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Although malformations are found in both extant organisms and the fossil record, they are
more rare in the fossil record than in living organisms, and the environmental factors
causing the malformations are much more difficult to identify for the fossil record. Two
athyrid brachiopod taxa from the Upper Devonian Hongguleleng Formation in western
Junggar (Xinjiang, NW China) show distinctive shell malformation. Of 198 Cleiothyridina
and 405 Crinisarina specimens, 18 and 39 individuals were deformed, respectively; a
deformity rate of nearly 10%. Considering the preservation status and buried environment
of the deformed specimens, and analysis of trace elements and rare earth elements from
whole-rock and brachiopod shells, we conclude that the appearance of deformed athyrids
may have been related to epi/endoparasites, or a low probability, that slightly high content
of heavy metal in the sea.
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Abstract
Although malformations are found in both extant organisms and the fossil record, they are more
rare in the fossil record than in living organisms, and the environmental factors causing the
malformations are much more difficult to identify for the fossil record. Two athyrid brachiopod
taxa from the Upper Devonian Hongguleleng Formation in western Junggar (Xinjiang, NW
China) show distinctive shell malformation. Of 198 Cleiothyridina and 405 Crinisarina
specimens, 18 and 39 individuals were deformed, respectively; a deformity rate of nearly 10%.
Considering the preservation status and buried environment of the deformed specimens, and
analysis of trace elements and rare earth elements from whole-rock and brachiopod shells, we
conclude that the appearance of deformed athyrids may-have been related to epi/endoparasites, or
alow probability, that slightly high content of heavy metal in the sea.
Introduction

Deformities are common in living organisms; the term usually refers to soft body or skeletal
tissue malformation of individuals that occur during ontogeny. However, malformations are
known from the fossil record too, and have been reported from individuals of different fossil
groups, including foraminifera (Ballent & Carignano, 2008), trilobites (Owen, 1985, Babcock,
1993), brachiopods (Copper, 1967; He et al, 2017), bivalves (Savazzi, 1995), gastropods
(Lindstrom & Peel, 2010), cephalopods (Mironenko, 2016), echinoderms (Thomka, Malgieri &
Brett, 2014), graptolites (Han & Chen, 1994), insects (Vrsansky, Liang & Ren, 2012), conodonts
(Weddige, 1990), shark teeth (ltano, 2013), amphibians (Witzmann et al., 2013), reptiles

(Buffetaut et al, 2007), primate teeth (Tougard <& Ducrocq, 1999), and plankton
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(Vandenbroucke et al., 2015; Bralower & Self-Trail, 2016). In addition to gene mutations or
embryonic developmental disorders, deformed fossils may also have resulted from healed
injuries and pathology (Owen, 1985, Babcock, 1993, Kelley Kowalewski & Hansen, 2003, Vinn,
2007, 2008). Malformed fossils provide important evidence of both organisms-organisms and
organisms-environment relationships during geological history. For example, malformed
specimens caused by predatory attacks provides us information about the food chain at that time
or about the position of prey in the ecological chain (Kelley Kowalewski & Hansen, 2003).
Moreover, some malformations resulting from diseases or developmental disorders are likely to
be related to the habitat of the organism, such as changes in environmental factors, and parasite,
viral or bacterial infection.

Although many malformed fossils have been described, deformed fossils (especially
macrofossils) are generally rare, with sometimes only one or two specimens known. Therefore,
previous studies have generally been limited to description of deformed specimens and simple
classification of the cause(s) of malformation, only in a few cases the relationship between
deformed specimens and their habitat has been discussed (Copper, 1967; Vandenbroucke et al.,
2015; Bralower & Self-Trail, 2016, He et al., 2017). Although many deformed fossils are
believed to result from developmental disorders or have pathological causes, the environmental
factors responsible for the developmental disorders or diseases are generally unknown. The low
number of malformed specimens available often limits further study. The Upper Devonian
succession in western Junggar, Xinjiang, NW China, contains abundant, well-preserved

brachiopods. We collected more than 600 athyrid (Cleiothyridina and Crinisarina) specimens
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from the Upper Devonian Hongguleleng Formation in the Buninuer section, of which nearly ten
percent of individuals were deformed. The aims of current study are to explore the biotic or
abiotic stressors of these malformed brachiopods, and the effect of change in environmental
factors on the brachiopod shells.
Materials and methods

The material studied in this paper was collected from the Upper Devonian Hongguleleng
Formation in western Junggar, Xinjiang. The Hongguleleng Formation is a widely distributed
marine unit near the Devonian—Carboniferous boundary in western Junggar. The formation is
divided into three members: the Lower Member is composed of thin bioclastic limestones,
muddy limestones and shales; the Middle Member is mainly made up of fine pyroclastic rocks
with a few sandy and muddy limestones; and the Upper Member consists of calcareous clastic
rocks with a small amount of bioclastic limestones (Hou et al., 1993). The formation is mostly
Famennian in age (Ma et al., 2017, Zong et al., 2020). In contrast to the general scarcity of
fossils after the Late Devonian Upper Kellwasser event in other parts of the world, the
Hongguleleng Formation is very rich in many types of the early Famennian fossils, such as
acritarches, bivalves, brachiopods, bryozoans, cephalopods, chondrichthyans, conodonts,
conulariids, corals, echinoderms, gastropods, ostracods, plants, radiolarians, spores, trace fossils,
and trilobites. Therefore, western Junggar is considered to have been a refugium during the
Frasnian—Famennian extinction event (Liao, 2002).

Brachiopods occur in all three members of the Hongguleleng Formation. Brachiopod

abundance and diversity is highest in the Lower Member, with the groups present including

Peer] reviewing PDF | (2021:09:66279:2:0:NEW 19 Feb 2022)


kennethdebaets
Cross-Out

kennethdebaets
Inserted Text
acritarchs


Peer]

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Productida, Orthida, Rhynchonellida, Athyridida and Spiriferida (Zong et al., 2016, Zong & Ma,
2018). Athyrids are most abundant in the Lower Member, with only a few athyrid specimen
recovered from the base of the Middle Member and the limestone interlayer of the Upper
Member (Zong et al., 2016). All the athyrids studied in this paper were extracted from the
bioclastic limestone in the upper part of the Lower Member of the Hongguleleng Formation in
the Buninuer section, 15 km north of Hoxtolgay town. This section is located about 14 km
southwest of the Bulongguoer section, which is the type section of the Hongguleleng Formation
(Hou et al., 1993). The lithology and fossil assemblages of the Buninuer section are the same as
those of the stratotype section, the upper part of the Lower Member of the Hongguleleng
Formation of both sections were deposited in a distal storm lithofacies sedimentary environment
(Fan & Gong, 2016). A total of 603 athyrids in two genera (Crinisarina and Cleiothyridina) are
non-flattened specimens with well-preserved dorsal and ventral valves. Although athyrids occur
in other beds of the Hongguleleng Formation, no malformed specimens were found in those
levels.

The 603 specimens include a wide range of size and may include individuals representing
different growth stages (Supplemental file 1). We divided the shell length (L) into six size
classes: 5 mm< L< 10 mm; 10 mm< L< 15 mm; 15 mm< L< 20 mm; 20 mm< L< 25 mm; 25
mm< L< 30 mm and 30 mm< L< 35 mm, and counted the number of malformed specimens in
each class. The length of all athyrids were measured by a vernier caliper. All photographs were
taken using a Nikon D5100 camera with a Micro-Nikkor 55 mm f3.5 lens.

To explore whether athyrid deformities were caused by environmental factors, trace and
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rare earth elements of whole-rock samples from specific levels within the Hongguleleng
Formation were measured. Samples BL—1 and BL-2 were obtained from the lower part of the
Lower Member of the Hongguleleng Formation, which yielded abundant undeformed athyrids.
Samples BL-3 and BL-4 came from the upper part of the Lower Member, form where the
deformed fossils described in this paper were obtained. Samples BL-5, BL-6 and BL-7 were
collected from the Middle Member of the Hongguleleng Formation; only a few athyrids occurred
at the bottom of this member, and the group almost disappeared above that level. Sample BO9b—1
was from the Upper Member, which yielded a small number of athyrids. Besides, the trace
elements and rare earth elements of four athyrid shells were measured. Samples CL69 and
CR178 are undeformed shells, while CLJ13 and CRJ29 are malformed shells. All samples were
ground into powder and analyzed in the ALS Minerals/ALS Chemex (Guangzhou) Co. Ltd. Rare
earth and trace elements were fused with lithium borate, and quantitatively analyzed by ICP-MS
with Elan 9000 Perkin Elmer that was made in America. The Ce,,,, 1s equal to
lg[3Ce,/(2La,tNd,)], and Ce,, La, and Nd, were NASC-normalized of Ce, La and Nd,
respectively.
Results

Of the 603 athyrid fossils, macroscopic deformities were detected in 57 specimens. The
most common teratomorphy is obvious asymmetry on the left and right sides of the shells (Fig.
IB-E, G-J), significantly different from common, undeformed specimens (Fig. 1A, F).
Malformation is more obvious on the dorsal valves, and is mainly visible as significantly

widening or narrowing on one side of the shell (Fig. 1D1, G1, H1, J1). Near the anterior border
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of the dorsal valves, the grooves on both sides of the fold are significantly different from those of
undeformed specimens, with some grooves being wider (Fig. 1B1, C1, E1, I1), others being
narrower, and some almost disappearing (Fig. 1D1, G1). On the ventral valves, in addition to the
unequal size on either side of the shell, the sulcus is slightly curved in some malformed
specimens (Fig. 1B2, E2, 12). In frontal view, the asymmetry is more obvious, and is mainly
manifested as different depths and widths of the grooves on both sides of the fold (Fig. 1B3-E3,
G3-J3); for example, the grooves on one side of some specimens become deeper and wider, up
to twice as much as those on the non-deformed side (Fig. 1B3). In addition, the grooves of some
specimens become shallower and narrower (Fig. 1H3), even almost disappearing on one side of a
few specimens (Fig. 1D3, G3). In the malformed specimens, the commissure on the front of the
dorsal and ventral valves forms irregular wavy lines, markedly different from the regular wavy
lines in undeformed specimens (Fig. 1A3, F3).

Of the 198 specimens of Cleiothyridina and 405 of Crinisarina, 18 (9.1%) Cleiothyridina
and 39 (9.63%) Crinisarina were malformed. The overall malformation rate was 9.45%, nearly
one-tenth of all specimens (Fig. 2A). In all malformed specimens, the distribution of
malformations is asymmetric on the shells in dorsal view, malformations occur in right side of 25
shells of Crinisarina, but there are only 14 in left side of shells. For the Cleiothyridina,
malformation occur in right side of 14 shells, while in left side of 3 shells, and in both sides of
one shell (Supplemental file 1). Moreover, malformed individuals occur in almost all size classes
(Fig. 2B, C). The malformation percentages of Crinisarina are 5.56% (10 mm< H< 15 mm),

8.5% (15 mm< H< 20 mm), 13.7% (20 mm< H< 25 mm) and 11.1% (25 mm< H< 30 mm); those
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of Cleiothyridina are 9.68% (10 mm< H< 15 mm), 9.3% (20 mm< H< 25 mm) and 14.8% (25
mm< H< 30 mm). Thus, shell-malformation occurs at different athyrid growth stages, and the
probability of deformity is higher in larger specimens. That indicates a higher probability of
deformity during advanced ontogenetic stages of the studied brachiopod taxa.
Discussion

Western Junggar is part of the Central Asian Orogenic Belt (Buckman & Aitchison, 2004,
Windley et al., 2007). This region experienced strong tectonic activity during the Paleozoic,
resulting in different degrees of metamorphism or deformation of the Paleozoic strata in the
study area (Xu et al., 2009, Gong & Zong, 2015; Wang & Zhang, 2019). Athyrids exhibiting left-
right asymmetry might have resulted from tectonic deformation; however, there is no obvious
stratal deformation in the Hongguleleng Formation in the Buninuer section. This section has
yielded fossils (e.g., trilobites, crinoids, and corals) that are well-preserved in three dimensions
(Fig. 3A), which obviously differs from specimens obtained from distorted strata affected by
tectonic deformation (Fig. 3B). Moreover, asymmetry was not detected in other brachiopods
from the same layer, so the deformed specimens were not affected by the tectonic activity. A
very small number of athyrid specimens cracked before lithification of the sediment are also
significantly different from these asymmetric specimens, and they can be easily distinguished
(Fig. 3D).

Epibionts can cause malformation of their hosts; such phenomena have also been reported
for shelly fossils (e.g., Zaton & Borszcz, 2013; Mironenko, 2016). Some athyrids from the Upper

Devonian of western Junggar bear epibionts, such as corals and bryozoans. However, epibionts
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are not found on any malformed specimens; on the contrary, specimens bearing epibionts are all
undeformed shells (Fig. 3C). Therefore, it is unlikely that these athyrid teratomorphies were
caused by epibionts. However, endoparasitic organism cannot be ruled out as a teratogenic factor
(e.g., Savazzi, 1995; Vinn, Wilson & Toom, 2014), as well as epiparasitic shell-less organisms
and microorganisms, they are likely to cause deformities in these athyrid shells from western
Junggar. For the specific identity of endoparasites, shell-less organisms and microorganisms, it is
difficult to confirm because their poor preservation in the fossil record. Some malformed
brachiopod were caused by predators, which presented the fractures, indentations, and scars on
the shells, and often accompanied by repaired signs (e.g., Alexander, 1986; Kowalewski, Flessa
& Marcot, 1997; Happer, 2005; Vinn, 2017). In these malformed athyrid shells from western
Junggar, except for a pair of indentations on the opposite valves of specimen BGEG-CLJO1 (Fig.
3H), no wounds or scars were found on other specimens. Most specimens only showed left-right
asymmetry of the shells, reflecting that predation is not the main cause of the malformation, but
predators may preyed on the malformed athyrids.

Malformations of organisms may also be related to their living environment. Changes in
certain environmental factors, such as oxygen deficiency or excessive organic matter, heavy
metals, and toxic elements, often lead to the malformation or even death of organisms. The high
number of malformed athyrids from the Upper Devonian strata might be related to the marine
environment in western Junggar at that time. Excessive organic matter is a common factor, and
eutrophication has been identified in the Late Devonian sea (Murphy, Sageman & Hollander,

2000). Suttner et al. (2014) found that there were no significant changes in the total organic
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carbon (TOC) content through the Lower Member of the Hongguleleng Formation at its type
locality, i.e., the TOC content of the beds with deformed specimens was basically the same as
that of sediments with only undeformed specimens. Copper (1967) studied deformities of the
Devonian brachiopod Kerpina in the Eifel region, Germany, and concluded that the variations in
the shell-morphology resulted from the influence of bottom currents on the immobile Kerpina,
which had a thick, short pedicle. However, this mechanism cannot be used to explain the
deformity of these athyrids in western Junggar, because large numbers of other benthic
organisms (i.e., brachiopods, corals, bryozoans, and stromatoporoids), which are all undeformed
in the same layer. In addition, the fossils preserved in the upper part of the Lower Member of the
Hongguleleng Formation are relatively complete, and there is no evidence of strong bottom
currents, so the influence of bottom currents can be excluded as a teratogenic factor. Hoel (2011)
found the shells of brachiopod Pentlandina loveni, from the Sliurian Hogklint Formation in
Gotland (Sweden), are commonly markedly asymmetric, and some groups of shells occur in tight
clusters, each apparently attached to other shells of the same species. He interpreted these
asymmetrical shells resulted from the limited space for growth, i.e., overcrowded conditions.
However, all specimens from western Junggar are isolated, instead of tight clusters or attached to
other shells. Furthermore, if they are living in overcrowded space, the distribution of
malformation should be random or almost uniform on both sides of the shells, but the
malformations commonly occur on the right side of athyrids shells (dorsal view) from western
Junggar (Supplemental file 1), so the overcrowded conditions also can be excluded.

Marine hypoxia would lead to brachiopod deformities. He et al. (2017) for example,
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proposed that hypoxia was a major factor in the miniaturization of brachiopods during the end-
Permian in southern China. U/Th and Ce,,,, are often used as indicators of marine hypoxia
(Jones & Manning, 1994, Carmichael et al., 2014, 2016). For the sediments of the Hongguleleng
Formation at the Buninuer section, the U/Th ratio of sample BL—4 fell into the oxic range,
whereas that of sample BL-3 fell into the dysoxic range; both Ce,,,, values were near the oxic—
anoxic boundary (Fig. 4, Supplemental file 2). In addition, shallow-marine benthic fossils, such
as corals, trilobites, brachiopods and echinoderms, occur in abundance in the same horizon
together with malformed athyrids, and the beds lack sedimentary indicators of anoxia (such as
black shale), so hypoxia presumably did not occur during deposition of the upper part of the
Lower Member of the Hongguleleng Formation.

High levels of heavy metals or toxic elements can also lead to malformation of organisms
soft and hard tissue, as has been proven for a large number of living organisms (Wang, Yang &
Wang, 2009, Ma et al., 2011; Zhao et al., 2017; Lasota et al., 2018, Riani, Cordova & Arifin,
2018). For example, when Cu and Zn were added to the water for feeding the foraminiferan
Ammonia beccarii, the organisms developed deformities (Sharifi, Croudace & Austin, 1991), and
when scallops were placed in wastewater from a gold mine with concentrations of 14% and 50%
for 6 h, the deformity rate increased by 6% and 21%, respectively (Ma et al., 2011). Sediments
have been demonstrated to be an important source of heavy metals for benthic animals (Wang,
Stupakoff & Fisher, 1999). The levels of heavy metals and toxic elements through the
Hongguleleng Formation are presented in Fig. 4 and Supplemental file 2. The levels of some

heavy metals (e.g., cadmium, lead, barium, and zinc) in the layer with the malformed athyrid
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shells are relatively high compared to the levels in the lower part of the Lower Member,
particularly cadmium and lead. The levels of cadmium are 0.02 and 0.03 ppm in the lower part of
the Lower Member, and are 0.03 and 0.04 ppm in the horizon that yielded the deformed fossils.
The lead contents are 1.3 and 2.2 ppm in the lower part, but 5.1 and 5.2 ppm in the upper part. In
the Middle Member of the Hongguleleng Formation, where athyrids almost disappeared, the
heavy metal levels are even higher. In the Upper Member, where athyrids reappear, the heavy-
metal content decreases again (Fig. 4). Thus, the abundance of athyrids is negatively correlated
with the levels of heavy metals, but the number of malformed specimens is positively correlated
with that, especially that of lead (Fig. 4). Furthermore, the levels of most heavy metals and toxic
elements are slightly higher in malformed shells than in undeformed shells, particularly lead,
silver, cobalt and arsenic (Supplemental file 3). In the studied specimens of teratomorphic
Cleiothyridina and Crinisarina, the lead, silver, cobalt, and arsenic levels were all higher than
those of undeformed shells. In Cleiothyridina the levels of lead, silver, cobalt, and arsenic were
2.3, 0.01, 2.0, and 2.9 ppm, respectively, in undeformed shells, but 2.6, 0.03, 2.5, and 3.6 ppm,
respectively, in malformed shells. In Crinisarina, the levels of lead, silver, cobalt, and arsenic in
undeformed shells were 1.9, <0.01, 2.6, and 2.2 ppm, respectively, whereas in the deformed
specimens, the levels were 7.2, 0.01, 3.2, and 2.5 ppm, respectively (Supplemental file 3).
However, the contents of cobalt and other heavy metals (i.e., copper, chromium, and vanadium)
did not change significantly in the sediments from the undeformed athyrids-bearing layers to the
layers containing malformed specimens, and the contents of arsenic and silver even decreased in

the layers containing malformed athyrids (Fig. 4). Therefore, these heavy metals or toxic
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elements may not be related to the deformity of athyrids. Only the lead content in sediments is
positively correlated with the athyrid shell deformation, but negatively correlated with the
abundance, while the lead content of malformed shells is higher than that of undeformed shells.

Lead is a common type of marine heavy-metal, and excessive lead content in the sea often
leads to malformation or even death of shellfish, or at least affects their growth (Li, Sun & Li,
2011). In Upper Devonian strata of western Junggar, the deformity rate of athyrids is nearly one
in ten. In addition, the heavy metal (especially lead) content in sediments is higher than that of
sediments containing only undeformed shells, and the levels of some heavy metals are higher in
deformed shells than in undeformed shells. However, the difference of lead concent in the shells
and surrounding rocks of undeformed and malformed brachiopods is still within the same order
of magnitude, and no deformities have been found in other brachiopods taxa except these two
genera. Therefore, it is not entirely certain that slightly higher lead content could cause
deformities in these athyrid shells. In the future, geochemical analysis of more athyrid shells and
a comprehensive comparison of heavy metal content from adjacent herizen and other
brachiopods may be able to provide a-morecogent teratogenicfactor,
Conclusions

Some specimens of two athyrid genera, Cleiothyridina and Crinisarina, from the Upper
Devonian Hongguleleng Formation in western Junggar are obviously deformed, mainly in the
form of asymmetry of the left and right sides of the shells. The deformity rate is nearly 10% of
specimens. Malformation is apparent in individuals of different sizes, with larger individuals

being more likely to exhibit malformation. Based on the study of the burial state and preserved
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environment of the fossils, and geochemical analysis of the sediments and athyrid shells and

comparison with rock material from horizons that did not contain teratomorphic specimens, we

hypothesize that the deformities were possibly caused by unidentified epi/endoparasites, or a low
probability, that slightly high heavy-metal (specifically lead) in the sea, rather than
eutrophication, bottom current activity, overcrowded conditions, hypoxia or other factors.
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Figure 1

Athyrids from the upper part of the Lower Member of the Hongguleleng Formation
(Upper Devonian) in western Junggar

(A-E) Crinisarina, figure (A) (specimen number BGEG-CR324) is a undeformed specimen;
figures (B-E) (specimen numbers BGEG-CRJ05, BGEG-CRJ10, BGEG-CRJ18 and BGEG-CRJ17)
are malformed specimens, with malformations indicated by white arrows. (F-J) Cleiothyridina,
figure (F) (specimen number BGEG-CL98) is a undeformed specimen; figures (G-J) (specimen
numbers BGEG-CLJ06, BGEG-CLJ01, BGEG-CLJ15 and BGEG-CLJ13) are malformed specimens,

with malformations indicated by white arrows. All scales are 10 mm.
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Figure 2

Histogram showing the number of malformed athyrids (A) and the distribution of
undeformed and malformed specimens in different size classes (B-C) from the Upper

Devonian Hongguleleng Formation in western Junggar
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Figure 3

Some crinoid stems and athyrids from western Junggar

(A) Three-dimensional crinoid stem preserved in muddy limestone from the upper part of the
Lower Member of the Hongguleleng Formation in the Buninuer section; (B) flattened crinoid
stem preserved in the calcareous siltstone distorted by tectonic activity, Carboniferous
Hala'alate Formation, western Junggar; (C) coral parasitizing a undeformed shell of
Crinisarina (specimen number BGEG-CR44) from the Lower Member of the Hongguleleng
Formation; (D) Cleiothyridina (specimen number BGEG-CL56) cracked before lithification of

the sediment, obviously different from the malformed specimens. All scales are 10 mm.
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Figure 4

U/Th ratio, Ce,,,,, and distribution of heavy metals and toxic elements in whole rocks in
the Upper Devonian Hongguleleng Formation in western Junggar
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