What do giant titanosaur dinosaurs and modern Australasian megapodes have in common?

E. Martín Hechenleitner, Gerald Grellet-Tinner, Lucas E. Fiorelli

Titanosauria is a globally distributed clade of usually extremely large Mesozoic herbivorous sauropod dinosaurs. On the basis of current evidence these giant dinosaurs seem to have reproduced in highly particular and localized nesting sites. Yet, no investigations have been performed to understand the possible ecological and geological biases that acted for the selection of these nesting sites worldwide. In this study, observations were performed on the best-known Cretaceous nesting sites around the world. Our observations strongly suggest their eggs were incubated with environmental sources of heat, in burial conditions. Taking into account the clutch composition and geometry, the nature and properties of the sediments, the eggshells structures and conductance, it would appear that titanosaurs adopted nesting behaviors comparable to the modern Australasian megapodes, using burrow-nesting in diverse media and mound-building strategies.

1 What do giant titanosaur dinosaurs and modern Australasian megapodes

- 2 have in common?
- 3
- 4 E. Martín Hechenleitner¹, Gerald Grellet-Tinner^{1,2} and Lucas E. Fiorelli¹
- 5 ¹Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja
- 6 (CRILAR-CONICET). Entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina
- ⁷ Associate Researcher at Orcas Island Historical Museum, USA

8

- 9 Corresponding author:
- 10 Martín Hechenleitner¹
- 11 CRILAR-CONICET. Entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina.
- Email address (emhechenleitner@gmail.com; ehechenleitner@crilar-conicet.gob.ar).

13

14	Abstract
15	Titanosauria is a globally distributed clade of usually extremely large Mesozoic herbivorous
16	sauropod dinosaurs. On the basis of current evidence these giant dinosaurs seem to have
17	reproduced in highly particular and localized nesting sites. Yet, no investigations have been
18	performed to understand the possible ecological and geological biases that acted for the selection
19	of these nesting sites worldwide. In this study, observations were performed on the best-known
20	Cretaceous nesting sites around the world. Our observations strongly suggest their eggs were
21	incubated with environmental sources of heat, in burial conditions. Taking into account the
22	clutch composition and geometry, the nature and properties of the sediments, the eggshells
23	structures and conductance, it would appear that titanosaurs adopted nesting behaviors
24	comparable to the modern Australasian megapodes, using burrow-nesting in diverse media and
25	mound-building strategies.
26	
27	INTRODUCTION
28	Titanosaur sauropods are Mesozoic dinosaurs (Bonaparte & Coria, 1993; Wilson &
29	Upchurch, 2003; Curry Rogers, 2005) that reached gigantic sizes (Upchurch, Barrett & Dodson,
30	2004; Sander et al., 2011; Benson et al., 2014) but also were miniaturized in insular ecosystems
31	(Benton et al., 2010; Stein et al., 2010; Csiki et al., 2010). These quadrupedal herbivores are
32	easily recognizable by their long necks and tails (Fig. 1A), small heads (Fig. 1A-B) and a
33	characteristic wide-gauge stance (Fig. 1C; Wilson & Carrano, 1999; Carrano, 2005; Wilson,
34	2005a).
35	The titanosaurs populated every continent including Antarctica (Curry Rogers, 2005;
36	Mannion et al., 2011; Cerda et al., 2012) and according to Mannion & Upchurch, (2010, 2011)

37 they preferred inland rather than coastal habitats. They experienced a great expansion during the 38 Late Cretaceous, chiefly in South America, where they diversified in more than 20 genera 39 (Upchurch & Barret, 2005; Zaher et al., 2011; Mannion et al., 2011; García et al., 2014; Vieira et 40 al., 2014). 41 Eggs and egg clutches classified in Megaloolithidae, a parataxonomic elassification of eggs 42 without any modern biological principles, have been assigned to titanosaurs (as well as other 43 taxa) (Vianey-Liaud et al., 1994; Mikhailov, 1997). Although in recent years numerous studies 44 explored several aspects of the titanosaurs reproductive biology (Cousin & Breton, 2000; 45 Jackson et al., 2008; Sander et al., 2008; Vila et al., 2009, 2010), most of them were limited by 46 the description and comparison of eggs and eggshells in a non-phylogenetic context (i.e. fossil 47 parataxonomy). Titanosaur eggs and eggshells have only been positively identified in few 48 instances with the discovery of embryos in ovo (Chiappe et al., 1998; Chiappe, Salgado & Coria, 49 2001; Wilson et al., 2010; Grellet-Tinner et al., 2011, 2012) and/or with cautious morphological 50 characterizations of eggs and eggshells (Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner 51 et al., 2006, 2011, 2012; Grellet-Tinner, Fiorelli & Salvador, 2012) that allow identification of phylogenetic characters. 52 53 Species survival is contingent on several factors: food availability, predation, competition and reproduction. Just as amniote oviparity freed vertebrates from water-bound reproduction, 54 55 viviparity entirely disconnected environmental factors from hatching to maximize reproductive 56 success. Modern archosaurs lay amniotic eggs in nests and their reproduction is thus more 57 constrained by environmental drivers than viviparous amniotes. Therefore, judicious nesting-site 58 selection becomes a critical factor, as parents cannot compensate post-hatching for a poor choice 59 of nesting environment (Shine & Harlow, 1996; Kolbe & Janzen, 2002; Kamel & Mrosovsky,

- 60 2005; Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012). Modern
- archosaurs are known to build two main nest types: "ground dweller" and "arboreal" nests.
- 62 Although the latter is quite interesting and has fostered several studies (Collias, 1964, 1997;
- Hansell, 2000; Gill, 2007; Walsh et al., 2010), including phylogenetic analyses (Winkler &
- 64 Sheldon, 1993; Zyskowski & Prum, 1999; Hansell, 2007), it does not offer a valid model for
- 65 (titanosaur reproduction.) Hence, this study focuses on the nests of ground dwelling species.
- 66 Ground nests interface in various degrees with the sediments, where they are constructed.
- Among those, two types of structures are recognized based on the incubating temperature and
- humidity requirements (Booth & Thompson, 1991): Nests, where eggs are deposited in the air-
- sediment interface, open-nests sensu Collias (1964), and nests where eggs are buried in the
- substrate (Collias 1964; Seymour & Ackerman, 1980; Larson, 1998; Jones & Göth, 2008;
- 71 Brazaitis & Watanabe, 2011).
- The odds of preserving any of these nesting structures in the fossil record are extremely poor
- 73 (Hasiotis et al., 2007) and/or their preservation could easily be misinterpreted. Therefore,
- according to the taphonomy of behavior (Plotnick, 2012), we focus this investigation not only on
- 75 ichnology but also behavioral biology, offering the following revised nest definitions in the
- 76 context of this study to help identify and discriminate nests from egg clutches in the fossil
- 77 record.
- Archosaur nest: Any recognizable structure or modification of environment that is voluntarily
- made by the parents to ovideposit their eggs.
- Archosaur nest function: Mediates and optimizes environments in order to insure successful
- 81 egg incubation and hatching.

82	Archosaur nest diagnosis: An identifiable structure recognized to result from parental nesting
83	behavior that contains at least either autochthonous egg remains or eggshell fragments.
84	We review here world-wide distributed nesting sites (Fig. 2), that have been assigned to
85	titanosaurs, their eggs, eggshell microstructures, and sedimentary data, to attempt to understand
86	the reasons sauropods were able to reproduce globally, but use particular localized nesting sites
87	characterized by an overwhelming abundance of egg clutches and eggs. Understanding their
88	nesting and incubation strategies through the megapode model may shed light on the enigmatic
89	reproductive behavior of these extinct behemoths.
90	
91	MATERIALS AND METHODS
92	The fossil record of "titanosaur" eggs and shells extends to Europe, Asia, South America and
93	Africa. However, less than 10 years have passed since their first inclusion in a phylogenetic
94	study (Grellet-Tinner et al., 2006). In contrast, most of the earlier (e.g. Mikhailov, 1997;
95	Mohabey, 1998, 2001; Garcia & Vianey-Liaud, 2001a; Vianey-Liaud & Zelenitsky, 2003) and
96	several current studies (Fernández & Khosla, 2015; Sellés & Vila, 2015) provide descriptions
97	lacking enough detail and/or skewed by the use of parataxonomic criteria (Grellet-Tinner et al.,
98	2012). In addition to the egg and eggshell morphology, the study of titanosaur nesting strategies
99	requires the combination of an array of sources of data, such as clutch geometry and spacing,
00	description of the nesting sediments and their stratigraphic context, possible geothermal activity,
01	availability of vegetal materials and paleoclimatic conditions.
02	It is unavoidable that data on some nesting sites are more comprehensive than others because
103	some localities were more intensively researched than others, and with different purposes (e.g.
04	stratigraphy, parataxonomy). The need for a full and accurate record prevented include in this

105	study, for example, the findings of isolated eggshells in Morocco and Tanzania, in Africa (Garcia
106	et al., 2003; Gottfried et al., 2004). In addition, it should be noted that the localities in Spain are
107	much more restricted geographically than others in South America and Asia. Considering that in
108	some cases they are eloser than 100 m from each other (Sellés & Vila, 2015), several of them
109	could belong to the same nesting areas. As such, the more than 220 localities with eggs and
110	eggshells in Southern Pyrenees, (Sellés & Vila, 2015) are not directly comparable in terms of
111	scale with other localities around the world. Although not as close together as in Spain, many of
112	the localities reported in Southern France have also been studied with parataxonomic and
113	biostratigraphic purposes (Garcia & Vianey-Liaud, 2001a,b; Vianey-liaud, Khosla & Garcia,
114	2003; Cojan, Renard & Emmanuel, 2003), hence not providing enough information on
115	morphology and/or egg spatial distribution. In addition, most fossil eggs and eggshells
116	discovered during the nineteenth and twentieth century were not recovered under appropriate
117	stratigraphic control and/or using archaeological field techniques (Cousin & Breton, 2000). The
118	same problem arises with the many localities reported in China and Mongolia, which yield an
119	extensive record of megaloolithid and faveoloolithid eggs and eggshells (Carpenter & Alf, 1994;
120	Liang et al., 2009).
121	Considering the above-mentioned constraints, we selected & world-wide distributed nesting
122	sites that provide enough data (Table S1) for comparison with modern analogues: Sanagasta
123	(Argentina), Gyeongsang Basin (South Korea), Haţeg (Romania), Dholi Dungri (India), Rennes-
124	le-Château and Albas (France), Coll de Nargó (Spain), and Auca Mahuevo (Argentina). It should
125	be noted that all the selected nesting sites preserve autochthonous and/or parautochthonous fossil
126	material in contrast to eggs and eggshells found in lithologies that belong to different
127	environmental settings (Table 1), hence creating preservation biases.

We selected Megapodiidae for modern nesting analogues. This avian family consists of 22
species that are limited to Australia, New Guinea, Micronesia, Melanesia and Polynesia (Dekker,
2007; Harris, Birks & Leaché, 2014). They are unique among living dinosaurs by exclusively
using environmental heat sources rather than body heat to achieve incubation (Jones & Birks,
1992; del Hoyo, Elliott & Sargatal, 1994).
RESULTS
Sanagasta, Argentina
Although this site has been cautiously classified as a neosauropod nesting ground (Grellet-
Tinner & Fiorelli, 2010; Fiorelli et al., 2012; Grellet-Tinner, Fiorelli & Salvador, 2012), some
paleontologists have regarded eggs with similar morphology as titanosaurs (de Valais,
Apesteguía & Udrizar Sauthier, 2003; Simón, 2006). Hence on this basis, we include this
Cretaceous nesting site (Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012) in our study (Table
1). The Sanagasta nesting site located in La Rioja, Argentina (Tauber, 2007; Grellet-Tinner &
Fiorelli, 2010; Fiorelli et al., 2012), represents the first account of synchronous geothermal
activity and "titanosaur" nesting strategy in the fossil record (Grellet-Tinner & Fiorelli, 2010).

Several clutches were recovered from a single outcrop of the Los Llanos Formation in the

Sanagasta Valley (Tauber, 2007; Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012). The

nesting sediments consist of medium to coarse-grained grey and whitish arkosic sands deposited

The thick single structural layer of the Sanagasta eggshells displays nodular rounded structures

adaptation to resist acid erosion during geothermal incubation (Grellet-Tinner & Fiorelli, 2010).

on the outer surfaces and long eggshell units with slender concentric and convex growth lines,
including secondary dichotomic branching outwards (Figs. 3A-D). The spongy appearance of the
eggshell is produced by a high concentration of wide pores that meander and branch between the
eggshell units (Grellet-Tinner, Fiorelli & Salvador, 2012). Moreover, the large (~4800 cm³)
subspherical eggs (Fig. 3E; Table 1) are perforated by ~482000 pores leading to a water vapor
conductance of ~2850 mgH2O/day*Torr (Grellet-Tinner, Fiorelli & Salvador, 2012).
Several clutches (e.g., Fig. 3F) were discovered regularly placed nearby preserved
geothermal relics, encrusted with silcrete-calcrete structures, some with up to 30 eggs (Grellet-
Tinner & Fiorelli, 2010; Fiorelli et al., 2012; Grellet-Tinner, Fiorelli & Salvador, 2012).
Although the eggs spatial distribution in two superposed rows, whereas the upper row has a
greater amount of eggs (Tauber, 2007; Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012),
suggesting that they were deposited in dug out-nests, close to geothermal vents, springs, or pools,
no nesting structure has been preserved (Fiorelli et al., 2013). Therefore, these fossil assemblages
are referred only as egg clutches, although the oological data (Table 1) strongly support parental
placement of dug out-nests with eggs in close proximity of hydrothermal structures.

Gyeongsang Basin, South Korea

The nesting paleoenvironment of Sanagasta was compared with South-Korean nesting sites in the Gyeongsang Basin (Fiorelli et al., 2012), where continental sedimentation, volcanism and hydrothermalism occurred concomitantly during the Late Cretaceous (Choi, 1986; Chough et al., 2000; Choi et al., 2005, 2006). The development of this basin was associated with subduction in an Andean-type continental margin during this period (Choi, 1986). The Korean egg clutches consist of faveoloolithid eggs (Paik, Huh & Kim, 2004) similar to those found in Sanagasta. The

eggs are recovered in several Upper Cretaceous localities, preserved in sandy tuffaceous
sandstones interpreted as floodplain deposits and related to meandering rivers. According to
previous descriptions, the faveoloolithid eggs found in Boseong (one of the most studied
localities of the Gyeongsang Basin) vary in diameter from 15 to 20 cm and have extremely
porous eggshells of 1.33 to 2.20 mm thick (Huh & Zelenitsky, 2002; Kim et al., 2009). The
taphonomic and paleoenvironmental analyses conducted by Paik, Huh & Kim (2004) and Paik,
Kim & Huh (2012) revealed that several single-layered clutches of up to 16 eggs occur in
different calcic paleosol levels, suggesting nesting site fidelity. Although many egg clutches
were recovered, no nesting structures could be found in the encrusting sediments (Kim et al.,
2009). However, Paik, Huh & Kim (2004) and Paik, Kim & Huh (2012) suggested that eggs
were incubated buried in the substrate, thus laid in excavated nests. Interestingly, the geological
origin and development of the Gyeonsang basin was related to subduction in an Andean-type
continental margin (Choi, 1986), with epithermal deposits (Choi et al., 2005). As the latter are
related to subaerial volcanism or shallow intrusions (Choi et al., 2005, 2006) and the nesting
sediments are locally tuffaceous (Paik, Kim & Huh, 2012), Fiorelli et al. (2012) suggested that
nesting in geothermal settings were not limited to a particular endemic neosauropod population
but were used by allopatric populations of the same genus and comparable to the nesting
strategies of the modern Malau megapode (Megapodius pritchardii Gray, 1864) in the Tongas
Islands or the Maleo (Macrocephalon maleo, Muller, 1846) in Sulawesi, Indonesia.

Haţeg, Romania

Grellet-Tinner et al. (2012) examined a group of 11 titanosaur egg clutches discovered in the exposures of the Maastrichtian Sânpetru Formation, at Totești, Romania (Grigorescu et al., 1990;

Grigorescu, 1993; Codrea et al., 2002; Panaiotu & Panaiotu, 2010). Grellet-Tinner et al. (2012)
mention the presence of geothermal-derived minerals in the eggshell pores and the presence of
volcanic activities in the same basin concomitantly to the ovideposition of the eggs. Moreover, a
tremendous amount of embryonic bones representing several taxa (titanosaurs, aves, and
lepidosaurians) (Grellet-Tinner et al., 2012) were recovered in the same formation, supporting
possible geothermal and hydrothermal activities related to the coeval Carpathians and Apuseni
volcanism (Russo-Sändulescu & Berza, 1979; Kräutner, Vajdea & Romanescu, 1986; Ştefan et
al., 1988). The egg clutches were encased in fine grained siltstone-mudstone sediments, typical
of a low energy nesting environment (Bojar et al., 2005; Grellet-Tinner et al., 2012). The
spherical eggs were deformed by lithostatic compression, to become subspherical (Codrea et al.,
2002; Grellet-Tinner et al., 2012). Their phylogenetic characters match those of the eggs from
the Auca Mahuevo layer 4 (AM L#4) (Grellet-Tinner et al., 2012) that were identified as
nemegtosaurid titanosaurs (García et al., 2010), based on their embryos in ovo. As such, both the
AM L#4 and Totești eggs display similar egg shape and size, eggshell thickness, identical
structural single layer of the shell, consisting of acicular calcitic crystals radiating from
nucleation centers located above the membrana testacea, the same Y-shaped vertical pore canals
with funnel shaped pore apertures located between the nodular surficial ornamentation, similar
unit and node shapes, as well as an horizontal pore canal network parallel to the membrana
testacea (Figs. 4A-C; Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner et al., 2012). The
Totești egg clutches (Fig. 4D) consist of groups of 4 eggs in average that are superposed
similarly to those in Sanagasta, thus suggesting they were also buried in dug-out nests (Grellet-
Tinner et al., 2012). However, like the previously described nesting sites (Kim et al., 2009;
Grellet-Tinner & Fiorelli, 2010), no true nesting structure was recognized. As such, the inference

of nests rests only on the spatial arrangement of eggs in each of the 11 clutches (see Table 1). Grellet-Tinner et al. (2012) also mention the presence at the same site of other isolated egg species which are larger and exhibit different eggshell macro and micro morphologies, thus belonging at least to an additional dinosaur species. The presence of several egg types at the same site and stratigraphic horizon may indicate a preferential nesting environment for the dinosaurs confined in the Haţeg insular system. Regardless of considering the exclusive presence of sauropod (mostly titanosaurs taxa) egg clutches or mixed egg fossils including ornithopod species, although not confirmed contra Grigorescu (2010) and Grigorescu et al. (2010), the interesting question remains why only Toteşti and Nălaţ-Vad, or Tustea were preferential laying grounds on the Haţeg Cretaceous volcanic island.

Dholi Dungri, India

The Upper Cretaceous (Maastrichtian) Lameta Formation in India, overlain by the volcanic flows of the Deccan Traps, is well known for its rich record of dinosaur nesting sites (Mohabey, Udhoji & Verma, 1993; Mohabey, 1998). It consists of calcareous sandstones deposited by episodic transport in an alluvial-limnic paleoenvironment related to semiarid climate and secondarily affected by extensive pedogenesis (Mohabey, Udhoji & Verma, 1993; Mohabey, 1998, 2005; Wilson et al., 2010). Although many oospecies were recognized in the fossil parataxonomy (Mohabey, 1998), only the 3 eggs referred as *Megaloolithus dhoridungriensis* have been directly associated with titanosaurs, based on close association with a partial hatchling found at the exposures near Dholi Dungri locality, Gujarat, India (Mohabey, 1998; Wilson et al., 2010).

According to Wilson et al. (2010) the spherical eggs range from 14 to 18 cm in diameter with
an eggshell thickness of 2.26-2.36 mm and display discrete eggshell units similar to others
megaloolithids. Although they are slightly larger and have thicker shells (Table 1), the Dholi
Dungri eggs share only a few similarities with Auca Mahuevo (AM) fossils in their shape and
single structural layer with acicular calcitic crystals radiating from nucleation centers located
above the missing membrana testacea, a similar nodular surficial ornamentation, and a horizonta
pore canal network parallel at the base of the shell with straight vertical pore canals and funnel
shaped apertures outward. However, the vertical pores do not appear to have the atypical Y-
shaped ramifications and are significantly more numerous than titanosaur eggs from AM (Wilso
et al., 2010). Their overall morphological characters are closer to the unidentified Totești and
Nălaț-Vad egg species with thicker eggshell (Grellet-Tinner et al., 2012), than the AM eggs. The
Dholi Dungri titanosaur eggs have a volume of ~2150 cm³, an egg mass of ~2300 g, and appear
isolated or grouped in clutches of up to 12 eggs, with an average clutch mass (6 to 12 eggs per
clutch) of ~21000 g (Wilson et al., 2010).
Like other Indian sites, no nesting structures have been observed at this locality (Wilson et al
2010), but the high porosity of the eggshells suggests burial incubation (Sander et al., 2008;
Wilson et al., 2010). Tandon et al. (1995) noted that some of the different nesting sites in the
Lameta beds appear to be topographically related and widely distributed in similar lithologies,
suggesting a "practiced sense of site selectivity".

Rennes-le-Château and Albas, France

Since the late 1800s, several titanosaur egg clutches have been discovered in Cretaceous exposures in Southern France (Freytet, 1965; Kerourio, 1981; Cousin et al., 1989, 1994).

However, according to Cousin and Breton (2000), the vast majority of the fossils were recovered
with inadequate field techniques and/or inappropriate stratigraphic control. Therefore, we focus
on the detailed excavations of the nesting sites at the Upper Maastrichtian, Rennes-le-Château
(Cousin et al., 1994) and Albas (Cousin & Breton, 2000), as these two sites were quarried with
archaeological techniques, thus providing a good overview of the taphonomy and nesting
environment (Cousin & Breton, 2000).
The eggs typically exhibit eggshell thicknesses of up to 2.5 mm, although some samples show
thinning by dissolution (Cousin & Breton, 2000). As in other titanosaur eggs, the French eggs
display nodular rounded structures on their outer surfaces and spherulitic eggshell units with
slender concentric and convex growth lines formed by acicular calcitic crystals radiating from
nucleation centers located above the missing membrana testacea. Moreover, they display a
horizontal pore canal network, parallel to the base of the shell, with straight vertical pore canals
for gas conductance (some of them with complex branching network of secondary transverse
canals and dichotomic Y-shaped ramifications), and pore apertures around the base of the
external nodes. These eggshells are quite similar to those of titanosaur "megaloolithid" eggshells
from Spain which, according to Jackson et al. (2008), have a high pore density and elevated gas
conductance, nearly $4000 \text{ mgH}_2\text{O}/\text{day}*\text{Torr}$ (an overestimate due to a calculation error for gas
conductance of the eggshells by these authors). The 17 to 20 cm eggs have a volume of \sim 2100
cm 3 , an egg mass of ~2300 g and a clutch mass varying from ~18500 g (Rennes-le-Château) to
~35000 g (Albas). In Rennes-le-Château the eggs were found isolated or in small arcuate rows,
but also in clusters of 3 to 8 eggs (Cousin et al., 1989). The careful excavation revealed that the
egg clutches were preserved in situ (Cousin & Breton, 2000; Cojan, Renard & Emmanuel, 2003)
and denosited in different strationaphic levels, thus, suggesting nesting site fidelity (Cousin et al.

1989; Cousin & Breton, 2000). The sedimentary evidence does not support the presence of true nests (as above-defined), although Cousin and Breton (2000) suggested that the eggs of the Albas clutch could have been deposited in shallow pits. Therefore, the lack of any supporting sedimentary structure does not allow the inference of sauropod nests at these two sites. Although the egg clutches from Southern France do not indicate any organic matter in the surrounding sediments, the possibility of incubation in nests with vegetal mounds has been suggested by Kerourio (1981) and Cousin and Breton (2000), based primarily on high conductance of the eggshells. Yet, Grellet-Tinner, Fiorelli & Salvador (2012) suggested that high conductance values alone do not imply incubation in mounds, but just environments with elevated moisture contents.

Coll de Nargó, Spain

Several sauropod egg clutches were reported in Northeastern Spain (Vila et al., 2009, 2010, 2011; Vila, Jackson & Galobart, 2010), a region that was also tectonically active at the time the eggs were oviposited (Puigdefàbregas, Muñoz & Vergés, 1992). These fossils were classified in the Megaloolitidae oofamily and later loosely associated to titanosaurs (Sander et al., 2008; Vila et al., 2009, 2010) after the discovery of titanosaur embryos in the eggs of *Megaloolithus* patagonicus (Chiappe et al., 2003), and *M. dhoridungriensis* (Wilson et al., 2010). According to Sellés et al. (2013), more than 30 egg-bearing stratigraphic levels distributed in two lithofacies, representing a fluvial paleoenvironment, are recognized in the Upper Cretaceous Tremp Formation (Sander et al., 2008; Vila, Jackson & Galobart, 2010; Vila et al., 2010). Both lithofacies and eggs show evidences of stress deformation, consistent with the tectonic stress orientation of the region (Vila et al., 2010).

311	The eggs and eggshells have been described by several authors (Jackson et al., 2008; Vila et
312	al., 2009; Vila, Jackson & Galobart, 2010; Sellés et al., 2013). They are spherical and reach 20
313	cm in diameter (Vila, Jackson & Galobart, 2010). Their 2.5 mm thick eggshells show typical
314	discrete units with slender concentric and convex growth lines of acicular calcite crystals
315	radiating from the nucleation centers, as well as a pore network system with branching –
316	dichotomic Y-shaped ramifications- and secondary transversal ones.
317	According to Sellés et al. (2013) the 75 clutches found in situ at Pinyes (a subsite at Coll de
318	Nargó locality) support a nest site fidelity behavior. However, Vila et al. (2010) indicated that
319	these clutches represent a single event, albeit no sedimentary evidence independently confirms
320	their interpretation (Sander et al., 2008). Three types of egg clutches were recognized by Vila et
321	al. (2010). The "type 1", consists of clutches with 20-28 eggs separated by 3 to 6 m and buried in
322	bowl kidney-shaped depressions (Vila, Jackson & Galobart, 2010; Vila et al., 2010). However, in
323	previous interpretations these were considered as superimposed clutches with fewer eggs (Peitz,
324	1998; Sander et al., 1998, 2008). According to Vila et al. (2010) and Vila, Jackson & Galobart
325	(2010) but contra Sander et al. (2008), the egg spatial arrangement in these putative complete
326	clutches coupled with the high water vapor conductance ($G_{\rm H2O}$) of the eggshells (Deeming,
327	2006), would suggest the eggs were buried during incubation.
328	
329	Auca Mahuevo, Argentina
330	This Campanian locality (Dingus et al., 2000) in the Anacleto Formation (Argentina) was the
331	first report of titanosaur embryonic bones and soft tissues in ovo (Chiappe et al., 1998; Chiappe,
332	Salgado & Coria, 2001; Salgado, Coria & Chiappe, 2005). They were recently re-identified as
333	nemegtosaurids (García et al., 2010). The eggs are in four egg-bearing strata (Chiappe et al.,

334	2003, 2004) consisting of reddish-brown siltstones and mottled mudstones (Chiappe et al., 2000,
335	2004; Garrido, 2010a), deposited in an alluvial plain (Sander et al., 2008; Garrido, 2010a) under
336	the regime of a warm and seasonal climate (Garrido, 2010a). The eggs and eggshells were
337	described in detail by Grellet-Tinner, Chiappe & Coria (2004) and Grellet-Tinner (2005).
338	According to these authors the well-preserved eggshell specimens, averaging 1.30 mm thick,
339	display a pronounced ornamentation of single nodes and a pore network that consists of vertical
340	channel openings in funnel-like structures located between the surficial nodes (Figs. 5A–B).
341	Some vertical pores branch in a "Y" pattern, a derived feature originally described for these eggs
342	but shared with other titanosaurs (Figs. 5C-D; Grellet-Tinner, Chiappe & Coria, 2004; Grellet-
343	Tinner, Fiorelli & Salvador, 2012). Additionally, they show horizontal canals located between
344	the bases of the eggshell units –nucleation centers– and above the membrana testacea (Figs. 5C–
345	D). The unhatched eggs range from 13 to 15 cm in diameter (Fig. 5E; Chiappe et al., 1998;
346	Grellet-Tinner, Chiappe & Coria, 2004) and are preserved in clutches of 15 to 40 eggs (Fig. 5F;
347	Chiappe et al., 2000; Grellet-Tinner, Chiappe & Coria, 2004). Although supposedly in their
348	original position, egg clutches became undistinguishable from one another due to soft sediment
349	deformations (field observations; Chiappe et al., 2003; Jackson, Schmitt & Oser, 2013). Like the
350	above-mentioned European, Asian, and South American nesting sites, the dense accumulation of
351	clutches (11 eggs/m ² ; Sander et al., 2008) in egg layers 3 and 4, led to interpretations of
352	gregarious and nesting site fidelity behaviors (Chiappe et al., 2000, 2003). Paradoxically despite
353	the extent of this nesting site, no nesting structures were reported in these overbanking
354	sedimentary layers which were, according to Garrido (2010a), the preferred laying grounds close
355	the stream channel for these nemegtosaurids. However, six trace fossils interpreted as nests with
356	accumulations of eggs were reported in alluvial deposits (Chiappe et al., 2004) of an abandoned

channel in the AM L#4 (Chiappe et al., 2003; Sander et al., 2008), which clearly contradict "the preferred areas close to stream channels" of Garrido (2010a). The six rimmed, sub-circular to kidney-shaped structures contain 4 to 35 randomly disposed eggs in 1 or 2 superposed rows. They were interpreted as rimmed-nests, ranging from 85 to 125 cm, and 10 to 18 cm deep (Chiappe et al., 2004; Sander et al., 2008). The six fossil assemblages were regarded as nests and an "open nest" strategy was suggested for the entire, assumed monospecific nesting site (Chiappe et al., 2004; Sander et al., 2008). However, a recent re-evaluation of the putative nests concluded that the rimmed structures were titanosaur footprints in an abandoned channel (Grellet-Tinner, Fiorelli & Salvador, 2012) that randomly trapped eggs during the several episodic floods. This interpretation is consistent with all the geological data and supported by the inconsistency of an "open nest" hypothesis (Chiappe et al., 2004; Jackson et al., 2008; Sander et al., 2008), considering the high G_{H2O} of the eggshells (Grellet-Tinner, Fiorelli & Salvador, 2012). Like other titanosaurs, the AM eggs' morphology indicates they were likely incubated in relatively high nesting humidities (Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner et al., 2006).

DISCUSSION

Titanosaur nesting strategies

The taphonomy of behavior emphasizes the need of defining trace fossils in terms of both classical ichnology and modern behavioral biology (Plotnick, 2012). Furthermore, the concept of behavioral fidelity, expressed as the "extent to which trace fossils preserve original behavioral signals" (Plotnick, 2012), allows behavioral interpretations contrastable to currently existing data. Considering solely the sedimentological evidence, none of the above-mentioned nesting sites display a diagnostic fossil nest structure. In the absence of direct evidence of preserved

fossil nests, eggs and their spatial grouping, eggshell morphologies, coupled with observations of
surrounding sediments, provide the only data with respect to nesting moisture content and heat,
as those are the main extrinsic parameters that are paramount for hatching success. Pore canals
allow the diffusion of gases and water vapor through the eggshell (Paganelli, 1980). Their size,
geometry, and number reflect a specialization to the habitat where nesting occurs (Williams,
Seymour & Kerourio, 1984; Cousin, 1997; Grellet-Tinner, Fiorelli & Salvador, 2012). Eggshell
ornamentation (or lack thereof) is another morphological characteristic from which a nesting
paleoenvironment can be hypothesized. Cousin (1997) and Cousin and Breton (2000) used the
characteristics of the nodular appearance of eggshells from the Late Cretaceous of France as an
indicator of the substrate, or nesting material, surrounding the eggs. This character (Grellet-
Tinner, Chiappe & Coria, 2004; Grellet-Tinner & Zaher, 2007; Grellet-Tinner et al., 2011) was
regarded as a specialization increasing gas conductance through the pores that are located around
and at the base of each node, by preventing nesting debris from plugging their apertures (Sabath,
1991). The densely packed nodular structures typically observed on the outer surfaces of pristine
titanosaur eggshells provide a substantial increase of surface in contact with the surrounding
environment, suggesting they could also have acted to buffer acidic erosion during long periods
of incubation, an interpretation consistent with GGT and colleagues (unpublished data)
observations on modern megapode eggshells and associated nesting environments in Australia.
Gas diffusion occurs through the pores and can be quantified by the eggshell's G_{H2O} (Seymour,
1979). It is commonly obtained for modern birds and reptiles by measuring water loss in a
known vapor gradient across the shell (Ar et al., 1974). G_{H2O} for fossil eggs can be estimated
from eggshell thickness and pore-system geometry and so forms a valuable proxy for assessing
the moisture content in dinosaur nests, their environments (Seymour, 1979; Seymour &

103	Ackerman, 1980), and nesting strategies (Ar et al., 1974; Seymour, 1979; Birchard & Kilgore,
104	1980; Seymour et al., 1987; Grellet-Tinner, Chiappe & Coria, 2004; Deeming, 2006; Grellet-
105	Tinner, Fiorelli & Salvador, 2012).
106	Titanosaurs could not have used the classic contact incubation strategy typical of most
107	modern dinosaurs (Seymour, 1979; Werner & Griebeler, 2011; Ruxton, Birchard & Deeming,
108	2014), thus must have relied on external environmental heat for incubating their eggs.
109	Interestingly, the extant Australasian megapodes are one of the most intriguing avian dinosaur
110	families because they exhibit a practice unique among modern birds, regarded as a reversal
111	character, of incubating their eggs by utilizing only environmental heat sources rather than body
112	heat (Booth & Thompson, 1991; Jones & Birks, 1992; del Hoyo, Elliott & Sargatal, 1994).
113	Moreover, they display the most diversified incubation behaviors among ground nesting
114	archosaurs (Jones & Birks, 1992; del Hoyo, Elliott & Sargatal, 1994; Harris, Birks & Leaché,
115	2014), which are associated with species specific nesting strategies and nesting sites (Boles &
116	Ivison, 1999; Harris, Birks & Leaché, 2014). These are: (1) mound-building; (2) burrow-nesting
117	using geothermal heat; (3) burrow-nesting using solar-heated beaches; (4) burrow-nesting using
118	decaying tree roots; (5) mound parasitism. As such, Megapodiidae potentially offers a valid
119	proxy for titanosaur reproductive behaviors.
120	Among the titanosaurs nesting sites reviewed in this investigation, only two have been
121	positively related with geothermalism: The well-documented Sanagasta and the South Korean
122	eggs (Table 1). The compact arrangement of the Sanagasta eggs, in clutches of one or two layers,
123	led Grellet-Tinner & Fiorelli (2010) and Fiorelli et al. (2012) to suggest incubation in excavated
124	nests; a strategy already inferred by Paik, Huh & Kim (2004) and Paik, Kim & Huh (2012) for
125	the eggs from Seonso Formation (Gyeongsang Basin, South Korea) (Table 1). The eggs from

426	these sites have a similar morphology (but a thinner eggshell thickness in Gyeongsang) and they
427	also share sedimentary and geological features of geothermal activities concomitant with the
428	oviposition. This supports the hypothesis that geothermal heat sources could have been used by
429	certain species of Cretaceous titanosaurs. Several megapode species -Macrocephalon maleo,
430	Eulipoa wallacei Gray, 1861 and many Megapodius sp use burrow nesting with vegetal
431	decomposition, solar radiation and/or geothermalism (inclusive here of volcanism) as incubating
432	strategies (Frith, 1956; Dekker & Brom, 1960; Jones & Birks, 1992; del Hoyo, Elliott &
433	Sargatal, 1994; Göth & Vogel, 1997; Dekker, 2007; Bowen, 2010; Harris, Birks & Leaché,
434	2014). The remarkable instance of opportunistic nesting in geothermal settings represents an
435	adaptive case in which species avoid thermally heterogeneous nesting environments by
436	exploiting geothermal conditions that maintain higher and more constant temperatures and
437	moisture levels in egg clutches (Werner, 1983; Göth & Vogel, 1997; Chen, Kam & Lin, 2001;
438	Wu & Kam, 2005; Guo et al., 2008; Huang et al., 2009; Sas, Antal & Covaciu-Marcov, 2010;
439	Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012). For example, the
440	malau (M. pritchardii) digs pits more than 2 m deep to utilize underground geothermal heat
441	(Frith, 1956; del Hoyo, Elliott & Sargatal, 1994; Göth & Vogel, 1997). In addition, because
442	burrow nests in geothermal ecosystems are less susceptible than mounds to predation, burrow-
443	nesting megapodes can abandon their nests after burying their clutch (Dekker, 1989; del Hoyo,
444	Elliott & Sargatal, 1994), a strategy consistent with the titanosaur behavior inferred from the
445	fossil record (Sander et al., 2008, 2011; Werner & Griebeler, 2011; Ruxton, Birchard &
446	Deeming, 2014), where nesting sites were often located and synchronous with geothermal
447	activities. Paradoxically, megapodes' nest-burrows are dug preferably in soft soils, in volcanic

448	sands, environments that inhibit preservation of such structures in the fossil record because they
449	easily collapse (Frith, 1956; Dekker & Brom, 1960; Roper, 1983; Bowen, 2010).
450	Although, the first reports of AM nesting site implied a monotaxic titanosaur assemblage,
451	further refined to nemegtosaurid titanosaur (García et al., 2010), one of the co-authors (Eagle et
452	al., in press) has determined that the egg-laying titanosaurs in AM L#4 may represent a different
453	nemegtosaurid species, certainly closely related to those nesting in Auca Mahuevo layers 1-3
454	(AM L#1-3) but displaying sufficient autapomorphies to justify a species variation (Table 1).
455	This species variation is also supported by an environmental change. Celestite geodes and barite
456	are ubiquitous in AM L#1-3 (Garrido, 2010a, 2010b). These two minerals are readily produced
457	in geothermal and evaporitic settings, both equally possible at AM due to its particular geology
458	(Jackson, Schmitt & Oser, 2013). Moreover geochemical analyses reveal a higher concentration
459	of magnesium and lithium in AM L#1-3 than AM L#4 (R. Eagle et al., in press). These two
460	minerals are prevalent in continental brines, which could be also formed under high evaporitic
461	conditions or geothermalism. However the evidence available suggests AM have been selected
462	first by a certain nemegtosaurid species (AM L#1-3) for its presence of limited rivers in a
463	semiarid environment and then, after a climatic change toward wetter conditions, replaced by
464	another closely related species with more conspicuous nodular eggshell ornamentation, adapted
465	to a more humid nesting environment (Table 1). Climatic and environmental changes are also
466	documented in the clay fabric in the 4 AM layers (Jackson, Schmitt & Oser, 2013). Interestingly,
467	among the modern Megapodiidae a similar niche partition is observed in Australasia. The
468	mound-builder Alectura lathami Gray, 1831 (brush-turkey) nests in wetter environments in
469	coastal Australian regions with respect with its congener Leipoa ocellata Gould, 1840
470	(malleefowl) that nests in semi-arid settings. Although both species are contemporaneous their

geographical niche partitioning is related to vegetation and climatic differences. Such species
specific nesting partitioning in modern Australia may explain the nemegtosaurid successive
species replacement in AM from a dryer environment nesting adaptation, such as occurs in AM
L#1-3, to a wetter setting, recorded upwards by the transition to the Allen Formation's estuarine-
coastal sediments (Garrido, 2010a, 2010b). Combined with the lack of convincing geothermal
evidence, although not entirely discounted due to the episodic explosive volcanism (Jackson,
Schmitt & Oser, 2013), the horizons with egg clutches and the eggshell structures would suggest
mound-building nesting strategies with a dryer climate for AM L#1-3 which display shallower
nodular eggshell ornamentation and wetter for AM L#4 with pronounced nodular ornamentation
(Table 1). The oological material from AM L#4 and Haţeg are very similar, sharing several
synapomorphies including egg size, shape and eggshell microstructure (Grellet-Tinner, Chiappe
& Coria, 2004; Grellet-Tinner et al., 2012). The complexity of their pore systems is consistent
with a morphological adaptation to high moisture nesting environments, typical of burial
conditions. Furthermore, in AM a semiarid dry/wet climate coupled with episodic volcanism
contributed to vertisol horizons development at the floodplain areas (Garrido, 2010a; Jackson,
Schmitt & Oser, 2013). Rhizoliths and root traces as well as small fossil logs found there
(Garrido, 2010a, 2010b; Jackson, Schmitt & Oser, 2013) suggest a floristic abundance that
would promote ideal conditions for mound-nesting behaviors.
Although crocodilians' mound-nests also average 1 m high and 3m in diameter (Joanen, 1969;
Webb, Messel & Magnusson, 1977; Seymour & Ackerman, 1980; Waitkuwait, 1989), it is
important to distinguish this type of vegetal mounds from those of the Australian brush-turkey
megapodes, built from humus, soil and smaller amounts of true vegetal matter. Modern
megapodes construct surprisingly large nests-mounds, if compared to their egg and clutch sizes.

Although a few mounds could reach 4 m in height, 18 m in length and 5 m in width, a typical
brush-turkey mound commonly measure 1 by 4 m (height and diameter respectively) and
requires up to 5 tons of soil mixed with vegetal matter (Seymour & Ackerman, 1980; Jones &
Birks, 1992; del Hoyo, Elliott & Sargatal, 1994; Harris, Birks & Leaché, 2014). Conversely,
nesting structures smaller than 0.75 m high and 2 m long are not functional (Jones & Birks,
1992; del Hoyo, Elliott & Sargatal, 1994; Jones & Göth, 2008). In contrast, malleefowl mounds
consist mostly of sandy material with terrigeneous clasts. Malleefowl build their mound, and
then dig out the center into which semi-arid to arid vegetation, like spinifex, is introduced before
the rainy season (Frith, 1959; Jones & Birks, 1992; Jones & Göth, 2008; D. Booth, pers. comm.).
Eggs are laid around this center core that induces sufficient heat from vegetal decomposition to
support embryonic development. This results in all eggs being placed relatively centrally within
a mound (D. Booth, pers. comm.). Temperatures in the mound range from 27 to 38 °C, although
eggs mostly lie in the range of 32 to 36 °C (Booth, 1987). In contrast brush-turkey females
burrow into the mound obliquely. The litter material does not collapse around the tunnel as sand
would in a malleefowl mound (D. Booth, pers. comm.). Hence, eggs can be dispersed throughout
the place in large mounds and not just in the central core as in the malleefowl ones. One strategy
would result in eggs grouped together in a compact clutch, while the other results in eggs
isolated or lined up in small groups when the mound is eroded away. In comparison, the latter
matches the pattern already observed in the titanosaur nesting sites of Southern France, where
Cousin et al. (1989) and Cousin and Breton (2000) interpreted that small groups of eggs (2 to 4)
are not randomly distributed but belong to circular "supergroups" of up to 15 eggs and 3.5 m in
diameter (see Fig. 10 in Cousin & Breton, 2000) substantially separated from others (Cousin et
al., 1989; Cousin & Breton, 2000). Additionally, the few-egg clutches found in close association

517	in Coll de Nargó that were interpreted by Vila et al. (2010) as partially preserved ~25-egg
518	clutches, show similar patterns. As such, the egg spatial distribution, in small clusters linearly to
519	compactly grouped, but contained in round shaped areas of up to 2.3 m (see Table 1; Vila et al.,
520	2010), would either support burrow- or mound-nesting (Cousin & Breton, 2000).
521	The Upper Cretaceous eggs and eggshells found at the reviewed nesting sites of Southern
522	France and Northern Spain share many characteristics. Regarding their similarities (Table 1), and
523	considering the high conductance values of the Pinyes' eggs, a highly humid incubation
524	environment can be inferred for both locations. Although the evidences at hand suggest burial
525	incubation, no record of organic matter or hydrothermal relics has been identified in their fine
526	surrounding sediments. Regarding the morphological aspects, the minimal differences in size
527	between eggshell pores and the fine sediments reported in both cases obscure the inference of
528	vegetation as nesting material.
529	Although there are no published analyses on gas conductance for the Dholi Dungri eggs, the
530	high values obtained from other Indian localities, ranging between 2650 mgH2O/(day*torr) and
531	3490 mgH ₂ O/(day*torr) (Sahni et al., 1994), suggests a high moisture nesting microenvironment.
532	Considering the nodular appearance of the eggshells as a good indicator of the surrounding
533	nesting material (Cousin & Breton, 2000) the provision of substantial amounts of plant debris as
534	constructing material cannot be discarded. Although the sediment itself is coarse enough to
535	prevent pore obstruction, the well-developed ornamentation of the eggshells could be a
536	mechanism to prevent the external eggshell erosion, by the acid formed by decomposing
537	microbes and fungi during an extended incubation period, like in modern megapodes. The
538	morphological and sedimentological evidences at hand, coupled with the interpretation of a
539	semiarid, tropical dry-wet climate for the Lameta Formation during Maastrichtian (Tandon et al.,

540	1995; Tandon & Andrews, 2001; Wilson et al., 2010; Prasad & Sahni, 2014), allows to infer an
541	A. lathami-like nesting strategy, similar to that suggested for AM L#4 (Table 1). However,
542	regarding the magnitude of the volcanism responsible of the Deccan Traps deposition, during
543	Late Cretaceous, the geothermalism could also be regarded as an equally plausible alternative
544	heat source for egg incubation. Interestingly, although Tandon et al. (1995) suggest the nesting
545	activity in the Lameta Formation was contemporaneous with the first Deccan lavas, questions
546	regarding its possible relationship still require further research.
547	Many species of modern megapodes are known to use mound-nesting strategies to incubate
548	their eggs (Harris, Birks & Leaché, 2014). However, they are also known to revert to less
549	conspicuous nesting strategies such as burrow-nesting (Dekker, 1989) because of their
550	behavioral lability (Harris, Birks & Leaché, 2014). As such, although dusky megapode
551	(Megapodius freycinet Gaimard, 1823) populations are categorized as mound-builders, they are
552	also burrow-nesters and exploit geothermal resources for heat and moisture in New Britain and
553	the Solomon Islands (Roper, 1983). This species demonstrates an interesting behavioral
554	plasticity (Frith, 1956), yet still relying on environmental heat only. Additionally, the Moluccan
555	megapodes (Eulipoa wallacei) lay their eggs in black volcanic sands and silt utilizing solar heat
556	(del Hoyo, Elliott & Sargatal, 1994; Dekker, 2007) but also are known to switch to geothermal
557	and microbial decomposition. Because of the scarcity of suitable nesting areas, burrow-nester
558	megapodes (e.g., M. freycinet, M. maleo, and M. pritchardii) commonly adopt colonial nesting
559	behaviors and site fidelity (del Hoyo et al., 1994; Dekker et al., 2000). Similarly, strong nesting
560	environment selectivity and colonial nesting were related to the massive occurrence of eggs and
561	egg clutches in similar lithofacies, in some of the best known titanosaur nesting sites (Sahni et
562	al., 1994; Mohabey, 2001). Although some titanosaur species may have adopted nesting

strategies relying on various styles of mound-nests, it is entirely plausible that a few of them may
have reverted to such opportunistic behaviors when available, this particularly in settings like
Hațeg (Grellet-Tinner et al., 2012), India (Tandon et al., 1995) and AM (Jackson, Schmitt &
Oser, 2013) where volcanism and related processes were coeval with nesting titanosaurs (Table
1).
Seymour and Ackerman (1980) emphasized that vegetal decomposition through
microorganisms could be critical in terms of gas tension for mound-builder archosaurs. When
clutches are large, as occurs with the $\sim\!20$ egg clutches of the Australian brush-turkey, the gas
tensions as well as the temperature in the mound vary with the reworking of the mound by
parents (Seymour & Ackerman, 1980; del Hoyo, Elliott & Sargatal, 1994; Priddel & Wheeler,
2003). Assuming similar incubation strategies, it seems that the sizes of the sauropods could
have prohibited active reworking of the mound to compensate gas and temperature variations.
Yet, such post-oviposition activities may have not been required, e.g. in modern alligators, that
exhibit similar "in masse" laying behaviors.

CONCLUSION

Titanosaurs reproduced in globally distributed but highly particular and localized nesting sites (Sahni et al., 1994; Mohabey, 2001). The geological-sedimentological record of the reviewed titanosaur sites suggests that different titanosaurs species may have evolved an array of reproductive strategies comparable to those of modern megapodes. The observed eggshell features indicate high nesting moisture content, yet with variable nesting humidities as expressed by the geometry of the pore canals used for gas diffusion through the eggshells. The egg spatial positions in clutches suggest excavated holes (e.g., Fig. 6A) as well as mound incubation (Fig.

586	6B). Mound-nesting incubation in its various forms as observed in modern megapodes, although
587	not entirely supported because of the absence or paucity of organic matter or plant debris in close
588	association with all the eggs or egg clutches in the fossil record, may be quite plausible. The sites
589	-Haţeg, Dholi Dungri, Rennes-le-Château, Albas, Coll de Nargó and AM- seem to support
590	mound incubating, but tectonism associated with volcanism was recorded in these sites, thus
591	leaving an open door for opportunistic geothermal incubation strategies. In that regard
592	geothermal and hydrothermal settings (Fig. 6) have undoubtedly been exploited by in Sanagasta
593	and the South Korean southern peninsula for their external heat and moisture.
594	
595	ACKNOWLEDGEMENTS
596	We acknowledge the help of Secretaría de Cultura de La Rioja. We would also like to thank
597	the CRILAR staff and technicians (Sergio de la Vega and Carlos Bustamante) for their help and
598	support during our work. EMH would like to acknowledge Dr. Ron Blakey for providing the
599	Cretaceous paleogeographic map.
600	
601	REFERENCES
602	
603	Ar A, Paganelli C V, Reeves RB, Greene DG, Rahn H. 1974. The avian egg: water vapor
604	conductance, shell thickness, and functional pore area. Condor 76:153–158.
605	Birchard GF, Kilgore DLJ 1980. Conductance of water vapor in eggs of burrowing and
606	nonburrowing birds: implications for embryonic gas exchange. Physiological Zoology
607	53:284–292.

508	Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch P, Evans DC.
509	2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained
510	ecological innovation on the avian stem lineage. PLoS Biology 12:e1001853.
511	Benton MJ, Csiki Z, Grigorescu D, Redelstorff R, Sander PM, Stein K, Weishampel DB. 2010.
512	Dinosaurs and the island rule: the dwarfed dinosaurs from Haţeg Island. Palaeogeography,
513	Palaeoclimatology, Palaeoecology 293:438–454.
514	Bojar A-V, Grigorescu D, Ottner F, Csiki Z. 2005. Palaeoenvironmental interpretation of
515	dinosaur- and mammal-bearing continental Maastrichtian deposits, Haţeg basin, Romania.
516	Geological Quarterly 49:205–222.
517	Bojar A-V, Csiki Z, Grigorescu D. 2010. Stable isotope distribution in Maastrichtian vertebrates
518	and paleosols from the Hațeg Basin, South Carpathians. Palaeogeography,
519	Palaeoclimatology, Palaeoecology 293:329–342.
520	Boles WE, Ivison TJ. 1999. A new genus of dwarf megapode (Galliformes: Megapodiidae) from
521	the Late Oligocene of central Australia. Smithsonian Contributions to Paleobiology 89:199-
522	206.
523	Bonaparte JF, Coria RA. 1993. Un nuevo y gigantesco saurópodo titanosaurio de la Formación
524	Río Limay (Albiano-Cenomaniano) de la Provincia del Neuquén, Argentina. Ameghiniana
525	30:271–282.
526	Booth DT. 1987. Effect of temperature on development of mallee fowl <i>Leipoa ocellata</i> eggs.
527	Physiological Zoology 60:437–445.
528	Booth DT, Thompson MB. 1991. A comparison of reptilian eggs with those of megapode birds.
529	In: Deeming DC, Ferguson MWJ eds. Egg incubation: its effects on embryonic development
530	in birds and reptiles. Cambridge University Press. 325–344.

531	Bowen J. 2010. Notes on the Vanuatu Megapode Megapodius layardi on Ambrym, Vanuatu.
532	Bird Conservation International 6:401–408.
533	Brazaitis P, Watanabe ME. 2011. Crocodilian behaviour: a window to dinosaur behaviour?
534	Historical Biology 23:73–90.
535	Calvo JO, Porfiri JD, González-Riga BJ, Kellner AW a. 2007. A new Cretaceous terrestrial
536	ecosystem from Gondwana with the description of a new sauropod dinosaur. Anais da
537	Academia Brasileira de Ciências 79:529–41.
538	Carpenter K, Alf K. 1994. Global distribution on dinosaur eggs, nests and babies. In: Carpenter
539	K, Hirsch KF, Horner JR eds. Dinosaur Eggs and Babies. United States of America:
540	Cambridge University Press, 15–30.
541	Carrano MT. 2005. The evolution of sauropod locomotion: morphological diversity of a
542	secondarily quadrupedal radiation. In: Curry Rogers KA, Wilson JA eds. The Sauropods:
543	Evolution and Paleobiology. University of California Press, 229–251.
544	Cerda IA, Paulina Carabajal A, Salgado L, Coria RA, Reguero MA, Tambussi CP, Moly JJ.
545	2012. The first record of a sauropod dinosaur from Antarctica. Naturwissenschaften 99:83-
546	7.
547	Chen TC, Kam YC, Lin YS. 2001. Thermal physiology and reproductive phenology of
548	Buergeria japonica (Rhacophoridae) breeding in a stream and a geothermal hotspring in
549	Taiwán. Zoological Science 18:591–596.
550	Chiappe LM, Coria R, Dingus L, Jackson F, Chinsamy A, Fox M. 1998. Sauropod dinosaur
551	embryos from the Late Cretaceous of Patagonia. Nature 396:258–261.

652	Chiappe LM, Dingus L, Jackson F, Grellet-Tinner G, Aspinall R, Clarke JA, Coria RA, Garrido
653	AC, Loope DB. 2000. Sauropod eggs and embryos from the Late Cretaceous of Patagonia.
654	First international symposium on dinosaur eggs and babies, extended abstracts. 23–29.
655	Chiappe LM, Coria RA, Jackson F, Dingus L. 2003. The Late Cretaceous nesting site of Auca
656	Mahuevo (Patagonia, Argentina): eggs, nests, and embryos of titanosaurian sauropods.
657	Palaeovertebrata 32:97–108.
658	Chiappe LM, Schmitt JG, Jackson FD, Garrido AC, Dingus L, Grellet-Tinner G. 2004. Nest
659	structure for sauropods: sedimentary criteria for recognition of dinosaur nesting traces.
660	Palaios 19:89–95.
661	Chiappe LM, Salgado L, Coria R a. 2001. Embryonic skulls of titanosaur sauropod dinosaurs.
662	Science 293:2444–6.
663	Choi HI. 1986. Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern
664	Korea. Journal of the Geological Society 143:29–40.
665	Choi S-G, Ryu I-C, Pak SJ, Wee S-M, Kim CS, Park M-E. 2005. Cretaceous epithermal gold-
666	silver mineralization and geodynamic environment, Korea. Ore Geology Reviews 26:115-
667	135.
668	Choi S-G, Pak SJ, Kim CS, Ryu I-C, Wee S-M. 2006. The origin and evolution of mineralizing
669	fluids in the Cretaceous Gyeongsang Basin, Southeastern Korea. Journal of Geochemical
670	Exploration 89:61–64.
671	Chough SK, Kwon S-T, Ree J-H, Choi DK. 2000. Tectonic and sedimentary evolution of the
672	Korean peninsula: a review and new view. Earth-Science Reviews 52:175–235.

673	Codrea V, Smith T, Dica P, Folie A, Garcia G, Godefroit P, Van Itterbeeck J. 2002. Dinosaur
674	egg nests, mammals and other vertebrates from a new Maastrichtian site of the Haţeg Basin
675	(Romania). Comptes Rendus Palevol 1:173–180.
676	Cojan I, Renard M, Emmanuel L. 2003. Palaeoenvironmental reconstruction of dinosaur nesting
677	sites based on a geochemical approach to eggshells and associated palaeosols
678	(Maastrichtian, Provence Basin, France). Palaeogeography, Palaeoclimatology,
679	Palaeoecology 191:111–138.
680	Collias NE. 1964. The evolution of nests and nest-building in birds. <i>American Zoologist</i> 4:175–
681	190.
682	Collias NE. 1997. On the origin and evolution of nest building by passerine birds. <i>The Condor</i>
683	99:253–270.
684	Cousin R, Breton G, Fournier R, Watte J-P. 1989. Dinosaur egg-laying and nesting: the case of
685	an Upper Maastrichtian site at Rennes-Le-Chateau (Aude, France). Historical Biology
686	2:157–167.
687	Cousin R, Breton G, Fournier R, Watte J-P. 1994. Dinosaur egglaying and nesting in France. In:
688	Carpenter K, Hirsch KF, Horner JR eds. Dinosaur Eggs and Babies. Cambridge: Cambridge
689	University Press, 56–74.
690	Cousin R. 1997. Les gisements d'œufs de dinosauriens des Hautes Corbières et des Corbières
691	Orientales (Aude): Ponte, nidification, microstructure des coquilles. Bulletin de la Société
692	d'Études Scientifiques de l'Aude 97:29–46.
693	Cousin R, Breton G. 2000. A precise and complete excavation is necessary to demonstrate a
694	dinosaur clutch structure. In: First international symposium on dinosaur eggs and babies,
695	extended abstracts. 31–42.

596	Csiki Z, Codrea V, Jipa-Murzea C, Godefroit P. 2010. A partial titanosaur (Sauropoda,
597	Dinosauria) skeleton from the Maastrichtian of Nălaț-Vad, Hațeg Basin, Romania. Neues
598	Jahrbuch für Geologie und Paläontologie - Abhandlungen 258:297–324.
599	Curry Rogers KA. 2005. Titanosauria: a phylogenetic overview. In: Curry Rogers KA, Wilson
700	JA eds. The Sauropods: Evolution and Paleobiology. University of California Press, 50-
701	103.
702	Deeming DC. 2006. Ultrastructural and functional morphology of eggshells supports the idea
703	that dinosaur eggs were incubated buried in a substrate. Palaeontology 49:171–185.
704	Dekker RWRJ. 1989. Predation and the western limits of megapode distribution (Megapodiidae;
705	Aves). Journal of Biogeography 16:317–321.
706	Dekker RWRJ. 2007. Distribution and speciation of megapodes (Megapodiidae) and subsequent
707	development of their breeding behaviour. In: Renema W ed. Biogeography, time, and place
708	distributions, barriers, and islands. Dordrecht, The Netherlands: Springer, 93-102.
709	Dekker RWRJ, Brom TG. 1960. Megapode phylogeny and the interpretation of incubation
710	strategies. Zoologische Verhandelingen 278:19–31.
711	Dingus L, Clarke J, Scott GR, Swisher III CC, Chiappe LM, Coria RA. 2000. Stratigraphy and
712	magnetostratigraphic/faunal constraints for the age of sauropod embryo-bearing rocks in the
713	Neuquén Group (Late Cretaceous, Neuquén Province, Argentina). American Museum
714	Novitates 3290:1–11.
715	Eagle RA, Enriquez M, Grellet-Tinner G, Perez-Huerta A, Hu D, Tütken T, Montanari S, Loyd
716	S, Ramirez P, Tripati A, Kohn M, Cerling T, Chiappe LM, Eiler J. in press. Isotopic (13C-
717	18O) ordering in eggshells reflects body temperatures and suggests differing
718	thermophysiology in two Cretaceous dinosaurs. <i>Nature Communications</i> .

719	Fernández MS, Khosla A. 2015. Parataxonomic review of the Upper Cretaceous dinosaur
720	eggshells belonging to the oofamily Megaloolithidae from India and Argentina. Historical
721	Biology 27:158–180.
722	Fiorelli LE, Grellet-Tinner G, Alasino PH, Argañaraz E. 2012. The geology and palaeoecology
723	of the newly discovered Cretaceous neosauropod hydrothermal nesting site in Sanagasta
724	(Los Llanos Formation), La Rioja, northwest Argentina. Cretaceous Research 35:94-117.
725	Fiorelli LE, Grellet-Tinner G, Argarañaz E, Salgado L. 2013. Tafonomía del sitio de nidificación
726	de neosaurópodos de Sanagasta (La Rioja, Argentina): ejemplo de preservación excepcional
727	en un paleoambiente hidrotermal del Cretácico. Ameghiniana 50:389-406.
728	Freytet P. 1965. Découverte d'oeufs de Dinosaures à Saint-André-de-Roquelongue (Aude).
729	Bulletin de la Société d'Etudes de la Science de l'Aude 65:121–124.
730	Frith HJ. 1956. Breeding habits in the family Megapodiidae. <i>Ibis</i> 98:620–640.
731	Frith HJ. 1959. Breeding of the mallee fowl, <i>Leipoa ocellata</i> Gould (Megapodiidae). <i>Wildlife</i>
732	Research 4:31–60.
733	Garcia G, Vianey-Liaud M. 2001a. Nouvelles données sur les coquilles d'œufs de dinosaures
734	Megaloolithidae du Sud de la France: systématique et variabilité intraspécifique. Comptes
735	Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 332:185-
736	191.
737	Garcia G, Vianey-Liaud M. 2001b. Dinosaur eggshells as biochronological markers in Upper
738	Cretaceous continental deposits. Palaeogeography, Palaeoclimatology, Palaeoecology
739	169(1-2):153–164.

740	Garcia G, Tabuce R, Cappetta H, Marandat B, Bentaleb I, Benabdallah A, Vianey-Liaud M.
741	2003. First record of dinosaur eggshells and teeth from the North-West African
742	Maastrichtian (Morocco). Palaeovertebrata 32:59-69.
743	García RA, Salgado L, Coria RA, Chiappe LM. 2010. Osteología embrionaria de saurópodos
744	titanosaurios de Neuquén (Argentina): aspectos ontogenéticos y evolutivos. Ameghiniana
745	47:409–430.
746	García R, Salgado L, Fernández M, Cerda I, Paulina Carabajal A, Otero A, Coria R, Fiorelli L.
747	2014. Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity,
748	locomotion and neuroanatomy from the South American fossil record. Ameghiniana 52:29-
749	68
750	Garrido AC. 2010a. Paleoenvironment of the Auca Mahuevo and Los Barreales sauropod
751	nesting-sites (Late Cretaceous, Neuquén Province, Argentina). Ameghiniana 47:99-106.
752	Garrido AC. 2010b. Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina
753	(Argentina): nueva propuesta de ordenamiento litoestratigráfico. Revista del Museo
754	Argentino de Ciencias Naturales 12:121–177.
755	Gill FB. 2007. Nests and Incubation. In: Gill FB ed. Ornithology. New York: W. H. Freeman
756	and Company, 431–466.
757	Gottfried MD, O'Connor PM, Jackson FD, Roberts EM, Chami R. 2004. Dinosaur eggshell from
758	the Red Sandstone Group of Tanzania. Journal of Vertebrate Paleontology 24:494–497.
759	Göth A, Vogel U. 1997. Egg laying and incubation of Polynesian megapode. <i>Annual Review of</i>
760	the World Pheasant Association 1996-97:43–54.

761	Grellet-Tinner G. 2005. Membrana testacea of titanosaurid dinosaur eggs from Auca Mahuevo
762	(Argentina): Implications for exceptional preservation of soft tissue in Lagerstätten. Journa
763	of Vertebrate Paleontology 25:99–106.
764	Grellet-Tinner G, Chiappe L, Norell M, Bottjer D. 2006. Dinosaur eggs and nesting behaviors: A
765	paleobiological investigation. Palaeogeography, Palaeoclimatology, Palaeoecology
766	232:294–321.
767	Grellet-Tinner G, Sim CM, Kim DH, Trimby P, Higa A, An SL, Oh HS, Kim T, Kardjilov N.
768	2011. Description of the first lithostrotian titanosaur embryo in ovo with Neutron
769	characterization and implications for lithostrotian Aptian migration and dispersion.
770	Gondwana Research 20:621–629.
771	Grellet-Tinner G, Codrea V, Folie A, Higa A, Smith T. 2012. First evidence of reproductive
772	adaptation to "island effect" of a dwarf Cretaceous Romanian titanosaur, with embryonic
773	integument in ovo. PloS One 7:e32051.
774	Grellet-Tinner G, Chiappe LM, Coria RA. 2004. Eggs of titanosaurid sauropods from the Upper
775	Cretaceous of Auca Mahuevo (Argentina). Canadian Journal of Earth Sciences 41:949-
776	960.
777	Grellet-Tinner G, Fiorelli LE. 2010. A new Argentinean nesting site showing neosauropod
778	dinosaur reproduction in a Cretaceous hydrothermal environment. Nature Communications
779	1:32.
780	Grellet-Tinner G, Fiorelli LE, Salvador RB. 2012. Water vapor conductance of the Lower
781	Cretaceous dinosaurian eggs from Sanagasta, La Rioja, Argentina: Paleobiological and
782	paleoecological implications for South American faveoloolithid and megaloolithid eggs.
783	Palaios 27:35–47.

784	Grellet-Tinner G, Zaher H. 2007. Taxonomic identification of the Megaloolithid egg and
785	eggshells from the Cretaceous Bauru Basin (Minas Gerais, Brazil): Comparison with the
786	Auca Mahuevo (Argentina) Titanosaurid eggs. Papéis Avulsos de Zoologia 47:105-112.
787	Grigorescu D, Seclamen M, Norman DB, Weishampel DB. 1990. Dinosaur eggs from Romania.
788	<i>Nature</i> 346:417.
789	Grigorescu D. 1993. The latest Cretaceous dinosaur eggs and embryos from the Haţeg Basin -
790	Romania. Revue De Paléobiologie 7:95–99.
791	Grigorescu D. 2010. The "Tustea Puzzle": hadrosaurid (Dinosauria, Ornithopoda) hatchlings
792	associated with Megaloolithidae eggs in the Maastrichtian of the Hateg Basin (Romania).
793	Ameghiniana 47:89–97.
794	Grigorescu D, Garcia G, Csiki Z, Codrea V, Bojar A-V. 2010. Uppermost Cretaceous
795	megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings:
796	Search for explanation. Palaeogeography, Palaeoclimatology, Palaeoecology 293:360-374
797	Guo P, Liu SY, Feng JC, He M. 2008. The description of a new species of <i>Thermophis</i>
798	(Serpentes: Colubridae). Sichuan Journal of Zoology 27:321.
799	Hansell MH. 2000. Bird nests and construction behaviour. Cambridge: Cambridge University
300	Press.
301	Hansell MH. 2007. Built by animals: the natural history of animal architecture. Oxford: Oxford
302	University Press.
303	Harris RB, Birks SM, Leaché AD. 2014. Incubator birds: biogeographical origins and evolution
304	of underground nesting in megapodes (Galliformes: Megapodiidae). Journal of
305	Biogeography 41:2045–2056.

306	Hasiotis ST, Platt BF, Hembree DI, Everhart MJ. 2007. The trace-fossil record of vertebrates. In
307	Miller W ed. Trace fossils: concepts, problems, prospects. Amsterdam, The Netherlands:
808	Elsevier, 196–218.
309	del Hoyo J, Elliott A, Sargatal J. 1994. Handbook of the birds of the world. Vol 2. New World
310	vultures to guinea fowl. Barcelona: Lynx Edicions.
311	Huang S, Liu S, Guo P, Zhang Y, Zhao E. 2009. What are the closest relatives of the hot-spring
312	snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau?
313	Molecular phylogenetics and evolution 51:438–46.
314	Huh M, Zelenitsky DC. 2002. Rich dinosaur nesting site from the Cretaceous of Bosung county,
315	Chullanam-Do province, South Korea. Journal of Vertebrate Paleontology 22:716–718.
316	Jackson FD, Varricchio DJ, Jackson RA, Vila B, Chiappe LM. 2008. Comparison of water vapor
317	conductance in a titanosaur egg from the Upper Cretaceous of Argentina and a
318	Megaloolithus siruguei egg from Spain. Paleobiology 34:229-246.
319	Jackson FD, Schmitt JG, Oser SE. 2013. Influence of vertisol development on sauropod egg
320	taphonomy and distribution at the Auca Mahuevo locality, Patagonia, Argentina.
321	Palaeogeography, Palaeoclimatology, Palaeoecology 386:300–307.
322	Joanen T. 1969. Nesting ecology of alligators in Louisiana. Proceedings of the Annual
323	Conference of Southeastern Association of Game and Fish Commissioners 23:141–151.
324	Jones D, Birks S. 1992. Megapodes: Recent Ideas on Origins, Adaptations and Reproduction.
325	Trends in Ecology and Evolution 7:88–91.
326	Jones DN, Göth A. 2008. Mound-builders: malleefowl, brush turkeys and scrubfowl.
327	Collingwood, Victoria, Australia: CSIRO Publishing.

828	Kamel SJ, Mrosovsky N. 2005. Repeatability of nesting preferences in the hawksbill sea turtle,
829	Eretmochelys imbricata, and their fitness consequences. Animal Behaviour 70:819-828.
830	Kerourio P. 1981. Nouvelles observations sur le mode de nidification et de ponte chez les
831	dinosauriens du Crétacé terminal du Midi de la France. Compte rendu sommatre des
832	sélances de la Sociéité Géologique de France 1:25–28.
833	Kim C-B, Al-Aasm IS, Ghazban F, Chang H-W. 2009. Stable isotopic composition of dinosaur
834	eggshells and pedogenic carbonates in the upper cretaceous seonso formation, South Korea:
835	Paleoenvironmental and diagenetic implications. Cretaceous Research 30:93–99.
836	Kolbe JJ, Janzen FJ. 2002. Impact of nest-site selection on nest success and nest temperature in
837	natural and disturbed habitats. Ecology 83:269–281.
838	Kräutner HG, Vajdea E, Romanescu O. 1986. K–Ar dating of the banatitic magmatites from the
839	southern Poiana Ruscă Mountains (Rusca Montană sedimentary basin). DS Inst Geol Geofiz
840	70-71:373-388.
841	Larson PL. 1998. The theropod reproductive system. <i>Gaia</i> 15:389–397.
842	Liang X, Wen S, Yang D, Zhou S, Wu S. 2009. Dinosaur eggs and dinosaur egg-bearing deposits
843	(Upper Cretaceous) of Henan Province, China: Occurrences, palaeoenvironments,
844	taphonomy and preservation. Progress in Natural Science 19:1587–1601.
845	Mannion PD, Upchurch P, Carrano MT, Barrett PM. 2011. Testing the effect of the rock record
846	on diversity: a multidisciplinary approach to elucidating the generic richness of
847	sauropodomorph dinosaurs through time. Biological Reviews 86:157–81.
848	Mannion PD, Upchurch P. 2010. A quantitative analysis of environmental associations in
849	sauropod dinosaurs. Paleobiology 36:253–282.

350	Mannion PD, Upchurch P. 2011. A re-evaluation of the "mid-Cretaceous sauropod hiatus" and
351	the impact of uneven sampling of the fossil record on patterns of regional dinosaur
352	extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 299:529-540.
353	Mikhailov KE. 1997. Fossil and recent eggshell in amniotic vertebrates: fine structure,
354	comparative morphology and classification. Special Papers in Palaeontology:83.
355	Mohabey DM. 1998. Systematics of indian Upper Cretaceous dinosaur and chelonian eggshells.
356	Journal of Vertebrate Paleontology 18:348–362.
357	Mohabey DM. 2001. Indian dinosaur eggs: a review. Journal of the Geological Society of India
358	58:479–508.
359	Mohabey DM. 2005. Late Cretaceous (Maastrichtian) nests, eggs, and dung mass (coprolites) of
360	sauropods (titanosaurs) from India. In: Tidwell V, Carpenter K eds. Thundelizards: the
361	Sauropodomorph Dinosaurs. Bloomington and Indianapolis: Indiana University Press, 466-
362	489.
363	Mohabey DM, Udhoji SG, Verma KK. 1993. Palaeontological and sedimentological
364	observations on nonmarine Lameta Formation (Upper Cretaceous) of Maharashtra, India:
365	their palaeoecological and palaeoenvironmental significance. Palaeogeography,
366	Palaeoclimatology, Palaeoecology 105:83–94.
367	Paganelli C V. 1980. The physics of gas exchange across the avian eggshell. American Zoologist
368	20:329–338.
369	Paik IS, Huh M, Kim HJ. 2004. Dinosaur egg-bearing deposits (Upper Cretaceous) of Boseong,
370	Korea: occurrence, palaeoenvironments, taphonomy, and preservation. Palaeogeography,
371	Palaeoclimatology, Palaeoecology 205:155–168.

872	Paik IS, Kim HJ, Huh M. 2012. Dinosaur egg deposits in the Cretaceous Gyeongsang
873	Supergroup, Korea: Diversity and paleobiological implications. Journal of Asian Earth
874	Sciences 56:135–146.
875	Panaiotu CG, Panaiotu CE. 2010. Palaeomagnetism of the Upper Cretaceous Sânpetru Formation
876	(Hațeg Basin, South Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology
877	293:343–352.
878	Peitz C. 1998. Megaloolithid dinosaur eggs from the Maastrichtian of Catalunya (NE-Spain) -
879	parataxonomic implications and stratigraphic utility. In: First International symposium on
880	dinosaur eggs and babies, extended abstracts. 155–159.
881	Pigati JS, Rech JA, Quade J, Bright J. 2014. Desert wetlands in the geologic record. Earth-
882	Science Reviews 132:67–81.
883	Plotnick RE. 2012. Behavioral biology of trace fossils. <i>Paleobiology</i> 38:459–473.
884	Prasad GVR, Sahni A. 2014. Vertebrate fauna from the Deccan volcanic province: Response to
885	volcanic activity. Geological Society of America Special Paper 505.
886	Priddel D, Wheeler R. 2003. Nesting activity and demography of an isolated population of
887	malleefowl (Leipoa ocellata). Wildlife Research 30:451–464.
888	Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the
889	Southern Pyrenees. In: McClay KR ed. Thrust tectonics. The Netherlands: Springer, 247-
890	254.
891	Riera V, Anadón P, Oms O, Estrada R, Maestro E. 2013. Dinosaur eggshell isotope
892	geochemistry as tools of palaeoenvironmental reconstruction for the upper Cretaceous from
893	the Tremp Formation (Southern Pyrenees). Sedimentary Geology 294:356–370.

394	Roper DS. 1983. Egg incubation and laying behaviour of the incubator bird Megapodius
395	freycinet on Savo. Ibis 125:384–389.
396	Russo-Sändulescu D, Berza T. 1979. Banatites from the western part of the South Carpathians.
397	Rev. Roum. Geol. Geophys. Geogr. 23:149–158.
398	Ruxton GD, Birchard GF, Deeming DC. 2014. Incubation time as an important influence on egg
399	production and distribution into clutches for sauropod dinosaurs. Paleobiology 40:323-330.
900	Sabath K. 1991. Upper Cretaceous amniotic eggs from the Gobi Desert. Acta Palaeontologica
901	Polonica 36:151–189.
902	Sahni A, Tandon SK, Jolly A, Bajpai S, Sood A, Srinivasan S. 1994. Upper Cretaceous dinosaur
903	eggs and nesting sites from the Deccan volcano-sedimentary province of peninsular India.
904	In: Carpenter K, Hirsch KF, Horner JR eds. Dinosaur eggs and babies. Cambridge:
905	Cambridge University Press, 204–226.
906	Salgado L, Coria RA, Chiappe LM. 2005. Osteology of the sauropod embryos from the Upper
907	Cretaceous of Patagonia. Acta Palaeontologica Polonica 50:79–92.
808	Sander PM, Peitz C, Gallemi J, Cousin R. 1998. Dinosaurs on a red beach? C. R. Acad. Sci.
909	Paris 327:67–74.
910	Sander PM, Peitz C, Jackson FD, Chiappe LM. 2008. Upper Cretaceous titanosaur nesting sites
911	and their implications for sauropod dinosaur reproductive biology. Palaeontographica Abt.
912	A 284:69-107.
913	Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler E-M, Gunga H-C, Hummel J,
914	Mallison H, Perry SF, Preuschoft H, Rauhut OWM, Remes K, Tütken T, Wings O, Witzel
915	U. 2011. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews
916	86:117–55

917	Sas L, Antal C, Covaciu-Marcov SD. 2010. Tropics patch in the Holarctic: a new case of
918	wintertime breeding of a <i>Pelophylax ridibundus</i> population in North-Western Romania.
919	North-Western Journal of Zoology 6:128–133.
920	Sellés AG, Bravo AM, Delclòs X, Colombo F, Martí X, Ortega-Blanco J, Parellada C, Galobart
921	À. 2013. Dinosaur eggs in the Upper Cretaceous of the Coll de Nargó area, Lleida Province
922	south-central Pyrenees, Spain: Oodiversity, biostratigraphy and their implications.
923	Cretaceous Research 40:10–20.
924	Sellés AG, Vila B. 2015. Re-evaluation of the age of some dinosaur localities from the southern
925	Pyrenees by means of megaloolithid oospecies. <i>Journal of Iberian Geology</i> 41:125–139.
926	Seymour RS. 1979. Dinosaur eggs: Gas conductance through the shell, water loss during
927	incubation and clutch size. <i>Paleobiology</i> 5:1–11.
928	Seymour RS, Vleck D, Vleck CM, Booth DT. 1987. Water relations of buried eggs of mound
929	building birds. Journal of Comparative Physiology B 157:413–422.
930	Seymour RS, Ackerman RA. 1980. Adaptations to underground nesting in birds and reptiles.
931	American Zoologist 20:437–447.
932	Shine R, Harlow PS. 1996. Maternal manipulation of offspring phenotypes via nest-site selection
933	in an oviparous lizard. Ecology 77:1808–1817.
934	Simón ME. 2006. Cáscaras de huevos de dinosaurios de la Formación Allen (Campaniano-
935	Maastrichtiano), en Salitral Moreno, provincia de Río Negro, Argentina. Ameghiniana
936	43:513–528.
937	Stein K, Csiki Z, Rogers KC, Weishampel DB, Redelstorff R, Carballido JL, Sander PM. 2010.
938	Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in

939	Magyarosaurus dacus (Sauropoda: Titanosauria). Proceedings of the National Academy of
940	Sciences 107:9258–63.
941	Ştefan A, Lăzăr C, Berbelac I, Udubaşa G. 1988. Evolution of banatitic magmatism in the
942	Apuseni Mountains and associated metallogenesis. D.S. Inst Geol Geofiz 72-73:195–213.
943	Tandon SK, Sood A, Andrews JE, Dennis PF. 1995. Palaeoenvironments of the dinosaur-bearing
944	Lameta beds (Maastrichtian), Narmada Valley, Central India. Palaeogeography,
945	Palaeoclimatology, Palaeoecology 117:153–184.
946	Tandon SK, Andrews JE. 2001. Lithofacies associations and stable isotopes of palustrine and
947	calcrete carbonates: examples from an Indian Maastrichtian regolith. Sedimentology
948	48:339–355.
949	Tauber AA. 2007. Primer yacimiento de huevos de dinosaurios (Cretácico Superior) de la
950	provincia de La Rioja, Argentina. Ameghiniana 44:11-28.
951	Upchurch P, Barrett PM, Dodson P. 2004. Sauropoda. In: Weishampel DB, Dodson P, Osmolska
952	H eds. <i>The Dinosauria</i> . Berkeley, California: University of California Press, 259–322.
953	Upchurch P, Barrett PM. 2005. Phylogenetic and taxic perspectives on sauropod diversity. In:
954	Curry Rogers KA, Wilson JA eds. The Sauropods: Evolution and Paleobiology. University
955	of California Press, 104–124.
956	de Valais S, Apesteguía S, Udrizar Sauthier D. 2003. Nuevas evidencias de dinosaurios de la
957	Formación Puerto Yeruá (Cretácico), Provincia de Entre Ríos, Argentina. Ameghiniana
958	40:631–635.
959	Vianey-Liaud M, Mallan P, Buscail O, Montgelard C. 1994. Review of French dinosaur
960	eggshells: morphology, structure, mineral and organic composition. In: Carpenter K, Hirsch
961	KF, Horner JR eds. <i>Dinosaur Eggs and Babies</i> . Cambridge University Press, 151–183.

962	Vianey-Liaud M, Zelenitsky DK. 2003. Historical and new perspectives on the parataxonomy of
963	fossil eggs. Palaeovertebrata 32:189–195.
964	Vianey-liaud M, Khosla A, Garcia G. 2003. Relationships between European and Indian
965	Dinosaur eggs and eggshells of the oofamily Megaloolithidae. Journal of Vertebrate
966	Paleontology 23:575–585.
967	Vieira WLS, Vieira KS, Nóbrega RP, Montenegro PFGP, Pereira Filho GA, Santana GG, Alves
968	RRN, Almeida WO, Vasconcellos A. 2014. Species Richness and Evidence of Random
969	Patterns in Assemblages of South American Titanosauria during the Late Cretaceous
970	(Campanian-Maastrichtian). PLoS ONE 9:e108307.
971	Vila B, Galobart À, Oms O, Poza B, Bravo AM. 2009. Assessing the nesting strategies of Late
972	Cretaceous titanosaurs: 3-D clutch geometry from a new megaloolithid eggsite. Lethaia
973	43:197–208.
974	Vila B, Jackson FD, Fortuny J, Sellés AG, Galobart A. 2010. 3-D modelling of megaloolithid
975	clutches: insights about nest construction and dinosaur behaviour. PloS one 5:e10362.
976	Vila B, Riera V, Bravo AM, Oms O, Vicens E, Estrada R, Galobart À. 2011. The chronology of
977	dinosaur oospecies in south-western Europe: Refinements from the Maastrichtian
978	succession of the eastern Pyrenees. Cretaceous Research 32:378–386.
979	Vila B, Jackson FD, Galobart À. 2010. First data on dinosaur eggs and clutches from Pinyes
980	locality (Upper Cretaceous, Southern Pyrenees). Ameghiniana 47:79-87.
981	Waitkuwait WE. 1989. Present knowledge on the West African slender-snouted crocodile,
982	Crocodylus cataphractus Cuvier 1824 and the West African dwarf crocodile, Osteolaemus
983	tetraspis Cope 1861. In: IUCN ed. Crocodiles. Their Ecology, Management and


984	Conservation. IUCN/SSC Crocodile Specialist Group. IUCN Publications. Gland,
985	Switzerland, 259–275.
986	Walsh PT, Hansell M, Borello WD, Healy SD. 2010. Repeatability of nest morphology in
987	African weaver birds. Biology letters 6:149–51.
988	Webb GJW, Messel H, Magnusson W. 1977. The nesting of Crocodylus porosus in Arnhem
989	Land, northern Australia. Copeia 1977:238-249.
990	Werner DI. 1983. Reproduction in the Iguana Conolophus subcristatus on Fernandina Island,
991	Galapagos: Clutch Size and Migration Costs. <i>The American Naturalist</i> 121:757–775.
992	Werner J, Griebeler EM. 2011. Reproductive biology and its impact on body size: comparative
993	analysis of mammalian, avian and dinosaurian reproduction. PloS one 6:e28442.
994	Williams DLG, Seymour RS, Kerourio P. 1984. Structure of fossil dinosaur eggshell from the
995	Aix Basin, France. Palaeogeography, Palaeoclimatology, Palaeoecology 45:23-37.
996	Wilson JA, Upchurch P. 2003. A revision of <i>Titanosaurus</i> Lydekker (Dinosauria–Sauropoda),
997	the first dinosaur genus with a 'Gondwanan' distribution. Journal of Systematic
998	Palaeontology 1:125–160.
999	Wilson JA. 2005a. Overview of sauropod phylogeny and evolution. In: Curry Rogers KA,
1000	Wilson JA eds. The Sauropods: Evolution and Paleobiology. University of California Press
1001	15–49.
1002	Wilson JA. 2005b. Redescription of the Mongolian sauropod Nemegtosaurus mongoliensis
1003	Nowinski (Dinosauria: Saurischia) and comments on Late Cretaceous sauropod diversity.
1004	Journal of Systematic Palaeontology 3:283–318.
1005	Wilson JA, Mohabey DM, Peters SE, Head JJ. 2010. Predation upon hatchling dinosaurs by a
1006	new snake from the Late Cretaceous of India. PLoS biology 8:e1000322.

1007	Wilson JA, Carrano MT. 1999. Titanosaurs and the origin of wide-gauge trackways a
1008	biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252-
1009	267.
1010	Winkler DW, Sheldon FH. 1993. Evolution of nest construction in swallows (Hirundinidae): a
1011	molecular phylogenetic perspective. Proceedings of the National Academy of Sciences
1012	90:5705–5707.
1013	Wu C-S, Kam Y-C. 2005. Thermal tolerance and thermoregulation by Taiwanese rhacophorid
1014	tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetological
1015	61:35–46.
1016	Zaher H, Pol D, Carvalho AB, Nascimento PM, Riccomini C, Larson P, Juarez-Valieri R, Pires
1017	Domingues R, da Silva NJ, Campos DDA. 2011. A complete skull of an Early Cretaceous
1018	sauropod and the evolution of advanced titanosaurians. PloS one 6:e16663.
1019	Zyskowski K, Prum RO. 1999. Phylogenetic analysis of the nest architecture of neotropical
1020	ovenbirds (Furnariidae). <i>The Auk</i> 116:891–911.
1021	
1022	

FIGURES

1024

1023

1025

1027

1028

1029

Figure 1 Skeletal and live reconstructions of titanosaur sauropods. (A, C) Based on Futalognkosaurus dukei (Calvo et al., 2007). (B) Skull reconstructions of (up) Nemegtosaurus mongoliensis, Nowinski 1971 and (down) Tapuiasaurus macedoi Zaher et al., 2011 (based on Wilson, 2005b and Zaher et al., 2011, respectively).

1030

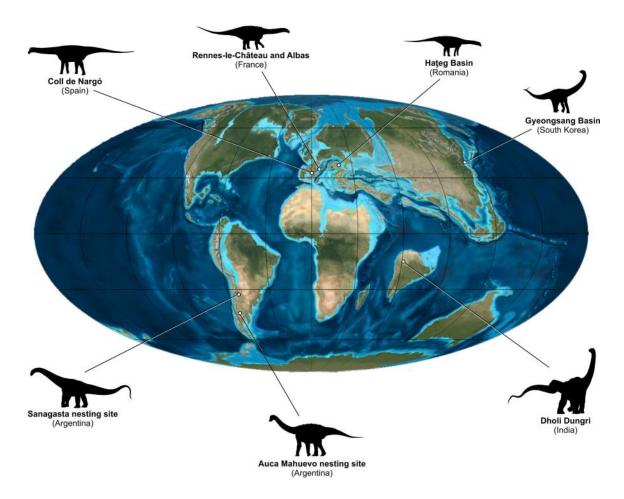
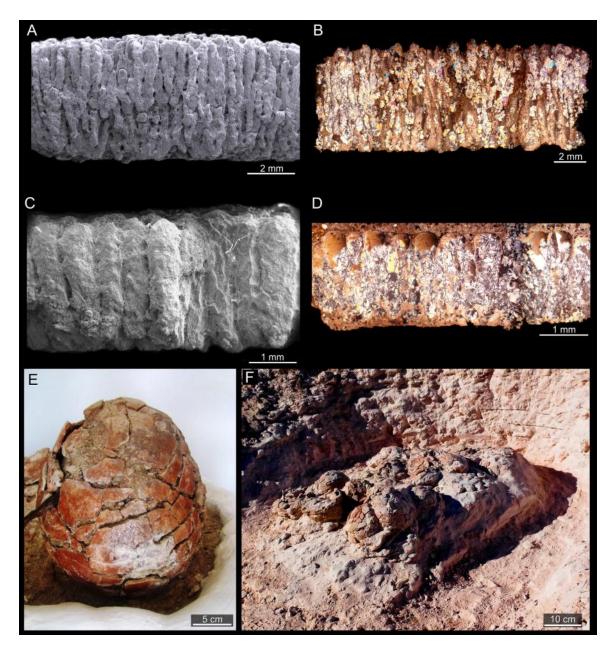
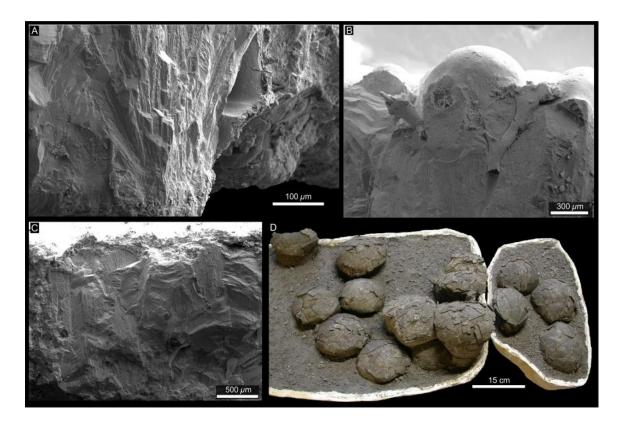
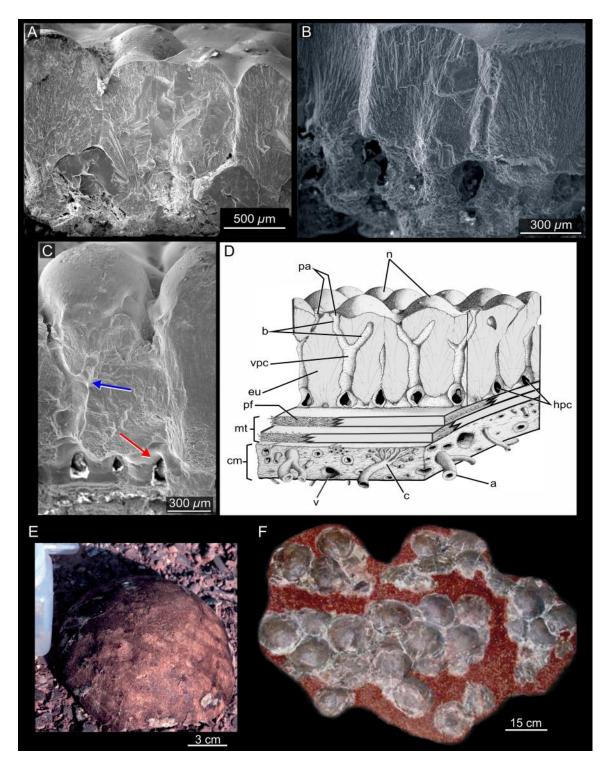




Figure 2 Upper Cretaceous paleogeography and distribution of the reviewed titanosaur nesting sites. Map modified from Ron Blakey, Colorado Plateau Geosystems, Inc.

Figure 3 Sanagasta nesting site. (A, C) Radial thin sections of eggshell fragments seen under Scanning Electron Microscope (SEM) and (B, D) under stereomicroscope. (E) Complete egg (CRILAR Pv-400 SA-C6-e1). (F) Egg clutch (exposed *in situ* at the Sanagasta Geologic Park).

1044


1045

1046

Figure 4 Hateg Basin. (A–C) Nemegtosaurid eggshell fragments seen under SEM. (D) Three egg clutches (TO O–01; IRSNB Cast-Vert 32) exhibit at the University of Cluj and the

1047 Royal Belgian Institute of Natural Sciences. From Grellet-Tinner et al., 2012.

1048

1050

1051

1052

Figure 5 Auca Mahuevo nesting site. (A-C) Radial section of titanosaur eggshell fragments (From Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner & Zaher, 2007). Note in (C) the transverse Y-shaped vertical pore canals (blue arrow) and the horizontal network system (red

arrow). (D) Schematic interpretation of an eggshell from AM L#3, according to Grellet-Tinner, Chiappe & Coria (2004) SEM observations (modified from Grellet-Tinner, Fiorelli & Salvador, 2012). a = arteries; b = branches of pore canal; c = capillaries; cm = corioallantoid membrane; eu = eggshell unit; hpc = horizontal pore canals; mt = membrana testacea; n = node on outer eggshell surface; pa = pore aperture; pf = protein fibers of the membrana testacea; v = veins; vpc = vertical pore canals. (E) Complete egg AM L#3. F) Egg clutch recovered from AM L#3 (LACM 149648; from Grellet-Tinner, Chiappe & Coria, 2004). LACM = Natural History Museum of Los Angeles County.

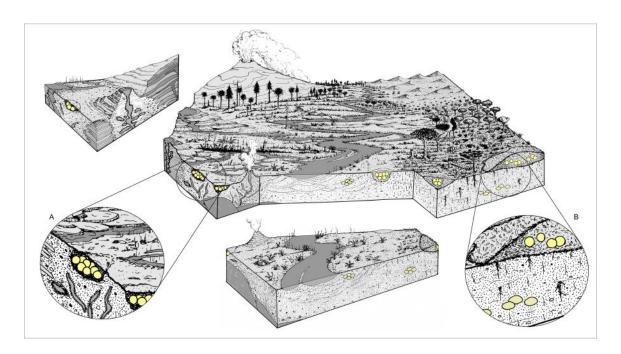


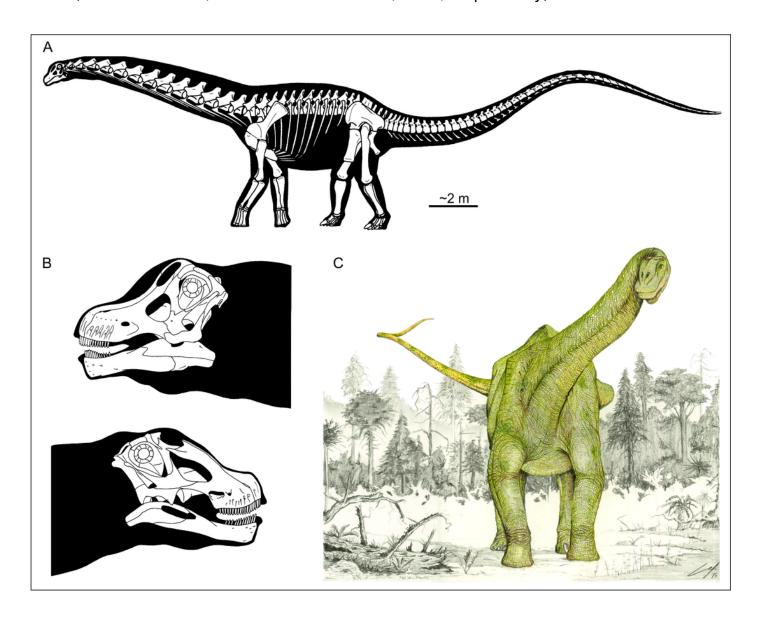
Figure 6 Schematic reconstruction of different nesting environments and the nesting strategies suggested for the Cretaceous titanosaur dinosaurs. (A) Detail of borrow-nesting in geothermal environments. (B) Detail of mound-nesting and eggs buried in a soil profile.

1069	Table 1 Egg and eggshell morphologies, temporal and spatial distribution and nesting
1070	paleoenvironments. ^a Choi, 1986; Chough et al., 2000; Choi et al., 2005, 2006. ^b Bojar, Csiki &
1071	Grigorescu, 2010. °Tandon et al., 1995; Tandon & Andrews, 2001; Prasad & Sahni, 2014.
1072	^d Cojan, Renard & Emmanuel, 2003. ^e Riera et al., 2013. ^f Garrido, 2010a,b. ^g Jackson, Schmitt &
1073	Oser, 2013. MAP= mean annual precipitation. MAT= mean anual temperature. MT= membrana
1074	testacea.
1075	
1076	Table S1. List the of known Cretaceous "titanosaur" egg-bearing localities/areas that
1077	preserve at least complete eggs. Nesting sites selected for the current study correspond to the
1078	localities/areas that are highlighted in grey. AL= allochthonous; AU= autochthonous; PA=
1079	parautochthonous; X = known data; ? = imprecise information; - = unknown data.
1080	
1081	

1083 Table 1

Sites		Sanagasta	Gieongsang Basin	Haţeg	Dholi Dungri
Authors		Fiorelli et al., 2012; Grellet-Tinner et al., 2012b	Huh & Zelenitsky, 2002; Kim et al., 2009.	Grellet-Tinner et al., 2012a	Wilson et al., 2010
Formation		Los Llanos	Boseong	Sânpetru	Lameta
Age - stage		Hauterivian?- Cenomanian?	Upper Cretaceous	Maastrichtian	Maastrichtian
Eggs	egg shape	sub-spherical	spherical	sub-spherical	spherical
	egg size (cm)	21	15-20	11-13	14-18
	eggshell thickness (mm)	1.2-7.95 (mean=3.84)	1.33-2.2	1.7-1.8	2.26 - 2.36
	pore canal morphology	Y-shaped	?	Y-shaped	straight
	pore aperture morphology	round and funnel shape	?	round and funnel shape	round and funnel shape
	ornamentation morphology	nodular-single nodes and coalesecent nodes	nodular	nodular-single nodes and coalesecent nodes	nodular
	ornamentation size (mm)	Ø=0.58-0.62	?	Ø= 0.6-0.7	?
	MT size (mm)	0.025-0.09	?	0.19	?
Egg spatial distribution	grouping	clutches; up to 30 eggs	clutches; up to 16 eggs	clutches; average 4 eggs	isolated or in clutches; up to 12 eggs
	geometry	bowl, linear, random	?	bowl-round	bowl-round
	layers	2	1	2	?
Paleoenviro nment	sediment	medium to coarse- grained grey and whitish arkosic sands	sandy tuffaceous sandstones	fine grained siltstone- mudstone sediments	calcareous sandstones
	setting	geothermal	floodplain deposits / geothermal / paleosols	floodplain / paleosols/geothermal	alluvial-limnic / paleosols
	volcanism	present	presenta	present	present ^c
	paleoclimate	semiarid	semiarid	warm (MAT= 14°)	semi-arid ^c
	vegetation	?	C3 veg.	C3 veg. ^b	dominantly herbaceous; C3 veg.°

1085


Rennes-le-Château and Albas	Coll de Nargó	Auca Mahuevo layers 1-3	Auca Mahuevo layer 4
Cousin and Breton, 2000; Cousin et al. 1989	Vila et al., 2010a, 2010b	Grellet-Tinner et al., 2004	4; Grellet-Tinner, 2005
Marnes rouges inférieures	Tremp	Anacleto	
Upper Maastrichtian	Maastrichtian	Campanian	
sub-spherical	spherical	spherical	spherical to sub- spherical
16-20	20	13-15	12.5 -14
up to 2.5	1.3-4.5	1 - 1.78	1.7- 1.8
?	Y-shaped	straight	Y-shaped
round?	round-elliptical	round-elliptical and funnel shape	round and funnel shape
nodular	nodular	nodular-single nodes and coalesecent nodes	nodular-single nodes and coalesecent nodes
?	Ø=0.64-0.87	Ø=0.35-0.65	Ø=0.68
?	?	?	0.2-0.25
isolated or in clutches; 3 to 8 eggs	clutches; up to 20-28 eggs	clutches; 15-50 eggs	
bowl-round / supergroups (Ø=3,5 m)	linear-round (inferred kidney shape)	bowl-kidney	
1	2-3?	1-2	
very soft variegated marls	mudstones intercalated with medium-coarse sandstone bodies	reddish-brown siltstones and mottled mudstones ^f	
floodplain? / paleosols	lagoon / marsh / fluvial / paleosols	floodplain deposits f / paleosols f,g	
?	?	presentg	
tropical-subtropical / semi-arid episodes ^d	warm (MAT= 21°) / MAP=1200 mm/yr ^e	warm and seasonal ^f dryer	warm and seasonal ^f wetter
C3 veg. riparian forest / open vegetation (Aix- en-Provence Basin) ^d C3 veg. ^e		palustrine plant remains ^f	

1087

1

Skeletal and live reconstructions of titanosaur sauropods.

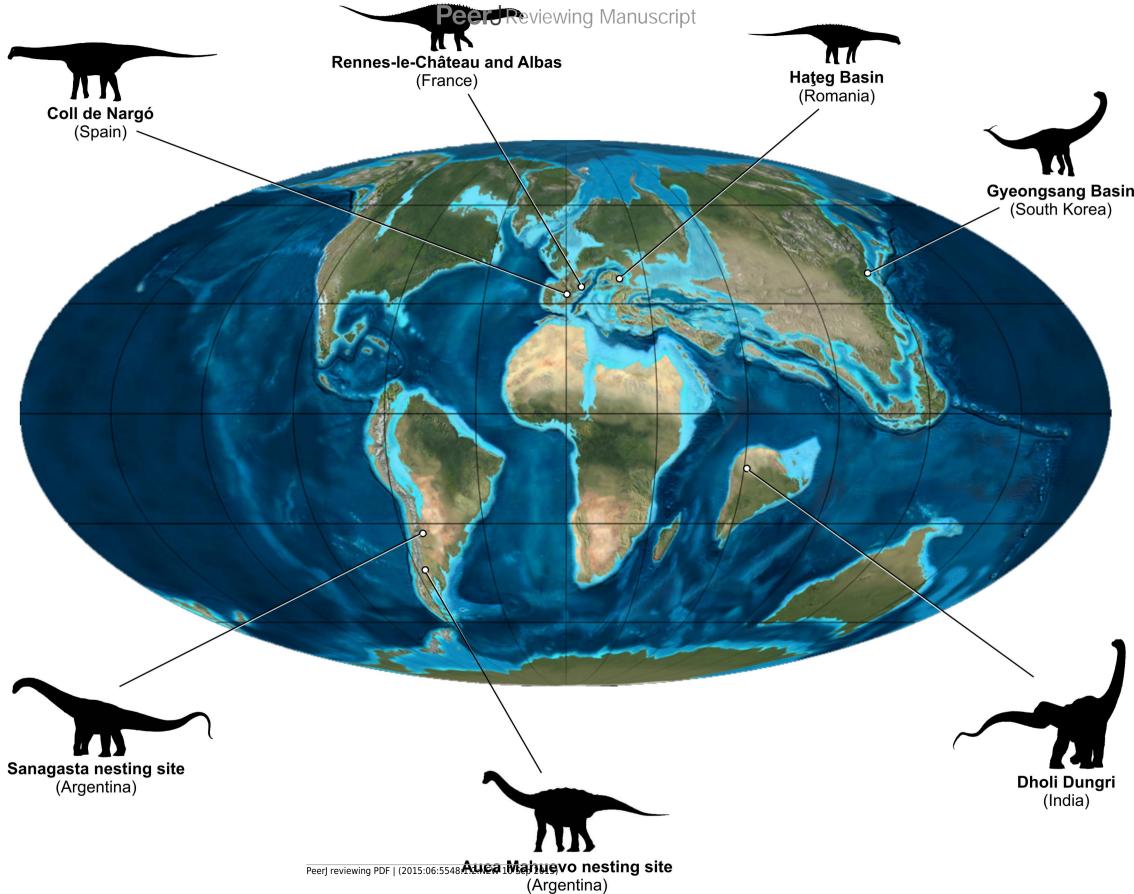
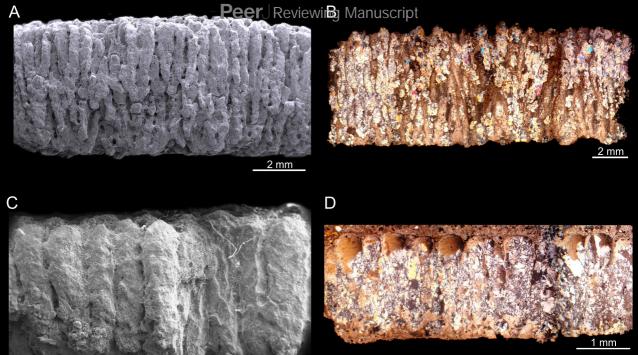

(A, C) Based on *Futalognkosaurus dukei* (Calvo et al., 2007). (B) Skull reconstructions of (up) *Nemegtosaurus mongoliensis*, Nowinski 1971 and (down) *Tapuiasaurus macedoi* Zaher et al., 2011 (based on Wilson, 2005b and Zaher et al., 2011, respectively).

Figure 2(on next page)

Upper Cretaceous paleogeography and distribution of the reviewed titanosaur nesting sites.


Map modified from Ron Blakey, Colorado Plateau Geosystems, Inc.

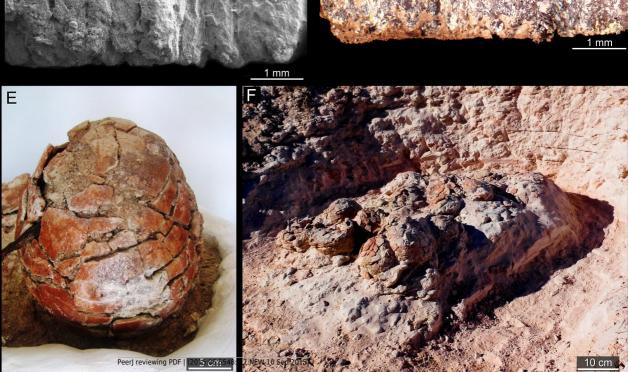


Figure 3(on next page)

Sanagasta nesting site.

(A, C) Radial thin sections of eggshell fragments seen under Scanning Electron Microscope (SEM) and (B, D) under stereomicroscope. (E) Complete egg (CRILAR Pv-400 SA-C6-e1). (F) Egg clutch exposed *in situ* at the Sanagasta Geologic Park.

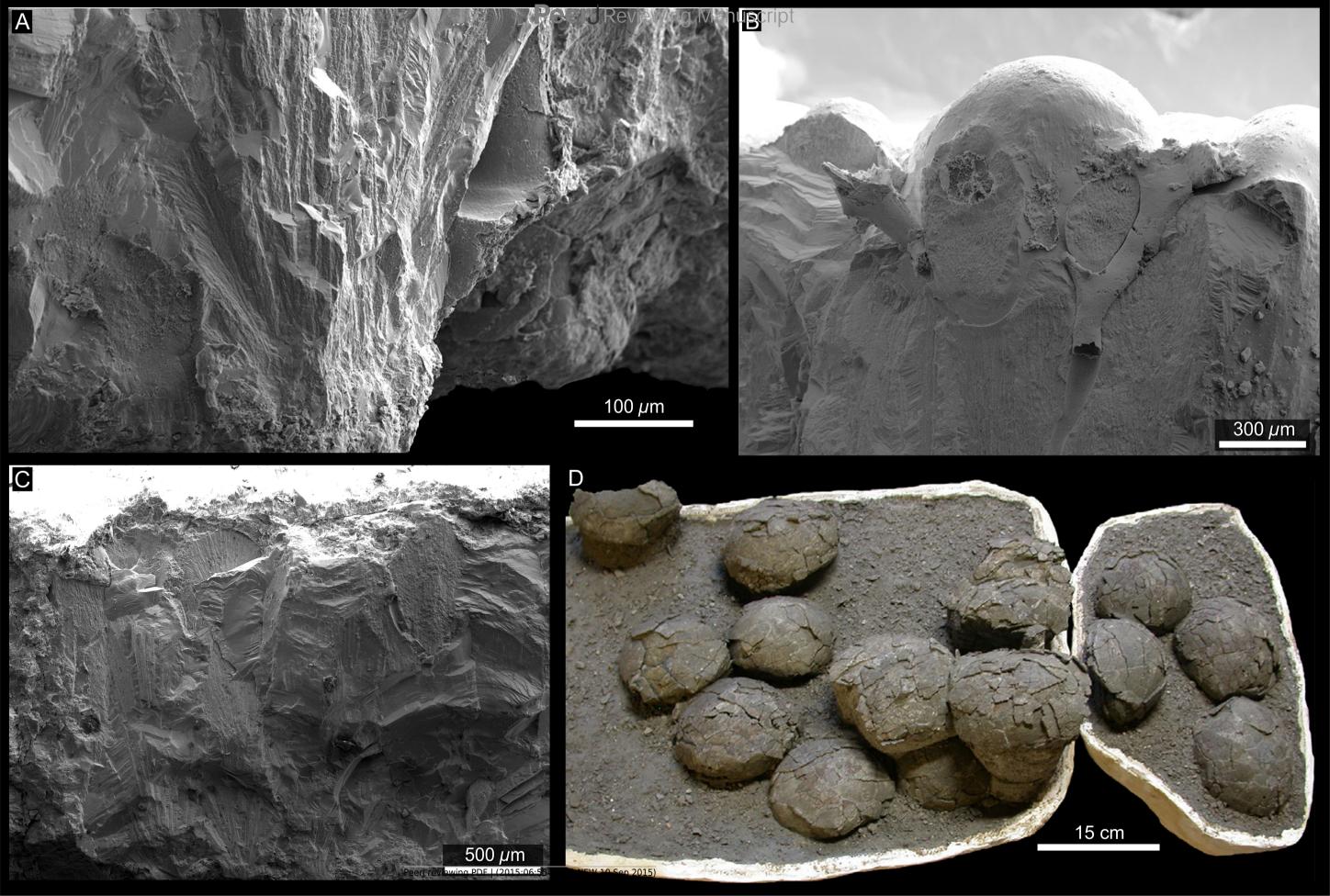


Figure 4(on next page)

Haţeg Basin

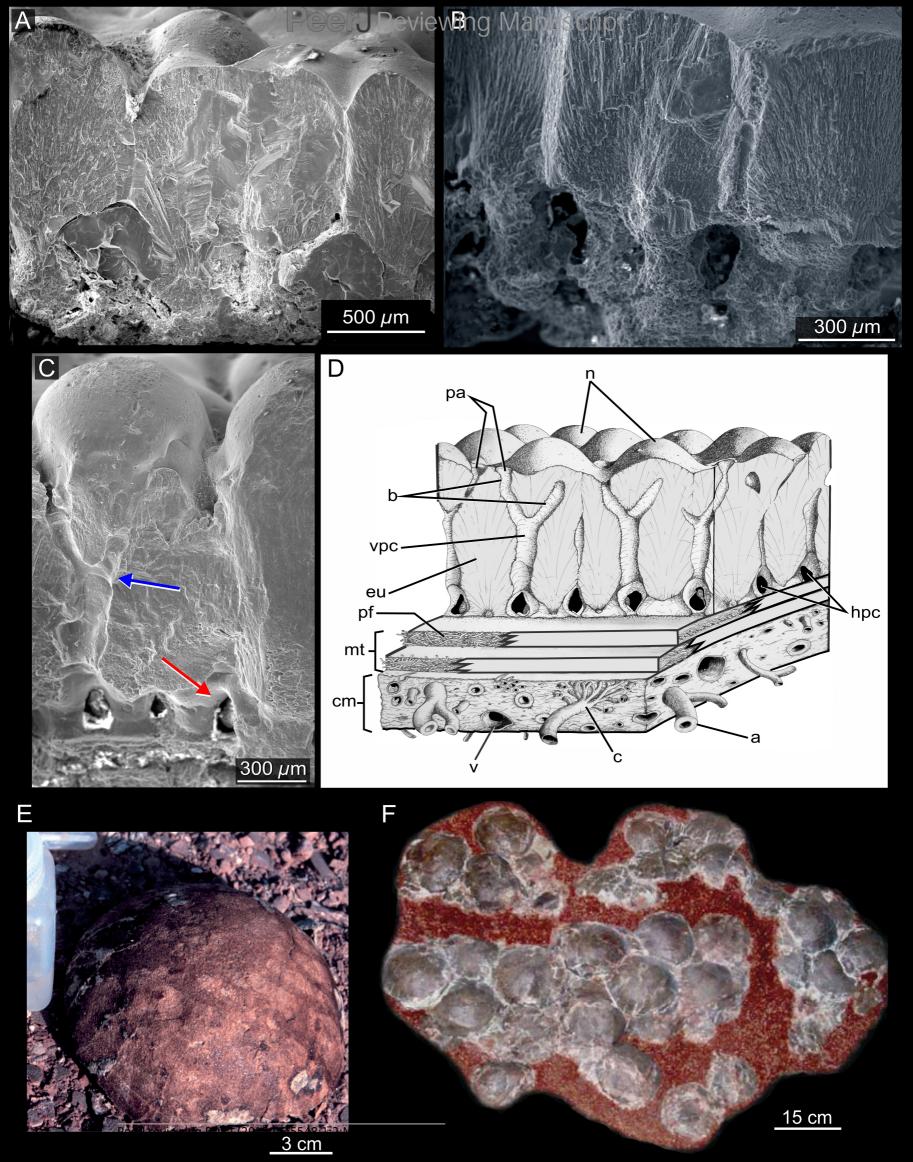

(A-C) Nemegtosaurid eggshell fragments seen under SEM. (D) Egg clutches (TO O-01; IRSNB Cast-Vert 32) exhibit at the University of Cluj and the Royal Belgian Institute of Natural Sciences. From Grellet-Tinner et al., 2012.

Figure 5(on next page)

Auca Mahuevo nesting site

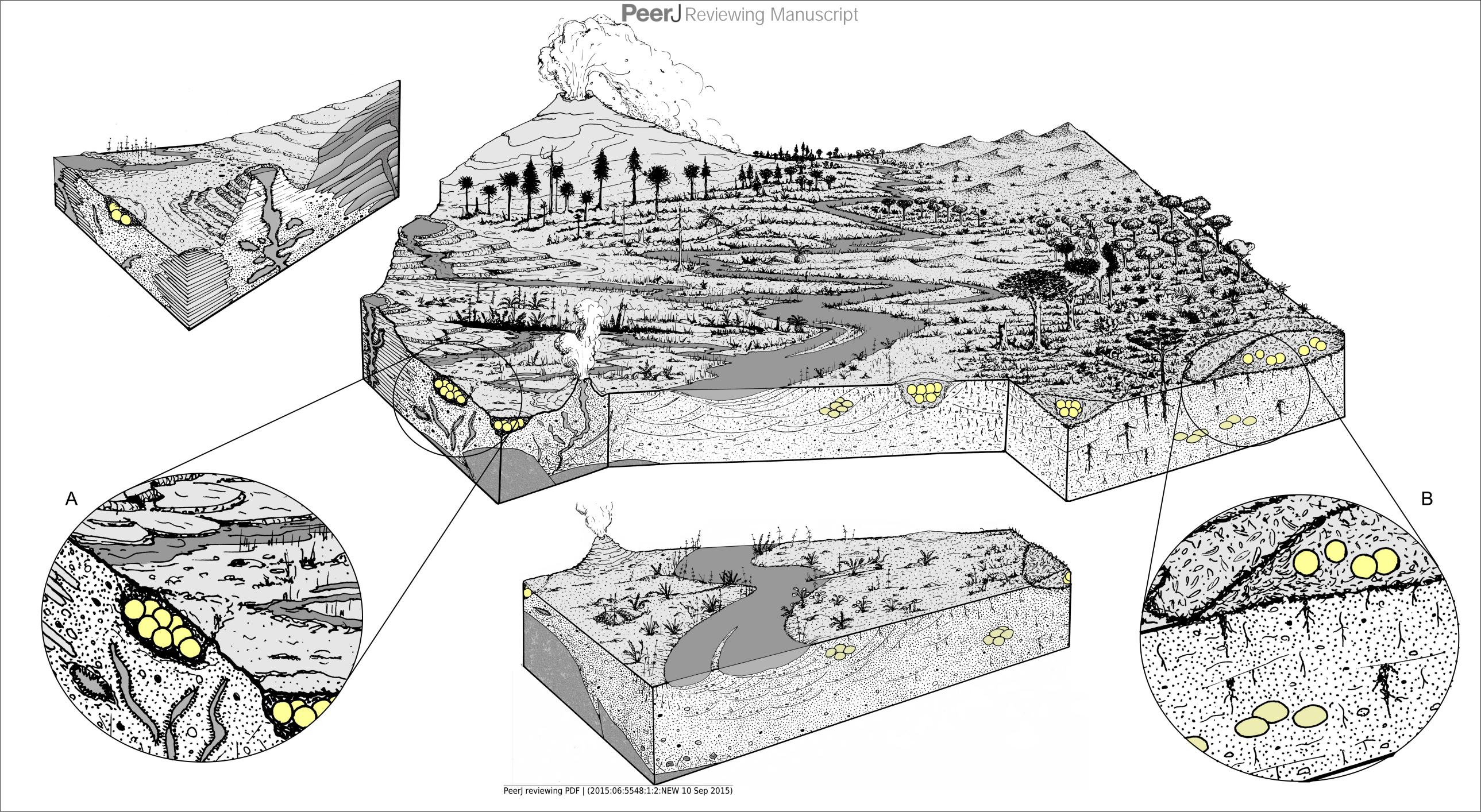

(A-C) Radial section of titanosaur eggshell fragments (From Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner & Zaher, 2007). Note in (C) the transverse Y-shaped vertical pore canals (blue arrow) and the horizontal network system (red arrow). (D) Schematic interpretation of an eggshell from AM L#3, according to Grellet-Tinner, Chiappe & Coria (2004) SEM observations (modified from Grellet-Tinner, Fiorelli & Salvador, 2012). a = arteries; b = branches of pore canal; c = capillaries; cm = corioallantoid membrane; eu = eggshell unit; hpc = horizontal pore canals; mt = membrana testacea; n = node on outer eggshell surface; pa = pore aperture; pf = protein fibers of the membrana testacea; v = veins; vpc = vertical pore canals. (E) Complete egg AM L#3. F) Egg clutch recovered from AM L#3 (LACM 149648; from Grellet-Tinner, Chiappe & Coria, 2004). LACM = Natural History Museum of Los Angeles County.

Figure 6(on next page)

Schematic reconstruction of different nesting environments and the nesting strategies suggested for the Cretaceous titanosaur dinosaurs.

(A) Detail of borrow-nesting in geothermal environments. (B) Detail of mound-nesting and eggs buried in a soil profile.

Table 1(on next page)

Table 1: Egg and eggshell morphologies, temporal and spatial distribution and nesting paleoenvironments.

^aChoi, 1986; Chough et al., 2000; Choi et al., 2005, 2006. ^bBojar, Csiki & Grigorescu, 2010. ^cTandon et al., 1995; Tandon & Andrews, 2001; Prasad & Sahni, 2014. ^dCojan, Renard & Emmanuel, 2003. ^eRiera et al., 2013. ^fGarrido, 2010a,b. ^gJackson, Schmitt & Oser, 2013. MAP= mean annual precipitation. MAT= mean anual temperature. MT= membrana testacea.

Sites		Sanagasta	Gieongsang Basin	Haţeg	Dholi Dungri
Authors		Fiorelli et al., 2012; Grellet-Tinner et al., 2012b	Huh & Zelenitsky, 2002; Kim et al., 2009.	Grellet-Tinner et al., 2012a	Wilson et al., 2010
Formation		Los Llanos	Boseong	Sânpetru	Lameta
Age - stage		Hauterivian?- Cenomanian?	Upper Cretaceous	Maastrichtian	Maastrichtian
Eggs	egg shape	sub-spherical	spherical	sub-spherical	spherical
	egg size (cm)	21	15-20	11-13	14-18
	eggshell thickness (mm)	1.2-7.95 (mean=3.84)	1.33-2.2	1.7-1.8	2.26 - 2.36
	pore canal morphology	Y-shaped	?	Y-shaped	straight
	pore aperture morphology	round and funnel shape	?	round and funnel shape	round and funnel shape
	ornamentation morphology	nodular-single nodes and coalesecent nodes	nodular	nodular-single nodes and coalesecent nodes	nodular
	ornamentation size (mm)	Ø=0.58-0.62	?	Ø= 0.6-0.7	?
	MT size (mm)	0.025-0.09	?	0.19	?
Egg spatial distribution	grouping	clutches; up to 30 eggs	clutches; up to 16 eggs	clutches; average 4 eggs	isolated or in clutches; up to 12 eggs
	geometry	bowl, linear, random	?	bowl-round	bowl-round
	layers	2	1	2	?
Paleoenviro nment	sediment	medium to coarse- grained grey and whitish arkosic sands	sandy tuffaceous sandstones	fine grained siltstone- mudstone sediments	calcareous sandstones
	setting	geothermal	floodplain deposits / geothermal / paleosols	floodplain / paleosols/geothermal	alluvial-limnic / paleosols
	volcanism	present	presenta	present	present ^c
	paleoclimate	semiarid	semiarid	warm (MAT= 14°)	semi-arid ^c
	vegetation	?	C3 veg.	C3 veg. ^b	dominantly herbaceous; C3 veg. ^c

1

Rennes-le-Château and Albas	Coll de Nargó	Auca Mahuevo layers 1-3	Auca Mahuevo layer 4	
Cousin and Breton, 2000; Cousin et al. 1989	Vila et al., 2010a, 2010b	Grellet-Tinner et al., 2004	4; Grellet-Tinner, 2005	
Marnes rouges inférieures	Tremp	Anacl	eto eto	
Upper Maastrichtian	Maastrichtian	<u>Campanian</u>		
sub-spherical	spherical	spherical	spherical to sub- spherical	
16-20	20	13-15	12.5 -14	
up to 2.5	1.3-4.5	1 - 1.78	1.7- 1.8	
?	Y-shaped	straight	Y-shaped	
round?	round-elliptical	round-elliptical and funnel shape	round and funnel shape	
nodular	nodular	nodular-single nodes and coalesecent nodes	nodular-single nodes and coalesecent nodes	
?	Ø=0.64-0.87	Ø=0.35-0.65	Ø=0.68	
?	?	?	0.2-0.25	
isolated or in clutches; 3 to 8 eggs	clutches; up to 20-28 eggs	clutches; 15	i-50 eggs	
bowl-round / supergroups (Ø=3,5 m)	linear-round (inferred kidney shape)	bowl-kidney		
1	2-3?	1-2		
very soft variegated marls	mudstones intercalated with medium-coarse sandstone bodies	reddish-brown siltstones and mottled mudstones ^f		
floodplain? / paleosols	lagoon / marsh / fluvial / paleosols	floodplain deposits f / paleosols f,g		
?	?	present ^g		
tropical-subtropical / semi-arid episodes ^d	warm (MAT= 21°) / MAP=1200 mm/yr ^e	warm and seasonal ^f dryer	warm and seasonal ^f wetter	
C3 veg. riparian forest / open vegetation (Aix- en-Provence Basin) ^d	C3 veg. ^e	palustrine plant remainsf		

4

5