Genetic polymorphisms in the IFNL4, MxA, and MxB genes were associated with biochemical index of chronic HBV patients in Yunnan, China (#68178)

First submission

Guidance from your Editor

Please submit by 2 Feb 2022 for the benefit of the authors (and your \$200 publishing discount) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 4 Table file(s)
- 2 Raw data file(s)

Human participant/human tissue checks

- ! Have you checked the authors <u>ethical approval statement</u>?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genetic polymorphisms in the IFNL4, MxA, and MxB genes were associated with biochemical index of chronic HBV patients in Yunnan, China

Kexi Zheng ¹, Yunsong Shen ², Xueshan Xia ¹, Yuzhu Song ¹, A-Mei Zhang ^{Corresp. 1}

Corresponding Author: A-Mei Zhang Email address: zam1980@yeah.net

Hepatitis B virus (HBV) infection lead to Hepatitis B, which was one of the most common causes of hepatocellular carcinoma (HCC). Single Nucleotide Polymorphisms (SNPs) of host immune genes could influence HBV infection, viral clearance, and treatment effect. In order to investigate the role of *IFNL4* and its downstream genes (*MxA* and *MxB*) in Yunnan HBV infected persons, whole blood and biochemical index of 448 HBV patients and controls were collected. Seven SNPs were genotyped to analyze the frequency of genotypes, alleles, and haplotypes between HBV patients and controls. However, no association was identified between SNPs and HBV infection. Then, biochemical indexes levels were studied among HBV patients with different genotypes of seven SNPs. The results showed that liver function indexes level (including ALT, AST, TBIL, DBIL, IBIL, and ALB) could be influenced by genotypes of SNPs in HBV patients. When HBV patients were divided into HBsAgpositive and -negative groups, the association between genotypes of SNP and biochemical indexes still existed. Above all, although the genetic polymorphisms were not associated with HBV infection in Yunnan, it might indirectly influence disease progress by relating with biochemical indexes level of HBV patients in Yunnan.

¹ Kunming University of Science and Technology, Kunming, China

² Kunming Angel Women's & Children's hospital, Kunming, China

- 1 Genetic polymorphisms in the IFNL4, MxA, and MxB genes were associated with
- 2 biochemical index of chronic HBV patients in Yunnan, China
- 3 Kexi Zheng ¹, Yunsong Shen ², Xueshan Xia ¹, Yuzhu Song ¹, A-Mei Zhang ^{1,*}
- 4 ¹ Faculty of Life Science and Technology, Kunming University of Science and Technology,
- 5 Kunming, Yunnan, China
- 6 ² Kunming Angel Women's & Children's hospital, Kunming, Yunnan, China

- 9 *Corresponding author
- 10 Dr. A-Mei Zhang, Faculty of Life Science and Technology, Kunming University of Science and
- 11 Technology, Kunming, Yunnan 650500, China. Tel/Fax: 86-871-65920756; E-mail:
- 12 zam1980@yeah.net

Abstract

Hepatitis B virus (HBV) infection lead to Hepatitis B, which was one of the most common 16 causes of hepatocellular carcinoma (HCC). Single Nucleotide Polymorphisms (SNPs) of host 17 immune genes could influence HBV infection, viral clearance, and treatment effect. In order to 18 19 investigate the role of *IFNL4* and its downstream genes (MxA and MxB) in Yunnan HBV 20 infected persons, whole blood and biochemical index of 448 HBV patients and controls were collected. Seven SNPs were genotyped to analyze the frequency of genotypes, alleles, and 21 haplotypes between HBV patients and controls. However, no association was identified between 22 23 SNPs and HBV infection. Then, biochemical indexes levels were studied among HBV patients with different genotypes of seven SNPs. The results showed that liver function indexes level 24 (including ALT, AST, TBIL, DBIL, IBIL, and ALB) could be influenced by genotypes of SNPs 25 in HBV patients. When HBV patients were divided into HBsAg-positive and -negative groups, 26 the association between genotypes of SNP and biochemical indexes still existed. Above all, 27 although the genetic polymorphisms were not associated with HBV infection in Yunnan, it might 28 indirectly influence disease progress by relating with biochemical indexes level of HBV patients 29 30 in Yunnan.

31

Keywords: *IFNL4*, *MxA*, *MxB*, SNPs, HBV infection, biochemical index

33

Introduction

86	In 60s and 70s of the 20th century, hepatitis B virus (HBV) was identified to be the cause of
37	hepatitis B disease, which was one of the most popular reasons for serious hepatitis diseases
88	(Glebe et al. 2021). In adults, 5% of HBV infected persons developed chronic HBV (CHB)
39	infection, and 20-30% CHB might develop cirrhosis and/or hepatocellular carcinoma (HCC).
10	According to World Health Organization (WHO) reports, 275 million persons (about 3.5% of
1	population) were living with CHB. The epidemic regions of CHB mainly located in Western
12	Pacific Region and African (W.H.O. 2017). Although usage of vaccine greatly protected persons
13	from HBV infection, the number of adult HBV patients was still large.
14	Interferons (IFNs) were commonly used for HBV therapy in clinic, and interferon pathway
15	played important role in CHB infection through activating expression of interferon-stimulated
16	genes (ISGs) (Mani & Andrisani 2019). However, the treatment effect showed great difference
17	among various HBV patients, and host immunologically genetic factors were necessary for
18	antiviral response (Brouwer et al. 2019). Distinguishing from other members of IFN family,
19	IFNL4 was reported to impair hepatitis C virus (HCV) clearance (Prokunina-Olsson et al. 2013),
50	and its genetic polymorphisms could influence viral clearance of HCV patients treated by
51	pegylated-IFN- α /ribavirin (O'Brien et al. 2015). Similarly, the genetic polymorphisms in the
52	IFNL4 gene were also considered to associated with HBV viral load and producing protective
53	antibody (Chihab et al. 2021; Grzegorzewska et al. 2020).
54	Mx genes, including the MX dynamin like GTPase 1 gene (Mx1 or MxA) and the MX
55	dynamin like GTPase 2 gene ($Mx2$ or MxB), belonged to IFN-stimulated gene (ISG). The amino

56	acid homology between MxA and MxB reached to about 63%, but the antiviral activity seemed
57	greatly different. Although MxA was well known as a wide-spectrum antiviral factor (Haller et
58	al. 2015), both MxA and MxB could inhibit HBV replication. However, whether genetic
59	polymorphisms of these two genes could influence HBV infection and pathogenesis were not
50	well studied.
51	In this study, frequency of genetic polymorphisms of the IFNL4, MxA, and MxB gene were
52	analyzed in HBV patients from Yunnan, China. The association between biochemical index and
53	genotypes of polymorphisms were identified.
54	
55	Material and methods
56	Individuals and biochemical index
57	448 HBV infected persons, who were identified as CHB patients without any treatment, and
58	448 general controls were collected by doctors in The First People's Hospital of Yunnan
59	Province. All patients were infected with Hepatitis B virus (HBV) but without HCV and/or
70	Human Immunodeficiency virus (HIV) infection. All controls were not infected by any virus and
71	without any disease. 3 mL whole blood of each individual was obtained to extract the genomic
72	DNA (gDNA) for single nucleotide polymorphisms (SNP) analysis.
73	Biochemical information of each person was collected, which included alanine
74	transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), direct bilirubin
75	(DBIL), indirect bilirubin (IBIL), total protein (TP), albumin (ALB), globin (GLOB), blood urea
76	nitrogen (BUN), serum creatinine (CREA), serum uric acid (UA), blood glucose (GLU), white

77	blood cells (WBC), neutrophilic granulocyte (NEUT), lymphocytes (LYM), monocytes
78	(MONO), eosinophil granulocyte (EO), and basophile granulocyte (BASO). Whether hepatitis B
79	surface antigen (HBsAg) was positive or negative was detected in each HBV sample.
80	Written informed consent conforming to the tenets of the Declaration of Helsinki was
81	obtained from each participant prior to the study. This study was approved by the Institutional
82	Review Board of Kunming University of Science and Technology. (Approval No. 2014SK027)
83	
84	SNP genotyping and haplotype construction
85	Two SNPs (rs11322783 and rs117648444) in the IFNL4 gene, two SNPs (rs2071430 and
86	rs17000900) in the MxA gene, and three SNPs (rs9982944, rs408825, and rs2838029) in the MxB
87	gene were genotyped by using SnapShot method. All seven SNPs were tag SNP or functional
88	SNP.
89	Haplotypes were constructed by using seven SNPs of HBV patients and controls in SHEsis
90	software platform (http://analysis.bio-x.cn/myAnalysis.php). The Lowest frequency threshold
91	(LFT) for haplotype analysis was 0.05. Linkage Disequilibrium (LD) was calculated among
92	seven SNPs.
93	Data analysis
94	The data of each biochemical index was presented by Mean \pm SEM in HBV patients or
95	controls. Biochemical indexes between HBV patients and controls were compared by Student's t
96	test (two-tailed). The frequencies of genotype, allele, and haplotypes were compared between
97	HBV patients and controls by using Chi-square test with Yates' correction. The association

between genotypes and biochemical index was analyzed by using Student's t test (two-tailed).

99 Genotype and allele frequencies of each SNP were compared between HBV patients with

HBsAg-positive and -negative. When the P-value was less than 0.05, it was considered

significant difference.

Results

Basic information

The mean age of HBV patients and controls were 42.12 ± 0.38 and 40.58 ± 0.53 years old, respectively. Although the numbers of male individuals were somewhat more in controls (N= 275, 61.38%) than in HBV patients (N= 245, 54.69%), it showed no significance. The ratio of male: female was 1.2: 1 and 1.6:1 in HBV patients and controls, respectively. Excluding IBIL, BUN, CREA, UA, WBC, MONO, and EO, all other biochemical indexes showed significantly different (Table 1). These results suggested liver function were impaired in HBV patients.

No association between SNPs in three genes and HBV infection was identified

Genotype and allele frequencies of seven SNPs showed no significant difference between HBV patients and controls (Table 2). No individual carried with genotype AA of rs117648444. The D' value of SNPs rs2071430 and rs17000900 in the *MxA* gene and D' value of SNPs rs408825 and rs2838029 in the *MxB* gene was 0.96 and 0.97, respectively. However, the r² value showed no Linkage disequilibrium among these SNPs (Fig. 1). This indicated that all SNPs could not tag each other. Totally 31 and 35 haplotypes were constructed in HBV patients and controls, respectively. The frequencies of seven haplotypes were more than 0.05, but no

haplotype showed statistical difference between HBV patients and controls	(Table 3)).
---	-----------	----

Biochemical indexes showed significant difference among HBV patients carried various

genotypes

Genotypes of 6 SNPs were associated with biochemical indexes of HBV patients. Because genotype ΔG of rs11322783 and genotype AA in rs2838029 existed in only one HBV patient and/or one control person, genotype ΔG was combined with genotype $\Delta G/T$ of rs11322783 and genotype AA was combined with genotype AG in rs2838029 for further analysis. Biochemical indexes showed significantly different among three genotypes of each SNP (Fig. 2). In the *IFNL4* gene, LYM (P=0.007) and MONO (P=0.010) levels were significantly higher in patients with genotype TT than those with genotype GG and GT of rs11322783. Genotype TT of rs2071430 seemed to decrease ALT and CREA level of patients. The ALT, AST, and CREA level was statistically lower in patients carried genotype AA of rs17000900. The AST, TBIL, DBIL, IBIL, and MONO level was higher in patients with genotype GG of rs2838029 than the patients with other two genotypes. Genotype TT of rs408825 seemed to be the risk factor for DBIL, IBIL, and EO level in Yunnan HBV patients. ALB level showed significantly higher level in patients with genotype AA of rs9982944 than the other patients.

Rs17000900 was associated with HBsAg seroclearance of patients

HBsAg was a marker for HBV cccDNA replication in clinic, so genotype and allele frequencies were compared between HBV patients with HBsAg-positive and HBsAg-negative (Table 4). The results showed that the frequency of genotype AC in rs17000900 was statistically higher in HBsAg-negative patients (69/238, 28.99%) than in HBsAg-positive patients (43/210,

140 20.48%).

Biochemical indexes also expressed significant difference between HBsAg-positive and HBsAg-negative HBV patients (Fig. 3). The AST and TBIL level were higher in HBsAg-positive patients than in HBsAg-negative patients carried genotype AC of rs17000900. Similarly, the DBIL and IBIL level also showed higher levels in HBsAg-positive patients than in HBsAg-negative patients with genotype CC of rs17000900. However, ALB, WBC, and NEUT level significantly decreased in HBsAg-positive patients with genotype AC of rs17000900.

Discussion

Although the contradictory role of pegylated-interferon (Peg-IFN) was found, it was commonly used to treat HBV infection in clinic for immune modulator because it could boost the immune system and stimulate ISGs expression (Mani & Andrisani 2019). HBV could interfere in IFN signaling pathway via various mechanisms, for example HBV core protein could inhibit expression of the MxA gene stimulated by Peg-IFN (Yu et al. 2010). Moreover, the treatment effect showed significant difference among HBV patients, due to HBV genotype, HBV viral load, and host genetic factors. There are many studies to analyze the role of genetic polymorphisms in the IFN genes in HBV patients.

SNPs of the IFNLA gene was widely studied in different HBV populations. Grzegorzewska et al. found that ΔG allele of rs368234815 (merged into rs11322783) was the risk factor for developing anti-HBs, and individuals with genotype $\Delta G/\Delta G$ showed lower responsiveness to HBV vaccination (Grzegorzewska et al. 2020). SNP rs12979860 located at both the IFNL3 and

IFNL4 genes, and genotypes of rs12979860 could modulate HBV cccDNA levels (Chihab et al.

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

2021). In our previous study, LYM level was much higher in HBV patients with genotype CC of rs12979860 than patients with genotype AA (Song et al. 2017). These reports suggested genetic polymorphisms in the IFNL4 gene could influence HBV disease progress by modulate immune reaction. Haplotype constructed by three SNPs (rs12971396-rs8113007-rs7248668: GTA) were more frequent in HCC patients caused by HBV infection than in HBV patients, but no difference was found between HBV patients and controls (Ma et al. 2018). In this study, the similar numbers of haplotypes constructed by seven SNPs in three genes were obtained among two groups. Thus, we supported that genetic polymorphisms of IFNL4 gene could not influence HBV infection in Yunnan population. MxA and MxB owned direct anti-virus function. HBV replication was downregulated in MxA transgenic mice (Peltekian et al. 2005), and MxB decreased HBV RNA level and indirectly impaired HBV cccDNA (Wang et al. 2020). However, the relationship between genetic polymorphisms in the MxA and MxB gene and HBV infection were rarely reported. SNP of -88 nt (G/T) in MxA gene promoter expressed higher frequency in HBV sustained patients than in non-responders. Unfortunately, our results did not identify the association between genotypes of SNPs and HBV infection, it might due to different SNPs selection. The IFNL3 gene played important roles in HBV infection, viral clearance, treatment effect, and response to HBV vaccine (Zhao et al. 2020). Due to the limited investigation, genetic function of the IFNL4 gene in HBV patients was needed. Although polymorphisms in the IFNL4

gene was not associated with HBV infection and naturally viral clearance, three-way interaction

was identified between IFNL4/ HLA-DQ and HBV infection by using multifactor dimensionality

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

reduction test (Fan et al. 2016). Two SNPs rs368234815 and rs117648444 in the IFNL4 gene, which were also analyzed in this study, might be as predictor for IFN treatment response in HBeAg-negative HBV patients (Galmozzi et al. 2018). In Thai HBV patients, SNPs in the IFNL4 gene could not influence response to PEG-IFN of patients (Limothai et al. 2015). Similarly, no association was found between the IFNL4, MxA, MxB genes and Yunnan HBV patients, but the biochemical index level showed significantly different among HBV patients with different genotypes of SNPs in three genes. Thus, we suggested that SNPs in IFNL4 might not directly influence HBV infection but predict the disease progress or treatment effect. Because there were contradict results among various populations, further studies could be performed. HBsAg level was considered as recovery of hepatitis activity and a better outcome, and host genetic factors associated with HBsAg loss. SNPs in the *HLA-DPA1* and *HLA-DPB1* genes could influence spontaneous HBsAg seroclearance in male HBV patients (Cheng et al. 2013). In addition, serum HBsAg level could reflected the interferon treatment effect (Su et al. 2014). In this study, genotype AC of rs17000900 was suggested as the protective factor for HBsAg seroclearance in HBV patients. Moreover, biochemical indexes showed significantly different between HBV patients with HBsAg-positive and -negative. These results further indicated that host genetic polymorphisms were associated with HBsAg seroclearance in HBV patients. Conclusion In summary, genetic polymorphisms of the *IFNL4*, *MxA*, and *MxB* genes were not association with HBV infection, but could influence the biochemical index levels of HBV

patients in Yunnan.

203	
204	Competing Interests
205	The authors report no conflict of interest.
206	
207	Acknowledgement
208	We thank all the participants in this study. This study was supported by the National Natural
209	Science Foundation of China (81760364), Leading Reserve Talents of Academy and Science and
210	Technology in Yunnan Province (2019HB002), and Yunnan Ten Thousand Talents Plan Young
211	& Elite Talents Project.
212	
213	References
214	Brouwer WP, Chan HLY, Lampertico P, Hou J, Tangkijvanich P, Reesink HW, Zhang W,
215	Mangia A, Tanwandee T, Montalto G, Simon K, Ormeci N, Chen L, Tabak F, Gunsar F,
216	Flisiak R, Ferenci P, Akdogan M, Akyuz F, Hirankarn N, Jansen L, Wong VW, Soffredini
217	R, Liang X, Chen S, Groothuismink ZMA, Santoro R, Jaroszewicz J, Ozaras R, Kozbial K,
218	Brahmania M, Xie Q, Chotiyaputta W, Xun Q, Pazgan-Simon M, Oztas E, Verhey E,
219	Montanari NR, Sun J, Hansen BE, Boonstra A, Janssen HLA, and Consortium G-BG. 2019.
220	Genome-wide Association Study Identifies Genetic Variants Associated With Early and
221	Sustained Response to (Pegylated) Interferon in Chronic Hepatitis B Patients: The GIANT-
222	B Study. Clin Infect Dis 69:1969-1979. 10.1093/cid/ciz084
223	Cheng HR, Liu CJ, Tseng TC, Su TH, Yang HI, Chen CJ, and Kao JH. 2013. Host genetic

224	factors affecting spontaneous HBsAg seroclearance in chronic hepatitis B patients. PLoS
225	One 8:e53008. 10.1371/journal.pone.0053008
226	Chihab H, Badre W, Tahiri M, Jadid FZ, Zaidane I, Elfihry R, Marchio A, Pineau P, Ezzikouri S,
227	and Benjelloun S. 2021. IFNL4 rs12979860 polymorphism influences HBV DNA viral
228	loads but not the outcome of HBV infection in Moroccan patients. Microbes Infect:104802.
229	10.1016/j.micinf.2021.104802
230	Fan JH, Hou SH, Qing-Ling L, Hu J, Peng H, and Guo JJ. 2016. Association of HLA-DQ and
231	IFNL4 polymorphisms with susceptibility to hepatitis B virus infection and clearance. Ann
232	Hepatol 15:532-539.
233	Galmozzi E, Facchetti F, Grossi G, Loglio A, Vigano M, Lunghi G, Colombo M, and
234	Lampertico P. 2018. IFNL4 rs368234815 and rs117648444 variants predict off-treatment
235	HBsAg seroclearance in IFN-treated HBeAg-negative chronic hepatitis B patients. Liver Int
236	38:417-423. 10.1111/liv.13526
237	Glebe D, Goldmann N, Lauber C, and Seitz S. 2021. HBV evolution and genetic variability:
238	Impact on prevention, treatment and development of antivirals. Antiviral Res 186:104973.
239	10.1016/j.antiviral.2020.104973
240	Grzegorzewska AE, Swiderska MK, Marcinkowski W, Mostowska A, and Jagodzinski PP. 2020.
241	Polymorphism rs368234815 of interferon-lambda4 gene and generation of antibodies to
242	hepatitis B virus surface antigen in extracorporeal dialysis patients. Expert Rev Vaccines
243	19:293-303. 10.1080/14760584.2020.1745637
244	Haller O, Staeheli P, Schwemmle M, and Kochs G. 2015. Mx GTPases: dynamin-like antiviral

245	machines of innate immunity. Trends Microbiol 23:154-163. 10.1016/j.tim.2014.12.003
246	Limothai U, Wasitthankasem R, Poovorawan Y, and Tangkijvanich P. 2015. Single Nucleotide
247	Polymorphism of Interferon Lambda-4 Gene is not Associated with Treatment Response to
248	Pegylated Interferon in Thai Patients with Chronic Hepatitis B. Asian Pac J Cancer Prev
249	16:5515-5519. 10.7314/apjcp.2015.16.13.5515
250	Ma N, Zhang X, Yang L, Zhou J, Liu W, Gao X, Yu F, Zheng W, Ding S, Gao P, Yuan M, and
251	Liu D. 2018. Role of Functional IFNL4, IFNLR1, IFNA, IFNAR2 Polymorphisms in
252	Hepatitis B virus-related liver disease in Han Chinese population. J Viral Hepat 25:306-313
253	10.1111/jvh.12817
254	Mani SKK, and Andrisani O. 2019. Interferon signaling during Hepatitis B Virus (HBV)
255	infection and HBV-associated hepatocellular carcinoma. Cytokine 124:154518.
256	10.1016/j.cyto.2018.08.012
257	O'Brien TR, Pfeiffer RM, Paquin A, Lang Kuhs KA, Chen S, Bonkovsky HL, Edlin BR, Howell
258	CD, Kirk GD, Kuniholm MH, Morgan TR, Strickler HD, Thomas DL, and Prokunina-
259	Olsson L. 2015. Comparison of functional variants in IFNL4 and IFNL3 for association
260	with HCV clearance. J Hepatol 63:1103-1110. 10.1016/j.jhep.2015.06.035
261	Peltekian C, Gordien E, Garreau F, Meas-Yedid V, Soussan P, Willams V, Chaix ML, Olivo-
262	Marin JC, Brechot C, and Kremsdorf D. 2005. Human MxA protein participates to the
263	interferon-related inhibition of hepatitis B virus replication in female transgenic mice. J
264	Hepatol 43:965-972. 10.1016/j.jhep.2005.06.019
265	Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D,

Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, 266 Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, 267 Rehermann B, Donnelly RP, and O'Brien TR. 2013. A variant upstream of IFNL3 (IL28B) 268 creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C 269 virus. Nat Genet 45:164-171. 10.1038/ng.2521 270 271 Song Y, Shen Y, Xia X, and Zhang AM. 2017. Association between genetic polymorphisms of the IL28B gene and leukomonocyte in Chinese hepatitis B virus-infected individuals. PeerJ 272 5:e4149. 10.7717/peerj.4149 273 Su TH, Liu CJ, Yang HC, Jeng YM, Cheng HR, Liu CH, Tseng TC, Ling TY, Chen PJ, Chen 274 DS, and Kao JH. 2014. Clinical significance and evolution of hepatic HBsAg expression in 275 HBeAg-positive patients receiving interferon therapy. J Gastroenterol 49:356-362. 276 277 10.1007/s00535-013-0840-z W.H.O. 2017. Global Hepatitis Report, 2017. World Health Organization. 278 Wang YX, Niklasch M, Liu T, Wang Y, Shi B, Yuan W, Baumert TF, Yuan Z, Tong S, Nassal 279 M, and Wen YM. 2020. Interferon-inducible MX2 is a host restriction factor of hepatitis B 280 virus replication. J Hepatol 72:865-876. 10.1016/j.jhep.2019.12.009 281 Yu Z, Huang Z, Zhang F, Yang J, Deng Q, and Zeng Z. 2010. Hepatitis B virus core protein with 282 hot-spot mutations inhibit MxA gene transcription but has no effect on inhibition of virus 283 replication by interferon alpha. Virol J 7:278. 10.1186/1743-422X-7-278 284 Zhao J, Zhang X, Fang L, Pan H, and Shi J. 2020. Association between IL28B Polymorphisms 285 and Outcomes of Hepatitis B Virus Infection: A meta-analysis. BMC Med Genet 21:88. 286

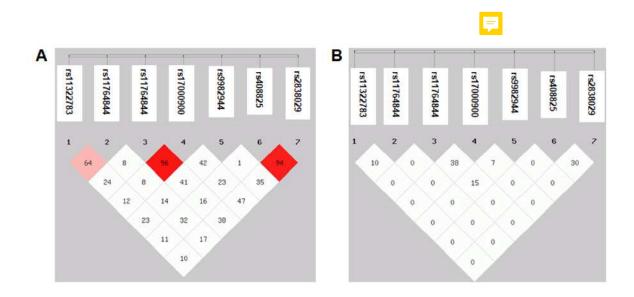

287 10.1186/s12881-020-01026-w

Figure 1

Figure 1. Linkage Disequilibrium map of seven SNPs in three genes.

A: D' value; B: r² value.

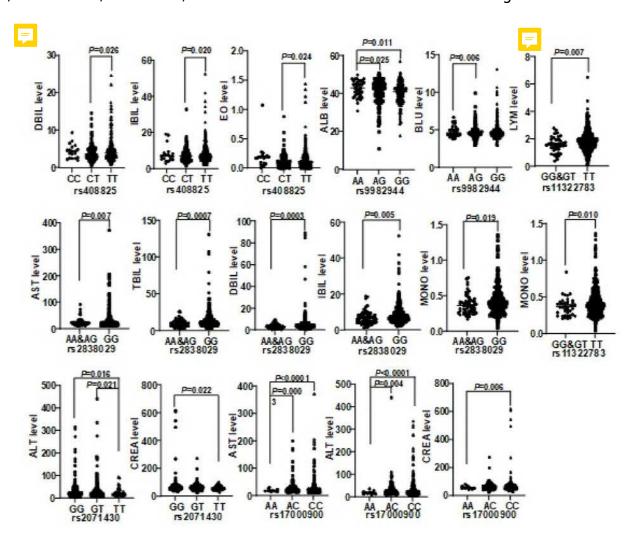


Figure 2

Figure 2. Comparison of biochemical index of HBV patients with different genotypes of each SNP.

Rs11322783 located in the *IFNL4* gene; rs2071430 and rs17000900 was in the region of MxA gene; rs9982944, rs408825, and rs2838029 were located in the MxB gene.

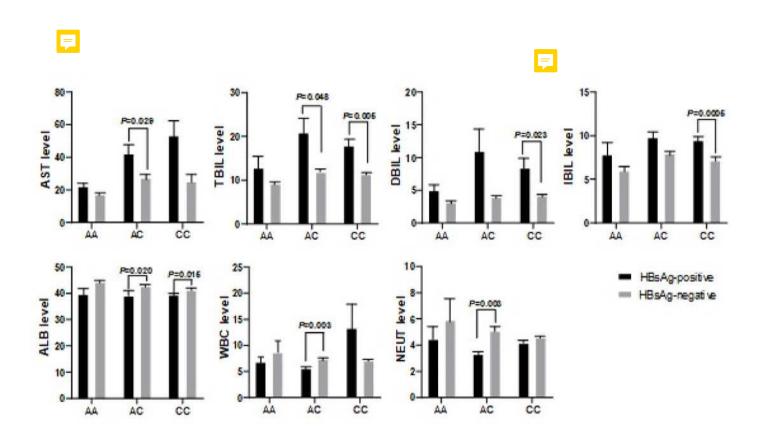


Figure 3

Figure 3. comparison of biochemical indexes between HBsAg-positive and -negative HBV patients with various genotypes of rs17000900.

The AST and TBIL level were significantly higher in patients with HBsAg-positive and genotype AC; The DBIL and IBIL level were significantly higher in patients with HBsAg-positive and genotype CC; The ALB was significantly lower in patients with HBsAg-positive and genotype AC/CC; The WBC and NEUT level were significantly lower in patients with HBsAg-positive and genotype AC.

Table 1(on next page)

Table 1. Analysis of biochemical index between HBV infected persons and controls.

1 Table 1. Analysis of biochemical index between HBV infected persons and controls.

HBV patients		controls	<i>P</i> -value		
Gender					
Male (%)	245 (54.69%)	275 (61.38%)	>0.05		
Female (%)	203 (45.31%)	173 (38.62%)			
Age	42.12 ± 0.38	40.58 ± 0.53	>0.05		
AST (U/L)	37.37 ± 4.07	24.63 ± 0.53	0.002		
ALT (U/L)	47.49 ± 7.30	29.00 ± 1.04	0.013		
TBIL (µmol/L)	14.78 ± 0.89	11.66 ± 0.28	0.0009		
DBIL (μmol/L)	6.40 ± 0.69	3.86 ± 0.09	0.0003		
IBIL (μmol/L)	8.39 ± 0.25	7.78 ± 0.19	0.053		
TP (g/L)	73.12 ± 0.37	78.57 ± 0.20	< 0.0001		
ALB (g/L)	40.78 ± 0.29	47.18 ± 0.13	< 0.0001		
GLOB (g/L)	32.25 ± 0.26	31.53 ± 0.18	0.010		
GLU (mmol/L)	4.88 ± 0.07	5.34 ± 0.06	< 0.0001		
BUN (mmol/L)	4.94 ± 0.13	5.04 ± 0.06	0.491		
CREA (µmol/L)	75.86 ± 4.22	71.56 ± 0.79	0.317		
UA (µmol/L)	344.6 ± 4.91	352.1 ± 4.59	0.265		
WBC (10 ⁹ /L)	9.28 ± 2.42	6.70 ± 0.12	0.288		
NEUC (10 ⁹ /L)	4.41 ± 0.13	3.77 ± 0.06	< 0.0001		
LYM (10 ⁹ /L)	1.82 ± 0.03	2.25 ± 0.03	< 0.0001		
MONO (10 ⁹ /L)	0.43 ± 0.01	0.57 ± 0.11	0.199		
EO (10 ⁹ /L)	0.15 ± 0.01	0.14 ± 0.005	0.361		
BASO (10 ⁹ /L)	0.03 ± 0.001	0.03 ± 0.001	0.0005		

Table 2(on next page)

Table 2. Analysis of genotypes and alleles in the *IFNL4*, *MxA*, and *MxB* genes between HBV infected persons and controls.

1 Table 2. Analysis of genotypes and alleles in the *IFNL4*, *MxA*, and *MxB* genes between HBV

2 infected persons and controls.

·	infected persons and controls.					
SNP		HBV patients	Controls	<i>P</i> -value	OR (95% CI)	
		(N= 448)	(N=448)			
rs11322783	3 (IFNL4	ı´				
Genotype	ΔG	1	1	0.479	1.000 (0.053-19.04)	
	$\Delta G/T$	40	25	0.071	1.659 (1.000-2.812)	
	TT	407	422	0.075	0.612 (0.368-1.000)	
Allele	ΔG	42	27	0.086	1.583 (0.970-2.566)	
	T	854	869		0.632 (0.390-1.031)	
rs11764844	44 (<i>IFNI</i>	(L4)				
Genotype	AA	0	0	-	-	
	AG	11	7	0.475	1.586 (0.627-4.119)	
	GG	437	441	0.475	0.631 (0.243-1.595)	
Allele	A	11	7	0.477	1.579 (0.630-4.115)	
	G	885	889		0.634 (0.243-1.588)	
rs2071430	(MxA)					
Genotype	GG	230	217	0.423	1.123 (0.867-1.456)	
	GT	168	188	0.195	0.830 (0.632-1.087)	
	TT	50	43	0.511	1.183 (0.767-1.801)	
Allele	G	628	622	0.797	1.032 (0.844-1.262)	
	T	268	274		0.969 (0.792-1.185)	
rs17000900	O(MxA)					
Genotype	AA	12	13	0.999	0.921 (0.414-1.988)	
	AC	112	114	0.939	0.977 (0.726-1.314)	
	CC	324	321	0.882	1.034 (0.775-1.380)	
Allele	A	136	140	0.844	0.966 (0.746-1.250)	
	С	760	756		1.035 (0.800-1.340)	
rs9982944	(MxB)					
Genotype	AA	37	40	0.812	0.918 (0.576-1.452)	
	AG	204	222	0.255	0.851 (0.656-1.103)	
	GG	207	186	0.178	1.210 (0.930-1.576)	
Allele	A	278	302	0.246	0.885 (0.725-1.079)	
	G	618	594		1.130 (0.926-1.380)	
rs408825 (<i>MxB</i>)						
Genotype	CC	19	18	0.999	1.058 (0.560-2.024)	
	CT	126	131	0.768	0.947 (0.712-1.260)	
	TT	303	299	0.831	1.041 (0.784-1.370)	
Allele	С	164	167	0.903	0.978 (0.771-1.240)	
	T	732	729		1.022 (0.806-1.297)	

rs2838029 (<i>MxB</i>)					
Genotype	AA	1	5	0.219	0.198 (0.017-1.434)
	AG	60	58	0.921	1.040 (0.702-1.544)
	GG	387	385	0.923	1.038 (0.712-1.516)
Allele	A	62	68	0.649	0.905 (0.635-1.284)
	G	834	828		1.105 (0.779-1.576)

4

Table 3(on next page)

Table 3. haplotype analysis constructed by seven SNPs between HBV infected persons and controls.

Table 3. haplotype analysis constructed by seven SNPs between HBV infected persons and controls.

haplotype	HBV patients	controls	<i>P</i> -value	OR (95% CI)
TGGCATG	85	97	0.386	0.872 (0.639-1.189)
TGGCGCA	42	54	0.238	0.778 (0.512-1.182)
TGGCGTG	405	378	0.094	1.189 (0.971-1.456)
TGTAATG	68	66	0.822	1.042 (0.730-1.486)
TGTAGTG	34	51	0.065	0.660 (0.423-1.030)
TGTCATG	63	72	0.456	0.874 (0.612-1.246)
TGTCGTG	49	38	0.184	1.344 (0.868-2.081)
others	150	140	_	-

Table 4(on next page)

Table 4. Genotype and allele frequency in patients with HBsAg-positive and -negative.

Table 4. Genotype and allele frequency in patients with HBsAg-positive and -negative.

SNP	J 1	HBsAg-	HBsAg-	P-value	OR (95% CI)
		positive HBV	negative HBV		
		patients	patients		
		(N=210)	(N=238)		
rs1132278	3				
Genotype	ΔG	0	1	0.999	0.000 (0.000-10.20)
	$\Delta G/T$	16	24	0.455	0.735 (0.369-1.431)
	TT	194	213	0.372	1.423 (0.741-2.819)
Allele	ΔG	16	26	0.313	0.686 (0.359-1.260)
	T	404	450		1.459 (0.793-2.789)
rs1176484	44				
Genotype	AA	0	0	-	-
	AG	6	5	0.833	1.371 (0.400-3.986)
	GG	204	233	0.833	0.730 (0.251-2.503)
Allele	A	6	5	0.835	1.365 (0.404-3.931)
	G	414	471		0.733 (0.254-2.478
rs2071430					
Genotype	GG	110	120	0.749	1.082 (0.742-1.579)
	GT	75	93	0.525	0.866 (0.588-1.269)
	TT	25	25	0.749	1.151 (0.632-2.098)
Allele	G	295	333	0.985	1.013 (0.760-1.355)
	T	125	143		0.987 (0.738-1.316)
rs1700090	0				
Genotype	AA	6	6	0.942	1.137 (0.354-3.648)
	AC	43	69	0.049	0.631 (0.407-0.976)
	CC	161	163	0.068	1.512 (0.984-2.318)
Allele	A	55	81	0.124	0.735 (0.507-1.063)
	C	365	395		1.361 (0.941-1.971)
rs9982944					
Genotype	AA	18	19	0.957	1.081 (0.549-2.100)
	AG	94	110	0.831	0.943 (0.644-1.378)
	GG	98	109	0.929	1.036 (0.709-1.513)
Allele	A	130	148	0.978	0.994 (0.748-1.317)
	G	290	328		1.007 (0.759-1.338)
rs408825					
Genotype	CC	9	10	0.849	1.021 (0.422-2.585)
	CT	54	72	0.337	0.798 (0.529-1.217)
	TT	147	156	0.366	1.226 (0.831-1.826)
Allele	С	72	92	0.449	0.864 (0.615-1.219)

	T	348	384		1.158 (0.820-1.625)
rs2838029					
Genotype	AA	0	1	0.950	0.000 (0.000-10.02)
	AG	25	35	0.466	0.784 (0.457-1.348)
	GG	185	202	0.393	1.319 (0.772-2.253)
Allele	A	25	37	0.347	0.751 (0.438-1.270)
	G	395	439		1.332 (0.788-2.285)