeling,

transverse jaw movements, elevated levels of balancing-side jaw-adductor muscle force,

and diet-related covariation in jaw-adductor muscle activity and mandibular bone-strain

patterns (e.g., Herring & Scapino, 1973; Weijs & De Jongh, 1977; Weijs & Dantuma, 1981;

Hylander, Johnson & Crompton, 1987; Hylander, Johnson & Crompton, 1992; Hylander et

al., 1998; Hylander et al., 2000; Weijs, Brugman & Grimbergen, 1989; Hirano et al., 2000;

Herring et al., 2001; Herring et al., 2008; Rafferty et al., 2012). The masticatory apparatus

of O. cuniculus also conforms to the morphological pattern seen in many other herbivores

in possessing a jaw joint elevated high above the occlusal plane that is capable of rotational

and translational movements, a vertically deep face, limited gape, and an anteriorly

positioned masseter muscle.

Adulthood was defined as skeletal maturity, which is attained at about six months of age

in this species (Sorensen, Rogers & Baskett, 1968; Yardin, 1974). All subjects were housed at

the University of Notre Dame’s (ND) animal care facility, Freimann Life Science Center,

which is USDA-licensed, AAALAC-accredited, and subject to periodic inspections. All

procedures used in this study were approved by ND’s Institutional Animal Care and Use

Committee (protocol# 14-04-1739). Day-to-day care of the animals, including monitoring

of their health, was handled by trained veterinary staff.

Data
The experimental foods used in this study included rabbit pellets, carrots, and hay. The

effects of these foods on variation in mandibular strain patterns recorded in vivo for

rabbits are well known (Table 1). In comparison to carrots, hay and pellets result in greater

jaw-muscle activity and higher mandibular bone strain in rabbits (Weijs & De Jongh,

1977; Weijs & Dantuma, 1981; Weijs, Brugman & Grimbergen, 1989), with consequent

diet-induced increases in the proportions of masticatory structures during postweaning

ontogeny (Ravosa et al., 2007; Menegaz et al., 2009; Scott et al., 2014a; Scott et al., 2014b).

The mechanical properties of these foods fall within the range of values for foods ingested
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by, for example, wild primates (Williams et al., 2005), which also exhibit diet-related

covariation in jaw-adductor muscle activity and mandibular bone-strain patterns (Table 1;

Hylander, Johnson & Crompton, 1987; Hylander, Johnson & Crompton, 1992; Hylander et al.,

1998; Hylander et al., 2000).

Prior data on the mechanical properties of the experimental foods indicate that hay is

the most mechanically challenging of the three, being tougher (higher fracture toughness,

R) and stiffer (higher elastic modulus, E) than pellets and carrots, with pellets being

tougher and stiffer than carrots (Williams et al., 2005; Ravosa et al., 2007) (Table 1). Wet

hay, which models exposure to saliva, is an order of magnitude stiffer than pellets, while

dry hay has an elastic modulus two orders of magnitude greater than pellets (Ravosa et

al., 2007). Carrots are significantly less tough and less stiff than pellets and especially

hay (Table 1). The toughness of small rabbit pellets is technically difficult to quantify,

but a reasonable estimate is the toughness value for monkey chow, which has an elastic

modulus roughly similar to that of pellets (Table 1) (Williams et al., 2005; Ravosa et

al., 2007). Using stiffness and toughness values, we calculated stress-limited ([R ∗ E]
0.5)

and displacement-limited ([R/E]
0.5) fragmentation indices, which reflect the mechanical

conditions dictating the rate of intraoral breakdown of a given food item due respectively

to its stiffness and toughness (Lucas, 2004; Williams et al., 2005).

Feeding experiments typically occurred in the morning as part of the daily feeding

schedule and did not require prior fasting. As data collection opportunistically employed

rabbits from other ongoing projects, not all rabbits received the three food types, but

each subject received at least two. Therefore, sample sizes vary for each food. Behavioral

observations consisted of a feeding bout where a single rabbit was initially offered a given

mass (g) of a particular food. The duration of a bout was considered to be paused when the

subject stopped chewing and restarted if the subject began chewing again. The chewing

bout was considered finished when the subject stopped chewing for several seconds,

swallowed its food, and no longer expressed interest in any remaining food, which was

collected and weighed to determine the amount consumed. The length of time spent

chewing is referred to as chewing duration (s). Once the initial feeding bout ended, the

subject was then fed a quantity of a second experimental food that was equal in mass to the

amount of the first experimental food that the subject consumed; this procedure was then

repeated for the third experimental food (for subjects that received all three), although in

some cases feeding experiments were completed on consecutive days. The bolus size of all

three foods was roughly similar. Thus, while the quantity of food ingested varied among

rabbits, it did not vary for a given subject over the course of a given suite of experiments.

In all cases, a subject was filmed at 60 frames per second using a digital video recorder.

The video footage was used to obtain an additional chewing parameter during the

processing segment of each feeding bout: chewing frequency (chews/s). Feeding sequences

represent earlier phases of mastication—i.e., once a food bolus was formed intraorally and

jaw closing was observed—and consisted of a minimum of 10 chewing cycles. Chewing

frequency was averaged over a given feeding bout, as defined above. A third parameter

was computed by multiplying chewing frequency by chewing duration for each feeding
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bout and dividing the product by the consumed food mass. This parameter is therefore

the number of chews scaled by the amount of food consumed and is referred to as chewing

investment (chews/g). The raw data collected from these experiments are available in

Tables S1–S3.

Analysis
We initially examined our data by comparing chewing parameters within individuals using

ratios that expressed a given parameter for one type of food versus the same parameter for

another food. Such ratios were computed with the more mechanically challenging food

as the numerator: e.g., hay chewing investment divided by pellet chewing investment.

Because only some individuals received all three food types, the number of individuals

for which each ratio could be calculated varied: hay-pellet ratios, n = 14; pellet-carrot

ratios, n = 13; hay-carrot ratios, n = 4. These within-subject ratios facilitated a critically

important control of between-individual variation in functional ability to chew foods

of different mechanical properties, absent from prior experimental studies of chewing

patterns (e.g., Hylander, Johnson & Crompton, 1992; Hylander et al., 1998; Hylander et al.,

2000; Ross et al., 2007). Such information reveals functional patterns that are potentially

obscured when incomplete behavioral and physiological data are pooled for intraspecific

and interspecific analyses of dietary effects.

Within each of the three chewing parameters, these ratios are directly comparable

among individual subjects and were pooled for analysis. To evaluate whether a given ratio

differed significantly from 1.0, we generated 95% confidence limits for the mean ratio

using the bootstrap (percentile method) with 1,000 iterations. A ratio not significantly dif-

ferent from 1.0 indicates the absence of a dietary influence on that chewing variable. Due

to small sample size (n = 4), confidence limits were not used for hay-carrot comparisons;

in this instance, the range of values is presented. In cases where a ratio differed from 1.0,

we evaluated the relationship of the corresponding parameter with the food mechanical

properties (E,R) and fragmentation indices ([E ∗ R]
0.5,[R/E]

0.5; see Table 1) using a linear

mixed-effects model, with subject entered as a random effect. This procedure was used

because it can handle samples consisting of repeated observations of the same individuals

along with missing data (Baayen, Davidson & Bates, 2008), both of which present problems

for standard ANOVA and regression approaches. Linear mixed-effects models were

computed using the nlme package (version 3.1–120; Pinheiro et al., 2015) for R (R Core

Team, 2014). Data were logged (base e) for analysis to reduce heteroscedasticity and to

improve the linear relationship between mechanical properties and chewing parameters.

RESULTS
Our data indicate that chewing frequency does not vary among the experimental foods.

As shown in Table 2, within-individual ratios of chews per second for one food versus

another are not statistically different from 1.0. On the other hand, our findings show

that chewing investment and chewing duration differ among the experimental foods.

Within-individual ratios of chewing investment and chewing duration for one food versus

another are statistically different from 1.0 in all cases, with more mechanically challenging
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Table 2 Means, sample sizes, and 95% confidence intervals for within-individual chewing-parameter
ratiosa.

Comparison Chewing frequency
(chews/s)

Chewing duration
(s)

Chewing investment
(chews/g)

Hay/carrots 0.96 (n = 4, 0.84–1.11) 9.02 (n = 4, 7.10–10.81) 8.53 (n = 4, 7.47–9.67)

Hay/pellets 0.99 (n = 12, 0.97–1.01) 3.22 (n = 14, 2.79–3.68) 2.95 (n = 12, 2.58–3.35)

Pellets/carrots 1.06 (n = 13, 1.00–1.10) 2.20 (n = 13, 1.93–2.52) 2.32 (n = 13, 2.01–2.61)

Notes.
a Due to small sample sizes, confidence limits were not generated for hay-carrot comparisons; in this instance, the range

of values is presented.

items requiring more time and investment in each comparison (Table 2). These disparities

in time and investment range from pellets having values that are approximately twice

as large as those for carrots, to hay having values that are 8–9 times greater than those

for carrots. Note that because chewing frequency is similar among the foods, chewing

duration and chewing investment are redundant measures, given that the latter parameter

is computed using the former along with chewing frequency (and scaled by food mass).

Accordingly, we focus on chewing investment in the remainder of the analysis.

Figure 3 illustrates the relationships between individual chewing investments and the

mean food mechanical properties and fragmentation indices. Here, we are comparing

chewing investment rather than ratios of chewing investments for particular foods.

Because chewing investment is scaled by food mass, it can be compared across individuals,

unlike chewing duration. Analysis of these data using the linear mixed-effects model

indicates that chewing investment is positively and significantly (p < 0.0001) related to

elastic modulus (E), toughness (R), and the stress-limited index ([R ∗ E]
0.5), but inversely

related (p < 0.0001) to the displacement-limited index ([R/E]
0.5). All individuals exhibit

this pattern, but note that there is between-individual variation in chewing investment

within each food type. It is also apparent that the relationships involving R and the

displacement-limited index are not strictly linear, but the directions of their associations

with chewing investment are nonetheless clear.

DISCUSSION
There are two ways that dietary properties might influence repetitive loading of the jaws.

One is by modulating chewing frequency, which would alter the number of chewing cycles

over a given time period and thus potentially affect the duration of a chewing sequence

(Figs. 1 and 2). The second means of influencing repetitive loading is via the alteration

of chewing investment, which would modify the number of chewing cycles per unit of

food mass (i.e., chews per gram) and ultimately influence overall time spent chewing

(i.e., chewing duration); this need not result in the alteration of chewing frequency. Of

course, some combination of both effects is possible.

Our analyses indicate that chewing frequency did not vary among the experimental

foods (Table 2), averaging about 4 Hz for each of three mechanically distinct foods. These

values are comparable to those observed in a prior investigation of rabbit chewing behavior
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Figure 3 Relationships between chewing investment (chews/g) and food mechanical properties (elas-
tic modulus, E; toughness, R) and oral fragmentation indices (stress-limited, [E ∗R]0.5; displacement-
limited, [R/E]0.5). P-values generated using a linear mixed-effects model are provided. All data are
logged (base e). Black circles represent subjects that were given only two of the experimental foods; the
values for each of these subjects are connected with dashed black lines. Red triangles indicate individuals
that were given all three experimental foods; the values for each of these subjects are connected with solid
red lines. Note that individuals with three data points are similar to individuals represented by only two
data points.

(Anderson, Hector & Linden, 1985). Because previous studies have not employed strict

control of behavioral and dietary data for subjects used to characterize a given species,

our findings provide perhaps the best support to date for the hypothesis that chewing

frequency is independent of variation in food properties (Ross et al., 2009a; Ross et

al., 2009b). This observation likewise strongly supports an earlier suggestion that the

generation of greater occlusal forces, which vary in proportion to chewing cycle and jaw

loading/unloading, occurs largely by increasing the rate of force production, rather than by

lengthening the duration of a given chewing cycle and thus decreasing chewing frequency

(Ross et al., 2007) (Fig. 1).

In contrast to the results for chewing frequency, there is a clear relationship between

food mechanical properties and chewing investment and duration (Table 2, Fig. 3). First,

hay, which is the stiffest and toughest food examined herein, required more chews per

gram and therefore relatively longer chewing bouts than pellets and carrots. Second,
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pellets, which are stiffer and tougher than carrots, required more chews per gram and

longer chewing bouts than carrots. Unexpectedly, comparisons of oral fragmentation in-

dices for the experimental foods indicate that while higher stress-limited indices uniformly

characterize foods that require more chews per gram, displacement-limited indices are, in

contrast to predictions, lower for such foods. In other words, whereas chewing investment

increases with stiffness, toughness, and the stress-limited index, the displacement-limited

index is negatively related to chewing investment (Fig. 3). This contrast between the

displacement-limited index and the other variables suggests that chewing investment—

and by extension, chewing duration—is driven primarily by the elastic modulus.

However, chewing investment is also positively associated with R, and the stress-limited

index is computed using both E and R. These two variables are also correlated among

the foods used in this study (i.e., as E increases from carrot to hay, so does R; Table 1).

Therefore, to further evaluate the influence of food mechanical properties on chewing

investment, we constructed a linear mixed-effects model with E and R both entered into

the analysis as independent variables. The results of this test support the conclusion that

elastic modulus is the primary influence on variation in chewing investment in our sample:

E remains significantly positively related to chewing investment (p < 0.0001) in this model,

whereas R is no longer significant (p = 0.4259). This result does not depend on the order

in which E and R are entered into the model. Taken as whole, our results reveal the singular

importance of stiffness (elastic modulus) as a determinant of diet-related disparities in

chewing patterns for rabbits.

Reconstructing feeding behavior in extinct species
As noted in the introduction, one of the motivations for our experimental work on rabbit

feeding biology is to refine and improve the neontological comparative framework that

is used to link phenotypic variation in jaw morphology to ecology and behavior in fossil

species (Ravosa et al., 2007; Ravosa et al., 2015; Menegaz et al., 2009; Scott et al., 2014a;

Scott et al., 2014b). Based on the well-established positive association between bite-force

magnitudes and food stiffness in extant mammals (Weijs & De Jongh, 1977; Hylander,

1979a; Hylander, 1979b; Hylander, 1986; Hylander et al., 1998; Ross et al., 2007; Ravosa et

al., 2010; Rafferty et al., 2012), increases in jaw robusticity can be reasonably interpreted

as an evolutionary or plastic response to generating high-magnitude loads in cases where

other lines of evidence suggest that hard objects (e.g., seeds, nuts) are a component of

a fossil species’ diet. However, given that our data implicate the elastic modulus, and

thus the stress-limited characteristics of hard, stiff foods, as an important determinant of

cyclical loading of the jaws in mammals, it is likely that heavily buttressed jaws of suspected

hard-object-feeding fossil species also reflect repetitive loading. In other words, attempts

to tie the jaw morphology of fossil hard-object feeders to either high-magnitude forces

or repetitive loading may not be possible, because both of these regimes play a role in

breaking down such foods. Moreover, while it is often assumed that repetitive loading is

linked primarily with dietary toughness (e.g., Hylander, 1979b; Hylander, 1988; Demes &
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Creel, 1988; Daegling & Grine, 1991; Lucas, 2004; Daegling et al., 2011; Ungar & Sponheimer,

2011), our data challenge this assumption.

Although our results indicate that increasing toughness, by itself, does not appear to be

associated with greater chewing investment, we are hesitant to reject a link between tough

foods and repetitive loading and concomitant increases in jaw robusticity in mammals.

Rather, we hypothesize that nonmechanical factors may lead to greater cyclical loading

of the jaws of species with diets that can be generally characterized as tough, such as

grazers, browsers, and folivores. Many tough foods are recognized as being relatively

low in quality, with reduced nutritive properties and potential limits on digestibility,

requiring consumption in large quantities to meet basic metabolic and nutritional

demands. Shifting to such a diet from one that is more nutrient-rich will result in increased

intraoral processing and greater repetitive loading of masticatory elements, resulting in

a more robust mandible (see also Macho, 2014). According to this line of reasoning,

there is an indirect relationship between dietary toughness and repetitive loading that is

mediated by a correlation between toughness and nutritional properties in low-quality

foods. This suggestion is consistent with behavioral evidence that herbivores that rely on

tough, low-quality foods spend a relatively large portion of each day engaged in feeding

activities (Demment & Van Soest, 1985; Sailer et al., 1985; Wright et al., 2008). Thus,

displacement-limited and stress-limited foods may both lead to similar levels of repetitive

loading and increases in jaw robusticity but for different reasons. This observation presents

a challenge with regard to using jaw form to make specific inferences about feeding

behavior in fossil species (Ross, Iriarte-Diaz & Nunn, 2012), and it highlights the need

to consider multiple lines of evidence (Ravosa et al., 2015).

Dental morphology and cyclical loading
One issue not addressed by our study is the potentially important role that dental form

plays in chewing investment and cyclical loading. Mammals that masticate tough leaves

tend to have long, well-developed molar shearing crests, whereas species that exploit

hard fruits and seeds tend to have bunodont teeth with much shorter and blunter crests

(Kay, 1975; Kay, 1978; Walker & Murray, 1975; Sheine & Kay, 1977; Sheine & Kay, 1982;

Strait, 1998; Hogue & ZiaShakeri, 2010). Because “the working surface of the molars

have a strong effect on the physiological rate of breakdown” (Lucas, 2004, p. 167), it is

likely that variation in molar relief translates into intra- and interspecific disparities in

chewing investment for different types of foods. Specifically, we speculate that taxa with

trenchant shearing crests will be more effective at processing displacement-limited foods

(i.e., chewing investment will be lower) than they are at processing stress-limited foods.

For such species, the stress-limited index of a given food may be a greater determinant of

chewing investment. Our results are consistent with this idea: rabbits have well-developed

postcanine shearing blades (e.g., Von Koenigswald et al., 2010) like other mammalian

herbivores, and they are, according to our data, limited more by the elastic modulus than

by dietary toughness. A priority for future research should be to collect similar data on

chewing behavior in a mammal with bunodont molars to evaluate whether the converse
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pattern holds—that such species are more effective at processing stress-limited foods

versus displacement-limited foods, and that dietary toughness differentially drives chewing

investment. Interestingly, it has been argued that prolonged milling and grinding in robust

australopiths would have been necessary when consuming tough foods due to the fact

that their low-cusped molars are poorly designed for shearing such items vis-a-vis the

high-cusped molars of extant primate folivores (Ungar et al., 2010).

Thus, apart from being directly linked to food mechanical properties, cyclical loading

due to higher chewing investment might be a consequence of a molar shape that is less

effective at fracturing certain mechanically challenging foods (due to functional trade-offs

or phylogenetic constraints). We were not able to incorporate data on occlusal relief

and crest development for the experimental subjects included this study, but future

investigations might use such information to inform inter- and intraspecific analyses

of diet, food breakdown, and chewing patterns. By exploring direct and indirect effects

of food properties on cyclical loading, this integrative perspective will increase our

understanding of the complex links among diet, feeding performance, and mammalian

skull form. Development of such a multivariate approach is requisite for unraveling the

hierarchical suite of effects on masticatory form and function, an ongoing challenge that

continues to hinder advances in functional and evolutionary research on chewing patterns

such as cyclical loading (Ravosa et al., 2015).

CONCLUSIONS
Analysis of chewing patterns in rabbits suggests that repetitive loading in mammals is pro-

portional to dietary stiffness, but not related directly to dietary toughness. This conclusion

suggests that, while stiffer foods should result in higher peaks loads and elevated cyclical

loading during oral processing, a singularly tough item might only engender loads of

greater magnitude. These findings challenge conventional wisdom by demonstrating that

toughness does not, by itself, underlie increases in cyclical loading and loading duration.

Rather, nutritive factors may explain the apparent link between toughness and repetitive

loading. This association may be further modulated by variation in postcanine tooth

form. Since intra- and interspecific comparisons have the potential to obscure functional

signals clearly evident on an individual scale, which corresponds to the hierarchical

level at which selection and functional adaptation occurs, the broader experimental,

ecomorphological, and paleobiological implications of diet-related phenotypic patterns

require further attention. Additional experimental analyses of variation in the masticatory

complex of multiple clades will bring further resolution to our understanding of the

relative contribution of loading magnitude and cyclical loading on mammalian skull form.
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