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ABSTRACT
Bacteriophages (phages) are the most abundant and diverse biological entity on Earth.
Due to the lack of universal gene markers and database representatives, there about
50–90% of genes of phages are unable to assign functions. This makes it a challenge to
identify phage genomes and annotate functions of phage genes efficiently by homology
search on a large scale, especially for newly phages. Portal (portal protein), TerL (large
terminase subunit protein), and TerS (small terminase subunit protein) are three spe-
cific proteins of Caudovirales phage. Here, we developed a CNN (convolutional neural
network)-based framework, DeephageTP, to identify the three specific proteins from
metagenomic data. The framework takes one-hot encoding data of original protein
sequences as the input and automatically extracts predictive features in the process
of modeling. To overcome the false positive problem, a cutoff-loss-value strategy is
introduced based on the distributions of the loss values of protein sequences within
the same category. The proposed model with a set of cutoff-loss-values demonstrates
high performance in terms of Precision in identifying TerL and Portal sequences (94%
and 90%, respectively) from the mimic metagenomic dataset. Finally, we tested the
efficacy of the framework using three real metagenomic datasets, and the results shown
that compared to the conventional alignment-basedmethods, our proposed framework
had a particular advantage in identifying the novel phage-specific protein sequences of
portal and TerL with remote homology to their counterparts in the training datasets. In
summary, our study for the first time develops a CNN-based framework for identifying
the phage-specific protein sequences with high complexity and low conservation, and
this framework will help us find novel phages in metagenomic sequencing data. The
DeephageTP is available at https://github.com/chuym726/DeephageTP.
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INTRODUCTION
Bacteriophages (phages) are the most abundant and diverse biological entity on the
Earth. With the advent of the high-throughput sequencing technologies, amount of
microbial metagenomic sequencing data is growing exponentially. Phages are widely
present in various environments and thus the phage-originated sequences are present in
the metagenomic sequencing data. Particularly, it is estimated that around 17% sequences
of the human gut metagenomes are derived from phage genomes (Ogilvie et al., 2013).
However, it remains a challenge to identify phage sequences from the metagenomic data
due to the following aspects: (a) the phage genomes are highly diverse and lack universal
marker genes akin to 16S rRNA genes of bacteria or archaea (Edwards & Rohwer, 2005);
(b) most bacterial viruses remain uncultured as their hosts are unknown (Pedulla et al.,
2003). These limit our investigations into a complex microbial community to understand
the roles of phages in complex ecosystems.

To identify the phage sequences from the complex microbial sequencing data, one
common practice is to examine the phage-specific genes encoded by the metagenomic
sequences. Thus, if a given predicted protein sequence shows significantly high similarity
with the specific proteins of known phages, the metagenomic sequence encoding this
protein could be selected as the candidate of phage sequence. In this regard, several
alignment-based methods have been developed and extensively utilized, such as BLAST,
PSI-BLAST (Altschul et al., 1997), HMM (Hidden Markov Models) (Finn, Clements &
Eddy, 2011), etc. Nonetheless, these alignment-based methods mainly rely on reference
sequences of phage, usually leading to the failure of detecting the novel phages that encode
proteins with poor similarity to those of the reference phages.

Recently, many alignment-free approaches have been developed for identifying and
annotating the proteins. Specifically, they typically convert each sequence into a feature
vector, and then, the computational prediction of the sequence is implemented based on
the corresponding feature vector. For instance, several machine learning-based methods
(Seguritan et al., 2012; Feng et al., 2013; Ding et al., 2014; Zhang et al., 2015; Galiez et al.,
2016;Manavalan, Shin & Lee, 2018; Pan et al., 2018; Tan et al., 2018) utilize the amino acid
frequency as the main predictive features of the sequences to identify phage virion proteins,
including VIRALpro (Galiez et al., 2016), PVP-SVM (Manavalan, Shin & Lee, 2018), and
iVIREONS (Seguritan et al., 2012). One of the main problems of these methods is that, the
number of the possible combinations of amino acids (i.e., 20k , k is the length of amino
acid sequence) is extremely high. This makes it difficult for the dimension of the feature
vector to tolerate the increase in the value of k. Therefore, these methods usually set the
value of k to be less than four. This, in turn, will lead to the loss of the information, and
thus, the prediction performance of the methods could be significantly impaired. Among
alignment-freemethods, some deep-learning basedmodels show a promising performance,
such as DeepFam (Seo et al., 2018), DEEPre (Li et al., 2018), mlDEEPre (Zou et al., 2019),
DeepFunc (Zhang et al., 2019), and DeepGo (Kulmanov, Khan & Hoehndorf, 2018). Most
recently, DeepCapTail (Abid & Zhang, 2018) has been proposed for predicting capsid and
tail proteins of the phage using deep neural network. It suffers from the same limitation of
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utilizing the amino acid frequency as the predictive features of the sequences. Moreover, it
has not been applied to the real metagenomic dataset for examining the actual effect.

To overcome these limitations, in this study, we developed a framework DeephageTP
(Deep learning-based phage Terminase and Portal proteins identification) for identifying
three specific proteins of Caudovirales phages, i.e., TerL (large terminase subunit), Portal,
and TerS (small terminase subunit). These three proteins are the key components of the
molecular machine of Caudovirales phage (i.e., portal (Portal protein), motor (terminase
large subunit protein, TerL) and regulator (terminase small subunit protein, TerS)) and
this machine plays a crucial role in packaging the phage genome into the phage head
capsid. The proposed framework was applied on three real metagenomic datasets to assess
its efficacy. Our proposed framework provides the potential opportunity to recognize the
new phage at a large scale from metagenomic datasets.

MATERIALS & METHODS
Datasets
The collection of the phage protein sequences is obtained from the database: UniportKB
(http://www.uniprot.org). Because the proteins including portal, TerL, and TerS, are crucial
to the phage (Gao, Zhang & Rao, 2016; Hilbert et al., 2017), thus genomes (or genome
fragments) encoding these three functional genes frommetagenomic data can be identified
as the candidates of Caudviridae phages. Without loss of generality, we focus on these
proteins in this study. The steps of constructing the training dataset are described as
follows (Fig. 1A): (i) according to the taxonomy in the UniProt database, all proteins in
archaea, bacteria, and viruses were obtained from the database; (ii) the protein sequences
were searched by the keywords (i.e., portal, large terminase subunit, and small terminase
subunit), and the noise sequences with the uncertain keywords (e.g., hypothetical, possible,
like, predicted) were removed to ensure that the selected protein sequences in the three
categories are veracious; (iii) the remaining sequences without the keywords of interest
(portal, large terminase subunit and, small terminase subunit) were labeled as the ‘others’
category. The TerL, TerS and portal proteins were selected from UniportKB ‘TrEMBL’
dataset; and the ‘other’ proteins were from UniportKB ‘Swiss-Prot’ dataset with priority
deleted TerL, TerS and portal sequences. However, the size of the ‘others’ category is
more than 75 times larger than that of the three categories. To relieve the class-imbalance
problem brought by this situation, we randomly selected 20,000 protein sequences from the
remaining sequences and labeled as the ‘‘others’’ category; (iv) to further guarantee that the
sequences from the database with the three categories are veracious, we calculated length
distribution of these sequences (see Fig. S1), then manually checked the sequences with the
abnormal length (<5% and >95%) using Blastp (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
against NCBI NR database, and the sequences that do not hit to the targeted references in
the NCBI NR database were filtered out (almost all the sequences with abnormal length)
and labeled as the ‘others’ category. The training dataset is summarized in Table 1.

To test the proposed model, we also constructed a mock metagenomic dataset by
collecting the protein sequences from another database: UniRef100 (https://www.uniprot.
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Figure 1 Overview of the framework DeephageTP. (A) The workflow of the proposed DeephageTP
framework. The CNN-based model was firstly implemented on the training dataset. Then, the trained
model was applied on the mock metagenomic dataset and the cutoff loss value of each category of interest
was determined. Finally, the trained model was applied to the real metagenomic datasets for validating the
performance of our framework. (B) One-hot encoding for protein (continued on next page. . . )

Full-size DOI: 10.7717/peerj.13404/fig-1
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Figure 1 (. . .continued)
sequence. Each amino acid is represented as a one-hot vector. (C) The process of the CNN-based model.
Firstly, the amino acid sequence was encoded to ‘one-hot’ and then input into the ‘Input layer’. Then
‘maximum pooling’ was used to extract the features of protein sequence. Finally, the ‘fully connected
layer’ was connected with the ‘output layer’, and the final classification results are output.

Table 1 The numbers of proteins of each category in the training dataset. A total of 80% train-set and
20% test-set are used for feasibility analysis, and the training dataset (including train-set and test-set) are
used for training the proposed model.

Protein categories Training dataset

80% train-set 20% test-set

TerL 2093 524
Portal 2607 653
TerS 1202 301
others 16163 4042

org/uniref/). The collection process for the mock metagenomic dataset is similar to that
of the training dataset. It should be noted that the two databases (i.e., UNIPROTKB and
UniRef100) overlap in some sequences, and thus we manually deleted the sequences that
exist in the training dataset from the mock dataset. To this end, the mock dataset can be
regarded as an independent dataset from the training dataset. In particular, to investigate
the prediction performance of the model on the test data with different size, we generated
seven groups of data (i.e., Group one to Group seven) from the original mock dataset (i.e.,
Group eight), where except for the three category proteins, the samples from the ‘‘others’’
category were randomly selected from the Group eight. Here, since we mainly focus on the
impact of different data sizes on the performance of the proposed model in identifying the
three category proteins, the samples of the three category proteins were kept the same for
eight groups of the data. Table 2 describes the details of the datasets used for test analysis.

To assess the performance of the proposed model on the real metagenomic dataset, we
collected the virome dataset from thewastewater (accession number inNCBI: SRR5192446)
and two virome datasets from the human gut (accession number in NCBI: SRR7892426
and ERR2868024) (Moreno-Gallego et al., 2019; Yinda et al., 2019). As the data of these
datasets are sequencing reads, we first assembled them using SPAdes 3.11.1 (Bankevich
et al., 2012) and applied Prodigal (Hyatt et al., 2010) for gene calling with the default
parameters. As a result, we obtained 366,146 (SRR5192446), 110,129 (SRR7892426), and
27,157 (ERR2868024) protein sequences for these datasets, respectively.

Protein sequence encoding
To tackle the protein sequence data with the proposed model, we firstly formulated an
image-like scheme to encode each protein sequence (Fig. 1B). Specifically, each of the 20
amino acids is encoded as a one-hot vector of 20 dimensions (i.e., one-dimension value is
one and others are 0, shown in Fig. 1B) (LeCun, Bengio & Hinton, 2015). Based on this, a
protein sequence with L length (i.e., the number of amino acid residues) could be encoded
as a L×20 matrix X.
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Table 2 The numbers of proteins of each category in the mimic metagenomic dataset and the seven
testing groups.

Testing datasets TerL Portal TerS Others

Group 1 14437 41398 5918 30000
Group 2 14437 41398 5918 50000
Group 3 14437 41398 5918 70000
Group 4 14437 41398 5918 90000
Group 5 14437 41398 5918 110000
Group 6 14437 41398 5918 130000
Group 7 14437 41398 5918 150000
Group 8 14437 41398 5918 476685

As the lengths of the protein sequences typically varied, and the input data are required
to be the same size for the model, we fixed len_w (the maximum length of the sequence for
modeling) equal to 900 according to the length distribution of the three category proteins
due to that almost all lengths of these proteins are less than 900 (Fig. S1). In addition, the
minimum loss value and maximum accuracy were obtained with five-fold cross validation
on the training dataset with 900 amino acids (Table S1). Specifically, if the length of a given
sequence is longer than len_w, the excess part of the sequence would be abandoned; else,
the insufficient part of the sequence would be filled with multiple ‘-’. Each ‘-’ is encoded
as a zero vector of 20 dimensions. Therefore, each protein sequence could be encoded as a
len_w×20 matrix. These matrixes can be used as the input data for the proposed model.

The CNN-based deep learning model
The framework DeephageTP is developed based on CNN. The CNN comprises a
convolutional layer, a max-pooling layer, two fully connected layers as well as the input and
output layers. The dropout technique (Srivastava et al., 2014), which avoids overfitting via
randomly removing the units during training at a fixed rate (i.e., 0.1 in our experiments),
is applied on the pooling layer and the first fully connected layer in the model. One of the
most common activation function ReLu (LeCun, Bengio & Hinton, 2015) is used on the
convolutional layer and the first connected layer, while the output layer utilizes SoftMax
(Zang & Zhang, 2011) as the activation function to compute the probability of the protein
sequence against the category. The CNN model is shown in Fig. 1C.

It is worth noting that there are many hyperparameters in the model such as the number
of the convolution kernels, the number of units in fully connected layers, the dropout
rate, the learning rate, etc. For which, it is difficult to obtain the optimal values of these
parameters. To this end, for most of these parameters, in the process of modeling, we used
the default settings that arewidely applied in practice (LeCun, Bengio & Hinton, 2015), while
the remaining parameters were tuned according to the averaged prediction performance
of the proposed model on the training dataset using the five-fold cross-validation. The
structure of the CNN was determined by examining four main hyper-parameters (Zeng et
al., 2016), including the length size of protein sequences, kernel size of the filter, number
of filters for each kernel size, and the number of neurons in fully connected layer (Seo et
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al., 2018). These parameters were selected according to our experiences and the references
(Savojardo et al., 2018; Arango-Argoty et al., 2018). 20 proteinogenic amino acids were
classifid into seven groups (seven-letter reduced sequence alphabets) according to their
dipole moments and side-chain volume: {A,G,V}, {I,L,F,P}, {Y,M,T,S}, {H,N,Q,W}, {R,K},
{D,E} and {C}(Suresh et al., 2015). The kernel size of the filter was set to 7× 1 in the light
of the previous studies (Suresh et al., 2015; Yi et al., 2019); we examined the values of 800,
900, and 1,000 for the length of sequences based on the distribution of the length; we also
examined the values of 30, 50, 70 and 90 for the number of filters, as well as the values of
50, 100, 150 and 200 for the number of neurons in the fully connected layer. Specifically,
we evaluated the performance of the model with different values of the parameters using
five-fold cross-validation on the training dataset, and the results are shown in Tables S1–S3.
Finally, we set the length size to 900, the number of filters to 50, and the number of the
neurons in the fully connected layer to 100.

The architecture of the DeephageTP framework is implemented using the Python
Keras package (https://keras.io), a widely used, highly modular deep learning library. The
DeephageTP is available at https://github.com/chuym726/DeephageTP.

Evaluation metrics
To evaluate the performance of the proposedmodel, four widely usedmetrics, i.e., Accuracy,
Precision, Recall, and F1-score were applied in this study and defined as:

Accuracy =
TP+TN

TP+FP+TN +FN
,

Precision=
TP

TP+FP
,

Recall =
TP

TP+FN
,

F1− score=
2∗Precision∗Recall
Precision+Recall

, (1)

where TP denotes true positives (i.e., a protein sequence from one of the categories is
predicted correctly as the category), TN (true negatives, a protein sequence comes from
other categories of interest is predicted correctly as the other category), FN (false negatives,
a protein sequence comes from the category of interest is wrongly predicted as the other
category), and FP (false positives, a protein sequence comes from a different category
is wrongly predicted as the category of interest). Accuracy reflects the overall prediction
quality of the model. Precision focuses on measuring how accurate the categories of the
phage protein sequences predicted by the model are, while Recall measures the proportions
of the phage protein sequences that are correctly identified by the model. And F1-score is
the harmonic mean of Precision and Recall.
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Loss value computation
To determine the appropriate cutoff loss values for the three protein categories, we
considered the loss value of each sequence. The loss value is calculated according to the
loss function used in the proposed model. The loss value is a score criterion that reflects
the difference between the real category of the sequence and the predicted category of
the sequence. The smaller the loss value is, the smaller the difference is. Specifically, the
widely applied cross-entropy function (LeCun, Bengio & Hinton, 2015) was employed in
this study and defined as follows:

L=−
K−1∑
k=0

yk logpk (2)

where yk is the value of the real label of the sequence on the k-th dimension, and pk is
the corresponding value on the k-th dimension that is predicted by the model. For most
deep learning models, the category label is typically encoded as a one-hot vector (i.e.,
one-dimension value is one and others are 0) with k dimensions, and the predicted value
for each dimension is calculated via the SoftMax function.

Additionally, in general, the averaged loss value for all sequences is used for evaluating
the performance that the model fits the dataset. However, in this study, we utilized the
loss value for each sequence to determine the cutoff values. The main reason is that, if a
sequence is predicted as one category by the trained model with a very small loss value,
it means that the sequence is much the same as the sequences within the category, and
the smaller the value is, the more likely it would be. On the other hand, if the loss value is
relatively large, although the sequence is predicted as the category by the model, it would
likely be false positives. To this end, according to the distribution of the loss values with
the same category, the bounds that distinguishing TP and FP will be determined.

DeephageTP application on real metagenomic datasets
To assess the performance of the proposed framework on real metagenomic data in
identifying phage sequences, we applied the framework on the three real metagenomic
data. Specifically, the proteins of the three categories predicted by the model were selected
and then filtered with the cutoff loss values determined above. Finally, wemanually checked
the DeephageTP-identified protein sequences using DIAMOND (Blastp model) (e-value:
1e−10) against NCBI NR database. According to the results, the identified sequences can
be divided into four groups: (a) true-positive: the sequence has Blastp hits in the NCBI
NR database within the same category as DeephageTP predicted (as long as one hit in the
result list of Blastp against NCBI NR database is annotated to the category of interest);
(b) phage-related: at least one of the protein sequences carried by the contig where the
identified protein gene is located has hit to other phage-related proteins (as long as one is
annotated to phage-related protein in the result list of Blastp); (c) Unknown, the sequences
don’t have hits or the hits are annotated as hypothetical protein; (d) Other function, the
sequences have hits annotated as other functional proteins that likely are derived from
bacterial genomes (none of the hits in the result list of Blastp are annotated as phage-related
proteins).
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Alignment-based methods for comparison
Two major alignment-based methods, Hidden Markov Model (HMM) (Eddy, 2011) and
Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1997) were used to annotate
the protein sequences and the results were compared with those of our method in the
experiments. Specifically, multiple sequence alignments were generated firstly using
MUSCLE v3.8 (Edgar, 2004) for three phage-specific proteins in the training dataset. Then,
the HMM algorithm was constructed using HMMER v3.1 (http://hmmer.org/). For each
sequence alignment, we built HMM of each protein category via hmmbuild, where the
models were compressed into a single database indexed with hmmpress. For each test
protein sequence, hmmscan scored the significance that the sequence matched to the
categories of interest with E-value, and the category with the most probable (i.e., the one
with the smallest E-value) was chosen as the output. In some cases, the E-value could
not be yielded from the constructed models, where the sequences were discarded in our
experiment. The two software (i.e.,MUSCLE v3.8 and HMMER v3.1) were set with default
parameters for implementation. For the BLAST method, we used the software DIAMOND
(Buchfink, Xie & Huson, 2015) to find the most similar sequences in the database (created
with the proteins in our training dataset) for a test protein sequence and assign its category
to the test sequences. The cutoff e-value of the DIAMOND program was set 1e−10 in our
experiments.

RESULTS
Prediction performance of the CNN-based model on the training
dataset
In training dataset, 80% of sequences of each category were randomly selected for training
the proposed model, while the remaining 20% were used for testing. The results are shown
in Fig. 2A. As it can be observed that, in general, the proposed model show relatively
high prediction performance on the dataset; over 97% accuracy can be achieved for the
three protein categories (Portal: 98.8%, TerL: 98.6%, TerS: 97.8%), respectively. The
best prediction performance was obtained on Portal protein in terms of Precision, Recall,
and F1-score (93.88%, 96.94%, and 95.33%, respectively). The relatively high prediction
performance achieved for TerL (Precision: 93.75%, Recall : 91.60%, F1-score: 92.66%,
respectively). The prediction of TerS generated the lowest performance (Precision: 75.28%,
Recall : 91.03%, F1-score: 82.41%, respectively), especially for Precision, suggesting that
nearly a quarter of TerS sequences could not be correctly identified by the model.

Prediction performance of CNN-based model on mock metagenomic
dataset
To further assess the proposed model, we prepared an independent mock metagenomic
dataset from another database (UniRef100 database). We applied the trained model on
mock dataset (Group eight) (Table 2). As shown in Fig. 2B, we found that, except for
Accuracy, the prediction performances in terms of other metrics significantly became worse
(TerL71.1%, Portal 70.5%, TerS 19.1% (Precision); TerL 82.3%, Portal 73.0%, TerS 73.9%
(Recall); TerL 76.3%, Portal 71.7%, TerS 30.3% (F1-score)) for the three proteins when
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Figure 2 Prediction performance of the CNN-based model. (A) Performance of the model on the training data. The model was trained on the
train-set (80% training data), and the prediction performance was evaluated on the test-set (20% training data) with four metrics (i.e., Accuracy,
Precision, Re call and, F1-score) for the three phage proteins, respectively. (B) Comparison of the prediction performance of the model on the test
set of the training dataset and the mock metagenomic dataset. The prediction performances for two datasets (purple: the test set of the training
dataset, green: the mock dataset) were evaluated with four metrics (i.e., Accuracy, Precision, Re call and, F1-score) for the three phage proteins, re-
spectively.

Full-size DOI: 10.7717/peerj.13404/fig-2

compared with those on the training dataset. This is likely because, in mock dataset, the
number of sequences from the ‘‘others’’ category is much larger than that of sequences
from the category of interest (i.e., class imbalance).

Thus, we further applied the trained model on the seven groups of the data, respectively,
to assess the impact of such class imbalance on the prediction performance of the model in
identifying the three phage-specific protein sequences. The mock dataset was divided into
seven groups with different sizes (Table 2). The results are shown in Fig. 3 and Table S4.
Compared with the results on Group 1, Precision and F1-score values for the three proteins
decreased significantly (by TerL 1.6%–23.2%, Portal 1.5%–26.4%, TerS 7.0%–49.5%
(Precision); TerL 0.7%–11.6%, Portal 0.6%–11.6%, TerS 15.6%–52.4% (F1-score)) with
the dataset size increasing, while the Recall values remain unchanged. This indicates that
the number of true-positive sequences from the categories of interest was not impacted by
the size of the dataset. However, with the testing dataset size increasing (Table 2), more
and more sequences from the ‘‘others’’ category were wrongly predicted as the category
of interest by the model (i.e., the FP value becomes larger). Since the Recall values are the
same for all testing datasets, the F1-score values are only affected by the Precision values
and the trend of the F1-score values are similar to that of the Precision values. Therefore, we
focus on the prediction performance in terms of Precision in the following experiments.
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Figure 3 (A–C) Performances of the model with and without cutoff loss values on the mockmetagenomics dataset. The performance was evalu-
ated in terms of Precision (Precision 1, without cutoff loss values; Precision 2, with cutoff loss values). Seven groups (Group 1-7) with different sizes
were generated from the mock metagenomic dataset.

Full-size DOI: 10.7717/peerj.13404/fig-3

Therefore, we further employed a new strategy to improve the prediction performance
of the model in terms of Precision by introducing the appropriate cutoff loss values for
each category of interest. Specifically, we first calculated the distributions of the loss values
of the sequences correctly identified (i.e., TP) and the sequences wrongly predicted as the
categories of interest (i.e., FP) by the trained model for the three protein categories using
the eight groups of the mock metagenomic dataset, respectively (Table 2); based on this,
the loss value for a given category that may distinguish the TP and FP for most sequences
would be chosen as the corresponding cutoff values. It should be noted that, as mentioned
above, the TP values of the three protein categories are the same in the eight groups of
the mock metagenomic datasets, so the distributions of the corresponding loss values were
shown in Fig. 4. Since the majority of the loss values of TP sequences are relatively low (loss
values (log10, the same below): TerL <−5.2, Portal <−4.2, TerS <−2.9) while those of FP
sequences are relatively high (loss values: TerL >−4.0, Portal >−3.6, TerS >−2.5) for the
three proteins on all groups, thus, the corresponding cutoff values of three phage proteins
for distinguishing TP and FP could be selected with relative ease. Because the distributions
of the loss values for three proteins are different, thus it is essential to set the appropriate
cutoff values for each of them. In this study, we chose the values at the top of the boxplots
of the three TP protein sequences in Fig. 5 (i.e., TerL:−5.2, Portal:−4.2, TerS:−2.9) as the
cutoff values for the three categories, respectively. With these cutoff values, we can observe
most TP sequences (>99%) in the mockmetagenomic dataset (group eight) were identified
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Figure 4 The loss value distributions of TP and FP for the three phage proteins on the mockmetage-
nomic dataset.Group 1-7 datasets were generated from the mock metagenomic dataset (group eight).
The loss value distributions of TP (all are the same for eight groups) and FP were calculated on the eight
groups, respectively, for the three phage proteins. TP: true positive; FP: false positive. g1-g8: Group1-
Group8.

Full-size DOI: 10.7717/peerj.13404/fig-4

Figure 5 Venn diagrams of the prediction results of three methods (i.e.,DeephageTP, Diamond and HMMER) on the metagenomic dataset
(SRR5192446). (A) TerL; (B) Portal; (C) TerS.

Full-size DOI: 10.7717/peerj.13404/fig-5

correctly. A stricter cutoff value could also be selected according to the practical necessity
and the consideration of the balance between false-positive rate and false-negative rate.

With the determined cutoff loss values, we reassessed the prediction performance of the
model on the eight groups of the mock metagenomic dataset. Specifically, the sequences
that originally were predicted as the category of interest but with the loss value larger than
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the corresponding cutoff value would be predicted as the ‘‘others’’ category instead. As
shown in Fig. 3, Table S4 and Table S5, compared with the results obtained without using
the cutoff values, the performance of the new strategy shows remarkable improvements
in terms of Precision (improved by TerL 4.9–22.8%, Portal 2.2–19.3%, TerS 22.2–43.5%)
for the eight groups, although the prediction performance in terms of Recall somewhat
decreases. Moreover, compared to the result of group one, with the increasing sizes of the
groups, the Precision values reduced by TerL 0.3−5.3%, Portal 0.5−9.4%, TerS 1.5–28.1%
for the three proteins, which were much less than those of without using the cutoff
strategy. In particular, the Precision values for TerL and Portal can still reach 94% and 90%
respectively, even on the mock dataset (i.e., Group eight) that is 20 times larger than the
training dataset. This result demonstrates that, by introducing the cutoff values, the effect
of the excessive size of the testing data would be reduced to a relatively small degree.

It worth noting that, in all these experiments, the model showed much worse prediction
performance in identifying TerS sequences than the other two proteins (Fig. 3, Tables
S4, S5), although the introduction of cutoff loss value can significantly improve the
performance of the model in terms of Precision (21–42%). This is likely because the
number of TerS used for training is much less than those of the other two proteins.

Application of framework DeephageTP on real metagenomic datasets
We applied the framework on the three real metagenomic sequencing datasets with the
corresponding cutoff loss values (TerL: −5.2, Portal: −4.2, TerS: −2.9) to identify the
phage-derived sequences. Finally, 1,185 out of 366,146 protein sequences (TerL: 147,
Portal: 341, TerS: 697) were identified from the dataset (SRR5192446) by our method, 42
out of 27,157 protein sequences (TerL: nine, Portal: 15, TerS: 18) from ERR2868024 and
127 out of 110,129 protein sequences (TerL: 16, Portal: 23, TerS: 88) from SRR7892426.
The dataset (SRR5192446) has a higher number of identified sequences of interest than
the other two. This result is in line with those of two alignment-based methods (i.e.,
DIAMOND and HMMER). It can be observed that the total numbers of the three phage
proteins predicted from the sample (SRR5192446) by the two alignment-based methods
are 4,200 (DIAMOND) and 357 (HMMER) respectively, much higher than those from
the other two datasets (ERR2868024, and SRR7892426). This is likely because the sample
(SRR5192446) was collected from the environment of waste-water and the majority of the
sequences in the training dataset were collected using environmental microbes. Among
the protein sequences identified by the three methods from the dataset of waste-water
(SRR5192446), a few sequences (TerL 85, Portal 105, TerS 13) are shared by DeephageTP,
and DIAMOND, some (TerL 9, Portal 3, TerS 0) shared by DeephageTP and HMMER, but
very few can be identified by the three methods simultaneously (Fig. 5), suggesting that
the phage-specific protein sequences identified by DeephageTP are different from those of
alignment-base methods, and these protein sequences are likely derived from novel phage
genomes in the metagenomes. This case is similar to those of the other two datasets from
human gut samples (Fig. S2).

To further confirm the sequences identified by DeephageTP, we manually checked the
protein sequences using Blastp (E-value:1e−10) against the NCBI nr database. As shown in

Chu et al. (2022), PeerJ, DOI 10.7717/peerj.13404 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.13404#supp-3
http://dx.doi.org/10.7717/peerj.13404#supp-3
http://dx.doi.org/10.7717/peerj.13404#supp-3
http://dx.doi.org/10.7717/peerj.13404#supp-3
http://dx.doi.org/10.7717/peerj.13404#supp-3
https://www.ncbi.nlm.nih.gov/sra/SRR5192446
https://www.ncbi.nlm.nih.gov/sra/SRR7892426
https://www.ncbi.nlm.nih.gov/sra/SRR5192446
https://www.ncbi.nlm.nih.gov/sra/SRR5192446
https://www.ncbi.nlm.nih.gov/sra/ERR2868024
https://www.ncbi.nlm.nih.gov/sra/SRR7892426
https://www.ncbi.nlm.nih.gov/sra/SRR5192446
https://www.ncbi.nlm.nih.gov/sra/SRR5192446
http://dx.doi.org/10.7717/peerj.13404#supp-2
http://dx.doi.org/10.7717/peerj.13404


Fig. 6, the results demonstrate that, again, few DeephageTP-identified TerS sequences were
verified in the NCBI nr database as true positive (SRR5192446: 22 (3.16%), ERR2868024: 1
(5.56%), SRR7892426: 4 (4.55%)). However, in regard to TerL and Portal, a large fraction of
the protein sequences were confirmed as the true positive (SRR5192446: TerL 105 (71.4%),
Portal 172 (50.4%); ERR2868024: TerL 5 (55.6%), Portal 7 (46.7%); SRR7892426: TerL 12
(75%), Portal 16 (69.6%)).We further examined the whole contigs that carry the remaining
identified protein sequences. According to the hits of each protein carried by the contigs,
only a small number of identified proteins belong to other functional proteins likely
encoded by bacterial genomes (SRR5192446: TerL 6 (4.1%), Portal 7 (2.1%); ERR2868024:
TerL 0 (0%), Portal 1 (6.7%); SRR7892426: TerL 0 (0%), Portal 0 (0%)). Note that, a
considerable proportion of the identified proteins are encoded by phage-derived contigs
(SRR5192446: TerL 20 (13.6%) Portal 103 (30.2%) TerS 243 (34.9%), ERR2868024: TerL
3 (33.3%) Portal 6 (40%) TerS 8 (44.4%), SRR7892426: TerL 4 (25%) Portal 5 (21.7%)
TerS 31 (35.2%)) and quite a part of the predicted proteins belong to unknown proteins
(SRR5192446: TerL 16 (10.9%), Portal 59 (17.3%) TerS 351 (50.4%), ERR2868024: TerL
1 (11.1%) Portal 1 (6.7%) TerS 0 (0%), SRR7892426: TerL 0 (18.75%) Portal 2 (8.7%)
TerS 22 (25%)). Most of these proteins have low identities (<30%) (Table S6) to the hits
in the NCBI nr database, suggesting some of them are likely novel TerL encoded by novel
phages, which needs further investigations. Among the protein sequences identified by
DeephageTP and confirmed as the true positive, a number of proteins were not determined
by the other two alignment-based methods (Table S6). For example, 10.2% (15/147) TerLs
and 37.8% (65/172) Portals were only detected by DeephageTP in sample SRR5192446.
This indicates that DeephageTP is capable of recognizing novel phage genes of interest.
These novel genes are great divergent from their reference ones, and thus, may be ignored
by alignment-based methods.

DISCUSSION
Bacteriophages are present in all kinds of the microbial communities. With conventional
sequence-alignment-based methods, the identification of phage sequences from the
metagenomic sequencing data remains a challenge due to the great diversity of the phage
and the lack of conserved marker genes among all phages. In this paper, we present a
CNN-based deep learning framework, DeephageTP, an alignment-free method to identify
three tailed-phage-specific proteins, i.e., TerL, Portal, and TerS. In doing so, we can
further recognize phage-derived sequences encoding the three proteins from metagenome
sequencing data.

We employed the multiclass classification CNN model in this study. In general, the
identification of the three proteins can be deemed as three binary classification problems
(one-vs-all scheme) or a multiclass classification problem (Sáez et al., 2015). The former
divides the original data into two-class subsets and learns a different binary model for each
new subset. Itmay bringmore cost of calculation than the latter as it learnsmultiple different
models. We also compared the prediction performances of these two strategies using the
training dataset, and the results are shown in Table 3. It can be seen that the two strategies
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Figure 6 Verification of the three phage proteins identified by DeephageTP from the metagenome
datasets. (Sample1: SRR5192446, Sample2: SRR7892426 and Sample3: ERR2868024). (A) true positive:
the sequence has Blastp hits in the NCBI nr database within the same category as DeephageTP predicted
(as long as one hit in the result list of Blastp against NCBI nr database is annotated to the category of inter-
est); (B) phage-related: at least one of the protein sequences carried by the contig where the identified pro-
tein gene is located has hits to other phage-related proteins (as long as one is annotated to phage-related
protein in the result list of Blastp); (C) Unknown, the sequences don’t have any hits or the hits are anno-
tated as hypothetical protein; (D) Other functional, the sequences have hits annotated as other functional
proteins that likely are derived from bacterial genomes (none of the hits in the result list of Blastp are an-
notated as phage-related proteins).

Full-size DOI: 10.7717/peerj.13404/fig-6

have similar prediction performance to a large extent. Specifically, for TerL, the binary
models performed a bit better than the multiclass model (Accuracy : 98.82% vs 98.58%;
Precision: 95.45% vs 93.75%; Recall : 91.98% vs 91.60%; F1-score: 93.68% vs 92.67%). For
Portal, the binary models achieved better performance in terms of Accuracy, Precision
and F1-score (Accuracy : 99.24% vs 98.84%; Precision: 99.19% vs 93.78%; F1-score: 96.7%
vs 95.33%). Meanwhile, the multiclass model obtained better prediction performance in
terms of Accuracy, Precision and F1-score (Accuracy : 97.83% vs 96.96%; Precision: 75.28%
vs 65.80%; F1-score: 82.41% vs 76.73%) for TerS. Considering the cost of computation, we
used the multiclass classification model rather than the binary classification models in this
study.

In a microbial community, viruses generally make up a relatively small fraction of
the genome compared to bacteria and fungi. This class imbalance problem can affect
the performance of our framework. We applied the trained model on an independent
mock metagenomic dataset (20 times larger than the training dataset) and found that the
prediction performance in terms of Precision, Recal l, and F1-score decreased remarkably.
In the mock dataset, many sequences from the ‘‘others’’ category are different from those
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Table 3 Comparison of prediction performances of multiclass classification model and binary classifi-
cation model on the test-set of the training datasest.

Proteins Multiclass classification Binary classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

TerL 0.9858 0.9375 0.916 0.9267 0.9882 0.9545 0.9198 0.9368
Portal 0.9884 0.9378 0.9694 0.9533 0.9924 0.9919 0.9433 0.967
TerS 0.9783 0.7528 0.9103 0.8241 0.9696 0.658 0.9203 0.7673

in the training dataset, and these sequences are wrongly identified as the category of interest
by the trained model (i.e., false-positive problem). This leads to the reduction of Precision.
Meanwhile, a part of sequences belong to the category of interest are dissimilar to those in
the training dataset; thus, they are wrongly predicted as the other category by the trained
model (i.e., false-negative problem), resulting in the reduction of Recall. The descent
degree of Recall is less than that of Precision, especially for TerS. The reduction of F1-score
is inevitable as it is the harmonic mean of Precision and Recall.

To further examine the impact of the data size on the prediction performance of the
model, we conducted the experiments on the seven additional groups from the mock
metagenomic dataset with different sizes. An interesting finding was that, for the eight
groups, the prediction performance in terms ofRecall was not affected by the data size, while
the prediction performance in terms of Precision decrease significantly with the increase
of the data size. Here, we presented a new way to improve the prediction performance of
the proposed model in terms of Precision by introducing the cutoff loss values that were
determined according to the distribution of the loss values with the category of interest.
This strategy can significantly improve the prediction performance of the model in terms of
Precision for the categories of interest. The larger the size of the testing dataset is, the more
significant the improvement of the performance will be. On the other hand, the prediction
performance in terms of Recall was reduced unavoidably with the strategy compared to the
results without the strategy, which means the false-negative rate was raised. Even so, our
strategy provides a certain basis for setting a cutoff value of each category that will balance
the FP rate and the FN rate.

Our framework demonstrates a remarkable capability to identify new phage protein
sequences that have extremely low identities with the known sequences of the training
data. In the testing analysis, the framework identified the majority of the three protein
sequences (Recall, 82.3% TerL, 73.0% Portal and 74.0% TerS, Fig. 3, Table S4) from
the mock metagenomic dataset where all the three protein sequences are different from
those of the training dataset. Moreover, in the application of the framework on the real
metagenomic datasets, the capability of the framework in identifying novel phages also
can be observed that our method identified many phage protein sequences that were not
detectable by the two alignment-based methods. In this study, we verified the novelty of
the DeephageTP-identified sequences by re-annotating them in the NCBI nr database.
Experiments including gene express and Transmission Electron Microscope, which are a
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gold standard for identifying phage particles, are required in further studies (Seguritan et
al., 2012).

Nonetheless, we also observed some limitations of the proposed framework in the
application. First, only a small number of the phage sequences present in the metagenomic
data can be identified by the proposed framework. For example, in sample SRR5192446,
147 (106 true-positives) TerL sequences and 341 (172 true-positives) Portal sequences were
identified, as compared with 2,581 and 1,295 by the software DIAMOND, respectively.
Similar cases are also observed in the other two human gut metagenomes (Fig. S2). Also,
the framework failed to identify the crAss-like phages which are known widely distributed
in human gut samples (Table S6) (Guerin et al., 2018). Second, our trained model likely
prefers to identify the phages of the environmental microbes instead of those of the
human gut microbes. Around 0.029% (106/366,146) of the sequences were identified as
true-positive TerL sequences by the framework from the water sample, while only 0.018%
(5/27,157) and 0.011% (12/110,129) from the other two human gut samples, respectively.
This is likely because the phage sequences recruited by the training dataset are mainly
from environmental samples, and in the NCBI nr database, more than 98% of phages are
specific to infect the environmental microbes. Third, the performance of the proposed
framework in identifying TerS sequences from metagenomic datasets is relatively low in
contrast to TerL and Portal sequences. In general, in a given metagenome, the number of
TerS is equal to that of TerL, but in all cases in our study, the number of TerSs identified
by the framework is around one-fifth of that of TerL. All above limitations of the proposed
framework can be attributed to the extremely small number (TerL 2,617, Portal 3,260,
TerS 1,503) of the known phage sequences included in the training dataset, compared
to the number of phages present in the environmental samples and human gut samples.
Therefore, the information extracted from the limited number of the known phages using
the framework is insufficient to cover all phage sequences in a given metagenomic sample.
Particularly, the low performance of the framework in identifying TerS sequences might
be because the number of TerS sequences used for training is much less and the length
of the sequences is shorter than those of the other two proteins, and the information
provided by the TerS sequences in the training dataset would be insufficient to identify the
different TerS sequences in the metagenomic datasets. The shorter the sequence is, the less
information is provided to the framework. Thus, to optimize our proposed framework in
further study, we will select the appropriate marker sequences with a longer length and
include more sequences into the training dataset.

CONCLUSIONS
Here, we devised and optimized a CNN-based deep learning framework for identifying
the three phage proteins from complex metagenomic sequencing datasets. Compared to
the alignment-based methods, this alternative method has complementary advantages, for
example, to identify the novel protein sequences with remote homology to their known
counterparts. Additionally, our method could also be applied for identifying the other
protein sequences with the characteristic of high complexity and low conservation, where
it would be another interesting way to explore.
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