Two continents and two names for a Neotropical colletid bee species (Hymenoptera: Colletidae: Neopasiphaeinae): Hoplocolletes ventralis (Friese, 1924)

Eduardo A B Almeida, Fábio B Ouinteiro

Neopasiphaeinae bees (Apoidea: Colletidae) are well known for their Amphinotic distribution in the Australian and Neotropical regions. Affinities between colletid taxa in Australia and South America have been speculated for decades, and have been confirmed by recent phylogenetic hypotheses that indicate a biogeographic scenario compatible with a trans-Antarctic biotic connection during the Paleogene. Despite this proximity, no species occurs on both sides of the Pacific Ocean, but the Neotropical species *Hoplocolletes ventralis* (Friese, 1924), which was described as an Australian taxon due to an error in the specimen labels. This mistake was recognized by C.D.Michener 50 years ago. We herein report that the same labeling problem also happened with *Dasycolletes chalceus* Friese, 1924, which remained as a tentatively placed species in the Australian genus *Leioproctus* until now. Moreover, *Dasycolletes chalceus* is interpreted as a synonym of *Dasycolletes ventralis*. We also provide a revised diagnosis for *Hoplocolletes*, describe the male of *H. ventralis* in detail for the first time, including a comparative study of its genitalia and associated sterna.

1	Two continents and two names for a Neotropical colletid bee species (Hymenoptera:
2	Colletidae: Neopasiphaeinae): Hoplocolletes ventralis (Friese, 1924)
3	
4	EDUARDO A. B. ALMEIDA* & FÁBIO B. QUINTEIRO
5	Laboratório de Biologia Comparada e Abelhas (LBCA) - Departamento de Biologia, Faculdade
6	de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo.
7	14040-600. Ribeirão Preto, SP. Brazil
8	*Corresponding author. E-mail: eduardo@ffclrp.usp.br
9	
10	Abstract
11	Neopasiphaeinae bees (Apoidea: Colletidae) are well known for their Amphinotic distribution in
12	the Australian and Neotropical regions. Affinities between colletid taxa in Australia and South
13	America have been speculated for decades, and have been confirmed by recent phylogenetic
14	hypotheses that indicate a biogeographic scenario compatible with a trans-Antarctic biotic
15	connection during the Paleogene. Despite this proximity, no species occurs on both sides of the
16	Pacific Ocean, but the Neotropical species Hoplocolletes ventralis (Friese, 1924), which was
17	described as an Australian taxon due to an error in the specimen labels. This mistake was
18	recognized by C.D.Michener 50 years ago. We herein report that the same labeling problem also
19	happened with Dasycolletes chalceus Friese, 1924, which remained as a tentatively placed
20	species in the Australian genus Leioproctus until now. Moreover, Dasycolletes chalceus is
21	interpreted as a synonym of Dasycolletes ventralis. We also provide a revised diagnosis for
22	Hoplocolletes, describe the male of H. ventralis in detail for the first time, including a
23	comparative study of its genitalia and associated sterna.

24 25 **Keywords**: Apoidea, Australia, biogeography, Brazil, systematics, taxonomy 26 27 28 Introduction 29 Affinities between taxa of Colletidae distributed in Australia and South America have been 30 speculated for decades (Michener, 1965, 1989), and have been confirmed by recent phylogenetic 31 hypotheses that indicate a biogeographic scenario compatible with a trans-Antarctic biotic 32 connection during the Paleogene (Almeida et al., 2012). Dasycolletes ventralis Friese, 1924 was 33 described as an Australian colletid species based on a single female specimen labeled as having 34 been collected in Sydney (Australia). The species actually is endemic to Brazil, and there is no 35 species occurring in Australia that could be confused with it. The confusion certainly results 36 from an error in the label, as concluded by Michener (1965: p.41), an interpretation followed by 37 subsequent authors (e.g., Moure, Graf & Urban, 2007; Rasmussen & Ascher, 2008). After the 38 species description, it was moved to the genus *Paracolletes* by Cockerell (1929), and later placed 39 in Leioproctus (Hoplocolletes), created by Michener (1965) to accommodate it considering its 40 clear affinities to other taxa classified as *Leioproctus*, but also recognizing its uniqueness (see 41 also Michen 1989, 2007). *Hoplocolletes* remains as monotypic taxon in Neopasiphaeinae 42 (Colletidae), but has often been classified as genus instead of subgenus (e.g., Silveira, Melo & 43 Almeida, 2002; Moure, Graf & Urban, 2007; Almeida & Danforth, 2009; Almeida et al., 2012), 44 a position followed in this paper. 45 Hoplocolletes ventralis has been recorded in three states in southeastern Brazil: Espírito 46 Santo, Minas Gerais, Rio de Janeiro (Silveira, Melo & Almeida, 2002; Moure, Graf & Urban,

47	2007). <i>Hoplocolletes</i> remains a poorly known genus, with relatively little distributional
48	information, male undescribed for decades since <i>H. ventralis</i> was recognized as a new species,
<mark>49</mark>	host-plant preferences unknown, and the only piece of bionomical information for this species is
<mark>50</mark>	that it is a soil nesting bee (EAB Almeida, pers.observation). The phylogenetic affinities of
51	Hoplocolletes and other neopasiphaeine taxa were uncertain until molecular phylogenetic
52	hypotheses placed this taxon in a clade also comprising Eulonchopria and Nomiocolletes
53	(Almeida & Danforth, 2009; Almeida et al., 2012). Michener (1989: p.630) suggested that
54	Hoplocolletes could be part of a "Basal Group", characterized by the fully developed sternal
55	scopa. Based on the phylogenetic hypotheses currently available, it seems that this scopa arose
56	multiple times in the Neopasiphaeinae clade, since Hoplocolletes, Cephalocolletes, Reedapis,
57	and <i>Tetraglossula</i> are not close relatives (Almeida & Danforth, 2009; Almeida et al., 2012).
58	The aim of this work is twofold: resolve a taxonomic problem related to a new synonymy
59	involving Hoplocolletes ventralis and increase the knowledge about the morphology and
60	distinctiveness of <i>Hoplocolletes</i> , particularly by providing a novel description of the male genital
61	complex for this species. We report that the abovementioned labeling problem that made the
62	taxonomic history of Hoplocolletes ventralis problematic also happened with Dasycolletes
63	chalceus Friese, 1924, which remained as a tentatively placed species in the Australian genus
64	Leioproctus until now (Michener, 1965; Cardale, 1993; Almeida, 2008; Rasmussen & Ascher,
65	2008). Dasycolletes chalceus is interpreted as a synonym of Dasycolletes ventralis.
66	
67	Material & Methods
68	Part of the material studied is deposited in the Entomological Collection "Prof.
69	J.M.F.Camargo" [RPSP] in Departamento de Biologia (FFLRP/USP, Ribeirão Preto, Brazil).

70	A male specimen of <i>Hoplocolletes ventralis</i> was obtained as a loan from Entomological
71	Collection "Pe.J.S.Moure" [DZUP], Departamento de Zoologia (UFPR, Curitiba, Brazil), and
72	the female type specimen of Dasycolleletes chalceus Friese, 1924 was studied and
73	photographed at the entomological collection of Museum für Naturkunde [ZMB] (Berlin,
74	Germany). Photographs of the female specimen of Dasycolletes ventralis Friese, 1924,
75	deposited at the American Museum of Natural History (AMNH) collection, were kindly taken
76	and made available for this study.
77	The general morphological terminology follows Michener (2007). Antennal
78	flagellomeres are indicated as F1, F2, etc.; metasomal terga and sterna, respectively, as T1 to T7,
79	and S1 to S8. The density of punctation and intervals between the punctures are based on relative
30	puncture diameter, pd (e.g., <1pd: less than 1x the puncture diameter between the punctures).
31	Color images were obtained on a Zeiss Axiocam 206 color camera associated to a Zeiss
32	Discovery.V12 stereomicroscope, or with an AmScope MU1000A Digital Camera adapted onto
33	a Leica MZ6 stereomicroscope; pictures were assembled with the software Helicon Focus 6.2.
34	
35	
36	Results
37	The Dasycolletes chalceus Friese, 1924 case. The species Dasycolletes chalceus was not
38	studied after its original description. It was described in the same publication and same page as
39	Dasycolletes ventralis (Friese, 1924: p. 218). After 1924, it was only mentioned in catalogues
90	and revisionary works (e.g., Michener, 1965; Cardale, 1993; Almeida, 2008; Rasmussen &
91	Ascher, 2008), but the type specimen was never studied again. The only exemplar of
92	Dasycolletes chalceus located and bearing Friese's original labels is deposited in ZMB (Fig.1). It

93	clearly has all diagnostic characters for <i>Hoplocolletes</i> as currently eoneeived, and no differences
94	were found in relation to <i>Hoplocolletes ventralis</i> either. The only known specimen of
95	Dasycolletes ventralis bearing Friese's original labels is in the American Museum of Natural
96	History collection (New York, USA) (Fig. 2) and it is the same female studied by Michener
97	(1965) that lead him to conclude it was not an Australian taxon, as indicated by the collecting
98	labels, but a specimen probably collected in Brazil. The interpretation of Friese's types is a
99	controversial subject and it is likely that the AMNH specimen is a duplicate, not the primary type
100	(Rasmussen & Ascher, 2008; J.S.Ascher, pers.comm.). But, so far, it is the only specimen
101	labeled by Friese himself as Dasycolletes ventralis available for study. It is worth noting that
102	both specimens were probably collected together, have locality labels that are identical,
103	"Australia \\ Sydney \\ 14.9/06". The collector's name is lacking in the D . chalceus specimen
104	label but not in this species' description (Friese, 1924: p.218): "von Sydney im September, Frank
105	leg."
106	
107	Hoplocolletes ventralis (Friese, 1924)
108	Dasycolletes ventralis Friese, H. (1924) [218].
109	Type data: holotype AMNH <f>.</f>
110	Type locality: 'Australia, Sydney'.
111	Dasycolletes chalceus Friese, H. (1924) [218].
112	Type data: holotype ZMB <f>.</f>
113	Type locality: 'Australia, Sydney'.
114	Description of male: Approximate body length: 10 mm; length of forewing: 7.7 mm; maximum
115	width of metasoma (T2): 2.5 mm. Color: predominantly black; apical half of mandible, ventral

116	surface of F2-F11, tibiae, femora, trochanters, S2-S3, apical margins of terga dark reddish brown.
117	Tarsi light brown. Tegula, pterostigma and wing veins dark brown; wing membrane brown
118	infumated. Pubescence: predominantly pale yellowish or cream on entire body. Face and
119	pronotal lobe with abundant pubescence; clypeus with decumbent to semidecumbent pilosity (0.5
120	mm in length), more erect and shorter on paraocullar area and frons (0.3-0.45 mm in length).
121	Mesoscutum with scarce pilosity. Lateral pilosity of mesepisternum semidecumbent and sparse
122	(0.25-0.35 mm in length). <i>Integumental surface</i> : coarse and dense on clypeus (≤ 1 pd), finer and
123	denser frons (<1 pd), on vertex variable (denser medially, sparser [≤ 1 pd] laterally as well as on
124	gena) integument smooth and shiny between purpores; coarse and dense on mesosoma, sparser
125	on disc of mesoscutum and scutellum, and inferiorly on mesepisternum; metapostnotum smooth
126	and shiny, delimited from pronotum by a pit-row; T1 smooth and shiny, with very sparse (2-7
127	pd) moderately coarse punctation, transversal line of barely aligned punctures delimiting
128	marginal region of T1; on T2 slightly denser than on T1, but punctation leaving broad shiny
129	areas as well; T3 and T4 with basal portion finely and densely punctated, sparser and coarser
130	distad. Structure (measurements in mm): head about 1.1x wider than long (2.66:2.43); inner
131	orbits converging below (upper to lower interorbital distance, 1.76:1.47), inner margin almost
132	straight; eye about 3.6x longer than its maximum width in frontal view (1.76:0.48), in lateral
133	view about 1.2x wider than gena (0.74:0.64). Vertex well developed above ocelli (distance
134	between upper margin of lateral ocellus and vertex = 0.53), comparable to ocelloocular distance
135	(0.51); interocellar distance = 0.14; diameter of median ocellus = 0.25. Approximate length of
136	antenna = 4.0 , length and maximum width of scape = 0.73 , 0.2 ; of pedicel = 0.16 ; of F1 = 0.19 ;
137	F2 about 1.5x wider than long (0.18:0.27); F3 about 1.5x longer than wide (0.30:0.21).
138	Mesoscutum length = 1.83, intertegular distance = 1.75. Genital capsule and male S7 and S8 as

illustrated in Figs 5-6 (see discussion about the male terminalia below, in the 'Revised Diagnosis' for *Hoplocolletes*).

141

142

Hoplocolletes Michener, 1965

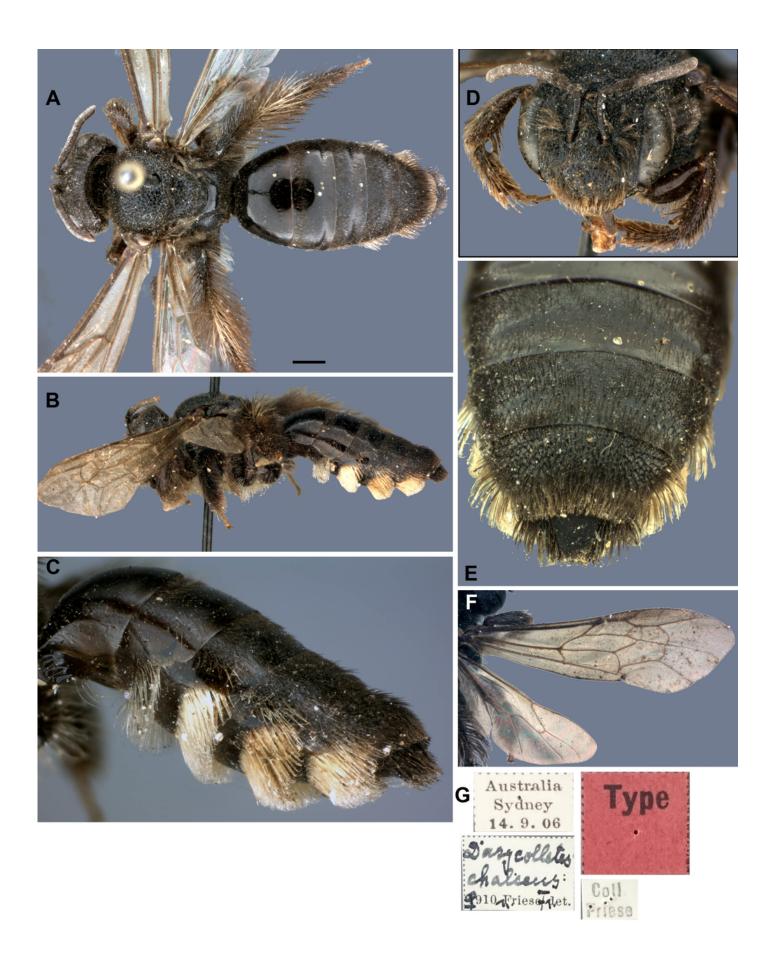
143 **Revised diagnosis for the genus** (characters apply to both sexes unless otherwise stated). 144 Length 10-12 mm. Body black to dark brown; head and mesosoma with conspicuous coarse 145 punctation; T1 and T2 largely impunctate, smooth and shining (remaining terga rather finely and closely punctate); pubescence short, sparse, blackish to dark brown on female (light yellow to 146 fulvous on male), except on hind legs and metasomal sterna where there are long, pale hairs; 147 148 metasomal hair bands absent, male clypeus with plumose and semidecumbent pubescence. 149 Mandible with an ordinary preapical tooth. Inner orbits subparallel (female, Figs 1D, 2C) or 150 converging below (male, Fig.3C). Facial fovea absent; clypeus weakly convex; labrum with 151 apical margin concave medially, elevated zone highest medially, occupying about basal half of 152 labrum (Michener, 1989: Fig.7q). Preoccipital carina absent; malar area linear; clypeus little 153 protuberant. Male flagellum elongate (approximately 3.0 mm long), F2 longer than wide. Vertex 154 produced behind ocelli and eyes (Figs 1A,D, 2A,C, 3A,B,C). Apex of scape reaching upper 155 margin of median ocellus (Figs1D, 2C); antennae arising about middle of face. Dorsolateral angle of pronotum low, rounded, scarcely evident; metapostnotum smooth, marginal line pitted, 156 157 its basal part slightly longer than metanotum. Femoral scopa sparse, formed by long delicate 158 branched hairs, those behind corbicula and on trochanter long but simple. Tibial scopal hairs 159 dividing to form few major branches. Female basitibial plate of female distinct, hairs short, 160 appressed, different from those of adjacent areas, marginal carinae clearly exposed. Inner hind 161 tibial spur of female coarsely pectinate with 5-6 teeth (Michener, 1989: Fig.7q). Forewing with

162	three submarginal cells, second much shorter than third and receiving recurrent vein beyond
163	middle (Figs1F, 3A); basal vein of forewing meeting cu-v (Fig.1); stigma large, long, not quite
164	parallel sided, two-thirds as long as costal side of marginal cell, marginal cell longer than
165	distance between its apex and wing apex. T1 dorsally approximately twice wider than long; S3-
166	S5 of female with dense, long (shorter than exposed part of sternum), pale yellow, simple hairs
167	(some hooked at tips) forming band occupying apical half of each sternum, female S2 with
168	similar but sparser hair band (Figs1C, 2D); S3-S5 of male with a longer hairs near apical
169	margin, S5 with distinct apical fringe.
170	Male genital capsule and associated sterna of <i>Hoplocolletes ventralis</i> are illustrated in Figs 5-6
171	along with exemplar species of two other neopasiphaeine genera: Nomiocolletes joergenseni
172	(Friese, 1908) and <i>Reedapis semicyanea</i> (Spinola, 1851). According to the phylogenetic
173	hypotheses of Almeida & Danforth (2009) and Almeida et al. (2012), Hoplocolletes and
174	Nomiocolletes are closely related lineages, whereas Reedapis is part of a more distantly related
175	clade. The interpretation of homologies for the male terminalia in this comparative context
176	makes the understanding of relevant characters of Hoplocolletes more defensible. Apical process
177	of male S7 of comprising two lobes on each side: one apicolateral more developed and hairier
178	(Fig.5: lateral lobe - LLb) and one closer to the base of this process (Fig.5: basal lobe - BLb),
179	Nomiocolletes is distinctive for having a bilobed lateral lobe; Hoplocolletes does not have apical
180	protuberances as found in other Neopasiphaeinae (Fig.5: apical lobe - ALb); apodeme of S7
181	relatively long in relation to the apical process. Median process of male S8 (Fig.5: MPr) similar
182	in length to the remainder of S8; spiculum ordinary (not as produced as in Nomiocolletes or
183	Reedapis). Gonobase of male genitalia (Fig.6: Gbs) less than 1/4 of total length of genital
184	capsule; gonostylus and gonocoxite (Fig.6: Gns, Gcx) fused on dorsal surface but separable on

185	ventral surface, apex of gonostylus rounded and not bent ventrad (directed mesad and ventrad in
186	the other two species); apex of penis valve (Fig.6: PV) bent ventral, ventral spine well-
187	developed (Fig.6: SPV).
188	
189	Acknowledgements
190	We are grateful to Gabriel A. R. Melo (Universidade Federal do Paraná - [DZUP]) who kindly
191	provided information about a locality where Hoplocolletes ventralis is known to occur in Minas
192	Gerais state, and loaned a male specimen used in this study. We are also indebted to Frank Koch
193	for hosting EABAlmeida during a visit to the Museum für Naturkunde [ZMB], and to Hadel H.
194	Go and Jerome G. Rozen, Jr. (American Museum of Natural History - AMNH) for taking
195	photographs and making them available for this work. Our thanks to John S. Ascher (National
196	University of Singapore) and Gabriel A. R. Melo for valuable discussion on the systematics of
197	neopasiphaeine bees and the work of H.Friese, and to Diego S. Porto for critical comments on
198	this manuscript.
199	
200	REFERENCES
201	Almeida EAB. 2008. Revised species checklist of the Paracolletinae (Hymenoptera, Colletidae)
202	of the Australian Region, with the description of new taxa. Zootaxa 1891:1-24.
203	Almeida EAB, Danforth BN. 2009. Phylogeny of colletid bees (Hymenoptera: Colletidae)
204	inferred from four nuclear genes. Molecular Phylogenetics and Evolution 50:290-309.
205	DOI:10.1016/j.ympev.2008.09.028

206	Almeida EAB, Pie MR, Brady, SG, Danforth BN. 2012. Biogeography and diversification of
207	colletid bees (Hymenoptera: Colletidae): Emerging patterns from the Southern End of the
208	World. <i>Journal of Biogeography</i> 39:526-544. DOI:10.1111/j.1365-2699.2011.02624.x
209	Cardale JC. 1993. Hymenoptera: Apoidea. In: Houston WWK, Maynard GV, eds. Zoological
210	Catalogue of Australia, Vol. 10. Canberra: Government Publishing Service, ix + 405 pp.
211	Cockerell TDA. 1929. Bees, chiefly Australian species, described or determined by Dr. H.
212	Friese. American Museum Novitates 343:1-20.
213	Danforth BN, Cardinal S, Praz C, Almeida EAB, Michez D. 2013. The impact of molecular data
214	on our understanding of bee phylogeny and evolution. Annual Review of Entomology 58:57-
215	78. DOI:10.1146/annurev-ento-120811-153633
216	Danforth BN, Sipes S, Fang J, Brady SG. 2006. The history of early bee diversification based on
217	five genes plus morphology. Proceedings of the National Academy of Sciences USA
218	103:15118-15123. doi:10.1073/pnas.0604033103
219	Friese H. 1924. Ueber die Bienen Australiens. Konowia: Zeitschrift für systematische
220	Insektenkunde 3:216-249.
221	Michener CD. 1965. A classification of the bees of the Australian and South Pacific regions.
222	Bulletin of the American Museum of Natural History 130:1-362 + 15 plates.
223	Michener CD. 1989. Classification of the American Colletinae. University of Kansas Science
224	Bulletin 53:622-703.
225	Michener CD. 2007. <i>The Bees of the World</i> (2 nd Ed.). Baltimore: John Hopkins University Press.
226	Moure JS, Graf V, Urban D. 2007. Paracolletini Cockerell, 1934. In: Moure JS, Urban D, Melo
227	GAR, eds. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Curitiba:
228	Sociedade Brasileira de Entomologia, 723-743.

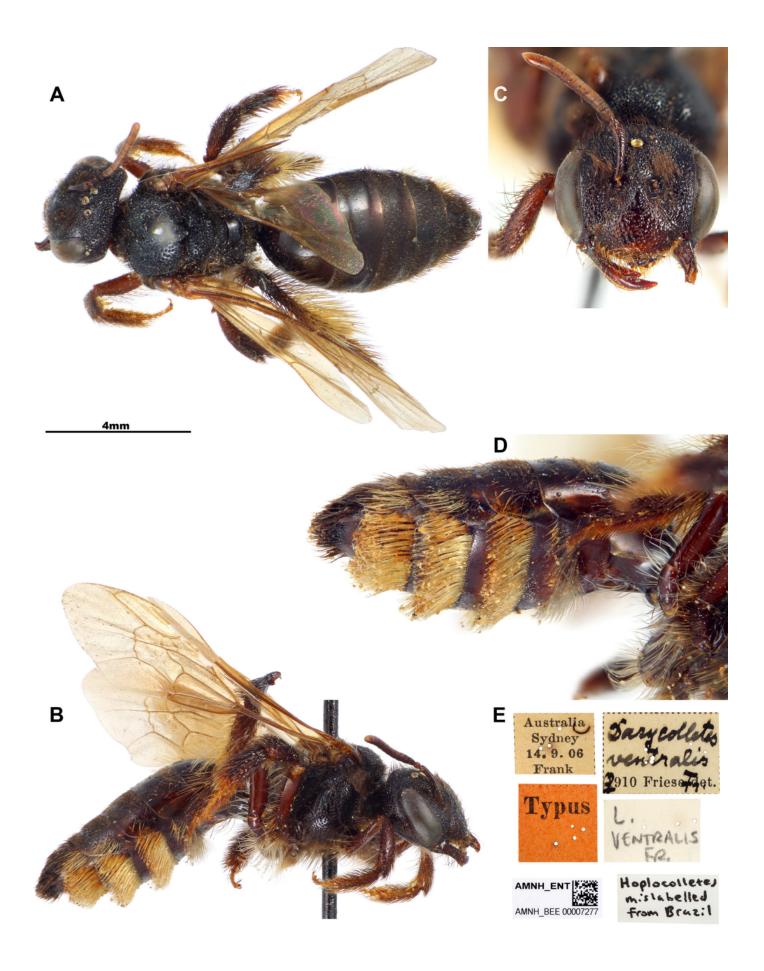
29	Rasmussen C, Ascher JS. 2008. Heinrich Friese (1860–1948): Names proposed and notes on a
30	pioneer melittologist (Hymenoptera, Anthophila). Zootaxa 1833: 1-118.
231	Silveira FA, Melo GAR, Almeida EAB. 2002. Abelhas Brasileiras: Sistemtica e Identificação.
232	Belo Horizonte: F.A.Silveira.
233	Spinola M. 1851. Hymenópteros, in C. Gay, Historia Fisica y Politica de Chile, Zoologia, Vol. 6.
234	Paris: Casa del autor, 153-569.


236	FIGURE CAPTIONS
237	
238	Figure 1. Female specimen of <i>Dasycolletes chalceus</i> Friese, 1924 deposited at the Museum für
239	Naturkunde collection [ZMB] (photo credit: Eduardo A.B. Almeida): A - Dorsal habitus (scale
240	bar = 1 mm), \mathbf{B} - lateral habitus, \mathbf{C} - face, \mathbf{D} - ventral metasomal scopa, \mathbf{E} - specimen labels.
241	
242	Figure 2. Female specimen of <i>Dasycolletes ventralis</i> of Friese, 1924 deposited at the American
243	Museum of Natural History collection [AMNH] (photo credit: Hadel Go): A - Dorsal habitus, B
244	lateral habitus, C - face, D - magnified view of ventral metasomal scopa, E - specimen labels.
245	
246	Figure 3. Male specimen of <i>Hoplocolletes chalceus</i> (Friese, 1924) from Itapina, ES, Brazil
247	[DZUP] (photo credit: Eduardo A.B. Almeida): A - Lateral habitus, B - dorsal habitus, C - face,
248	D - mesosoma and anterior metasoma; scale bars = 1 mm.
249	
250	Figure 4. Comparative morphology of male metasomal sterna S7 and S8 (dorsal views shown on
251	left) of Hoplocolletes ventralis (Friese, 1924), Nomiocolletes joergenseni (Friese, 1908), and
252	Reedapis semicyanea (Spinola, 1851). ALb = apical lobe of S7, BLb = basal lobe of S7, LLb =
253	lateral lobe of S7, LPr = lateral process of S8, MPr = median process of S8; scale bars = 0.5 mm.
254	Cladogram represents a hypothesis for the phylogenetic relationships among these three taxa
255	(Almeida & Danforth, 2009).
256	
257	Figure 5. Comparative morphology of male genitalia (dorsal views shown on left) of
258	Hoplocolletes ventralis (Friese, 1924), Nomiocolletes joergenseni (Friese, 1908), and Reedapis

semicyanea (Spinola, 1851). ApP = apodeme of penis valve, Cs = cuspis of volsella, Dg =
digitus of volsella, Gbs = gonobase, Gcx = gonocoxa, Gns = gonostyle, PV = penis valve, SPV =
ventral spine of penis valve; scale bars = 0.5 mm. Cladogram represents a hypothesis for the
phylogenetic relationships among these three taxa (Almeida & Danforth, 2009).

1

Female specimen of *Dasycolletes chalceus* Friese, 1924 deposited at the Museum für Naturkunde collection [ZMB].


Female specimen of *Dasycolletes chalceus* Friese, 1924 deposited at the Museum für Naturkunde collection [ZMB] (photo credit: Eduardo A.B. Almeida): A - Dorsal habitus (scale bar = 1 mm), B - lateral habitus, C - face, D - ventral metasomal scopa, E - labels.

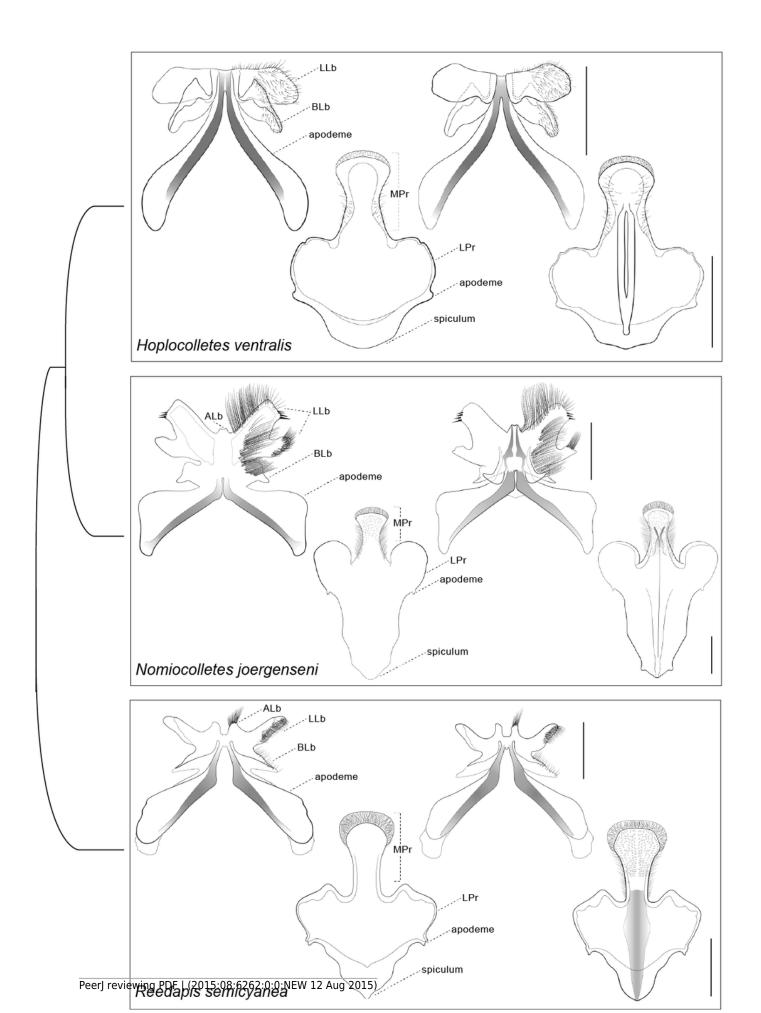
2

Female specimen of *Dasycolletes ventralis* of Friese, 1924 deposited at the American Museum of Natural History collection [AMNH].

Female specimen of *Dasycolletes ventralis* of Friese, 1924 deposited at the American Museum of Natural History collection [AMNH] (photo credit: Hadel Go): A - Dorsal habitus, B - lateral habitus, C - face, D - magnified view of ventral metasomal scopa, E - labels.

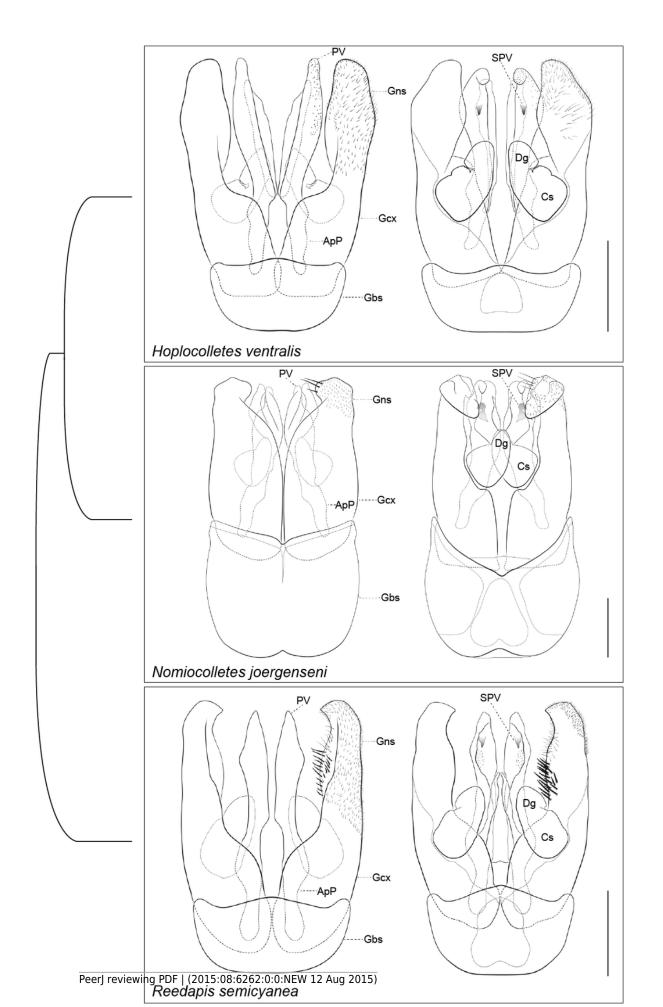
3

Male specimen of Hoplocolletes chalceus (Friese, 1924) from Itapina, ES, Brazil [DZUP].


Male specimen of *Hoplocolletes chalceus* (Friese, 1924) from Itapina, ES, Brazil [DZUP] (photo credit: Eduardo A.B. Almeida): A - Lateral habitus, B - dorsal habitus, C - face, D - mesosoma and anterior metasoma; scale bars = 1 mm.

4

Comparative morphology of male metasomal sterna S7 and S8 (dorsal views shown on left) of *Hoplocolletes ventralis* (Friese, 1924) and related neopasiphaeine taxa.


Comparative morphology of male metasomal sterna S7 and S8 (dorsal views shown on left) of *Hoplocolletes ventralis* (Friese, 1924), *Nomiocolletes joergenseni* (Friese, 1908), and *Reedapis semicyanea* (Spinola, 1851). ALb = apical lobe of S7, BLb = basal lobe of S7, LLb = lateral lobe of S7, LPr = lateral process of S8, MPr = median process of S8; scale bars = 0.5 mm. Cladogram represents a hypothesis for the phylogenetic relationships among these three taxa (Almeida & Danforth, 2009).

5

Comparative morphology of male genitalia (dorsal views shown on left) of *Hoplocolletes ventralis* (Friese, 1924) and related neopasiphaeine taxa.

Comparative morphology of male genitalia (dorsal views shown on left) of *Hoplocolletes ventralis* (Friese, 1924), *Nomiocolletes joergenseni* (Friese, 1908), and *Reedapis semicyanea* (Spinola, 1851). ApP = apodeme of penis valve, Cs = cuspis of volsella, Dg = digitus of volsella, Gbs = gonobase, Gcx = gonocoxa, Gns = gonostyle, PV = penis valve, SPV = ventral spine of penis valve; scale bars = 0.5 mm. Cladogram represents a hypothesis for the phylogenetic relationships among these three taxa (Almeida & Danforth, 2009).

