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ABSTRACT
Titanosauria is a globally distributed clade of sometimes extremely large Mesozoic
herbivorous sauropod dinosaurs. On the basis of current evidence these giant
dinosaurs seem to have reproduced in specific and localized nesting sites. However,
no investigations have been performed to understand the possible ecological and
geological biases that acted for the selection of these nesting sites worldwide. In this
study, observations were performed on the best-known Cretaceous nesting sites
around the world. Our observations strongly suggest their eggs were incubated with
environmental sources of heat, in burial conditions. Taking into account the clutch
composition and geometry, the nature and properties of the sediments, the eggshells’
structures and conductance, it would appear that titanosaurs adopted nesting
behaviors comparable to the modern Australasian megapodes, using burrow-nesting
in diverse media and mound-building strategies.

Subjects Animal Behavior, Ecology, Evolutionary Studies, Paleontology, Zoology
Keywords Nesting environment, Nesting site, Incubation with environmental heat,
Labile nesting behavior, Egg physiology, Titanosaur

INTRODUCTION
Titanosaur sauropods were Mesozoic dinosaurs (Bonaparte & Coria, 1993; Wilson &

Upchurch, 2003; Curry Rogers, 2005) that reached gigantic sizes (Upchurch, Barrett &

Dodson, 2004; Sander et al., 2011; Benson et al., 2014) but also became dwarfed in insular

ecosystems (Benton et al., 2010; Stein et al., 2010; Csiki et al., 2010). These quadrupedal

herbivores are easily recognizable by their long necks and tails (Fig. 1A), small heads (Figs.

1A and 1B) and a characteristic wide-gauge stance (Fig. 1C; Wilson & Carrano, 1999;

Carrano, 2005; Wilson, 2005a), a condition retained from titanosauriforms.

Titanosaurs populated every continent including Antarctica (Curry Rogers, 2005;

Mannion et al., 2011; Cerda et al., 2012) and according to Mannion & Upchurch (2010)

and Mannion & Upchurch (2011) they preferred inland rather than coastal habitats. They

experienced a great radiation during the Late Cretaceous, chiefly in South America, where

more than 20 genera have been recorded (Upchurch & Barrett, 2005; Zaher et al., 2011;

Mannion et al., 2011; Garćıa et al., 2015; Vieira et al., 2014).
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Figure 1 Skeletal and life restorations of titanosaur sauropods. (A, C) Based on Futalognkosaurus
dukei (Calvo et al., 2007). (B) Skull reconstructions of (up) Nemegtosaurus mongoliensis, Nowinski 1971
and (down) Tapuiasaurus macedoi Zaher et al., 2011 (based on Wilson, 2005b and Zaher et al., 2011,
respectively).

Eggs and egg clutches classified within Megaloolithidae, a parataxonomic group of

eggs without any modern biological principles, have been assigned to titanosaurs (as well

as other taxa, e.g., Hadrosauria) (Vianey-Liaud et al., 1994; Mikhailov, 1997; Grigorescu,

2010; Grigorescu et al., 2010). Although in recent years numerous studies have explored

several aspects of titanosaur reproductive biology (Cousin & Breton, 2000; Jackson et al.,

2008; Sander et al., 2008; Vila et al., 2010a; Vila et al., 2010b), most of them described and

compared eggs and eggshells in a non-phylogenetic context (i.e., fossil parataxonomy). Ti-

tanosaur eggs and eggshells have only been positively identified in a few instances with the

discovery of embryos in ovo (Chiappe et al., 1998; Chiappe, Salgado & Coria, 2001; Wilson et

al., 2010; Grellet-Tinner et al., 2011; Grellet-Tinner et al., 2012) and/or with cautious mor-

phological characterizations of eggs and eggshells (Grellet-Tinner, Chiappe & Coria, 2004;

Grellet-Tinner et al., 2006; Grellet-Tinner et al., 2011; Grellet-Tinner et al., 2012; Grellet-

Tinner, Fiorelli & Salvador, 2012) that allow identification of phylogenetic characters.

Species survival is contingent on several factors: food availability, predation,

competition and reproduction. Just as amniotic oviparity freed vertebrates from

water-bound reproduction, viviparity entirely disconnected some environmental factors
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(e.g., temperature) from hatching to maximize reproductive success. Modern archosaurs

lay amniotic eggs in nests and their reproduction is thus more constrained by environmen-

tal drivers than viviparous amniotes. Therefore, judicious nesting-site selection becomes

a critical factor, as parents cannot compensate post-hatching for a poor choice of nesting

environment (Shine & Harlow, 1996; Kolbe & Janzen, 2002; Kamel & Mrosovsky, 2005;

Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012). The nests of

living archosaurs can be broadly divided into those that are on the ground (or below

it), and those that are not, e.g., on trees and cliff faces. Although arboreal nests are quite

interesting and have been the focus of several studies (Collias, 1964; Collias, 1997; Hansell,

2000; Gill, 2007; Walsh et al., 2010), including phylogenetic analyses (Winkler & Sheldon,

1993; Zyskowski & Prum, 1999; Hansell, 2007), such nests do not offer a valid model

for titanosaur reproduction. Hence, this study focuses on the nests of ground dwelling

species. Ground nests interface in various degrees with the sediments in which they are

constructed. Among these, two types of structures are recognized based on the incubating

temperature and humidity requirements (Booth & Thompson, 1991): nests in which eggs

are deposited in the air-sediment interface (which are considered to be open-nests sensu

Collias, 1964); and nests in which eggs are buried in the substrate (Collias, 1964; Seymour &

Ackerman, 1980; Larson, 1998; Jones & Göth, 2008; Brazaitis & Watanabe, 2011).

The odds of preserving any of these nesting structures in the fossil record are extremely

poor (Hasiotis et al., 2007) and/or their preservation could easily be misinterpreted.

Therefore, according to the taphonomy of behavior (Plotnick, 2012), we focus this

investigation not only on ichnology but also behavioral biology, offering the following

revised nest definitions in the context of this study to help identify and discriminate nests

from egg clutches in the fossil record:

• Archosaur nest: any recognizable structure or modification of environment that is

voluntarily made by the parents to ovideposit their eggs.

• Archosaur nest function: mediates and optimizes environments in order to ensure

successful egg incubation and hatching.

• Archosaur nest diagnosis: an identifiable structure recognized to result from archosaur

parental nesting behavior that contains at least either autochthonous egg remains or

eggshell fragments.

Herein, we review nesting sites from around the world (Fig. 2) that have been assigned

to titanosaurs, their eggs, eggshell microstructures, and sedimentary data, in an attempt

to understand the reasons sauropods were able to reproduce globally, but use particular

localized nesting sites characterized by an overwhelming abundance of egg clutches and

eggs. Understanding their nesting and incubation strategies through the megapode model

might shed light on the enigmatic reproductive behavior of these extinct behemoths.

MATERIALS AND METHODS
The fossil record of “titanosaur” eggs and shells extends to Europe, Asia, South America

and Africa. However, less than 10 years have passed since their first inclusion in a phylo-
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Figure 2 Upper Cretaceous paleogeography and distribution of the reviewed titanosaur nesting
sites. Map modified from Ron Blakey, Colorado Plateau Geosystems, Inc.

genetic study (Grellet-Tinner et al., 2006). In contrast, most of the earlier (e.g., Mikhailov,

1997; Mohabey, 1998; Mohabey, 2001; Garcia & Vianey-Liaud, 2001a; Vianey-Liaud &

Zelenitsky, 2003) and several current studies (Fernández & Khosla, 2015; Sellés & Vila, 2015)

provide descriptions lacking enough detail and/or skewed by the use of parataxonomic

criteria (Grellet-Tinner et al., 2012). In addition to the egg and eggshell morphology, the

study of titanosaur nesting strategies requires the combination of an array of sources of

data, such as clutch geometry and spacing, description of the nesting sediments and their

stratigraphic context, possible geothermal activity, availability of vegetal materials and

paleoclimatic conditions.

It is unavoidable that data on some nesting sites are more comprehensive than others

because some localities have been more intensively researched than others, and with

different purposes (e.g., stratigraphy, parataxonomy). The need for a full and accurate

record prevented the inclusion in this study of, for example, the findings of isolated

eggshells in Morocco and Tanzania, in Africa (Garcia et al., 2003; Gottfried et al., 2004).

In addition, it should be noted that the localities in Spain are much more restricted

geographically than others in South America and Asia (Sellés & Vila, 2015). As such,

the more than 220 localities with eggs and eggshells in Southern Pyrenees, (Sellés &

Vila, 2015) are not directly comparable in terms of scale with other localities around
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the world. Although not as close together as in Spain, many of the localities reported

in Southern France have also been studied for parataxonomic and biostratigraphic

purposes (Garcia & Vianey-Liaud, 2001a; Garcia & Vianey-Liaud, 2001b; Vianey-liaud,

Khosla & Garcia, 2003; Cojan, Renard & Emmanuel, 2003), hence not providing enough

information on morphology and/or egg spatial distribution. In addition, most fossil eggs

and eggshells discovered during the nineteenth and twentieth century were not recovered

with appropriate stratigraphic control and/or using archaeological field techniques

(Cousin & Breton, 2000). The same problem arises with the many localities reported in

China and Mongolia, which yield an extensive record of megaloolithid and faveoloolithid

eggs and eggshells (Carpenter & Alf, 1994; Liang et al., 2009).

Considering the above-mentioned constraints, we selected eight nesting sites dis-

tributed across four continents that provide enough data (Table S1) for comparison

with modern analogues: Sanagasta (Argentina), Gyeongsang Basin (South Korea), Haţeg

(Romania), Dholi Dungri (India), Rennes-le-Château and Albas (France), Coll de Nargó

(Spain), and Auca Mahuevo (Argentina). It should be noted that all the selected nesting

sites preserve autochthonous and/or parautochthonous fossil material in contrast to eggs

and eggshells found in lithologies that belong to different environmental settings (Table 1),

hence creating preservation biases.

We selected Megapodiidae for modern nesting analogues. This avian family consists of

22 species that are limited to Australia, New Guinea, Micronesia, Melanesia and Polynesia

(Dekker, 2007; Harris, Birks & Leaché, 2014). They are unique among living dinosaurs by

exclusively using environmental heat sources rather than body heat to achieve incubation

(Jones & Birks, 1992; Del Hoyo, Elliott & Sargatal, 1994).

RESULTS
Sanagasta, Argentina
Although this site has been cautiously classified as a neosauropod nesting ground

(Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012; Grellet-Tinner, Fiorelli & Salvador,

2012), some paleontologists have regarded eggs with similar morphology as titanosaurs

(De Valais, Apesteguı́a & Udrizar Sauthier, 2003; Simón, 2006). Hence on this basis, we

include this Cretaceous nesting site (Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012)

in our study (Table 1). The Sanagasta nesting site located in La Rioja, Argentina (Tauber,

2007; Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012), represents the first account of

synchronous geothermal activity and “titanosaur” nesting strategy in the fossil record

(Grellet-Tinner & Fiorelli, 2010). Several clutches were recovered from a single outcrop of

the Los Llanos Formation in the Sanagasta Valley (Tauber, 2007; Grellet-Tinner & Fiorelli,

2010; Fiorelli et al., 2012). The nesting sediments consist of medium to coarse-grained

grey and whitish arkosic sands deposited in a hydrothermal setting (Fiorelli et al.,

2012). The eggs exhibit a thick eggshell (thickness 7.9 mm–1.2 mm; mean = 3.84 mm;

Grellet-Tinner, Fiorelli & Salvador, 2012) regarded as an adaptation to resist acid erosion

during geothermal incubation (Grellet-Tinner & Fiorelli, 2010). The thick single structural

layer of the Sanagasta eggshells displays nodular rounded structures on the outer surfaces
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Table 1 Egg and eggshell morphologies, spatial distribution and nesting paleoenvironments.

Sites Sanagasta Gieongsang Basin Haţeg Dholi Dungri

Authors Fiorelli et al., 2012;
Grellet-Tinner, Fiorelli &
Salvador, 2012

Huh & Zelenitsky, 2002;
Kim et al., 2009.

Grellet-Tinner et al., 2012 Wilson et al., 2010

Formation Los Llanos Boseong Sânpetru Lameta

Age—stage Hauterivian?-
Cenomanian?

Upper Cretaceous Maastrichtian Maastrichtian

egg shape sub-spherical spherical sub-spherical spherical

egg size (cm) 21 15–20 11–13 14–18

eggshell
thickness (mm)

1.2–7.95 (mean = 3.84) 1.33–2.2 1.7–1.8 2.26–2.36

pore canal
morphology

Y-shaped ? Y-shaped straight

pore aperture
morphology

round and funnel shape ? round and funnel shape round and funnel shape

ornamentation
morphology

nodular-single nodes
and coalesecent nodes

nodular nodular-single nodes and
coalesecent nodes

nodular

ornamentation
size (mm)

Ø = 0.58–0.62 ? Ø = 0.6–0.7 ?

Eggs

MT size (mm) 0.025–0.09 ? 0.19 ?

grouping clutches; up to 30 eggs clutches; up to 16 eggs clutches; average 4 eggs isolated or in clutches;
up to 12 eggs

geometry bowl, linear, random ? bowl-round bowl-round
Egg spatial
distribution

layers 2 1 2 ?

sediment medium to coarse-
grained grey and
whitish arkosic sands

sandy tuffaceous
sandstones

fine grained siltstone-
mudstone sediments

calcareous sandstones

setting geothermal floodplain deposits/
geothermal/paleosols

floodplain/
paleosols/geothermal

alluvial-limnic/
paleosols

volcanism present presenta present presentc

paleoclimate semiarid semiarid warm (MAT = 14◦) semi-aridc

Paleoenvironment

vegetation ? C3 veg. C3 veg.b dominantly herbaceous; C3 veg.c

(continued on next page)
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Table 1 (continued)

Sites Rennes-le-Château and Albas Coll de Nargó Auca Mahuevo layers 1–3 Auca Mahuevo layer 4

Authors Cousin & Breton, 2000;
Cousin et al., 1989

Vila et al., 2010b; Vila,
Jackson & Galobart, 2010

Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner, 2005

Formation Marnes rouges inférieures Tremp Anacleto

Age—stage Upper Maastrichtian Maastrichtian Campanian

egg shape sub-spherical spherical spherical spherical to sub-spherical

egg size (cm) 16–20 20 13–15 12.5–14

eggshell
thickness (mm)

up to 2.5 1.3–4.5 1–1.78 1.7–1.8

pore canal
morphology

? Y-shaped straight Y-shaped

pore aperture
morphology

round? round-elliptical round-elliptical and
funnel shape

round and funnel shape

ornamentation
morphology

nodular nodular nodular-single nodes
and coalesecent nodes

nodular-single nodes
and coalesecent nodes

ornamentation
size (mm)

? Ø = 0.64–0.87 Ø = 0.35–0.65 Ø = 0.68

Eggs

MT size (mm) ? ? ? 0.2–0.25

grouping isolated or in clutches; 3–8 eggs clutches; up to 20–28 eggs clutches; 15–50 eggs

geometry bowl-round/supergroups
(Ø = 3, 5 m)

linear-round (inferred
kidney shape)

bowl-kidneyEgg spatial
distribution

layers 1 2–3? 1–2

sediment very soft variegated marls mudstones intercalated
with medium-coarse
sandstone bodies

reddish-brown siltstones and mottled mudstonesf

setting floodplain?/paleosols lagoon/marsh/fluvial/
paleosols

floodplain depositsf/paleosolsf,g

volcanism ? ? presentg

paleoclimate tropical-subtropical/
semi-arid episodesd

warm (MAT = 21◦)/
MAP = 1,200 mm/yre

warm and seasonalf dryer warm and seasonalf wetterPaleoenvironment

vegetation C3 veg. riparian forest/
open vegetation
(Aix-en-Provence Basin)d

C3 veg.e palustrine plant remainsf

Notes.
a Choi, 1986; Chough et al., 2000; Choi et al., 2005; Choi et al., 2006.
b Bojar, Csiki & Grigorescu, 2010.
c Tandon et al., 1995; Tandon & Andrews, 2001; Prasad & Sahni, 2014.
d Cojan, Renard & Emmanuel, 2003.
e Riera et al., 2013.
f Garrido, 2010a; Garrido, 2010b.
g Jackson, Schmitt & Oser, 2013.

MAP, mean annual precipitation; MAT, mean anual temperature; MT, membrana testacea.
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Figure 3 Sanagasta nesting site. (A, C) Radial thin sections of eggshell fragments seen under Scanning
Electron Microscope (SEM) and (B, D) under stereomicroscope. (E) Complete egg (CRILAR Pv-400
SA-C6-e1). (F) Egg clutch exposed in situ at the Sanagasta Geologic Park.

and long eggshell units with slender concentric and convex growth lines, including

secondary dichotomic branching outwards (Figs. 3A–3D). The spongy appearance of

the eggshell is produced by a high concentration of wide pores that meander and branch

between the eggshell units (Grellet-Tinner, Fiorelli & Salvador, 2012). Moreover, the large

(∼4,800 cm3) subspherical eggs (Fig. 3E and Table 1) are perforated by ∼482,000 pores

leading to a water vapor conductance of ∼2,850 mgH2O/day ∗ Torr (Grellet-Tinner, Fiorelli

& Salvador, 2012).

Several clutches (e.g., Fig. 3F) were discovered regularly placed nearby preserved

geothermal relics, encrusted with silcrete-calcrete structures, some with up to 30 eggs
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(Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012; Grellet-Tinner, Fiorelli & Salvador,

2012). Although the eggs spatial distribution in two superposed rows, where the upper

row has a greater amount of eggs (Tauber, 2007; Grellet-Tinner & Fiorelli, 2010; Fiorelli et

al., 2012), suggesting that they were deposited in dug out-nests, close to geothermal vents,

springs, or pools, no nesting structure has been preserved (Fiorelli et al., 2013). Therefore,

these fossil assemblages are referred to only as egg clutches, although the oological data

(Table 1) strongly support parental placement of dug out-nests with eggs in close proximity

of hydrothermal structures.

Gyeongsang Basin, South Korea
The nesting paleoenvironment of Sanagasta was compared with South-Korean nesting

sites in the Gyeongsang Basin (Fiorelli et al., 2012), where continental sedimentation,

volcanism and hydrothermalism occurred concomitantly during the Late Cretaceous

(Choi, 1986; Chough et al., 2000; Choi et al., 2005; Choi et al., 2006). The development of

this basin was associated with subduction in an Andean-type continental margin during

this period (Choi, 1986). The Korean egg clutches consist of faveoloolithid eggs (Paik, Huh

& Kim, 2004) similar to those found in Sanagasta. The eggs were recovered in several Upper

Cretaceous localities, preserved in tuffaceous sandstones interpreted as floodplain deposits

and related to meandering rivers. According to previous descriptions, the faveoloolithid

eggs found in Boseong (one of the most studied localities of the Gyeongsang Basin) vary

in diameter from 15 to 20 cm and have extremely porous eggshells of 1.33–2.20 mm thick

(Huh & Zelenitsky, 2002; Kim et al., 2009). The taphonomic and paleoenvironmental

analyses conducted by Paik, Huh & Kim (2004) and Paik, Kim & Huh (2012) revealed

that several single-layered clutches of up to 16 eggs occur in different calcic paleosol

levels, suggesting nesting site fidelity. Although many egg clutches were recovered, no

nesting structures could be found in the encrusting sediments (Kim et al., 2009). However,

Paik, Huh & Kim (2004) and Paik, Kim & Huh (2012) suggested that eggs were incubated

buried in the substrate, thus laid in excavated nests. Interestingly, the geological origin

and development of the Gyeongsang basin was related to subduction in an Andean-type

continental margin (Choi, 1986), with epithermal deposits (Choi et al., 2005). As the latter

are related to subaerial volcanism or shallow intrusions (Choi et al., 2005; Choi et al.,

2006) and the nesting sediments are locally tuffaceous (Paik, Kim & Huh, 2012), Fiorelli

et al. (2012) suggested that nesting in geothermal settings was not limited to a particular

endemic neosauropod population but were used by allopatric populations of probably the

same genus.

Haţeg, Romania
Grellet-Tinner et al. (2012) examined a group of 11 titanosaur egg clutches discovered in

the exposures of the Maastrichtian Sânpetru Formation, at Toteşti, Romania (Grigorescu et

al., 1990; Grigorescu, 1993; Codrea et al., 2002; Panaiotu & Panaiotu, 2010). Grellet-Tinner

et al. (2012) mention the presence of geothermal-derived minerals in the eggshell pores

and the presence of volcanic activity in the same basin concomitantly to the oviposition of

the eggs. Moreover, a tremendous number of embryonic bones representing several taxa
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Figure 4 Haţeg Basin. (A–C) Nemegtosaurid eggshell fragments seen under SEM. (D) Egg clutches (TO
O–01; IRSNB Cast-Vert 32) exhibit at the University of Cluj and the Royal Belgian Institute of Natural
Sciences. From Grellet-Tinner et al., 2012.

(titanosaurs, aves, and lepidosaurians; Grellet-Tinner et al., 2012) were recovered in the

same formation, supporting possible geothermal and hydrothermal activities related to the

coeval Carpathians and Apuseni volcanism (Russo-Sändulescu & Berza, 1979; Kräutner,

Vajdea & Romanescu, 1986; Ştefan et al., 1988). The egg clutches were encased in fine

grained siltstone-mudstone sediments, typical of a low energy nesting environment (Bojar

et al., 2005; Grellet-Tinner et al., 2012). The spherical eggs were deformed by lithostatic

compression, to become subspherical (Codrea et al., 2002; Grellet-Tinner et al., 2012).

Their phylogenetic characters match those of the eggs from the Auca Mahuevo layer 4 (AM

L#4) (Grellet-Tinner et al., 2012) that were identified as nemegtosaurid titanosaurs (Garćıa

et al., 2010), based on their embryos in ovo. As such, both the AM L#4 and Toteşti eggs

display similar egg shape and size, eggshell thickness, identical structural single layer of

the shell, consisting of acicular calcitic crystals radiating from nucleation centers located

above the membrana testacea, the same Y-shaped vertical pore canals with funnel-shaped

pore apertures located between the nodular surficial ornamentation, similar unit and node

shapes, as well as an horizontal pore canal network parallel to the membrana testacea

(Figs. 4A–4C; Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner et al., 2012). The

Toteşti egg clutches (Fig. 4D) consist of groups of four eggs on average that are superposed

similarly to those in Sanagasta, thus suggesting they were also buried in dug-out nests

(Grellet-Tinner et al., 2012). However, like the previously described nesting sites (Kim et

al., 2009; Grellet-Tinner & Fiorelli, 2010), no true nesting structure was recognized. As
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such, the inference of nests rests only on the spatial arrangement of eggs in each of the 11

clutches (see Table 1). Grellet-Tinner et al. (2012) also mention the presence at the same

site of other isolated egg species which are larger and exhibit different eggshell macro-

and micro-morphologies, thus belonging at least to an additional dinosaur species. The

presence of several egg types at the same site and stratigraphic horizon may indicate a

preferential nesting environment for the dinosaurs confined in the Haţeg insular system.

Regardless of considering the exclusive presence of sauropod (mostly titanosaurian taxa)

egg clutches or mixed egg fossils including ornithopod species, although not confirmed

contra Grigorescu (2010) and Grigorescu et al. (2010), the interesting question remains

why only Toteşti and Nălaţ-Vad, or Tustea were preferential laying grounds on the Haţeg

Cretaceous volcanic island.

Dholi Dungri, India
The Upper Cretaceous (Maastrichtian) Lameta Formation in India, overlain by the

volcanic flows of the Deccan Traps, is well known for its rich record of dinosaur nesting

sites (Mohabey, Udhoji & Verma, 1993; Mohabey, 1998). It consists of calcareous sandstones

deposited by episodic transport in an alluvial-limnic paleoenvironment related to semiarid

climate and secondarily affected by extensive pedogenesis (Mohabey, Udhoji & Verma,

1993; Mohabey, 1998; Mohabey, 2005; Wilson et al., 2010). Although many oospecies

were recognized in the fossil parataxonomy (Mohabey, 1998), only the 3 eggs referred as

Megaloolithus dhoridungriensis have been directly associated with titanosaurs, based on

close association with a partial hatchling found at the exposures near the Dholi Dungri

locality, Gujarat, India (Mohabey, 1998; Wilson et al., 2010).

According to Wilson et al. (2010) the spherical eggs range from 14 to 18 cm in diameter

with an eggshell thickness of 2.26–2.36 mm and display discrete eggshell units similar to

other megaloolithids. Although they are slightly larger and have thicker shells (Table 1),

the Dholi Dungri eggs share only a few similarities with Auca Mahuevo (AM) fossils

in their shape and single structural layer with acicular calcitic crystals radiating from

nucleation centers located above the missing membrana testacea, a similar nodular

surficial ornamentation, and a horizontal pore canal network parallel at the base of the

shell with straight vertical pore canals and funnel-shaped apertures outward. However,

the vertical pores do not appear to have the atypical Y-shaped ramifications and are

significantly more numerous than the ones in titanosaur eggs from AM (Wilson et al.,

2010). Their overall morphological characters are closer to the unidentified Toteşti and

Nălaţ-Vad egg species with thicker eggshell (Grellet-Tinner et al., 2012), than the AM eggs.

The Dholi Dungri titanosaur eggs have a volume of ∼2,150 cm3, an egg mass of ∼2,300 g,

and appear isolated or grouped in clutches of up to 12 eggs, with an average clutch mass

(6–12 eggs per clutch) of ∼21,000 g (Wilson et al., 2010).

Like other Indian sites, no nesting structures have been observed at this locality (Wilson

et al., 2010), but the high porosity of the eggshells suggests burial incubation (Sander et al.,

2008; Wilson et al., 2010). Tandon et al. (1995) noted that some of the different nesting sites

in the Lameta beds appear to be topographically related and widely distributed in similar

lithologies, suggesting a “practiced sense of site selectivity”.
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Rennes-le-Château and Albas, France
Since the late 1800s, several titanosaur egg clutches have been discovered in Cretaceous

exposures in Southern France (Freytet, 1965; Kerourio, 1981; Cousin et al., 1989; Cousin

et al., 1994). However, according to Cousin & Breton (2000), the vast majority of the

fossils were recovered with inadequate field techniques and/or inappropriate stratigraphic

control. Therefore, we focus on the detailed excavations of the nesting sites at the Upper

Maastrichtian, Rennes-le-Château (Cousin et al., 1994) and Albas (Cousin & Breton, 2000),

as these two sites were quarried with archaeological techniques, thus providing a good

overview of the taphonomy and nesting environment (Cousin & Breton, 2000).

The eggs typically exhibit eggshell thicknesses of up to 2.5 mm, although some samples

show thinning by dissolution (Cousin & Breton, 2000). As in other titanosaur eggs, the

French eggs display nodular rounded structures on their outer surfaces and spherulitic

eggshell units with slender concentric and convex growth lines formed by acicular calcitic

crystals radiating from nucleation centers located above the missing membrana testacea.

Moreover, they display a horizontal pore canal network, parallel to the base of the shell,

with straight vertical pore canals for gas conductance (some of them with complex

branching network of secondary transverse canals and dichotomic Y-shaped ramifica-

tions), and pore apertures around the base of the external nodes. These eggshells are quite

similar to those of titanosaur “megaloolithid” eggshells from Spain which, according

to Jackson et al. (2008), have a high pore density and elevated gas conductance, nearly

4,000 mgH2O/day ∗ Torr (an overestimate due to a calculation error for gas conductance

of the eggshells by these authors). The 17–20 cm eggs have a volume of ∼2,100 cm3, an

egg mass of ∼2,300 g and a clutch mass varying from ∼18,500 g (Rennes-le-Château) to

∼35,000 g (Albas). In Rennes-le-Château the eggs were found isolated or in small arcuate

rows, but also in clusters of 3–8 eggs (Cousin et al., 1989). The careful excavation revealed

that the egg clutches were preserved in situ (Cousin & Breton, 2000; Cojan, Renard &

Emmanuel, 2003) and deposited in different stratigraphic levels, thus, suggesting nesting

site fidelity (Cousin et al., 1989; Cousin & Breton, 2000). The sedimentary evidence does

not support the presence of true nests (as above-defined), although Cousin & Breton (2000)

suggested that the eggs of the Albas clutch could have been deposited in shallow pits.

Therefore, the lack of any supporting sedimentary structure does not allow the inference

of sauropod nests at these two sites. Although the egg clutches from Southern France do

not indicate any organic matter in the surrounding sediments, the possibility of incubation

in nests with vegetal mounds has been suggested by Kerourio (1981) and Cousin & Breton

(2000), based primarily on high conductance of the eggshells. Yet, Grellet-Tinner, Fiorelli &

Salvador (2012) suggested that high conductance values alone do not imply incubation in

mounds, but just environments with elevated moisture contents.

Coll de Nargó, Spain
Several sauropod egg clutches were reported in Northeastern Spain (Vila et al., 2010a;

Vila et al., 2010b; Vila et al., 2011; Vila, Jackson & Galobart, 2010), a region that was

also tectonically active at the time the eggs were oviposited (Puigdefàbregas, Muñoz &
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Vergés, 1992). These fossils were classified in the Megaloolitidae oofamily and later loosely

associated with titanosaurs (Sander et al., 2008; Vila et al., 2010a; Vila et al., 2010b) after the

discovery of titanosaur embryos in the eggs of Megaloolithus patagonicus (Chiappe et al.,

2003), and M. dhoridungriensis (Wilson et al., 2010). According to Sellés et al. (2013), more

than 30 egg-bearing stratigraphic levels distributed in two lithofacies, representing a fluvial

paleoenvironment, are recognized in the Upper Cretaceous Tremp Formation (Sander et

al., 2008; Vila, Jackson & Galobart, 2010; Vila et al., 2010b). Both lithofacies and eggs show

evidences of stress deformation, consistent with the tectonic stress orientation of the region

(Vila et al., 2010b).

The eggs and eggshells have been described by several authors (Jackson et al., 2008; Vila

et al., 2010a; Vila, Jackson & Galobart, 2010; Sellés et al., 2013). They are spherical and

reach 20 cm in diameter (Vila, Jackson & Galobart, 2010). Their 2.5 mm thick eggshells

show typical discrete units with slender concentric and convex growth lines of acicular

calcite crystals radiating from the nucleation centers, as well as a pore network system with

branching—dichotomic Y-shaped ramifications—and secondary transversal ones.

According to Sellés et al. (2013) the 75 clutches found in situ at Pinyes (a subsite at Coll

de Nargó locality) support a nest site fidelity behavior. However, Vila, Jackson & Galobart

(2010) indicated that these clutches represent a single event, albeit no sedimentary

evidence independently confirms their interpretation (Sander et al., 2008). Three types

of egg clutches were recognized by Vila, Jackson & Galobart (2010). The “type 1”, consists

of clutches with 20–28 eggs separated by 3–6 m and buried in bowl kidney-shaped

depressions (Vila, Jackson & Galobart, 2010; Vila et al., 2010b). However, in previous

interpretations these were considered as superimposed clutches with fewer eggs (Peitz,

1998; Sander et al., 1998; Sander et al., 2008). According to Vila et al. (2010a), Vila et

al. (2010b) and Vila, Jackson & Galobart (2010) but contra Sander et al. (2008), the egg

spatial arrangement in these putative complete clutches coupled with the high water vapor

conductance (GH2O) of the eggshells (Deeming, 2006), would suggest the eggs were buried

during incubation.

Auca Mahuevo, Argentina
This Campanian locality (Dingus et al., 2000) in the Anacleto Formation (Argentina)

was the site from which the first reported titanosaur embryonic bones and soft tissues

in ovo were discovered (Chiappe et al., 1998; Chiappe, Salgado & Coria, 2001; Salgado,

Coria & Chiappe, 2005). They were recently re-identified as nemegtosaurids (Garćıa et

al., 2010). The eggs are in four egg-bearing strata (Chiappe et al., 2003; Chiappe et al.,

2004) consisting of reddish-brown siltstones and mottled mudstones (Chiappe et al.,

2000; Chiappe et al., 2004; Garrido, 2010a), deposited in an alluvial plain (Sander et

al., 2008; Garrido, 2010a) under the regime of a warm and seasonal climate (Garrido,

2010a). The eggs and eggshells were described in detail by Grellet-Tinner, Chiappe & Coria

(2004) and Grellet-Tinner (2005). According to these authors the well-preserved eggshell

specimens, averaging 1.30 mm thick, display a pronounced ornamentation of single nodes

and a pore network that consists of vertical channel openings in funnel-like structures
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located between the surficial nodes (Figs. 5A and 5B). Some vertical pores branch in a

“Y” pattern, a derived feature originally described for these eggs but shared with other

titanosaurs (Figs. 5C and 5D; Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner, Fiorelli

& Salvador, 2012). Additionally, they show horizontal canals located between the bases of

the eggshell units—nucleation centers—and above the membrana testacea (Figs. 5C–5D).

The unhatched eggs range from 13 to 15 cm in diameter (Fig. 5E; (Chiappe et al., 1998;

Grellet-Tinner, Chiappe & Coria, 2004)) and are preserved in clutches of 15 to 40 eggs (Fig.

5F; Chiappe et al., 2000; Grellet-Tinner, Chiappe & Coria, 2004). Although supposedly in

their original position, egg clutches became undistinguishable from one another due to

soft sediment deformations (G. Grellet-Tinner (or GGT), 1999–2000; Chiappe et al., 2003;

Jackson, Schmitt & Oser, 2013). Like the above-mentioned European, Asian, and South

American nesting sites, the dense accumulation of clutches (11 eggs/m2; Sander et al.,

2008) in egg layers 3 and 4, led to interpretations of gregarious and nesting site fidelity

behaviors (Chiappe et al., 2000; Chiappe et al., 2003). Paradoxically despite the extent of

this nesting site, no nesting structures were reported in these overbanking sedimentary

layers which were, according to Garrido (2010a), the preferred laying grounds close to the

stream channel for these nemegtosaurids. However, six trace fossils interpreted as nests

with accumulations of eggs were reported in alluvial deposits (Chiappe et al., 2004) of

an abandoned channel in the AM L#4 (Chiappe et al., 2003; Sander et al., 2008), which

clearly contradict “the preferred areas close to stream channels” of Garrido (2010a). The

six rimmed, sub-circular to kidney-shaped structures contain 4–35 randomly disposed

eggs in 1 or 2 superposed rows. They were interpreted as rimmed-nests, ranging from

85 to 125 cm, and 10 to 18 cm deep (Chiappe et al., 2004; Sander et al., 2008). The six

fossil assemblages were regarded as nests and an “open nest” strategy was suggested for

the entire, assumed monospecific nesting site (Chiappe et al., 2004; Sander et al., 2008).

However, a recent re-evaluation of the putative nests concluded that the rimmed structures

were titanosaur footprints in an abandoned channel (Grellet-Tinner, Fiorelli & Salvador,

2012) that randomly trapped eggs during the several episodic floods. This interpretation is

consistent with all the geological data and supported by the inconsistency of an “open nest”

hypothesis (Chiappe et al., 2004; Jackson et al., 2008; Sander et al., 2008), considering

the high GH2O of the eggshells (Grellet-Tinner, Fiorelli & Salvador, 2012). Like other

titanosaurs, the AM eggs’ morphology indicates they were likely incubated in relatively

high nesting humidities (Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner et al., 2006).

DISCUSSION
Titanosaur nesting strategies
The taphonomy of behavior emphasizes the need for defining trace fossils in terms of

both classical ichnology and modern behavioral biology (Plotnick, 2012). Furthermore,

the concept of behavioral fidelity, expressed as the “extent to which trace fossils preserve

original behavioral signals” (Plotnick, 2012), allows behavioral interpretations contrastable

to currently existing data. Considering solely the sedimentological evidence, none of the
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Figure 5 Auca Mahuevo nesting site. (A–C) Radial section of titanosaur eggshell fragments (From
Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner & Zaher, 2007). Note in (C) the transverse Y-shaped
vertical pore canals (blue arrow) and the horizontal network system (red arrow). (D) Schematic interpre-
tation of an eggshell from AM L#4, according to Grellet-Tinner, Chiappe & Coria (2004) SEM observations
(modified from Grellet-Tinner, Fiorelli & Salvador, 2012). a, arteries; b, branches of pore canal; c, capillar-
ies; cm, corioallantoid membrane; eu, eggshell unit; hpc, horizontal pore canals; mt, membrana testacea;
n, node on outer eggshell surface; pa, pore aperture; pf, protein fibers of the membrana testacea; v, veins;
vpc, vertical pore canals. (E) Complete egg AM L#3. (F) Egg clutch recovered from AM L#3 (LACM
149648; from Grellet-Tinner, Chiappe & Coria, 2004). LACM, Natural History Museum of Los Angeles
County.
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above-mentioned nesting sites display a diagnostic fossil nest structure. In the absence

of direct evidence of preserved fossil nests, eggs and their spatial grouping, eggshell

morphologies, coupled with observations of surrounding sediments, provide the only

data with respect to nesting moisture content and heat, as those are the main extrinsic

parameters that are paramount for hatching success. Pore canals allow the diffusion of

gases and water vapor through the eggshell (Paganelli, 1980). Their size, geometry, and

number reflect a specialization to the habitat where nesting occurs (Williams, Seymour

& Kerourio, 1984; Cousin, 1997; Grellet-Tinner, Fiorelli & Salvador, 2012). Eggshell

ornamentation (or lack thereof) is another morphological characteristic from which a

nesting paleoenvironment can be hypothesized. Cousin (1997) and Cousin & Breton (2000)

used the characteristics of the nodular appearance of eggshells from the Late Cretaceous

of France as an indicator of the substrate, or nesting material, surrounding the eggs.

This character (Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner & Zaher, 2007;

Grellet-Tinner et al., 2011) was regarded as a specialization, increasing gas conductance

through the pores that are located around and at the base of each node, by preventing

nesting debris from plugging their apertures (Sabath, 1991). The densely packed nodular

structures typically observed on the outer surfaces of pristine titanosaur eggshells provide

a substantial increase of surface in contact with the surrounding environment, suggesting

they could also have acted to buffer acidic erosion during long periods of incubation, an

interpretation consistent with GGT and colleagues’ (G Grellet-Tinner, 2014, unpublished

data) observations on modern megapode eggshells and associated nesting environments

in Australia. Gas diffusion occurs through the pores and can be quantified by the eggshell’s

GH2O (Seymour, 1979). It is commonly obtained for modern birds and reptiles by

measuring water loss in a known vapor gradient across the shell (Ar et al., 1974). GH2O

for fossil eggs can be estimated from eggshell thickness and pore-system geometry and

so forms a valuable proxy for assessing the moisture content in dinosaur nests, their

environments (Seymour, 1979; Seymour & Ackerman, 1980), and nesting strategies (Ar

et al., 1974; Seymour, 1979; Birchard & Kilgore, 1980; Seymour et al., 1987; Grellet-Tinner,

Chiappe & Coria, 2004; Deeming, 2006; Grellet-Tinner, Fiorelli & Salvador, 2012).

Titanosaurs could not have used the classic contact incubation strategy typical of most

modern dinosaurs (Seymour, 1979; Werner & Griebeler, 2011; Ruxton, Birchard & Deeming,

2014), thus must have relied on external environmental heat for incubating their eggs.

Interestingly, the extant Australasian megapodes are one of the most intriguing avian

dinosaur families because they exhibit a practice unique among modern birds, regarded as

a reversal character, of incubating their eggs by utilizing only environmental heat sources

rather than body heat (Booth & Thompson, 1991; Jones & Birks, 1992; Del Hoyo, Elliott &

Sargatal, 1994). Moreover, they display the most diversified incubation behaviors among

ground nesting archosaurs (Jones & Birks, 1992; Del Hoyo, Elliott & Sargatal, 1994; Harris,

Birks & Leaché, 2014), which are associated with species specific nesting strategies and

nesting sites (Boles & Ivison, 1999; Harris, Birks & Leaché, 2014). These are: (1) mound-

building; (2) burrow-nesting using geothermal heat; (3) burrow-nesting using solar-
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heated beaches; (4) burrow-nesting using decaying tree roots; (5) mound parasitism. As

such, Megapodiidae potentially offers a valid proxy for titanosaur reproductive behaviors.

Among the titanosaur nesting sites reviewed in this investigation, only two have been

positively related with geothermalism: the well-documented Sanagasta and the South

Korean eggs (Table 1). The compact arrangement of the Sanagasta eggs, in clutches of

one or two layers, led Grellet-Tinner & Fiorelli (2010) and Fiorelli et al. (2012) to suggest

incubation in excavated nests, a strategy already inferred by Paik, Huh & Kim (2004)

and Paik, Kim & Huh (2012) for the eggs from Seonso Formation (Gyeongsang Basin,

South Korea) (Table 1). The eggs from these sites have a similar morphology (but a

thinner eggshell thickness in Gyeongsang) and they also share sedimentary and geological

features of geothermal activities concomitant with the oviposition. This supports the

hypothesis that geothermal heat sources could have been used by certain species of

Cretaceous titanosaurs. Several megapode species—Macrocephalon maleo Muller, 1846,

Eulipoa wallacei Gray, 1861 and many Megapodius spp.—use burrow nesting with vegetal

decomposition, solar radiation and/or geothermalism (inclusive here of volcanism) as

incubating strategies (Frith, 1956; Dekker & Brom, 1960; Jones & Birks, 1992; Del Hoyo,

Elliott & Sargatal, 1994; Göth & Vogel, 1997; Dekker, 2007; Bowen, 2010; Harris, Birks &

Leaché, 2014). The remarkable instance of opportunistic nesting in geothermal settings

represents an adaptive case in which species avoid thermally heterogeneous nesting

environments by exploiting geothermal conditions that maintain higher and more

constant temperatures and moisture levels in egg clutches (Werner, 1983; Göth & Vogel,

1997; Chen, Kam & Lin, 2001; Wu & Kam, 2005; Guo et al., 2008; Huang et al., 2009; Sas,

Antal & Covaciu-Marcov, 2010; Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli &

Salvador, 2012). For example, the Malau megapode (Megapodius pritchardii Gray, 1864)

digs pits more than 2 m deep to utilize underground geothermal heat (Frith, 1956; Del

Hoyo, Elliott & Sargatal, 1994; Göth & Vogel, 1997). In addition, because burrow nests in

geothermal ecosystems are less susceptible than mounds to predation, burrow-nesting

megapodes can abandon their nests after burying their clutch (Dekker, 1989; Del Hoyo,

Elliott & Sargatal, 1994), a strategy consistent with the titanosaur behavior inferred from

the fossil record (Sander et al., 2008; Sander et al., 2011; Werner & Griebeler, 2011; Ruxton,

Birchard & Deeming, 2014), where nesting sites were often located and synchronous with

geothermal activities. Paradoxically, megapode nest-burrows are dug preferably in soft

soils, in volcanic sands, environments that inhibit preservation of such structures in the

fossil record because they easily collapse (Frith, 1956; Dekker & Brom, 1960; Roper, 1983;

Bowen, 2010).

Although, the first reports of AM nesting site implied a monotaxic titanosaur

assemblage, further refined to nemegtosaurid titanosaur (Garćıa et al., 2010), one of the

co-authors (Eagle et al., 2015) has determined that the egg-laying titanosaurs in AM

L#4 may represent a different nemegtosaurid species, certainly closely related to those

nesting in Auca Mahuevo layers 1–3 (AM L#1–3) but displaying sufficient autapomorphies

to justify a species variation (Table 1). This species variation is also supported by

an environmental change. Celestite geodes and barite are ubiquitous in AM L#1–3
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(Garrido, 2010a; Garrido, 2010b). These two minerals are readily produced in geothermal

and evaporitic settings, both equally possible at AM due to its particular geology

(Jackson, Schmitt & Oser, 2013). Moreover geochemical analyses reveal a higher concen-

tration of magnesium and lithium in AM L#1–3 than AM L#4 (Eagle et al., 2015). These

two minerals are prevalent in continental brines, which could also be formed under high

evaporitic conditions or geothermalism. However, the evidence available suggests AM

have been selected first by a certain nemegtosaurid species (AM L#1–3) for its presence

of limited rivers in a semiarid environment and then, after a climatic change toward

wetter conditions, replaced by another closely related species with more conspicuous

nodular eggshell ornamentation, adapted to a more humid nesting environment (Table 1).

Climatic and environmental changes are also documented in the clay fabric in the 4 AM

layers (Jackson, Schmitt & Oser, 2013). Interestingly, among the modern Megapodiidae a

similar niche partition is observed in Australasia. The mound-builder Alectura lathami

Gray, 1831 (brush-turkey) nests in wetter environments in coastal Australian regions with

respect to its congener Leipoa ocellata Gould, 1840 (malleefowl) that nests in semi-arid

settings. Although both species are contemporaneous their geographical niche partitioning

is related to vegetation and climatic differences. Such species specific nesting partitioning

in modern Australia may explain the nemegtosaurid successive species replacement in AM

from a dryer environment nesting adaptation, such as occurs in AM L#1–3, to a wetter

setting, recorded upwards by the transition to the Allen Formation’s estuarine-coastal

sediments (Garrido, 2010a; Garrido, 2010b). Combined with the lack of convincing

geothermal evidence, although not entirely discounted due to the episodic explosive

volcanism (Jackson, Schmitt & Oser, 2013), the horizons with egg clutches and the eggshell

structures would suggest mound-building nesting strategies with a dryer climate for AM

L#1–3 which display shallower nodular eggshell ornamentation and wetter for AM L#4

with pronounced nodular ornamentation (Table 1). The oological material from AM

L#4 and Haţeg are very similar, sharing several synapomorphies including egg size, shape

and eggshell microstructure (Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner et al.,

2012). The complexity of their pore systems is consistent with a morphological adaptation

to high moisture nesting environments, typical of burial conditions. Furthermore, in

AM a semi-arid dry/wet climate coupled with episodic volcanism contributed to vertisol

horizons development at the floodplain areas (Garrido, 2010a; Jackson, Schmitt & Oser,

2013). Rhizoliths and root traces as well as small fossil logs found there (Garrido, 2010a;

Garrido, 2010b; Jackson, Schmitt & Oser, 2013) suggest a floristic abundance that would

promote ideal conditions for mound-nesting behaviors.

Although crocodilian mound-nests also average 1 m high and 3m in diameter (Joanen,

1969; Webb, Messel & Magnusson, 1977; Seymour & Ackerman, 1980; Waitkuwait, 1989),

it is important to distinguish this type of vegetal mounds from those of the Australian

brush-turkey megapodes, built from humus, soil and smaller amounts of true vegetal

matter. Modern megapodes construct surprisingly large nest-mounds, relative to their

egg and clutch sizes. Although a few mounds could reach 4 m in height, 18 m in length

and 5 m in width, a typical brush-turkey mound commonly measures 1 m by 4 m (height
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and diameter respectively) and requires up to 5 tons of soil mixed with vegetal matter

(Seymour & Ackerman, 1980; Jones & Birks, 1992; Del Hoyo, Elliott & Sargatal, 1994; Harris,

Birks & Leaché, 2014). Conversely, nesting structures smaller than 0.75 m high and 2 m

long are not functional (Jones & Birks, 1992; Del Hoyo, Elliott & Sargatal, 1994; Jones

& Göth, 2008). In contrast, malleefowl mounds consist mostly of sandy material with

terrigenous clasts. Malleefowl build their mound, and then dig out the center into which

semi-arid to arid vegetation, like spinifex, is introduced before the rainy season (Frith,

1959; Jones & Birks, 1992; Jones & Göth, 2008; D. Booth, pers. comm., 2013). Eggs are laid

around this center core that provides sufficient heat from vegetal decomposition to support

embryonic development. This results in all eggs being placed relatively centrally within

a mound (D. Booth, pers. comm.). Temperatures in the mound range from 27 to 38 ◦C,

although eggs mostly lie in the range of 32 to 36 ◦C (Booth, 1987). In contrast, brush-turkey

females burrow into the mound obliquely. The litter material does not collapse around

the tunnel as sand would in a malleefowl mound (D. Booth, pers. comm., 2013). Hence,

eggs can be dispersed throughout the place in large mounds and not just in the central

core as in the malleefowl ones. One strategy would result in eggs grouped together in a

compact clutch, while the other results in eggs isolated or lined up in small groups when

the mound is eroded away. In comparison, the latter matches the pattern already observed

in the titanosaur nesting sites of Southern France, where Cousin et al. (1989) and Cousin

& Breton (2000) interpreted that small groups of eggs (2–4) are not randomly distributed

but belong to circular “supergroups” of up to 15 eggs and 3.5 m in diameter (see Fig. 10

in Cousin & Breton, 2000), substantially separated from others (Cousin et al., 1989; Cousin

& Breton, 2000). Additionally, the few-egg clutches found in close association in Coll de

Nargó that were interpreted by Vila, Jackson & Galobart (2010) as partially preserved

∼ 25-egg clutches, show similar patterns. As such, the egg spatial distribution, in small

clusters linearly to compactly grouped, but contained in round shaped areas of up to 2.3 m

(see Table 1; Vila et al., 2010b), would either support burrow- or mound-nesting (Cousin &

Breton, 2000).

The Upper Cretaceous eggs and eggshells found at the reviewed nesting sites of Southern

France and Northern Spain share many characteristics. Regarding their similarities

(Table 1), and considering the high conductance values of the Pinyes’ eggs, a highly humid

incubation environment can be inferred for both locations. Although the evidence at hand

suggests burial incubation, no record of organic matter or hydrothermal relics has been

identified in their fine surrounding sediments. Regarding the morphological aspects, the

minimal differences in size between eggshell pores and the fine sediments reported in both

cases obscure the inference of vegetation as nesting material.

Although there are no published analyses on gas conductance for the Dholi

Dungri eggs, the high values obtained from other Indian localities, ranging between

2,650 mgH2O/(day ∗ torr) and 3,490 mgH2O/(day ∗ torr) (Sahni et al., 1994), suggest

a high moisture nesting microenvironment. Considering the nodular appearance of the

eggshells as a good indicator of the surrounding nesting material (Cousin & Breton, 2000)

the provision of substantial amounts of plant debris as constructing material cannot be
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discarded. Although the sediment itself is coarse enough to prevent pore obstruction,

the well-developed ornamentation of the eggshells could be a mechanism to prevent the

external eggshell erosion, by the acid formed by decomposing microbes and fungi during

an extended incubation period, like in modern megapodes. The morphological and sed-

imentological evidences at hand, coupled with the interpretation of a semi-arid, tropical

dry-wet climate for the Lameta Formation during Maastrichtian (Tandon et al., 1995;

Tandon & Andrews, 2001; Wilson et al., 2010; Prasad & Sahni, 2014), allows us to infer an

A. lathami-like nesting strategy, similar to that suggested for AM L#4 (Table 1). However,

regarding the magnitude of the volcanism responsible of the Deccan Traps deposition,

during Late Cretaceous, the geothermalism could also be regarded as an equally plausible

alternative heat source for egg incubation. Interestingly, although Tandon et al. (1995)

suggest the nesting activity in the Lameta Formation was contemporaneous with the first

Deccan lavas, questions regarding its possible relationship still require further research.

Many species of modern megapodes are known to use mound-nesting strategies to

incubate their eggs (Harris, Birks & Leaché, 2014). However, they are also known to revert

to less conspicuous nesting strategies such as burrow-nesting (Dekker, 1989) because of

their behavioral lability (Harris, Birks & Leaché, 2014). As such, although dusky megapode

(Megapodius freycinet Gaimard, 1823) populations are categorized as mound-builders,

they are also burrow-nesters and exploit geothermal resources for heat and moisture

in New Britain and the Solomon Islands (Roper, 1983). This species demonstrates an

interesting behavioral plasticity (Frith, 1956), yet still relying on environmental heat only.

Additionally, the Moluccan megapodes (Eulipoa wallacei) lay their eggs in black volcanic

sands and silt utilizing solar heat (Del Hoyo, Elliott & Sargatal, 1994; Dekker, 2007) but are

also known to switch to geothermal and microbial decomposition. Because of the scarcity

of suitable nesting areas, burrow-nester megapodes (e.g., M. freycinet, M. maleo, and M.

pritchardii) commonly adopt colonial nesting behaviors and site fidelity (Del Hoyo, Elliott

& Sargatal, 1994). Similarly, strong nesting environment selectivity and colonial nesting

were related to the massive occurrence of eggs and egg clutches in similar lithofacies,

in some of the best known titanosaur nesting sites (Sahni et al., 1994; Mohabey, 2001).

Although some titanosaur species may have adopted nesting strategies relying on various

styles of mound-nests, it is entirely plausible that a few of them might have reverted to such

opportunistic behaviors when available, particularly in settings like Haţeg (Grellet-Tinner

et al., 2012), India (Tandon et al., 1995) and AM (Jackson, Schmitt & Oser, 2013) where

volcanism and related processes were coeval with nesting titanosaurs (Table 1).

Seymour & Ackerman (1980) emphasized that vegetal decomposition through microor-

ganisms could be critical in terms of gas tension for mound-builder archosaurs. When

clutches are large, as occurs with the ∼20 egg clutches of the Australian brush-turkey,

the gas tensions as well as the temperature in the mound vary with the reworking of the

mound by parents (Seymour & Ackerman, 1980; Del Hoyo, Elliott & Sargatal, 1994; Priddel

& Wheeler, 2003). Assuming similar incubation strategies, it seems that the sizes of the

sauropods could have prohibited active reworking of the mound to compensate for gas and
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Figure 6 Schematic reconstruction of different nesting environments and the nesting strategies suggested for the Cretaceous titanosaur
dinosaurs. (A) Detail of borrow-nesting in geothermal environments. (B) Detail of mound-nesting and eggs buried in a soil profile.

temperature variations. Yet, such post-oviposition activities might have not been required,

e.g., in modern alligators, that exhibit similar “en masse” laying behaviors.

CONCLUSION
Titanosaurs reproduced in globally distributed but highly particular and localized nesting

sites (Sahni et al., 1994; Mohabey, 2001). The geological-sedimentological record of the

reviewed titanosaur sites suggests that different titanosaur species may have evolved

an array of reproductive strategies comparable to those of modern megapodes. The

observed eggshell features indicate high nesting moisture content, yet with variable nesting

humidities as expressed by the geometry of the pore canals used for gas diffusion through

the eggshells. The egg spatial positions in clutches suggest excavated holes (e.g., Fig. 6A)

as well as mound incubation (Fig. 6B). Mound-nesting incubation in its various forms as

observed in modern megapodes, although not entirely supported because of the absence

or paucity of organic matter or plant debris in close association with all the eggs or egg

clutches in the fossil record, may be quite plausible. The sites—Haţeg, Dholi Dungri,

Rennes-le-Château, Albas, Coll de Nargó and AM—seem to support mound incubating,

but tectonism associated with volcanism was recorded in these sites, thus leaving an open

door for opportunistic geothermal incubation strategies. In that regard geothermal and
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hydrothermal settings (Fig. 6) have undoubtedly been exploited by in Sanagasta and the

South Korean southern peninsula for their external heat and moisture.
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Simón ME. 2006. Cáscaras de huevos de dinosaurios de la Formación Allen (Campaniano-
Maastrichtiano), en Salitral Moreno, provincia de Rı́o Negro, Argentina. Ameghiniana
43:513–528.
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