
Determination of muscle strength and
function in plesiosaur limbs: finite element
structural analyses of Cryptoclidus
eurymerus humerus and femur
Anna Krahl1,2,3, Andreas Lipphaus2, P. Martin Sander1 and
Ulrich Witzel2

1 Institute of Geoscience, Section Paleontology, Rheinische Friedrich-Wilhelms Universität Bonn,
Bonn, Germany

2 Biomechanics Research Group, Chair of Product Development, Faculty of Mechanical
Engineering, Ruhr-Universität Bochum, Bochum, Germany

3 Paleontological Collection Fachbereich Geowissenschaften, Eberhard-Karls-Universität
Tübingen, Tübingen, Germany

ABSTRACT
Background: The Plesiosauria (Sauropterygia) are secondary marine diapsids. They
are the only tetrapods to have evolved hydrofoil fore- and hindflippers. Once this
specialization of locomotion had evolved, it remained essentially unchanged for 135
Ma. It is still controversial whether plesiosaurs flew underwater, rowed, or used a
mixture of the two modes of locomotion. The long bones of Tetrapoda are
functionally loaded by torsion, bending, compression, and tension during
locomotion. Superposition of load cases shows that the bones are loaded mainly by
compressive stresses. Therefore, it is possible to use finite element structure analysis
(FESA) as a test environment for loading hypotheses. These include muscle
reconstructions and muscle lines of action (LOA) when the goal is to obtain a
homogeneous compressive stress distribution and to minimize bending in the model.
Myological reconstruction revealed a muscle-powered flipper twisting mechanism.
The flippers of plesiosaurs were twisted along the flipper length axis by extensors and
flexors that originated from the humerus and femur as well as further distal locations.
Methods: To investigate locomotion in plesiosaurs, the humerus and femur of a
mounted skeleton of Cryptoclidus eurymerus (Middle Jurassic Oxford Clay
Formation from Britain) were analyzed using FE methods based on the concept of
optimization of loading by compression. After limb muscle reconstructions including
the flipper twisting muscles, LOA were derived for all humerus and femur muscles of
Cryptoclidus by stretching cords along casts of the fore- and hindflippers of the
mounted skeleton. LOA and muscle attachments were added to meshed volumetric
models of the humerus and femur derived from micro-CT scans. Muscle forces were
approximated by stochastic iteration and the compressive stress distribution for
the two load cases, “downstroke” and “upstroke”, for each bone were calculated by
aiming at a homogeneous compressive stress distribution.
Results: Humeral and femoral depressors and retractors, which drive underwater
flight rather than rowing, were found to exert higher muscle forces than the elevators
and protractors. Furthermore, extensors and flexors exert high muscle forces
compared to Cheloniidae. This confirms a convergently evolved myological
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mechanism of flipper twisting in plesiosaurs and complements hydrodynamic
studies that showed flipper twisting is critical for efficient plesiosaur underwater
flight.

Subjects Environmental Sciences, Evolutionary Studies, Paleontology, Zoology
Keywords Finite element structure analysis, Muscle forces, Flipper twisting, Cryptoclidus
eurymerus, Humerus and femur, Underwater flight, Plesiosaur, Lines of action, Load case

INTRODUCTION
Plesiosauria are secondarily aquatic tetrapods that lived in the sea from the Late Triassic
(Wintrich et al., 2017) until the Cretaceous–Paleogene (K–Pg) mass extinction (Bardet,
1994; Motani, 2009; Vincent et al., 2011; Vincent et al., 2013; Bardet et al., 2014).
Plesiosauria are the most evolved group of Sauropterygia. They first appear in the fossil
record in the late Early Triassic, but their origin and relationships remain unclear.
Sauropterygia may have evolved from basal archosauromorphs (Merck, 1997) or
lepidosauromorphs (Rieppel & Reisz, 1999), or may be a sister taxon to archosauromorphs
and lepidosauromorphs (Neenan, Klein & Scheyer, 2013). The most striking and unique
key innovation of plesiosaurs is that by the Late Triassic they had evolved four
similar-looking wing-like flippers (Wintrich et al., 2017), which must have been their only
propulsive organs, unlike all non-plesiosaurian sauropterygians, which were largely axial
swimmers.

In plesiosaurs, all four pectoral flippers are dorsoventrally flattened, have a greatly
shortened zeugopodium (<one-third of autopodium length) (Wintrich et al., 2017), and
form a hydrofoil profile (Robinson, 1975, 1977). The pectoral flippers may have had an
asymmetrical profile (Robinson, 1975; Caldwell, 1997), like the pectoral flippers of
present-day underwater flying penguins (Spheniscidae) and sea turtles (Chelonioidea (i.e.,
Cheloniidae + Dermochelyidae)). Unlike plesiosaurs, only the foreflippers of penguins, sea
turtles, whales and dolphins (Cetacea), and sea lions (Otariinae) are hydrofoil-like flippers
(Walker, 1973; Schreiweis, 1982; Feldkamp, 1987; Fish & Battle, 1995; Fish, 2004; Cooper
et al., 2007; Elliott et al., 2013). The hindflippers of sea turtles, penguins, and sea lions are
paddles (Shufeldt, 1901;Walker, 1971b; Davenport, Munks & Oxford, 1984) which are used
for steering and locomotion on land and in water (Walker, 1971b; Pinshow, Fedak &
Schmidt-Nielsen, 1977; Clark & Bemis, 1979; Davenport, Munks & Oxford, 1984; Feldkamp,
1987; Wyneken, 1997). The hind limbs of cetaceans were completely reduced during their
evolutionary history.

Osteology of the appendicular skeleton of plesiosaurs
The scapula and coracoid of the pectoral girdle, and the pubis and ischium of the pelvic
girdle of plesiosaurs, consist of large flat bony plates lying ventrally. All except the scapula
meet the element on the other side in a medial symphysis at the midline of the body in a
slightly v-shaped configuration. In some plesiosaurs, the scapulae also meet in a medial
symphysis. The coracoid and pubis are greatly expanded. The dorsal extension of the
scapula and the dorsally directed ilium are greatly reduced (Andrews, 1910). Gastralia lie
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between the pectoral and pelvic girdles and stiffen the trunk region (Sues, 1987; Taylor,
1989). Humeri and femora of some plesiosaurs such as Cryptoclidus eurymerus, a Middle
Jurassic cryptoclidid known from many specimens from the lower Oxford Clay Formation
of England (Andrews, 1910), have a rounded proximal end and an oval midshaft cross-
section. The epicondyles are expanded and hammer-shaped. The mounted skeleton of
Cryptoclidus eurymerus in the Goldfuß Museum, University of Bonn (IGPB R 324) shows
these features well. The humeral and femoral heads of plesiosaurs were probably covered
by a thick and vascularized cartilaginous cap (Krahl, 2021), as has been reported for
Dermochelys coriacea (Rhodin, Ogden & Conlogue, 1981; Snover & Rhodin, 2008).

The distal end of the humerus of Cryptoclidus is greater than that of the femur and
rather atypical for most plesiosaurs (see, e.g., Großmann, 2006; Sachs, Hornung & Kear,
2016). Radius/ulna and tibia/fibula are greatly shortened and have a discoid appearance
(Andrews, 1910). Metacarpal V and metatarsal V are integrated proximally into the rows of
carpals and tarsals (Robinson, 1975). Fore- and hindflippers exhibit hyperphalangy
(Andrews, 1910).

Flipper muscle reconstructions
Plesiosaur muscles have been previously reconstructed by several researchers, including
Watson (1924), Tarlo (1958), Robinson (1975), Lingham-Soliar (2000), Carpenter et al.
(2010), Araújo & Correia (2015), and Krahl & Witzel (2021). Carpenter et al. (2010),
Araújo & Correia (2015), and Krahl & Witzel (2021) relied on the extant phylogenetic
bracket (EPB), a method developed in the 1990s to make reliable inferences about the soft
tissue anatomy of fossils (Bryant & Russel, 1992; Wittmer, 1995). Older studies (Watson,
1924; Tarlo, 1958; Robinson, 1975; Lingham-Soliar, 2000) did not use EPB and did not
clearly indicate which living taxa they relied on for their muscle reconstructions. Muscles
originating at the pectoral girdle and attaching to (or spanning) the humerus were
reconstructed by Watson (1924), Tarlo (1958), Robinson (1975), Lingham-Soliar (2000),
Carpenter et al. (2010), Araújo & Correia (2015), and by Krahl & Witzel (2021).
Locomotory muscles originating from the pelvic girdle, traversing the femur, and attaching
to the femur were partially reconstructed by Robinson (1975), Lingham-Soliar (2000),
and Carpenter et al. (2010), and completely reconstructed by Krahl & Witzel (2021).
Muscles originating distally from the humerus and femur were partially reconstructed by
Robinson (1975) and completely by Krahl & Witzel (2021). Robinson (1975) appears to
have reconstructed the ventral side of the foreflipper and the dorsal side of the hindflipper,
although this is not clearly stated (Robinson, 1975; Krahl & Witzel, 2021). The superficial
conclusion would be that the dorsal and ventral fore- and hindflipper sides might look
the same in plesiosaurs, which is not supported by the EPB because the dorsal and ventral
fore and hind limb musculature of living Sauropsida are not congruent (Walker, 1973;
Meers, 2003; Russell & Bauer, 2008; Suzuki et al., 2011). The distal fore- and hindflipper
musculature of plesiosaurs reconstructed by Robinson (1975) looks very similar to the
foreflipper musculature of cetaceans in its extreme reduction (Cooper et al., 2007). This
whale-like condition seems unlikely for plesiosaurs because the foreflippers of whales are
merely control surfaces and not lift-producing propulsory organs (Fish, 2002; Woodward,
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Winn & Fish, 2006), whereas the main propulsive organ of whales is a large muscular
swimming tail with a fluke (Fish, 1996; Woodward, Winn & Fish, 2006). In contrast,
plesiosaurs swam actively with their fore- and hindflippers (Krahl & Witzel, 2021).
Krahl &Witzel (2021) were the first to reconstruct the entire locomotor musculature of the
fore- and hindflippers of a plesiosaur. They reconstructed a complex arrangement of
muscles for plesiosaur fore- and hindflippers that would allow the plesiosaur to twist its
two pairs of flippers along the flipper length axis and perhaps even actively control the
flipper profile, as suggested by hydrodynamic calculations of plesiosaurs by Witzel, Krahl
& Sander (2015) and Witzel (2020).

Hypotheses on the locomotion of plesiosaurs
The locomotion style of plesiosaurs has been the subject of an ongoing debate for over a
century (Williston, 1914; Watson, 1924; Tarlo, 1958; Robinson, 1975, 1977; Feldkamp,
1987; Lingham-Soliar, 2000; Carpenter et al., 2010; Araújo et al., 2015; Araújo & Correia,
2015; Liu et al., 2015; Krahl & Witzel, 2021). It has been suggested that plesiosaurs
rowed like ducks or otters (Williston, 1914;Watson, 1924; Tarlo, 1958; Araújo et al., 2015;
Araújo & Correia, 2015), fly underwater like sea turtles and penguins (Robinson, 1975,
1977; Lingham-Soliar, 2000; Carpenter et al., 2010; Liu et al., 2015; Muscutt et al., 2017;
Krahl &Witzel, 2021), or use rowing-flight like sea lions (Feldkamp, 1987; Liu et al., 2015).
The main difference between the different modes of locomotion stems from the underlying
hydrodynamics: rowing uses water resistance to push the body forward, whereas
underwater flight generates lift and thrust from oncoming water currents moving around a
cambered flipper profile (e.g., Baudinette & Gill, 1985; Fish, 1996; Walker & Westneat,
2000). Sea lion rowing-flight relies on both hydrodynamic mechanisms, drag and lift, at
different stages of the limb cycle (Feldkamp, 1987). It has also been proposed that the
anterior pair of flippers uses a different mode of locomotion than the posterior pair of
flippers (Tarlo, 1958; Lingham-Soliar, 2000; Liu et al., 2015).

A flipper used in rowing is usually moved in an anteroposterior direction, with little
dorsoventral movement (Pace, Blob &Westneat, 2001; Rivera, Rivera & Blob, 2011; Rivera,
Rivera & Blob, 2013). The anteroposterior extension and dorsoventral reduction of the
bony elements of the pectoral and pelvic girdles of plesiosaurs, and the accompanying
reduction or hypertrophy of the locomotor musculature, have been interpreted as favoring
the protraction and retraction of the pectoral flipper, i.e., a rowing motion (Watson, 1924;
Tarlo, 1958; Godfrey, 1984).

In contrast, the pectoral flipper is flapped mainly dorsoventrally during underwater
flight, with a minor anteroposterior component. The downstroke of the flippers of
Cheloniidae and Spheniscidae is characterized by strong depression and slight retraction of
the flipper. The upstroke is accomplished by elevation and protraction of the humerus.
The flipper tip describes an oblique “O” in the anterodorsal-posteroventral direction
(Clark & Bemis, 1979; Davenport, Munks & Oxford, 1984; Rivera, Wyneken & Blob,
2011; Rivera, Rivera & Blob, 2013). As Robinson (1975) noted, the hydrofoil-shaped
flippers of plesiosaurs, tapering toward the tip and superficially comparable to those of
penguins and sea turtles, suggest that they were used for underwater flight rather than
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rowing. In addition, the shoulder and hip joints of plesiosaurs restrict movement in the
anteroposterior direction more than in the dorsoventral direction (Krahl, 2021).

In rowing-flight, the downstroke is lift-generating and similar to the downstroke of
underwater fliers. At the point of maximum ventral flipper excursion, the flipper suddenly
functions like a paddle and pushes against the water as it is retracted and elevated.
During the recovery stroke, the flipper is protracted and elevated with little to no
contribution to propulsion (Feldkamp, 1987). Godfrey (1984) noted that in recent
underwater fliers, the shoulder girdles are characterized by a strong bony support that
extends in a dorsoventral direction, which is not the case in plesiosaurs. Therefore, he
concluded that sea lions and plesiosaurs share more similarities than recent “true”
underwater fliers (Godfrey, 1984).

In addition to locomotion style, there is still debate about how the four flippers
moved in relation to each other, i.e., fore- and hindflippers synchronous, asynchronous, or
out of phase. This is the so-called “four-wing problem”, which is about how plesiosaurs
avoided placing their hindflippers in the vortices shed by their foreflippers, which
would result in a significant decrease in hindflipper performance (Frey & Riess, 1982;
Tarsitano & Riess, 1982; Lingham-Soliar, 2000; Carpenter et al., 2010; Muscutt et al.,
2017). Experiments in a water tank showed that plesiosaur underwater flight was most
efficient when the fore- and hindflippers were slightly out of phase, i.e., the foreflipper was
slightly in front of the hindflipper (Muscutt et al., 2017).

Basics of muscle physiology
During a limb cycle, muscles can follow either a shortening-stretch cycle or a stretch-
shortening cycle. In the first case, the muscle is shortened while its force output increases.
Then, the muscle is stretched and the force output decreases. In the latter, the muscle is
initially stretched while its force output increases. As the muscle contracts, its force output
decreases (Rassier, MacIntosh & Herzog, 1999). The force production of the muscle
depends on the architecture of the muscle. Muscle architecture includes the length of the
muscle and tendon (if any), lines of action, muscle mass, specific density of the muscle,
intrinsic muscle force, fascial length, and pennation angle (Alexander & Vernon, 1975;
Gans, 1982; Sacks & Roy, 1982; Powell et al., 1984; Narici, Landoni & Minetti, 1992;
Anapol & Barry, 1996; Kummer, 2005; Azizi, Brainerd & Roberts, 2008). Parallel-fibered
muscles have, on average, longer fascicles, greater volume, and can contract faster (which
depends on the composition of the fiber types) than pennate muscles. However, more
muscle fibers may be juxtaposed in a pennate muscle than in a parallel-fibered muscle
of the same size. Therefore, a pennate muscle can exert a greater force than a parallel-
fibered muscle of the same size, even though the pennate muscle has shorter fibers. This
is because maximum muscle force depends not only on fiber length, but also on its
physiological cross-sectional area (PCSA), i.e., the sum of fiber cross-sections (Gans, 1982;
Burkholder et al., 1994; Allen et al., 2010; Huq, Wall & Taylor, 2015).

The muscle length of a parallel-fibered, fast-contracting muscle also varies considerably
and comes at the expense of a high metabolic cost and relatively low force production.
In contrast, highly pennate muscles exert relatively high forces at a much lower metabolic
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cost, but contract much more slowly and have poor control of fiber contraction (Biewener
& Roberts, 2000).

Pennate muscles can generate relatively high forces while their muscle lengths behave
almost isometrically, e.g., in turkey (musculus (m.) gastrocnemius) (Roberts et al., 1997) or
wallaby (m. gastrocnemius, m. plantaris) (Biewener, Konieczynski & Baudinette, 1998).
In contrast, the pennate m. pectoralis muscle, which has a very high output, shows a
very large muscle length change of 30–40% in Columba livia (Biewener, Corning &
Tobalske, 1998; Biewener & Roberts, 2000) or about 30% in Anas platyrhynchos
(Williamson, Dial & Biewener, 2001). In general, the change in muscle length of striated
vertebrate muscles can be up to +/– 25% (contraction and extension relative to resting
length (= 0%)) before their ability to generate force decreases significantly (Biewener &
Roberts, 2000).

Finite element structural analysis
As measurements with strain gauges show, the long bones of Tetrapoda are functionally
loaded by torsion, compression, and bending in an intermittent fashion. Most often
they are loaded by bending in alternate directions or mainly by compression and
subordinately by tension. High torsional loads act on the long bones of terrestrial tetrapods
(Biewener & Dial, 1995; Carrano, 1998; Blob & Biewener, 1999; Main & Biewener, 2004,
2007; Butcher et al., 2008; Butcher & Blob, 2008; Sheffield et al., 2011; Young & Blob,
2015; Young et al., 2017).

To represent such changing loading conditions, a series of load cases can be analyzed
using finite element structural analysis (FESA; Witzel & Preuschoft, 2005) and then be
superimposed on each other (Carter, Orr & Fyhrie, 1989). Reducing the bending
moment (Klenner et al., 2015; Lutz et al., 2016;Milne, 2016;McCabe et al., 2017; Lipphaus
& Witzel, 2018) can result in lightweight biological structures (Klenner et al., 2015). While
structures under bending are subjected to compression on one side and tension on the
opposite side, homogeneous compression with low tensile stresses indicates low bending.
A further concept relevant for our analysis is bending-minimized lightweight design
(Witzel et al., 2011; Bartz, Uttich & Bender, 2019; Gößling et al., 2014). The importance of
bending-minimized lightweight design is that it reduces the energy required for
locomotion. The principle of bending-minimized lightweight design is that the shape of
the bone is guided by the functional superposition of all mechanical loads experienced by a
given bone during its ontogeny (Wolff, 1893; Carter, Orr & Fyhrie, 1989; Witzel &
Preuschoft, 2005). A homogeneous compressive stress distribution optimally utilizes the
material: Bartz et al. (2018) conducted a study on a beam with a fixed support loaded with a
single force at the end of the beam and showed a significant weight reduction when
topology optimization and tension cables are combined to achieve homogeneous
compressive stresses. We apply this principle in our FESA of the plesiosaur humerus and
femur.

FESA is used in various disciplines that include engineering and biomechanics
(Rayfield, 2007). FESA enables the analysis of mechanical stresses and strains in
engineering and biological structures in 2-D or 3-D (Rayfield, 2007;Witzel et al., 2011) and
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can contribute to our understanding of the function of bony elements (Witzel et al., 2011).
Compressive loads are applied to bone via tension chords. Tension chords are either
muscles and tendons (active tension chords) or ligaments (passive tension chords), and
they act in pairs of agonists and antagonists (Witzel & Preuschoft, 2005; Sverdlova &
Witzel, 2010; Curtis et al., 2011;Witzel et al., 2011; Klenner et al., 2015; Felsenthal & Zelzer,
2017, Krahl et al., 2019). A movement is driven by the agonist while the antagonist opposes
it to perform a controlled movement (Sverdlova & Witzel, 2010). When the same
movement is reversed, the agonist becomes the antagonist and vice versa. Thus, agonists
and antagonists constantly load a bony structure by compressive stress, although the
agonist exerts a proportionally higher force than the antagonist. In the past, FESA has been
successfully used in functional morphology to predict tension chords in living animals,
such as a collagenous and elastic tissue extending longitudinally below the septum nasi and
associated with the m. pterygoideus anterior in crocodylians, which was later confirmed in
dissections (Klenner et al., 2015).

The objective of this study was to test muscle reconstructions of plesiosaurs using
FESA. Muscle reconstructions obtained with the EPB, i.e., based on comparative
anatomical studies, and mechanically imposed demands on muscles inform each other.
We investigated how muscle physiological details, such as muscle length changes, can
contribute to muscle reconstructions of fossils and whether FESA of the plesiosaur
humerus and femur can provide information about plesiosaur locomotion. The results
complement previous hydrodynamic and morphological studies suggesting that
plesiosaurs must have used flipper twisting for efficient underwater flight (Witzel, Krahl &
Sander, 2015; Witzel, 2020; Krahl, 2021), which is a common phenomenon in aquatic
vertebrates (e.g., Walker & Westneat, 2000; Walker & Westneat, 2002) and confirm the
myological mechanism of flipper twisting reconstructed by Krahl & Witzel (2021).

MATERIALS AND METHODS
Analog model of the lines of action of the flipper muscles of
Cryptoclidus
LOA represent the direct connection in a straight line between the origin and attachment
of a muscle (Krahl et al., 2019). However, it should be noted that this is a simplification
made for FE/multibody dynamics modeling of often more complex muscle pathways
that may, for example, wrap around bone during part of a movement cycle (Krahl et al.,
2019; Snively et al., 2013). LOA were obtained experimentally in an analog model (Fig. 1)
using resin casts of the pectoral (Figs. 2–4) and pelvic girdles and limbs (Figs. 5–7) of
the mounted skeleton of Cryptoclidus eurymerus (IGPB R 324) exhibited at the Goldfuß
Museum, Section of Paleontology, Institute of Geosciences, University of Bonn (IGPB), on
which the muscle reconstructions of Krahl & Witzel (2021) are based.

To build the analog model, the casts of the pectoral and pelvic girdles were mounted on
a wooden frame built from slats mostly 2.5 by 5 cm in cross section and fixed with
screws. Slats were also used to model the vertebral column. The vertebral column needed
to be part of the model because it serves as the origin of some locomotor muscles.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 7/48

http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


The anatomical positioning of the bone casts and the vertebral column was based on the
mount. The missing cartilage cover in the shoulder and hip joints was replaced with thick
styrofoam pads. The goal was to achieve congruency between the oval glenoid and
acetabulum and the rounder humeral and femoral head. This required a styrofoam
thickness of up to about ten millimeters. This assumption is based on the observation of
specialized vascularized cartilage in Dermochelys coriacea and its associated osteological
correlates (a highly grooved and pierced articular surface of the humeral head) (Rhodin,
Ogden & Conlogue, 1981; Snover & Rhodin, 2008) and the presence of comparable
osteological correlates in Cryptoclidus eurymerus humeri and femora, as noted by Krahl
(2021). Non-elastic white nylon cords were used to physically model the muscle lines of
action, hereafter termed muscle cords. The fore- and hindflippers were hung into the
frame and attached to the pectoral and pelvic girdle in the respective joints with help of the
muscle cords. Screw eye pins were screwed into the cast at the muscle origin and insertion
points, and the muscle cords were tied to these. When further mechanical support was
necessary, the flippers were fixed in the selected flipper positions by additional nylon cords
(Fig. 1).

Figure 1 Analog model demonstrating LOA of Cryptoclidus eurymerus (IGPB R 324) fore- and
hindflipper. Pectoral and pelvic girdle were fixed on a wooden frame. Thick styrofoam was placed
into the glenoid and acetabulum joint cavity. Black threads helped to fix the flippers in their respective
position. White threads represent LOA: a) screw eye pins were screwed into muscle attachment surfaces.
b) Three electrical terminal strips were attached to one end. With hooks attached to each end of the
thread, LOA were hung into the screw eye pins. Full-size DOI: 10.7717/peerj.13342/fig-1
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Figure 2 Analog model of the myology of Cryptoclidus eurymerus (mounted skeleton IGPB R 324),
shoulder girdle and foreflipper in ventral view. (A) Mounted bone casts with white chords representing
the lines of action of the foreflipper muscles. (B) Tracing of the shoulder girdle and foreflipper with
muscle lines of action. Abbreviations of muscles: abdV, musculus abductor digiti V; adm, musculus
adductor digiti minimi; apb, musculus abductor pollicis brevis; b, musculus brachialis; bb, musculus
biceps brachii; cb, musculus coracobrachialis brevis; cl, musculus coracobrachialis longus; dc, musculus
deltoideus clavicularis; ds, musculus deltoideus scapularis; fcr, musculus flexor carpi radialis; fcu, mus-
culus flexor carpi ulnaris; fdlf/fdls, musculus flexor digitorum longus (foreflipper)/musculi flexores
digitorum superficialis; p, musculus pectoralis; pte, musculus pronator teres; sc, musculus supracor-
acoideus. Abbreviations of bones: c, coracoid; cl, clavicle; h, humerus; int, intermedium; r, radius; rad,
radiale; s, scapula; u, ulna; uln, ulnare; I, digit one; II, digit two; III, digit three; IV, digit four; V, digit
five. Full-size DOI: 10.7717/peerj.13342/fig-2
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Figure 3 Analog model of the myology of Cryptoclidus eurymerus (mounted skeleton IGPB R 324),
shoulder girdle and foreflipper in dorsal view. (A) Mounted bone casts with white chords representing
the lines of action of the foreflipper muscles. (B) Tracing of the shoulder girdle and foreflipper
with muscle lines of action. Abbreviations of muscles: ecu, musculus extensor carpi ulnaris; edbp/
edbs, musculi extensores digitores breves profundi/musculi extensores digitores breves superficialis; edc,
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The insertions of all fore- and hindflipper locomotor muscles spanning either the
glenoid or acetabulum (12 on the foreflipper, 14 on the hindflipper) were taken from Krahl
&Witzel (2021) (Figs. 2, 3, 5, 6). Each muscle cord was threaded through the holes of three
electrical terminal strips in sequence, later to be used in determining muscle length
changes (Table 1). Hooks were then attached to both ends of the cords, which were then
hooked into the screw eyes representing the muscle attachments (Fig. 1). If a muscle
attachment area is small, the screw eye pin was screwed in approximately in the middle.
In contrast, muscles with large attachment areas were divided into multiple subsections to
better capture the different fiber attachment angles and directions and to avoid stress
singularities that create artificially high stress and strain peaks at force transmission
points (Kim, Sankar & Kumar, 2018). Accordingly, the total muscle force of a muscle was
also subdivided, and portions of the total muscle force were assigned to the subsections.
In general, the most anterior and posterior points in the body midline were chosen for
screw eye pin placement (e.g., m. subcoracoscapularis, m. coracobrachialis brevis, m.
pectoralis). In the case of the m. latissimus dorsi, for example, a position between the most
cranial and the most caudal origin was chosen. This was done to represent the parts that
are best supported by the EPB (cranial and middle parts), but also to cover the less well
supported part (caudal part) (Krahl & Witzel, 2021).

These muscle subsections do not necessarily represent actual partitions of the reconstructed
muscles, although some muscles were likely compartmentalized, e.g., m. pectoralis,
m. latissimus dorsi, m. puboischiofemoralis internus, and m. puboischiofemoralis externus.
Muscles with two or more heads (i.e., m. deltoideus scapularis, m. deltoideus
clavicularis, m. coracobrachialis brevis, m. coracobrachialis longus, m. triceps brachii,
m. caudofemoralis brevis (ilium and vertebral column), m. flexor tibialis internus,
m. flexor tibialis externus, m. puboischiofemoralis internus, and m. puboischiofemoralis
externus) were implemented as two (or more) cords. The resulting vectors of the different
subsections of these muscles, which have a large area of origin, were included in the
FE models. Agonistic and antagonistic muscles attaching to, originating from, or spanning
the humerus (Table 2) and femur (Table 3) were inferred from the mount. Images for
documentation were taken from cranial/anterior (Figs. 4A–4F), caudal/posterior
(Figs. 7A–7F), ventral (Figs. 2A and 5A), and dorsal (Figs. 3A and 6A). Figures 2, 3, 5,
and 6 show some muscles that are not relatively close to the humerus, femur, or pectoral
flipper. This is probably not an anatomically correct muscle course. Muscles are normally
held closer to the body, such as by ligament slings. We did not add loop-like structures to
measure muscle length changes in the analog model because it proved impractical.
The implementation of the muscles in the FESAs were based on sketches in which we

Figure 3 (continued)
musculus extensor digitorum communis; ld, musculus latissimus dorsi; scs, musculus sub-
coracoscapularis; shp, musculus scapulohumeralis posterior; sl and ecr, musculus supinator longus and
musculus extensor carpi radialis; sm, musculus supinator manus; tb, musculus triceps brachii. Abbre-
viations of bones: c, coracoid; cl, clavicle; h, humerus; int, intermedium; r, radius; rad, radiale; s, scapula;
u, ulna; uln, ulnare; I, digit one; II, digit two; III, digit three; IV, digit four; V, digit five.

Full-size DOI: 10.7717/peerj.13342/fig-3
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Figure 4 Analog model of the muscle lines of action of the foreflipper of Cryptoclidus eurymerus
(mounted skeleton IGPB R 324) in anterior and ventral views. The images in the left column (A, C,
E) show an overview of the flipper muscles. The images in the right column focus on the humeral
muscles. (A) and (B) foreflipper during maximal dorsal excursion in anterior view. (C) and (D) fore-
flipper in the neutral position in the anterior view. (E) and (F) foreflipper during maximal ventral
excursion in the anterior view. Abbreviations: bb, musculus biceps brachii; cb, musculus coracobrachialis
brevis; dc, musculus deltoideus clavicularis; ds, musculus deltoideus scapularis; ecu, musculus extensor
carpi ulnaris; edc, musculus extensor digitorum communis; ld, musculus latissimus dorsi; p, musculus
pectoralis; sc, musculus supracoracoideus; scs, musculus subcoracoscapularis; shp, musculus scapulo-
humeralis posterior; sl and ecr, musculus supinator longus and extensor carpi radialis; tb, musculus
triceps brachii. Full-size DOI: 10.7717/peerj.13342/fig-4
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assumed force vectors for each muscle were closer, on average, to adjacent bone elements.
These muscles may have been held close by annular pulleys. Terminology for the limb
motion cycle follows Rivera, Wyneken & Blob (2011) and Krahl & Witzel (2021), who use
humeral and femoral depression, elevation, protraction, and retraction, which reflect well
the requirements for underwater flight.

Figure 5 Analog model of the myology of Cryptoclidus eurymerus (mounted skeleton IGPB R 324),
pelvic girdle and hindflipper in ventral view. (A) Mounted bone casts with white chords representing
the lines of action of the hindflipper muscles. (B) Tracing of the pelvic girdle and hindflipper with muscle
lines of action. Abbreviations of muscles: addV, musculus adductor digiti quinti; af, musculus adductor
femoris; fdlh/fdb, musculus flexor digitorum longus (hindflipper)/musculi flexores digitores breves; fh,
musculus flexor hallucis; fte, musculus flexor tibialis externus; fti, musculus flexor tibialis internus; gi and
ge, musculus gastrocnemius internus and musculus gastrocnemius externus; pe, musculus pu-bo-
ischiofemoralis externus; pit, musculus puboischiotibialis; pti, musculus pubotibialis; pp, musculus
pronator profundus; ta, musculus tibialis anterior. Abbreviations of bones: f, femur; fi, fibula; fib, fibulare;
int, intermedium; is, ischium; p, pubis; t, tibia; tib, tibiale; I, digit one; II, digit two; III, digit three; IV, digit
four; V, digit five. Full-size DOI: 10.7717/peerj.13342/fig-5
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Figure 6 Analog model of the myology of Cryptoclidus eurymerus (mounted skeleton IGPB R 324),
pelvic girdle and hindflipper in dorsal view. (A) Mounted bone casts with white chords representing the
lines of action of the hindflipper muscles. (B) Tracing of the pelvic girdle and hindflipper with muscle
lines of action. Abbreviations of muscles: cfb, musculus caudifemoralis brevis; cfl, musculus caudife-
moralis longus; edb, musculi extensors digitores breves; edl, musculus extensor digitorum longus; ehp,
musculus extensor hallucis proprius; f, musculus femorotibialis; ife, musculus iliofemoralis; ifi, musculus
iliofibularis; it, musculus iliotibialis; pb, musculus peroneus brevis; pl, musculus peroneus longus; pi,
musculus puboischiofemoralis internus. Abbreviations of bones: f, femur; fi, fibula; fib, fibulare; int,
intermedium; is, ischium; p, pubis; t, tibia; tib, tibiale; I, digit 1; II, digit 2; III, digit 3; IV, digit 4; V, digit
5. Full-size DOI: 10.7717/peerj.13342/fig-6
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Figure 7 Analog model of the muscle lines of action of the hindflipper of Cryptoclidus eurymerus
(IGPB R 324) in posterior and dorsal views. The images in the left column (A, C, E) show an over-
view of the flipper muscle lines of action. The images in the right column (B, D, F) focus on the femur
muscles. (A) and (B) hindflipper at maximum dorsal excursion in posterior view. (C) and (D) hindflipper
in the neutral position in posterior view. (E) and (F) hindflipper at maximal ventral excursion in posterior
view. Abbreviations: af, musculus adductor femoris; cfb + cfl, musculus caudifemoralis brevis + musculus
caudifemoralis longus; edl, musculus extensor digitorum longus; f, musculus femorotibialis; fdlh, mus-
culus flexor digitorum longus (hindflipper); fte, musculus flexor tibialis externus; fti, musculus flexor
tibialis internus; gi + ge, musculus gastrocnemius internus and musculus gastrocnemius externus; i,
musculus ischiotrochantericus; ife, musculus iliofemoralis; ifi, musculus iliofibularis; it, musculus ilioti-
bialis; pe, musculus puboischiofemoralis externus; pi, musculus puboischiofemoralis internus; pit,
musculus puboischiotibialis. Full-size DOI: 10.7717/peerj.13342/fig-7
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Table 1 Changes in length of Cryptoclidus eurymerus (IGPB R 324) humerus and femur muscles.

Musculus Number
coding for
muscle
(portion)
in
respective
diagram

Maximum
ventral
excursion
(cm)

Neutral
position
(cm)

Maximum
dorsal
excursion
(cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum ventral
excursion (cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum ventral
excursion (%)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum dorsal
excursion (cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum dorsal
excursion (%)

Muscle
stretching =
muscle
neutral
position
(=100%) +
muscle
lengthening
(%)

Muscle
contraction
= muscle
neutral
position
(=100%) -
shortening
of muscle
(%)

Total length
change of
muscle (%)
(= muscle
stretching -
muscle
contraction)

m. deltoideus
scapularis

1 22.2 13.6 9.8 8.6 63.24 −3.8 −7.63 163.24 92. 37 70.87

m. deltoideus
scapularis corrected

2 22.6 22.6 22.6 0 0 0 0 100 100 0

m. deltoideus
clavicularis

3 36.5 36.5 36.5 0 0 0 0 100 100 0

m. latissimus dorsi
(anterior)

4 42.7 34.9 29.8 7.8 22.35 −5.1 −14.61 122.35 85.39 36.96

m. latissimus dorsi (in
between)

5 43.9 37.6 32.6 6.3 16.76 −5 −13.3 116.76 86.7 30.06

m. latissimus dorsi
(posterior)

6 52.7 47.9 42.2 4.8 10.02 −5.7 −11.9 110.02 88.1 21.92

m. subcoracoscapularis
(anterior portion)

7 32.8 29.3 24.3 3.5 11.95 −5 −17.06 111.95 82.94 29.01

m. subcoracoscapularis
(posterior portion)

8 36.3 33.2 33.2 3.1 9.34 0 0 109.34 100 9.34

m. scapulohumeralis
anterior

9 30.9 29.5 27.4 1.4 4.75 −2.1 −7.12 104.75 92.88 11.87

m. scapulohumeralis
posterior

10 24.9 22.7 19.4 2.2 9.69 −3.3 −14.54 109.69 85.46 24.23

m. coracobrachialis
brevis (anterior)

11 29.3 36.7 40.5 −7.4 −20.16 3.8 10.35 110.35 79.84 30.51

m. coracobrachialis
brevis (posterior)

12 43.8 43.8 45.5 0 0 1.7 3.88 103.88 100 3.88

m. coracobrachialis
longus

13 43.1 52 53.9 −8.9 −17.12 1.9 3.65 103.65 82.88 20.77

m. pectoralis (anterior) 14 29.9 30.4 35.6 −0.5 −1.64 5.2 17.11 117. 11 98.36 18.75

m. pectoralis
(posterior)

15 27.4 33.1 39.2 −5.7 −17.22 6.1 18.43 118.43 82.78 35.65

m. supracoracoideus 16 24.5 31.7 31.7 −7.2 −22.71 0 0 100 77.29 22.71

m. biceps brachii 17 56.7 67.8 72.4 −11.1 −16.37 4.6 6.78 106.78 83.63 23.15

m. triceps brachii
(anterior)

18 36.8 36.8 36.8 0 0 0 0 100 100 0

m. triceps brachii
(posterior)

19 31.2 31.2 31.2 0 0 0 0 100 100 0

m. caudofemoralis
longus

1 61.3 63.5 64.6 −2.2 −3.46 1.1 6.15 106.15 96.54 9.61
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Table 1 (continued)

Musculus Number
coding for
muscle
(portion)
in
respective
diagram

Maximum
ventral
excursion
(cm)

Neutral
position
(cm)

Maximum
dorsal
excursion
(cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum ventral
excursion (cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum ventral
excursion (%)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum dorsal
excursion (cm)

Muscle length
change
(− = shortening,
+ = lengthening)
from neutral
position to
maximum dorsal
excursion (%)

Muscle
stretching =
muscle
neutral
position
(=100%) +
muscle
lengthening
(%)

Muscle
contraction
= muscle
neutral
position
(=100%) -
shortening
of muscle
(%)

Total length
change of
muscle (%)
(= muscle
stretching -
muscle
contraction)

m. caudofemoralis
brevis (ilium)

2 17.9 17.9 17.9 0 0 0 0 100 100 0

m. caudofemoralis
brevis (vc)

3 37.6 36.9 33.6 0.7 1.9 −3.3 −8.94 101.9 96.7 5.2

m. flexor tibialis
internus (vc)

4 63.7 58.4 52.3 5.3 9.8 −6.1 −10.45 109.8 93.9 15.9

m. flexor tibialis
internus (ischium)

5 43.1 47.1 49.2 −4 −8.49 2.1 4.46 104.46 91.51 12.95

m. flexor tibialis
externus (ischium)

6 42.8 47.5 49.4 −4.7 −9.89 1.9 4 104 90.11 13.89

m. flexor tibialis
externus (ilium)

7 42.6 37.2 31.9 5.4 14.52 −5.3 −14.25 114.52 85.75 28.77

m. iliofibularis 8 33.1 29 25.3 4.1 14.13 −3.7 −12.76 114.13 87.24 26.89

m. ambiens 9 29.3 29.3 31.7 0 0 2.4 8.19 108.19 100 8.19

m. puboischiotibialis 10 38.3 42.3 45.8 −4 −9.46 3.5 8.27 108.27 90.54 17.73

m. pubotibialis 11 33.4 33.4 33.4 0 0 0 0 100 100 0

m. iliofemoralis 12 18.3 14.2 13.6 4.1 28.87 −0.6 −4.23 128.87 95.77 33.1

m. ischiotrochantericus 13 21.5 21.5 23.7 0 0 2.2 10.23 110.23 100 10.32

m. iliotibialis 14 40.1 26.6 26.6 7.3 27.44 0 0 127.44 100 27.44

m. adductor femoris
(anterior)

15 30.4 32.8 36.2 −2.4 −7.31 3.4 6.71 106.71 92.69 14.02

m. adductor femoris
(lateroposterior)

16 26.6 30 32.9 −3.4 −11.33 2.9 9.67 109.67 88.67 21

m. puboischiofemoralis
internus (pubis)

17 36.8 32.3 30.3 4.5 14.85 −2 −6.19 114.85 93.81 21.04

m. puboischiofemoralis
internus (ischium)

18 29.4 27.2 23.3 2.2 8.09 −3.9 −14.34 108.09 85.66 22.43

m. puboischiofemoralis
internus (ilium)

19 10.4 9.5 9.5 0.9 9.47 0 0 109.47 100 9.47

m. puboischiofemoralis
internus (vertebral
column)

20 39.6 32.1 28.1 7.5 23.36 −4 −12.46 123.36 87.54 35.82

m. puboischiofemoralis
externus (pubis)

21 39.1 42.5 45.7 −3.4 −8 3.2 7.5 107.5 92 15.5

m. puboischiofemoralis
externus (ischium)

22 22.9 27.6 29.4 −4.7 −17.03 1.8 6.52 106.52 82.97 23.55
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Determination of changes in flipper muscle length
Total muscle length changes were measured on the analog model to determine if the
experimental data could be used to reconstruct plesiosaur muscles. Three positions in
the inferred beat cycle of the foreflipper and hindflipper were selected for determining the
total muscle length change of muscles originating at the pectoral and pelvic girdles or
vertebrae and inserting or spanning the humerus and femur. These flipper positions are

Table 2 Agonistic and antagonistic humerus muscles of Cryptoclidus eurymerus (IGPB R 324).

Agonists Antagonists

anterior portion of m. latissimus dorsi (eventually m. scapulohumeralis
posterior and m. scapulohumeralis anterior) (elevation, protraction)

posterior portion m. pectoralis (depression and retraction)

posterior portion of m. latissimus dorsi (elevation, retraction) anterior portion of m. pectoralis (protraction, depression)

m. subcoracoscapularis (anterior portion), m. deltoideus scapularis (both
elevation, protraction)

m. coracobrachialis longus, m. coracobrachialis brevis, m. biceps,
posterior portion of m. supracoracoideus (all retraction, depression)

m. subcoracoscapularis (posterior portion) (elevation, retraction) anterior portion of m. supracoracoideus, m. deltoideus clavicularis (all
depression, protraction)

m. latissimus dorsi, anterior portion of m. pectoralis, posterior portion of
m. subcoracoscapularis, m. deltoideus scapularis, m. coracobrachialis
brevis, m. coracobrachialis longus (rotation (leading edge upwards)

m. scapulohumeralis anterior, m. scapulohumeralis posterior, anterior
portion of m. subcoracoscapularis, m. deltoideus clavicularis, posterior
portion of m. pectoralis, m. biceps brachii, m. triceps brachii (leading
edge downwards)

m. biceps (retraction, depression) m. triceps (elevation, protraction)

m. extensor digitorum communis (extension metacarpals) m. flexor digitorum longus (flexes digit I–V)

humeral triceps head (offsets ulna slightly dorsally), m. extensor carpi
ulnaris (offsets ulna dorsally, or eventually extends metacarpal V)

m. flexor carpi ulnaris (displaces ulnar side of carpus ventrally, eventually
flexes metacarpal V)

m. supinator longus and extensor carpi radialis (offsets radius or
eventually the radial carpal side dorsally)

m. flexor carpi radialis (flexes metacarpal 1 or offsets the radial carpal side
ventrally), m. pronator teres (offsets radius ventrally), m. brachialis (offsets
radius slightly ventrally)

Table 3 Agonistic and antagonistic femur muscles of Cryptoclidus eurymerus (IGPB R 324).

Agonists Antagonists

m. puboischiofemoralis internus (pubis, vertebral column) (protraction,
elevation)

m. puboischiofemoralis externus (ischium), m. adductor femoris, m.
flexor tibialis internus (ischium), m. flexor tibialis externus (ischium), m.
ischiotrochantericus, m. puboischiotibialis (retraction, depression)

m. puboischiofemoralis externus (pubis, anterior) (protraction, and
depression)

m. puboischiofemoralis internus (ischium, ilium), m. caudifemoralis
brevis and m. caudifemoralis longus, m. iliofibularis, m. iliotibialis, m.
iliofemoralis, m. flexor tibialis externus (ilium), m. flexor tibialis internus
(vertebral column) (retraction elevation)

m. ambiens (protraction), m. pubotibialis (protraction) m. iliofibularis (elevation, retraction)

m. puboischiofemoralis externus (pubis), m. puboischiofemoralis internus
(ischium, ilium), iliofemoralis, iliotibialis (rotates flipper leading edge
up), m. ambiens and m. pubotibialis (rotates flipper leading edge up, if
tibia below origin area)

m. puboischiofemoralis externus (ischium), m. puboischiofemoralis
internus (pubis), m. adductor femoris, m. ischiotrochantericus, m. flexor
tibialis internus, m. caudifemoralis brevis, m. caudifemoralis longus, m.
flexor tibialis externus, puboischiotibialis, m. iliofibularis (rotates flipper
leading edge down), m. ambiens and m. pubotibialis (rotates flipper
leading edge down, if tibia above origin area)

m. extensor digitorum longus (digital extensor), femorotibialis (offsets
tibia dorsally)

m. gastrocnemius internus + m. gastrocnemius externus, m. flexor
digitorum longus (digital flexors)

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 18/48

http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


the maximum dorsal excursion of the fore- and hindflipper during upstroke (~+50� from
horizontal) (Figs. 4A, 4B, 7A and 7B), the maximum ventral excursion of the fore- and
hindflipper during downstroke (~−50�) (Figs. 4E, 4F, 7E and 7F), and the neutral position
(0�) (Figs. 4C, 4D, 7C and 7D). Based on glenoid and acetabular alignment, the tip of the
foreflipper points slightly anteriorly, and the tip of the hindflipper points slightly
posteriorly. Protraction and retraction were not considered because they contribute little to
the flipper beat cycle inferred from osteology. The degrees of maximum elevation and
depression of the flipper were based on the determination of flipper motion by Carpenter
et al. (2010) and Liu et al. (2015) for several plesiosaur species. However, we note that
the inferences on degree of excursion above and below the horizontal are highly dependent
on how much cartilage presumably covered the humerus and femur, as well as the glenoid
and acetabulum, as noted by Liu et al. (2015), and on plesiosaur species (which differ
in the size of the dorsal tuberosity/trochanter).

We chose not to refer to the neutral flipper position as the resting position of the flipper
because it is probably impossible to determine the resting position of the flipper for an
extinct species. Furthermore, in the muscle physiology literature, the term “resting length”
usually refers to individual sarcomeres (Rassier, MacIntosh & Herzog, 1999) or fascicles of
a muscle (Biewener & Roberts, 2000). Furthermore, not knowing the exact flipper
muscle resting length affects the exact value of muscle stretching and contraction, but not
the final result of the total length change of a muscle, which was calculated in this
study (see below). This is because the absolute values of muscle stretching and contraction
are indeed measured with respect to the neutral position, but the total change in length of
the muscle is the difference between the maximum muscle stretching and contraction.

All three positions of the fore- and hindflippers were fixed in sequence with black
nylon cords suspending the flippers from the wooden frame. For each of the three
positions, the length of each muscle was fixed using the terminal strips by tightening the
small screws in the terminal strips on the muscle cords. Then, each muscle cord was
removed from the model by unhooking it from the screw eye pins, and all three muscle
lengths, i.e., maximum deflection on downstroke, neutral position, and maximum
deflection on upstroke, were measured in cm using a tape measure as the distance between
the respective terminal strips. The changes in length between the maximum deflection on
the downstroke and the neutral position and between the maximum deflection on the
upstroke and the neutral position were recalculated as percentages, with the resting
length set to 100%. Then, muscle stretching, muscle contraction, and the difference
between the two, the total change in muscle length, were calculated in % (Table 1).
Bar graphs for total muscle length change in % were created using Microsoft Excel
(Figs. 8A and 8B). Some muscle length changes were given as 0 cm because the actual
length changes could not be measured because they were smaller than the width of the
terminal strips. In one case, i.e., the m. deltoideus scapularis, the total length change of the
muscle was found to be unphysiological when attached to the lateral on the scapula
blade (see below). Hence, a different area of origin (at the ventrolateral part of the scapula)
was tested, which yielded physiologically plausible results, which were then measured for
all three positions.
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FESA and computational determination of muscle strength
FESA requires a 3D model of the bones to be investigated. Hence, the right humerus and
left femur were removed from the mounted skeleton IGPB R 324 and scanned with the
micro-CT scanner at IGPB. The scanner is an industrial high-resolution computed
tomography scanner (model Phoenix v|tome|x s 240, manufactured by General Electric
Phoenix X-ray, Wunstorf, Germany). The scans were processed using the dedicated datos|
x software and the VGStudio MAX (Volume Graphics) program to obtain image stacks in
the z-direction for the humerus and femur.

The two image stacks were loaded into Simpleware ScanIP 5.1 (Krahl et al., 2019) for
further processing which consisted of segmentation and generating the 3D models.
For each image in the stack, the bone surface was selected and segmented using grayscale
intervals, and a 3D surface model was created and saved in .stl file format (Data S1 and
Data S2). We did not model the internal inhomogeneities in the bone, i.e., cortical vs.
spongy, because this would have precluded implementation of torsion in the FESA.
The reason is that the much stiffer cortex would take up all the stress peaks.

The 3D model was then imported into ANSYS 16.0 (ANSYS Inc., Canonsberg, PA,
USA) as the .stl file. The dimensions of the humerus and femur from IGPB R 324 were
used to scale the respective volumetric model to the original size. Subsequently, the
proximal articular cartilage or articular surface between the glenoid and acetabulum was
modeled as a volume. Bonded contacts between the artificial cartilage structures were
implemented in the analysis. The models were constrained by fixed boundaries on the
upper surface of the cartilage volume. Similar to other established finite element models
(Gil, Marcé-Nogué & Sánchez, 2015; Sellés de Lucas et al., 2018), the material was assumed

Figure 8 Total length change of muscles. (A) Humeral muscles and their parts. (B) Femoral muscles and their parts. Note that the locomotor
muscles attaching to or originating from the humerus and femur cover the entire spectrum of maximum total length change of vertebrate muscles,
ranging from non-measurable total length change for muscles with a complex architecture to about 40% of total length change typical for
approximately parallel-fibered muscles. The turquoise line indicates a length change of 40% marking the approximate physiological limit (Biewener,
Corning & Tobalske, 1998; Biewener & Roberts, 2000). Note also that the m. deltoideus scapularis (1) of the humerus would have had a non-
physiological length change of >70% if it would have originated from the lateral scapular blade. If it would have originated from the ventral scapula
(2), its total length change is within the physiological range and below the measurement error (i.e., typical for muscles with a complex internal
architecture). Muscle numbers are found in Table 1. Full-size DOI: 10.7717/peerj.13342/fig-8
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to be linear-elastic and isotropic to reduce computational time. The FE models were
meshed with 10-node tetrahedral elements (SOLID92). The humerus model consisted of
92665 elements, and the femur model consists of 75,784 elements. In the humerus, the
cartilaginous joint structure is formed by 19,927 elements and in the femur by 15,472
elements. In both FE models, the bone was modeled with a Young’s modulus of 12,000
MPa (Currey, 1987) and the cartilage with a Young’s modulus of 5 MPa (Carter & Beaupré,
2001) and a Poisson’s ratio of 0.3 for both materials.

Next, the LOA and muscle insertions had to be implemented in the FE model.
We did this by taking photographs of the analog model in anterior, posterior, dorsal and
ventral views and in these traced the LOA and their angles of attachment on the humerus
(Fig. 9A) and femur (Fig. 10E). We then implemented these angles of attachment in
the FE models as vectors from two views of the respective angle of attachment (Figs. 9B
and 10B). Two- or more-headed muscle bellies were implemented in the FE model in the
form of the resultant vector. The two-joint muscles of the foreflipper are the m. triceps
brachii and the m. biceps brachii, whereas the two-joint muscles of the hindflipper are
m. ambiens, m. pubotibialis, m. flexor tibialis externus, m. flexor tibialis internus,
m. iliotibialis, m. iliofibularis, and m. puboischiotibialis. Since it is not possible to represent
curved vectors in ANSYS 16.0., the muscle wraps were modeled by dividing their lines of
action into several smaller straight vectors.

Force transmission to the distal articular surfaces of the humerus and femur due to
muscle activity was initially applied in one point. This resulted in artificially high, localized
stress peaks. Therefore, the force application was divided into several application points
distributed over the distal articular surfaces to perform a more realistic simulation of load
application over one surface.

The stress distribution was calculated for both bones (Figs. 9 and 10C–10N).
The forces of each humerus and femur muscle optimized using the ANSYS subproblem
approximation method. Briefly, in this method, the first and third principal stresses were
analyzed for 12 different nodes that were uniformly distributed over the outer bone surface
and served as state variables. In addition, the deformation of the model was evaluated.
The initial estimated starting points for the muscle force calculations were based on the
general force level differences and correlations reported by Krahl et al. (2019) for a sea
turtle. Optimization criteria were as follows: Minimization of displacement at a static
time step, first principal stresses between 0 and 0.5 MPa, third principal stresses between
−10 and −0.1 MPa. For each model and load case, 40 iterations were performed. The stress
diagrams were then visually inspected, and some final adjustments were made
manually. In this way, the muscle forces were iteratively approximated (Tables 3 and 4)
(Witzel & Preuschoft, 2005; Sverdlova & Witzel, 2010). For the final analysis, the principal
stresses were saved, and the 1st and 3rd principal stresses were plotted. In addition, the
shear stress was calculated according to Carter & Beaupré (2001).

Load case generation for FESA
Two load cases, downstroke and upstroke, were selected for calculation to reflect the
constantly changing load on the humerus and femur during the flipper beat cycle (Figs.
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Figure 9 FESA of the humerus of Cryptoclidus eurymerus (IGPB R 324). (A) Outline drawing of the
humerus and lines of action of the muscles attaching to it as obtained from the myological analysis.
(B) Mesh volumetric FE model with force vectors of attaching muscles (red arrows). (C–F) FESA of load
case 1 (downstroke). (G–J) FESA of load case 2 (upstroke). (K–N) FESA superposition of both load cases
1 and 2. The left two columns (C), (D), (G), (H), (K), (L) show the compressive stress distribution, and
the right two columns (E), (F), (I), (J), (M), (N) show the tensile stress distribution. The color spectrum
indicates the compressive and tensile stress in MPa. Note that the areas of lower compressive stress
correspond to the areas of cancellous bone (on the inside of the bone) and the areas of higher compressive
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9C–9J and 10C–10J). The two load cases were later superimposed (Figs. 9K–9N and
10K–10N) to obtain a model functionally loaded by compression only. This is because the
biological response of bone to mechanical stimuli is time-dependent. To calculate the
long-term functional mechanical load, a physiological superposition of all stresses is
performed: For each finite element, the highest principal stresses occurring in both load
cases are summarized (Witzel & Preuschoft, 2005).

For both load cases, a position was chosen in which the humerus was held horizontally
at the level of the glenoid and pointed laterally and slightly forward, as in the analog model.
Similarly, the femur was positioned horizontally at the level of the acetabulum with the
flipper tip pointing mainly laterally, but also angled slightly posteriorly. On the
downstroke, the humerus and femur were also rotated anteriorly downward around
their long axis by approximately 19� (Witzel, Krahl & Sander, 2015; Witzel, 2020) to
model a position where the flippers would have generated lift. During the upstroke, the
humerus and femur were rotated posteriorly around their long axes and downward by
approximately 19�. We justify these angles of rotation as follows (Witzel, Krahl & Sander,
2015;Witzel, 2020): Assuming a flight speed of 2 m/s and a flipper stroke speed of 4 m/s at
the distal flipper tips (based on Robinson (1975)), a rotation angle of about 19� is necessary
to minimize angle-dependent drag and optimize lift generation (and thus underwater
flight).

For the implementation of load cases, it is crucial to identify and consider which
muscles act as agonists and antagonists (Witzel & Preuschoft, 2005). The shoulder and hip
joint may allow a small amount of play for rotation and protraction/retraction and a large
amount of play for elevation and depression of the flippers, which is stabilized by the
interaction of agonists and antagonists.

To identify agonists and antagonists, opposing muscle functions (Tables 2 and 3) are
taken from Krahl & Witzel (2021). The downstroke is driven primarily by the humeral
and femoral depressors, but also by retractors and those muscles that allow slight
downward rotation of the flipper leading edges. The flexor muscles of the humerus and
femur are active during the downstroke, flexing the digits and contributing to the twisting
of the fore- and hindflipper along the flipper lengths. The upstroke is largely driven by the
humeral and femoral elevators. Protraction of the humerus and femur and upward
rotation of the leading edge of the flipper also contribute to the upstroke. The extensor
muscles originating from the distal humerus and femur assist in twisting the flipper and
extending the digits during the upstroke (Krahl, 2021).

Figure 9 (continued)
stress correspond to cortical bone (on the outside of the bone). Abbreviations: b, musculus brachialis bb,
musculus biceps brachii; cb, musculus coracobrachialis brevis; cl, musculus coracobrachialis longus; dc,
musculus deltoideus clavicularis; ds, musculus deltoideus scapularis; fcr, musculus flexor carpi radialis;
fcu, musculus flexor carpi ulnaris; fdlf, musculus flexor digitorum longus (foreflipper); p, musculus
pectoralis; pte, musculus pronator teres; sc, musculus supracoracoideus.

Full-size DOI: 10.7717/peerj.13342/fig-9
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Figure 10 FESA of the femur of Cryptoclidus eurymerus (IGPB R 324). (A) Outline drawing of the
femur and lines of action of the muscles attaching to it to it as obtained from the myological analysis.
(B) Mesh volumetric FE model with force vectors of attaching muscles (red arrows). (C–F) FESA of load
case 1 (downstroke). (G–J) FESA of load case 2 (upstroke). (K–N) FESA superposition of both load cases
1 and 2. The left two columns (C), (D), (G), (H), (K), (L) show the compressive stress distribution, and
the right two columns (E), (F), (I), (J), (M), (N) show the tensile stress distribution. The color spectrum
indicates the compressive and tensile stress in MPa. Note that the areas of lower compressive stress
correspond to the areas of cancellous bone on the inside of the bone and the areas of higher compressive
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RESULTS
Tests of plesiosaur flipper muscle reconstructions
Implications of FESA for foreflipper musculature reconstruction
As detailed above, humeral muscles reconstructed based on comparative anatomy (Krahl
& Witzel, 2021) were tested for functionality on a mechanical basis. Based on the FESA,
certain possible muscle attachment areas are functionally preferable over others. These
authors reconstructed the m. deltoideus scapularis on the anteroventral scapula posterior
to the m. deltoideus clavicularis and anterior to the m. supracoracoideus, as well as on
the lateral median scapular blade. Here, we can safely rule out an origin of the m.
deltoideus scapularis on the scapula, as a total muscle length change of 70% indicates
extreme muscle shortening, which is physiologically impossible (see below) (Fig. 8A;
Table 1).

Figure 10 (continued)
stress correspond to cortical bone on the outside of the bone. Abbreviations: af, musculus adductor
femoris; cfb, musculus caudifemoralis brevis; cfl, musculus caudifemoralis longus; f, musculus femor-
otibialis; fdlh, musculus flexor digitorum longus; fte, musculus flexor tibialis externus; fti, musculus flexor
tibialis internus; gi and ge, musculus gastrocnemius internus and musculus gastrocnemius externus; i,
musculus ischiotrochantericus; pe, musculus puboischiofemoralis externus; pit, musculus pub-
oischiotibialis; pti, musculus pubotibialis. Full-size DOI: 10.7717/peerj.13342/fig-10

Table 4 Muscle forces of Cryptoclidus eurymerus (IGPB R 324) humerus by superposition of FESA
load cases.

Muscle Muscle force (N)

m. supracoracoideus 6,000

m. coracobrachialis brevis 4,800

m. coracobrachialis longus 3,600

m. deltoideus clavicularis 1,500

m. deltoideus scapularis 1,649

m. scapulohumeralis anterior 2,400

m. scapulohumeralis posterior 1,920

m. brachialis 324

m. triceps humeral head 275

m. pectoralis 9,600

m. subcoracoscapularis 4,422

m. latissimus dorsi 3,918

m. extensor carpi ulnaris 1,000

m. extensor digitorum communis 6,000

m. extensor carpi radialis 1,000

m. pronator teres 640

m. flexor carpi ulnaris 3,000

m. flexor digitorum longus 1,500

m. flexor carpi radialis 1500
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Myologic reconstruction (Krahl & Witzel, 2021) suggests an origin of the m. biceps
brachii at the posterior ventral region of the coracoid. The m. biceps brachii and
m. brachialis could have inserted either on the proximal radius via a common tendon or on
the posteroproximal part of the radius and anteroproximal part of the ulna. In addition,
the m. triceps brachii was suggested to originate anterodorsally from the bony ridge
surrounding the glenoid on the scapula and from the coracoid immediately posterior to the
glenoid and suggested to insert into the posterodorsal ulna (Krahl & Witzel, 2021).
The posterodorsal ulnar insertion of the m. triceps brachii is unquestionable based on the
EPB, and the posterior origin of the m. biceps brachii is also fairly well established.
In contrast, the areas of origin of the m. triceps brachii are unclear, as is the insertion
area of the m. biceps brachii and m. brachialis. The FESA results were improved i.e.,
achieved a more homogeneous compressive stress distribution, when the attachment of the
m. biceps brachii/m. brachialis was, mechanically advantageous, at the proximal and
ventral radius and when the origin of the m. triceps brachii anteriorly to anterodorsally to
the glenoid facet was pronounced by a higher muscle force. An origin of the m. triceps
brachii on the coracoid would have provided little to no leverage and therefore may have
been reduced or lost.

Myological reconstruction based on osteological correlates (Krahl & Witzel, 2021)
suggests insertion of the m. coracobrachialis brevis and m. coracobrachialis longus at the
posterior to posteroventral humeral shaft, as observed in lepidosaurs (Russell & Bauer,
2008). This reconstruction is not well supported by the EPB, which rather had suggested an
insertion ventrally at the intertrochanteric fossa, as observed in turtles and crocodylians
(Walker, 1973; Meers, 2003; Suzuki & Hayashi, 2010). Shifting the insertions further
distally along the humerus shaft is mechanically advantageous because it increases the
lever arms as can be observed well in the analogous model (Figs. 2A and 2B), and has been
comparatively observed in Cheloniidae (Walker, 1973; Krahl et al., 2019).

The m. scapulohumeralis anterior was not reconstructed based on comparative
myology by Krahl & Witzel (2021), as this muscle is found only in lepidosaurs and has no
synonyms (Russell & Bauer, 2008). Reconstructing it in plesiosaurs thus is a unipolar
inference (Snively & Russell, 2007). Nevertheless, we formulate a description and a
reconstruction of this muscle below, as it adds a necessary proximal rotational component
to the musculature moving the humerus. Musculus scapulohumeralis anterior has two
portions originating from the anterior ventrolateral scapula and from the posterolateral
scapula dorsal to the glenoid, as seen in Varanus exanthematicus and Iguana iguana
(Jenkins & Goslow, 1983; Russell & Bauer, 2008). In plesiosaurs, we now reconstruct it to
originate at the anterior margin of the lateral scapula, at the base of the scapula, and at the
posterior margin of the scapula. The lines of action favor the latter origin because the
former would lead to a wrapping of the m. scapulohumeralis anterior around the lateral
scapula and around the muscles that suspend the pectoral girdle from the trunk, which
seems rather unlikely. However, an origin at the posterior scapular blade would also only
be able to support a very small muscle belly, as the scapular blade of Cryptoclidus is
generally very reduced compared to archosaurs, lepidosaurs, and turtles (Walker, 1973;
Meers, 2003; Russell & Bauer, 2008; Suzuki & Hayashi, 2010). This means that the
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m. scapulohumeralis anterior is likely to contribute to propulsion with relatively little
muscle force. The m. scapulohumeralis anterior inserts proximally and posterodorsally
into the lepidosaur humerus, relatively proximal to the m. latissimus dorsi (Jenkins &
Goslow, 1983; Russell & Bauer, 2008). Thus, we posit that in C. eurymerus possibly an
insertion of the m. scapulohumeralis anterior proximal and posterodorsal into the
humerus was present, rather proximal to the insertion of the m. latissimus dorsi on the
dorsal tuberosity. This insertion of the m. scapulohumeralis anterior could be indicated by
severe rugosities on the dorsal tuberosity of the humerus.

Implications of FESA for hindflipper musculature reconstruction
The reconstructions of the femur muscles followed biological principles (Krahl & Witzel,
2021). The muscles were tested for functionality on a mechanical basis in the following
text. Based on the FESA, some possible muscle origin and insertion areas are functionally
favorable over others. An origin of the m. ambiens at the pubic tuberosity is well supported
by the EPB. An origin ventrally below the acetabulum would also be well supported by
the EPB. From a mechanical point of view, the former has much better leverage than the
latter because the pubis and ischium are modified into almost flat ventrally located plates.
An origin area of m. ambiens below the acetabulum can therefore be discarded.

The origin of the m. iliofemoralis was reconstructed on the lateral surface of the ilium.
Krahl & Witzel (2021) also discuss the possibility, weakly supported by the EPB (only in
turtles), that the area of origin of the m. iliofemoralis may have spread to the vertebral
column (Zug, 1971; Walker, 1973). An origin on the vertebral column would improve the
lever arm of this muscle. When the femur is depressed, the m. iliofemoralis parallels the
dorsal trochanter of the femur and wraps around it, exerting compressive stress on it.
The ilium is greatly reduced in size, about the same size as the scapula. This would suggest
either a greatly reduced m. iliofemoralis or that its site of origin has shifted to the vertebral
column. This attachment shift in turn would have removed the size constraint on this
muscle attachment surface by the limited attachment area caused by the strong
evolutionary size reduction of the ilium in plesiosaurs. Alternatively, the shifting of
muscles like the m. iliofemoralis from the ilium onto the vertebral column may have freed
the ilium from the constraint to provide a sufficient attachment area for locomotory
muscles and could have allowed for its significant size reduction.

According to the EPB, four areas of origin for m. puboischiofemoralis internus are
equally possible: a large area of origin on most of the dorsal pubis, a smaller origin on the
anterodorsal ischium, a small area of origin on the medial and ventral ilium, and an origin
on the vertebral column. Reconstruction of the LOA of the m. puboischiofemoralis
internus shows that they wrap around the dorsal trochanter of the plesiosaur femur.
This implies that the m. puboischiofemoralis internus contributes significantly to the
elevation of the femur. A large pubic ramus and the ischiadic and vertebral portions
running parallel to the dorsal trochanter can be justified from a mechanical point of view.
An iliac origin seems rather unlikely, as it would wrap around the femoral trochanter
and then around the anterior part of the ilium. Since the ilium is reduced, this muscle
portion would be small. In addition, no change in muscle length could be measured. All of
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this suggests that an iliac origin of the m. puboischiofemoralis internus is unlikely, at least
mechanically. An iliac origin has low leverage because it is almost in the same plane as
the femur and results in little muscle shortening, whereas an origin from the vertebral
column provides a larger lever arm and would certainly have been favorable from a
mechanical point of view.

The m. gastrocnemius internus originating from the tibial epicondyle, is equally well
supported by the EPB as originating at the distal tibial epicondyle or at the proximal tibia.
The FESA clearly shows that an origin similar to that of the m. gastrocnemius externus
more proximal to the tibial epicondyle at the point where the femur anterodistally and
posterodistally deflects, is preferable. Otherwise, it would be problematic to load the
extended femoral epicondyle by compressive stress in the FESA (see below).

Reconstructed agonists and antagonists in the limbs of plesiosaurs
Agonists and antagonists of the forelimbs and their function
M. coracobrachialis brevis, m. coracobrachialis longus, m. biceps brachii, the large
posterior portions of m. pectoralis, m. subcoracoscapularis, m. supracoracoideus and
m. latissimus dorsi are humeral retractors. They are opposing the humeral protractors,
namely the m. deltoideus clavicularis, m. deltoideus scapularis, and the small anterior
portions of the m. supracoracoideus, m. subcoracoscapularis, and m. latissimus dorsi.
The m. deltoideus scapularis, the m. subcoracoscapularis, the m. latissimus dorsi, and
possibly to a very small extent the m. triceps brachii, the m. scapulohumeralis anterior,
and the m. scapulohumeralis posterior cause elevation of the humerus. The humeral
depressors m. supracoracoideus, m. coracobrachialis brevis, m. coracobrachialis longus,
m. deltoideus clavicularis, m. biceps brachii, and m. pectoralis act antagonistically to
the humeral elevators. The m. triceps brachii, the smaller anterior portion of the
m. subcoracoscapularis, the large posterior portion of the m. pectoralis, the m. biceps
brachii, the m. scapulohumeralis anterior, the m. scapulohumeralis posterior, and the
m. deltoideus clavicularis contribute to the downward rotation of the foreflipper.
Functionally antagonistic are m. deltoideus scapularis, m. coracobrachialis brevis,
m. coracobrachialis longus, the larger posterior part of m. subcoracoscapularis and
m. latissimus dorsi (Table 2).

Further subdivisions into agonistic and antagonistic muscles are possible: The
small anterior portion of the m. latissimus dorsi (providing weak elevation and
protraction) is opposing in function to the large posterior portion of the m. pectoralis
(providing strong retraction and depression). The small anterior m. pectoralis portion
(providing protraction and depression) and the large posterior m. latissimus dorsi
portion (providing strong elevation and retraction) act as agonist and antagonist.
The m. subcoracoscapularis and m. deltoideus scapularis, which elevate and retract
the humerus, find their functional antagonists in the m. coracobrachialis brevis,
m. coracobrachialis longus, m. biceps brachii, and the posterior portion of the
m. supracoracoideus, which depress and retract the humerus. The large posterior portion
of the m. subcoracoscapularis acts as a humeral elevator and retractor, and the anterior
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portion of the m. supracoracoideus and m. deltoideus clavicularis act opposite to them as
humeral depressors and protractors (Table 2).

Muscles originating from the humerus aid in flipper twisting (Krahl &Witzel, 2021): the
m. flexor carpi ulnaris could have displaced the ulnar side of the carpus ventrally relative to
the humerus (or flex metacarpal V), while the m. extensor carpi ulnaris and humeral
m. triceps brachii could have displaced the ulna in the opposite direction, and the
former could have possibly extended metacarpal V. The m. flexor carpi radialis could
either have flexed metacarpal I or displaced the radial side of the carpus ventrally.
The m. brachialis and m. pronator teres also contribute to the latter function. These are
antagonistically opposed by m. supinator longus + m. extensor carpi radialis. The m. flexor
digitorum longus (flexion of digits I to V) is opposed by the m. extensor digitorum
communis and the digital extensors (Table 2).

Hindlimb agonists and antagonists and their function
The elevators of the hindflipper are m. puboischiofemoralis internus, m. iliotibialis,
m. iliofemoralis, m. iliofibularis, m. caudofemoralis brevis, m. caudofemoralis longus,
m. flexor tibialis externus (iliac portion), and m. flexor tibialis internus (portion
originating from the vertebral column). M. puboischiofemoralis externus, m. adductor
femoris, m. ischiotrochantericus, m. puboischiotibialis, m. flexor tibialis externus
(ischial portion) and m. flexor tibialis internus (ischial portion) act as femoral
depressors. Protractors are the m. puboischiofemoralis externus (pubic portion),
m. puboischiofemoralis internus (pubic portion and vertebral column portion),
m. ambiens, and m. pubotibialis. The retractors of the hindflipper are
m. puboischiofemoralis externus (ischial portion), m. puboischiofemoralis internus
(ischial and iliac portions), m. adductor femoris, m. ischiotrochantericus, m. iliofemoralis,
m. iliotibialis, m. caudofemoralis brevis, m. caudofemoralis longus, m. flexor tibialis
externus, and m. flexor tibialis internus. The downward rotation of the flipper leading edge
during the downstroke is controlled by the agonists m. puboischiofemoralis internus
(pubic portion), m. puboischiofemoralis externus (ischial portion), m. caudofemoralis
brevis, m. caudofemoralis longus, m. ambiens (when the femur is elevated),
m. ischiotrochantericus, m. iliofibularis (as long as the fibula is below the origin of these
muscles), m. puboischiotibialis, m. pubotibialis (when the femur is elevated), m. flexor
tibialis internus and m. flexor tibialis externus. The agonists are opposed by the
antagonistically acting m. iliotibialis, m. ambiens (when the femur is depressed),
m. pubotibialis (when the femur is depressed), m. iliofemoralis, m. puboischiofemoralis
internus (ischial and iliac portion) and m. puboischiofemoralis externus (large pubic
portion) (Table 3).

In addition, the muscles can be assigned to the following subgroups: The
m. puboischiofemoralis internus, which originates from the dorsal pubis and
vertebral column, is opposed by muscles originating from the ventral ischium
(m. puboischiofemoralis externus (ischial portion), m. adductor femoris, and the ischial
portions of m. flexor tibialis internus and m. flexor tibialis externus). The pubic portion of
m. puboischiofemoralis externus, m. ambiens and m. pubotibialis, which originate
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from the ventral region of the pubic bone, have muscles originating from the ilium and
posterior vertebral column as antagonists (m. flexor tibialis internus and m. flexor tibialis
externus, m. iliofibularis, m. iliotibialis, m. iliofemoralis, m. puboischiofemoralis
internus (ischial portion)). Musculus ambiens and m. pubotibialis have m. iliofibularis as
antagonist. M. femorotibialis and m. extensor digitorum longus mostly originate dorsal to
the femur. M. gastrocnemius externus, m. gastrocnemius internus and m. flexor
digitorum longus arise ventrally from the femur. M. gastrocnemius externus and
m. gastrocnemius internus as well as m. flexor digitorum longus (flexion of the toes)
appear to be opposite to m. extensor digitorum longus (extension of the toes) and
m. femorotibialis (Table 3).

Muscle forces and length changes
Muscle forces and FESA
Humeral musculature

Compressive stress distribution and muscle forces were calculated for the downstroke and
upstroke load cases of the humerus FE model. For the initial FESA runs, the dorsal
tuberosity of the humerus was left unloaded. Augmenting the FESA to include wrapping of
the m. latissimus dorsi and m. subcoracoscapularis around the dorsal tuberosity, which
resulted from LOA observations, helped to apply compressive stress to this process.
In addition, extensor and flexor muscles wrapping around the anterior and posterior distal
processes (ectepicondylar and entepicondylar processes) of the humerus allowed their
loading by compressive stress. This is because muscles that wrap around a bone exert
compressive stress on it. In contrast, muscles that do not wrap around the bone exert only
local tensile stress on the bone.

In the FESA results for the humerus (Figs. 9C, 9D, 9G, 9H, 9K and 9L), the colors red,
orange, and yellow correspond to low compressive stress (0 to −3.6 MPa). The dorsal
tuberosity of the humerus, as well as large portions of its distal region, are subjected to
low compressive stress. This agrees well with the observation that the distal humerus
consists largely of spongy bone covered only by a thin layer of cortical bone (cf. Krahl &
Witzel, 2021). The green color spectrum correlates with moderate compressive stresses
(−3.6 to −7.2 MPa). Large areas of cortical and cancellous bone, especially in the humeral
shaft, but also smaller areas of the distal region are moderately compressed (Figs. 9C, 9D,
9G, 9H, 9K and 9L). Turquoise to blue colors correspond to high compressive stress
(−7.2 to −10.8 MPa). The high compressive stress corresponds in part to the outermost
cortical layer. In particular, the proximal region of the head and the proximal shaft are
subjected to high compressive stress (Figs. 9C, 9D, 9G, 9H, 9K and 9L). The shear stresses
for both superimposed load cases were 2.81 MPa (SD 5.4 MPa), well below the shear
strength of bone of 62–72 MPa (Reilly & Burstein, 1975).

On the distal articular surface of the humerus, high stress peaks occur in a very confined
manner (Figs. 9C, 9G and 9K). These are artifacts due to the application of the
counterforce. The counterforce was applied scattered over the large distal articular
surface instead of applying it to one point to obtain a more realistic force induction.
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However, this is a compromise between realistic conditions and the technical capabilities
of the software.

On the downstroke, the m. pectoralis develops the highest muscle force (9,600 N)
among the muscles spanning the glenoid. Surprisingly, on the upstroke, the m. pectoralis
still develops a higher force (5,267 N) than either of the twomain humeral elevators, i.e., m.
latissimus dorsi and m. subcoracoscapularis. Nevertheless, both, m. subcoracoscapularis
(4,422 N) and m. latissimus dorsi (3,918 N), develop high forces to maintain the upstroke
together. In general, it appears that greater muscle forces are generated by the
retractors and depressors of the humerus than by its elevators and protractors. In addition,
extensors and flexors sometimes develop extremely high muscle forces, with the m. flexor
carpi radialis generating 8,460 N on the downstroke and the m. extensor digitorum
communis generating 6,000 N on the upstroke (Table 4).

There is a wide range of values for the Young’s modulus of bone in the literature, and
the value of 12,000 MPa chosen in this study is a relatively low estimate. We justify our
choice of this low value because the flipper model is made of a homogeneous material.
A higher value would not change the stress distribution or the stress level but would affect
the strain: a higher Young’s modulus is associated with lower strains in linear elastic
materials.

Femur muscles
The compressive stress distribution and muscle forces were calculated for the down- and
upstroke load cases of the femur FE model. In the initial femur FESA runs, we were unable
to apply compressive stresses to the dorsal trochanter and distal epiphyses of the femur
because the muscles would simply pull away from their origin. Thus, only localized tensile
stresses were observed in the FESAs. We then introduced muscle wrappings as in the
humerus, with the m. iliofemoralis and m. puboischiofemoralis internus wrapped around
the dorsal trochanter and the extensors and flexors wrapped around the distally greatly
expanded epicondyles of the femur. This resulted in these structures being loaded by
compressive stress.

Color coding of compressive stress distribution in the plesiosaur femur (Figs. 10C, 10D,
10G, 10H, 10K and 10L) is the same as for the humerus (see above). Low compressive
stress correlates mainly with the medullary region in the mid to distal femur and the distal
extensions of the femur. Moderate compressive stresses occur mainly in regions where
cortical bone is present, especially on the outer femoral shaft. High compressive stress
values correspond mostly to regions of the femoral head and part of the cortical bone of
the proximal shaft (Figs. 10C, 10D, 10G, 10H, 10K and 10L). As in the FESA of the
humerus, the localized compressive stress peaks on the distal articular surface of the
plesiosaur femur were due to the selective application of the counterforce at several points
scattered across the articular surface (see above) (Figs. 10C, 10G and 10K). The shear
stresses were 2.56 MPa (SD 2.21 MPa).

The muscle forces of the many two-joint muscles (m. pubotibialis, m. puboischiotibialis,
m. flexor tibialis externus, m. flexor tibialis internus, m. ambiens, m. iliotibialis,
m. iliofibularis) in the hindflipper cannot be determined, because they influence the femur
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only indirectly by contributing to the counterforce. On the downstroke, the m.
puboischiofemoralis externus generates the highest muscle force (7,878 N). On the
upstroke, the m. puboischiofemoralis internus generates up to 7,611 N. The forces of the
extensor and flexor muscles are much lower in the femur than in the humerus.
The gastrocnemius muscle, a flexor muscle, develops a total force of up to 1,176 N
(Table 5).

Changes in length of the limb muscles
Muscles originating dorsally from the glenoid and acetabulum extend on the downstroke
and contract on the upstroke. Muscles originating ventrally from the glenoid and
acetabulum contract when the humerus and femur are depressed on the downstroke and
lengthen on the upstroke when the humerus and femur are elevated.

The total muscle length changes of the foreflipper vary from 0% to 70.87%. Three
muscles (or parts of them) (m. deltoideus clavicularis, m. triceps brachii (anterior and
posterior part)) show no length change, i.e. the length changes were not measurable with
the technique used here, i.e. they are smaller than 1.7 cm (width of the terminal strips).
The m. coracobrachialis brevis (posterior part) shows very small muscle shortening
(3.88%). Otherwise, the changes in total muscle length cover the entire physiological
spectrum, from about 9% in the posterior part of the m. subcoracoscapularis to 37% in the
anterior part of the m. latissimus dorsi. The only muscle that stands out is the
m. deltoideus scapularis with a total length change of over 70%. This is clearly not
physiological. Therefore, a screw eye pin was screwed into a different hypothetical region
of origin of the m. deltoideus scapularis. This different origin was located at the ventral to
ventrolateral scapula anterior to the glenoid. The total muscle length change was again
measured in all three flipper positions and was now within the measurement error of the
analog model and well within physiological limits (Table 1).

Total muscle length changes for the hindflipper range from 0% to 35.8%. We detected
no length changes for the m. caudofemoralis brevis (ilium portion) and the m. pubotibialis.

Table 5 Muscle forces of Cryptoclidus eurymerus (IGPB R 324) femur by superposition of FESA load
cases.

Muscle Muscle force (N)

m. puboischiofemoralis externus 7,878

m. puboischiofemoralis internus 7,611

m. femorotibialis 1,521

m. adductor femoris 3,938

m. ischiotrochantericus 984

m. iliofemoralis 253

m. caudifemoralis brevis 506

m. caudifemoralis longus 507

m. extensor digitorum communis 1,014

m. gastrocnemius 1,176

m. flexor digitorum longus 786
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In addition, the m. caudofemoralis brevis, which originates from the vertebral column,
shows little change in total muscle length (5.2%), while the muscle with the greatest change
(35.82%) in total length is the part of the m. puboischiofemoralis internus that originates
from the vertebral column (Table 1).

Considering the agonistic and antagonistic muscles, the total length changes of
m. pectoralis and m. latissimus dorsi, the two muscles that mainly drive the downstroke
and upstroke of the foreflipper, are quite similar: the anterior part of m. latissimus dorsi
(36.96%) and the posterior part of m. pectoralis (35.65%), and the posterior part of
m. latissimus dorsi (21.92%) and the anterior part of m. pectoralis (18.75%). We expected
that the overall changes in muscle lengths of agonists and antagonists would be similar
because of their opposite functions. Instead, we found that the muscles exhibiting
comparable total length changes were more likely to be determined by their geometric
arrangement relative to the glenoid or acetabulum. That is, a muscle originating from the
posteroventral ischium (e.g., m. puboischiofemoralis externus (23.55%)), for example,
exhibited similar shortening to a muscle originating from the anterodorsal pubis
(m. puboischiofemoralis internus (21.04%)).

DISCUSSION
Myology
The muscle reconstructions on which this study is based were obtained by evaluating
comparative anatomical data (i.e., using the EPB) (Krahl & Witzel, 2021). These
biologically derived muscle reconstructions are examined to determine whether they also
meet the mechanical criteria to which muscles are subjected. In most cases, we find that
the reconstructed muscles also meet the mechanical criteria. However, some fore- and
hindflipper muscle reconstructions (m. biceps brachii, m. deltoideus scapularis,
m. gastrocnemius internus) were modified for mechanical reasons to obtain a more
homogeneous compressive stress distribution in the FESA of the humerus and femur.
We found mechanical evidence to support some reconstructions of Krahl & Witzel
(2021) that were rather weakly supported by the EPB (i.e., coracoid portion of the
m. subcoracoscapularis, m. coracobrachialis brevis, m. coracobrachialis longus,
m. ambiens, m. iliofemoralis, m. puboischiofemoralis internus and externus).

One muscle, the m. scapulohumeralis anterior, was added here to the reconstructions of
Krahl & Witzel (2021), as it may aid in rotation of the humerus. We reconstruct the
area of origin of the m. scapulohumeralis anterior on the anterior scapular blade.
Compared to the reconstruction of Araújo & Correia (2015), this muscle is located less
ventrally and more laterally in our reconstruction. Robinson (1975) and Watson (1924)
reconstructed its attachment surface on the medial and ventral regions of the scapula,
which is not fully supported by the EPB (Jenkins & Goslow, 1983; Russell & Bauer,
2008). In contrast, Carpenter et al. (2010) reconstructed a large area of origin of the
m. scapulohumeralis anterior on the lateral aspect of the scapula. Instead, we reconstructed
a large m. deltoideus scapularis in approximately the same area, which is better
supported by the EPB (Walker, 1973; Meers, 2003; Russell & Bauer, 2008; Suzuki &
Hayashi, 2010). The results presented here disagree with Tarlo (1958) in that the origin of
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the m. scapulohumeralis anterior is on the anteroventral part of the scapula, as this is not
supported by the living Sauropsida (Walker, 1973; Meers, 2003; Russell & Bauer, 2008;
Suzuki & Hayashi, 2010). The muscle reconstructions by Lingham-Soliar (2000) are merely
schematic. It is impossible to determine the exact muscle attachments from his drawings.
However, judging from their geometric arrangement, his muscle reconstructions are
similar to our results.

M. scapulohumeralis anterior occurs exclusively in lepidosaurs and not in turtles or
crocodylians (Walker, 1973;Meers, 2003; Russell & Bauer, 2008; Suzuki & Hayashi, 2010).
In lepidosaurs, it inserts posterodorsally into the humerus; therefore, according to the
EPB, this pattern was transferred to the plesiosaur in this study. None of the previous
authors who reconstructed this muscle reconstructed its insertion at this location. They
placed it either anterodorsally on the humerus (Watson, 1924; Tarlo, 1958; Robinson, 1975)
or on the dorsal surface of the humerus (Lingham-Soliar, 2000; Carpenter et al., 2010).

We reconstructed m. scapulohumeralis anterior in agreement with Tarlo (1958) and
Watson (1924) as possibly subordinately elevating and rotating the humerus (Watson,
1924; Tarlo, 1958). Watson (1924) and Tarlo (1958) disagree on how the extension and
rotation occurred, whereas Watson (1924) suggested that the muscle rotated the humerus
anteriorly upward, Tarlo (1958) concluded the opposite. Thus, Tarlo (1958), Robinson
(1975) and the present study agree on the direction of humeral rotation. However,
Robinson (1975) additionally reconstructed the m. scapulohumeralis anterior as a
depressor, which is contrary to the results of this study. The possible minor elevation
function has not been described by any previous author.

Physiology of the muscles
Changes in total muscle length
Total length changes were calculated for glenoid and acetabular muscles and tested to see if
they were within physiological limits. If it had originated from the lateral scapula, the total
length change of the m. deltoideus scapularis is not physiological and would not allow
the muscle to produce much force (see Biewener & Roberts, 2000) (Table 1; Fig. 8A). This
may suggest that the reconstruction of the origin of the m. deltoideus scapularis on the
scapula by Krahl & Witzel (2021) is incorrect, although well supported by the EPB, and
that its origin is restricted to the ventral side of the scapula. An origin of the m. deltoideus
scapularis on the ventral to ventrolateral region of the scapula anterior to the glenoid
would solve this problem and result in a length change that is within physiological limits
(Table 1). Furthermore, a length change within the measurement error, i.e., a small change,
would better account for the often non-parallel and rather complex architecture of the
deltoid muscle (see, e.g., Krahl et al., 2019; Walker, 1973; Meers, 2003; Russell & Bauer,
2008). Removing the m. deltoideus scapularis from the scapular blade would mean that no
locomotor muscles attached to the lateral scapular blade in plesiosaurs. Only muscle
attachments that suspend the shoulder girdle would remain on the scapular blade.
In addition to aquatic adaptation (Krahl et al., 2019), this could be another explanation for
why the osseous dorsal scapular process is so much smaller than in living Sauropsida
(cf. Walker, 1973; Meers, 2003; Russell & Bauer, 2008; Suzuki & Hayashi, 2010) and
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possible functional analogs (cf. Walker, 1973; English, 1977; Schreiweis, 1982; Louw, 1992;
Cooper et al., 2007). If there was suprascapular cartilage in plesiosaurs, it was probably
not very large (Carpenter et al., 2010). Similarly, displacement or reduction in size of
muscles originating from the ilium (e.g., m. iliofemoralis) could free or largely free the
ilium from locomotor muscles, allowing for its reduction in size.

Several muscles (e.g., m. deltoideus clavicularis, both m. triceps brachii heads,
m. coracobrachialis brevis (posterior part); m. caudofemoralis brevis (ilium),
m. pubotibialis) have similar length changes for elevating and depressing the humerus and
femur. If protraction and retraction were also considered, as well as rotation of the
humerus about the long axis, the muscle length changes would give different results for all
these muscles. It is possible that these nearly isometrically contracting muscles had a
complex muscle architecture (see Biewener & Roberts, 2000 for a review). In addition, it is
possible that the m. triceps brachii and the m. pubotibialis had long tendons (i.e., a large
noncontractile component). Another possibility is that the muscles that do not show
length changes were reduced in plesiosaurs. Some clues might be provided by the EPB:
The m. triceps brachii is greatly reduced or completely reduced in Chelonioidea,
depending on the species. The m. coracobrachialis brevis is significantly reduced in
Testudines in general (Walker, 1973). It is possible that the origin of the m. caudofemoralis
brevis from the ilium was reduced in plesiosaurs and that the m. caudofemoralis brevis
arose only from the vertebral column. The m. pubotibialis is absent in crocodylians and
may have been reduced in plesiosaurs as well (Otero, Gallina & Herrera, 2010; Suzuki et al.,
2011).

The muscle length changes of the agonistic and antagonistic muscles of the pelvic and
pectoral girdles do not agree well. This could be due to differences in the morphology and
geometry of the pectoral and pelvic girdles. On the other hand, the results could also
change if flipper protraction and retraction were considered, since the current results
focus on the main direction of movement of the flippers: elevation and depression.

Furthermore, muscle architecture and tendon length have not been derived for
extinct tetrapods and probably cannot be. The analog approach presented here has the
advantage of providing intuitively accessible results. However, using multibody dynamics,
sensitivity analyses could be performed much more quickly, results would be more
easily reproducible, and coupling multibody dynamics and FEA would allow the
interaction of motion and internal stresses to be better studied. The creation of a multibody
simulation of the flipper should therefore be a goal of future research.

Muscle forces
Muscle redundancy

The analyses presented here show that muscle forces lead to a homogeneous stress
distribution of the humerus and femur in the plesiosaur. However, because the flipper
models both consist of more muscles than degrees of freedom, these systems are
hyperstatic. The redundancy of muscles leads to a theoretically infinite number of muscle
activation patterns (Bernstein, 1967). Therefore, the muscle forces represent only one
possible solution, and it is likely that other muscle forces could be found that would lead to
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a homogeneous stress distribution. On the other hand, it was not possible with the
optimization algorithm to set the muscle forces to zero, limiting the number of possible
solutions (Kutch & Valero-Cuevas, 2011). Nevertheless, our results show that the
muscle forces required to implement the up- and downstroke can lead to a minimization of
the bending of the humerus and femur.

Musculature of the humerus
On average, the forces of the muscles involved in the downstroke, i.e., by the humeral
and femoral depressors and retractors, appear to be higher than those of the muscles
involved in the upstroke (Tables 4 and 5). This could mean that in plesiosaurs the
downstroke of the fore- and hindflippers was stronger than the upstroke. Similarly, the
downstroke of the foreflipper is more powerful than the upstroke in Cheloniidae
(Davenport, Munks & Oxford, 1984; Krahl et al., 2019). However, this difference in
efficiency is not found in all underwater fliers, as it does not occur in penguins, where the
downstroke of the wing is as efficient as the upstroke (Clark & Bemis, 1979).

As reconstructed here, the m. scapulohumeralis anterior and posterior appear to be
exclusively humeral rotators, as they operate with considerably high muscle forces during
the downward stroke (Table 4). In this way, their lifting function is low. This is surprising
because both muscles tend to be small in living lepidosaurs (Jenkins & Goslow, 1983;
Russell & Bauer, 2008). Either this means that their areas of origin and attachment were
enlarged in plesiosaurs, or the muscle forces of m. scapulohumeralis anterior and posterior
would need to be tested with further FESA runs. These would show whether a similar
homogeneous compressive stress distribution can be obtained by redistributing a large
portion of the force to muscles with similar function and LOA, e.g., m. latissimus
dorsi, m. subcoracoscapularis, etc. The LOA of m. scapulohumeralis anterior and
m. scapulohumeralis posterior, which would wrap around the dorsal tuberosity in an
unusual manner from posterior to anterior, seem to support the hypothesized
redistribution of force to another muscle as described above.

A surprising result is that the m. pectoralis is the muscle that also develops the highest
muscle force during the elevation of the foreflipper (Table 4). Overall, it should be assumed
that humeral elevators and protractors should be capable of providing higher power than
depressors and retractors, otherwise foreflipper elevation and protraction becomes
impossible. In addition, the pectoral girdle is suspended by muscles and tendons from the
vertebral column, thorax, and gastralia (e.g., (Avery & Tanner, 1964; Walker, 1973). A
swinging pectoral and pelvic girdle may contribute significantly to locomotion in living
Otariinae, Testudines, and Crocodylia (Walker, 1971a; Baier & Gatesy, 2013; Mayerl,
Brainerd & Blob, 2016; Schmidt, Mehlhorn & Fischer, 2016). For a long time, the
importance of the contribution of pectoral and pelvic girdle swinging to locomotion in
Tetrapoda has been neglected and underestimated, and it certainly requires further
research. In extinct marine reptiles, a swinging pectoral and pelvic girdle has never
been considered, as far as the authors are aware. An actively swinging pectoral and pelvic
girdle could contribute to the range of motion of the plesiosaurs’ fore- and hindflippers
and the total force with which the flippers were moved. Especially in the shoulder region of
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plesiosaurs, where there is no bony or cartilaginous connection to the trunk (unlike to the
pelvic region), strong shoulder muscles and ligaments connecting the pectoral girdle to the
vertebral column, ribs, and gastralia would be necessary.

Acting on the region of the dorsal the foreflipper, the m. extensor carpi ulnaris develops
rather low muscle forces (1,000 N) compared to the m. extensor digitorum communis
(6,000 N). M. flexor carpi radialis and m. flexor digitorum longus are topologically
arranged similarly to m. extensor carpi ulnaris and m. extensor digitorum communis,
but on the ventral side of the foreflipper. In contrast, the m. flexor carpi radialis and
m. flexor digitorum longus develop much lower muscle forces (both 1,500 N) (Table 4).
However, extensor and flexor forces were calculated based only on their contribution to
physiological loading of the femur epicondyles. Extending the model to include the rest of
the flipper bones could help define them more precisely.

Musculature of the femur
When comparing the muscle forces of the extensor and flexor muscles of the plesiosaur
foreflipper and hindflipper, it is noticeable that those acting on the femur (Table 5) are
generally lower than those acting on the humerus (Table 4). This is because there are many
more two-joint muscles and fewer, as well as less independently working, extensor and
flexor muscles in the plesiosaur hindflipper than in the foreflipper. The two-joint muscles
also aid in femur protraction/retraction, elevation/depression, and knee flexion in
present-day Sauropsida (Snyder, 1954; Walker, 1973; Otero, Gallina & Herrera, 2010;
Anzai et al., 2014). Because the plesiosaur knee was immobile, these muscles were
interpreted by Krahl & Witzel (2021) as part of the flipper longitudinal axis twisting
mechanism in addition to their functions as depressors/elevators and protractors/
retractors. Therefore, it is possible that the numerous two-joint muscles of the plesiosaur
hindflipper partially supported functions that were taken over by the much more
differentiated extensor and flexor muscles of the front flipper (Krahl & Witzel, 2021).
The forces of the two-joint muscles could not be determined in this study, as they only
indirectly influence the FESA by increasing the counterforce imposed by the tibia and
fibula. Therefore, it is expected that the single extensor and the two flexors of the
hindflipper would have lower overall muscle forces than the numerous extensors and
flexors of the front flipper. Finally, the femur and humerus differ morphologically in their
distal region in Cryptoclidus (as opposed to many other plesiosaurs), and it is possible that
the hindflipper contributes less to propulsion than the foreflipper, as suggested by
Lingham-Soliar (2000) and Liu et al. (2015) for plesiosaurs in general.

Comparison with the cheloniid humerus
There are some similarities in the muscle forces of certain muscles in Cryptoclidus
eurymerus and in Cheloniidae: The m. pectoralis develops the highest force of all muscles
that attach proximally to the humerus (Krahl et al., 2019). In addition, of the major
humeral elevators, the m. subcoracoscapularis produces higher forces than the
m. latissimus dorsi in both taxa (Krahl et al., 2019). M. coracobrachialis brevis develops
less force in sea turtles (Krahl et al., 2019) than in the plesiosaur. In contrast, the
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m. coracobrachialis longus develops higher forces in sea turtles (Krahl et al., 2019) than in
the plesiosaur. While m. deltoideus scapularis and m. deltoideus clavicularis contribute to
propulsion in very different ways in Cheloniidae (Krahl et al., 2019), they act with
broadly similar forces in the plesiosaur.

Another difference between the forces of the upper arm muscles of cheloniids (Krahl
et al., 2019) and plesiosaurs is that the forces vary by an order of magnitude in the former,
whereas they do not necessarily differ greatly in the plesiosaur. These results support a
hydrodynamic study of Cryptoclidus eurymerus showing that pectoral flipper twisting is
critical for underwater flight in plesiosaurs (Witzel, Krahl & Sander, 2015; Witzel,
2020). Moreover, these results confirm the myological mechanism of flipper twisting
proposed by Krahl & Witzel (2021). In general, the higher muscle forces in the plesiosaur
could be due to scaling effects, i.e., the generally larger relative body size of plesiosaurs
compared to sea turtles.

The muscle bellies generating these enormous muscle forces (up to 9,600 N) in the
shoulder girdle were large and occupied a lot of space. Therefore, it is problematic that the
extensor and flexor muscles were inferred to generate similarly large forces because their
potential areas of origin are much smaller than those of the glenoid-spanning muscles.
There may be several solutions to this paradox. For example, the m. flexor digitorum
longus in Sauropsida has a second head originating from the carpus (Walker, 1973;Meers,
2003; Russell & Bauer, 2008), so it may have been able to develop a much greater force than
just through the humeral muscle belly. In addition, these muscles may have a complex
architecture that saves space compared to the muscles of the pectoral girdle. Long tendon
structures may have been a mechanism for conserving energy during locomotion (Roberts
et al., 1997; Biewener & Roberts, 2000).

Another possibility, how large muscle forces in distal muscles may have been attained,
can be observed in dolphins. Dolphins have a relatively well ossified flipper skeleton,
although essentially no individual muscles are recognizable. They have only layers of
parallel, fibrous connective tissue covering the flipper bones (see Cooper et al., 2007, Fig. 4,
p. 1128). Conversely, this means that the hydrodynamic forces plus the “muscle” force
that these connective tissue layers can exert are, in sum, sufficient to cause ossification of
the flipper bones. Similar aponeurotic stratification, perhaps also directed in the main
directions of flipper twisting, could account for a significant portion of the muscle forces
calculated with FESA. In addition, the connective tissue covering the broad space of the
non-functional elbow joint, carpus, and wrist could passively store energy to compensate
for some of the calculated forces.

SUMMARY AND CONCLUSIONS
The highly aquatic-adapted locomotory system of plesiosaurs changed little throughout
the 135 million years of plesiosaur evolution. The question of whether plesiosaurs rowed,
flew underwater, or used a combination of both has not yet been fully answered. Here
we present analog muscle reconstructions and a computer model of the plesiosaur
Cryptoclidus based on the mounted skeleton IGPB R 324. These models are consistent with

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 38/48

http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


underwater flight in plesiosaurs based on comparative anatomical and muscle
physiological data in accordance with mechanical principles.

We show that it is possible to test muscle reconstructions and associated lines of action
with FESA by targeting a homogeneous compressive stress distribution in the humerus
and femur. The muscle reconstructions of Krahl & Witzel (2021) were largely confirmed
but were also supplemented and corrected with FESA. As in Cheloniidae, muscles that
wrap around bony processes, i.e., the dorsal tuberosity of the plesiosaur humerus and the
dorsal trochanter of the plesiosaur femur, as well as their epicondyles, proved to be
necessary to load the bony structures. Measurements in an analog model of the total length
changes of all muscles attaching to, originating from, and spanning the humerus and
femur of a plesiosaur revealed that an origin of the m. deltoideus scapularis at the
lateral scapula is unphysiological. This suggests a reduction of this muscle from this part of
its site of origin, which is well documented in Sauropsida (Walker, 1973; Meers, 2003;
Russell & Bauer, 2008). Muscle forces show some agreement with cheloniid humerus
muscles, but also differences, underscoring that underwater flight was achieved in a
convergent manner in both lineages. High extensor and flexor muscle forces in plesiosaurs
confirm the hypothesis that twisting around the flipper long axis was essential for
underwater flight in plesiosaurs (see chapter above (Comparison to Cheloniidae
humerus)).

ACKNOWLEDGEMENTS
We thank Aart Walen (Creatures and Features), Arnhem, The Netherlands, for kindly
providing casts of the pectoral and pelvic girdles and the fore- and hindflippers of IGPB R
324, which were crucial for the analog model used in this study. We thank L. Baumeister
of the Biomechanics Research Group, Chair of Product Development, Faculty of
Mechanical Engineering, Ruhr University Bochum, Germany, for providing FE models of
the femur. We thank Tanja Wintrich (Bonn, Germany) for making the micro-CT scans of
the humerus and femur of IGPB R 324. Finally, we thank the three reviewers, Colin
Palmer, Stephan Lautenschlager, and Eric Snively, and the editor Mark Young for their
constructive criticism, which resulted in a greatly improved manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by Deutsche Forschungsgemeinschaft (DFG) grant WI1389/8-1.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deutsche Forschungsgemeinschaft (DFG): WI1389/8-1.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 39/48

http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Anna Krahl conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Andreas Lipphaus performed the experiments, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

� P. Martin Sander conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Ulrich Witzel conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The humerus and femur models are available in the Supplemental Files. They are the
basis for the finite element analyses.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13342#supplemental-information.

REFERENCES
Alexander RM, Vernon A. 1975. The dimensions of knee and ankle muscles and the forces they

exert. Journal of Human Movement Studies 1:115–123.

Allen V, Elsey RM, Jones N, Wright J, Hutchinson JR. 2010. Functional specialization and
ontogenetic scaling of limb anatomy in Alligator mississippiensis. Journal of Anatomy
216(4):423–445 DOI 10.1111/j.1469-7580.2009.01202.x.

Anapol F, Barry K. 1996. Fibre architecture of the extensors of the hindlimb in semiterrestrial and
arboreal guenons. American Journal of Physical Anthropology 99:429–447
DOI 10.1002/(SICI)1096-8644(199603)99:3<429::AID-AJPA5>3.0.CO;2-R.

Andrews CW. 1910. A descriptive catalogue of the marine reptiles of the Oxford Clay, Part I.
London: British Museum (Natural History).

Anzai W, Omura A, Diaz AC, Kawata M, Endo H. 2014. Functional morphology and
comparative anatomy of appendicular musculature in Cuban Anolis lizards with different
locomotor habits. Zoological Science 31(7):454–463 DOI 10.2108/zs130062.

Araújo R, Correia F. 2015. Soft-tissue anatomy of the plesiosaur pectoral girdle inferred from basal
Eosauropterygia taxa and the extant phylogenetic bracket. Palaeontologia Electronica 18(1):1–32
DOI 10.26879/446.

Araújo R, Polcyn MJ, Schulp AS, Mateus O, Jacobs LL, Gonçalves AO, Morais M-L. 2015. A new
elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology
on swimming style in plesiosaurs. Netherlands Journal of Geosciences - Geologie en Mijnbouw
94(1):109–120 DOI 10.1017/njg.2014.44.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 40/48

http://dx.doi.org/10.7717/peerj.13342#supplemental-information
http://dx.doi.org/10.7717/peerj.13342#supplemental-information
http://dx.doi.org/10.7717/peerj.13342#supplemental-information
http://dx.doi.org/10.1111/j.1469-7580.2009.01202.x
http://dx.doi.org/10.1002/(SICI)1096-8644(199603)99:3%3C429::AID-AJPA5%3E3.0.CO;2-R
http://dx.doi.org/10.2108/zs130062
http://dx.doi.org/10.26879/446
http://dx.doi.org/10.1017/njg.2014.44
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Avery FD, Tanner WW. 1964. The osteology and myology of the head and thorax regions of the
obesus group of the genus Sauromalus dumeril (Iguanidae). Brigham Young University Science
Bulletin, Biological Series 5(3):1–30.

Azizi E, Brainerd EL, Roberts TJ. 2008. Variable gearing in pennate muscles. Proceedings of the
National Academy of Sciences of the United States of America 105(5):1745–1750
DOI 10.1073/pnas.0709212105.

Baier DB, Gatesy SM. 2013. Three-dimensional skeletal kinematics of the shoulder girdle and
forelimb in walking Alligator. Journal of Anatomy 223(5):462–473 DOI 10.1111/joa.12102.

Bardet N. 1994. Extinction events among Mesozoic marine reptiles. Historical Biology
7(4):313–324 DOI 10.1080/10292389409380462.

Bardet N, Falconnet J, Fischer V, Houssaye A, Jouve S, Pereda Suberbiola X, Pérez-García A,
Rage J-C, Vincent P. 2014.Mesozoic marine reptile palaeobiogeography in response to drifting
plates. Gondwana Research 26(3–4):869–887 DOI 10.1016/j.gr.2014.05.005.

Bartz M, Uttich E, Bender B. 2019. Transfer of lightweight design principles from the
musculoskeletal system to an engineering context. Design Science 5:e19
DOI 10.1017/dsj.2019.17.

Bartz M, Gößling R, Remus R, Bender B. 2018. Development of a bioinspired approach for the
design of kinematic chains. In: Proceedings of the DESIGN, 2018 15th International Design
Conference.

Baudinette RV, Gill P. 1985. The energetics of ‘flying’ and ‘paddling’ in water: locomotion in
penguins and ducks. Journal of Comparative Physiology B 155(3):373–380
DOI 10.1007/BF00687481.

Bernstein N. 1967. The coordination and regulation of movements. Oxford: Pergamon Press.

Biewener AA, Corning WR, Tobalske BW. 1998. In vivo pectoralis muscle force-length behavior
during level flight in pigeons (Columba livia). Journal of Experimental Biology
201(24):3293–3307 DOI 10.1242/jeb.201.24.3293.

Biewener AA, Dial KP. 1995. In vivo strain in the humerus of pigeons (Cloumba livia) during
flight. Journal of Morphology 225:61–65 DOI 10.1002/jmor.1052250106.

Biewener AA, Konieczynski DD, Baudinette RV. 1998. In vivo muscle force-length behavior
during steady-speed hopping in tammar wallabies. Journal of Experimental Biology
201(11):1681–1694 DOI 10.1242/jeb.201.11.1681.

Biewener AA, Roberts TJ. 2000. Muscle and tendon contributions to force, work, and elastic
energy savings: a comparative perspective. Exercise and Sport Sciences Reviews 28(3):99–107.

Blob RW, Biewener AA. 1999. In vivo locomotor strain in the hindlimb bones of Alligator
mississpiensis and Iguana iguana: implications for the evolution of limb bone safety factor and
non-sprawling limb posture. Journal of Experimental Biology 202:1023–1046
DOI 10.1242/jeb.202.9.1023.

Bryant HN, Russel AP. 1992. The role of phylogenetic analysis in the inference of unpreserved
attributes of extinct taxa. Philosophical Transactions of the Royal Society London B 337:405–418
DOI 10.1098/rstb.1992.0117.

Burkholder TJ, Fingado B, Bron S, Lieber R. 1994. Relationship between muscle fiber types and
sizes and muscle architectural properties in the mouse hindlimb. Journal of Morphology
221:177–199 DOI 10.1002/jmor.1052210207.

Butcher MT, Blob RW. 2008. Mechanics of limb bone loading during terrestrial locomotion in
river cooter turtles (Pseudemys concinna). Journal of Experimental Biology 211(8):1187–1202
DOI 10.1242/jeb.012989.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 41/48

http://dx.doi.org/10.1073/pnas.0709212105
http://dx.doi.org/10.1111/joa.12102
http://dx.doi.org/10.1080/10292389409380462
http://dx.doi.org/10.1016/j.gr.2014.05.005
http://dx.doi.org/10.1017/dsj.2019.17
http://dx.doi.org/10.1007/BF00687481
http://dx.doi.org/10.1242/jeb.201.24.3293
http://dx.doi.org/10.1002/jmor.1052250106
http://dx.doi.org/10.1242/jeb.201.11.1681
http://dx.doi.org/10.1242/jeb.202.9.1023
http://dx.doi.org/10.1098/rstb.1992.0117
http://dx.doi.org/10.1002/jmor.1052210207
http://dx.doi.org/10.1242/jeb.012989
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Butcher MT, Espinoza NR, Cirilo SR, Blob RW. 2008. In vivo strains in the femur of river cooter
turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of
loading mechanics. Journal of Experimental Biology 211(15):2397–2407
DOI 10.1242/jeb.018986.

Caldwell MW. 1997. Limb osteology and ossification patterns in Cryptoclidus (Reptilia:
Plesiosauroidea) with a review of Sauropterygian limbs. Journal of Vertebrate Paleontology
17(2):295–307 DOI 10.1080/02724634.1997.10010976.

Carpenter K, Sanders F, Reed B, Reed J, Larson P. 2010. Plesiosaur swimming as interpreted from
skeletal analysis and experimental results. Transactions of the Kansas Academy of Science
1(2):1–34 DOI 10.1660/062.113.0201.

Carrano MT. 1998. Locomotion in non-avian dinosaurs: integrating data from hindlimb
kinematics, in vivo strains, and bone morphology. Paleobiology 24(04):450–469
DOI 10.1017/S0094837300020108.

Carter DR, Orr TE, Fyhrie DP. 1989. Relationships between loading history and femoral
cancellous bone architecture. Journal of Biomechanics 22(3):231–244
DOI 10.1016/0021-9290(89)90091-2.

Carter DR, Beaupré GS. 2001. Skeletal function and form: mechanobiology of skeletal development,
aging, and regeneration. Cambridge and New York: Cambridge University Press.

Clark BD, Bemis W. 1979. Kinematics of swimming of penguins at the Detroit Zoo. Journal of
Zoology 188(3):411–428 DOI 10.1111/j.1469-7998.1979.tb03424.x.

Cooper LN, Dawson SD, Reidenberg JS, Berta A. 2007.Neuromuscular anatomy and evolution of
the cetacean forelimb. The Anatomical Record 290(9):1121–1137 DOI 10.1002/ar.20571.

Currey JD. 1987. The evolution of the mechanical properties of amniote bone. Journal of
Biomechanics 20(11–12):1035–1044 DOI 10.1016/0021-9290(87)90021-2.

Curtis N, Witzel U, Fitton L, O’Higgins P, Fagan MJ. 2011. The mechanical significance of the
temporal fasciae in Macaca fascicularis: an investigation using finite element analysis. The
Anatomical Record 294(7):1178–1190 DOI 10.1002/ar.21415.

Davenport J, Munks SA, Oxford PJ. 1984. A comparison of the swimming of marine and
freshwater turtles. Proceedings of the Royal Society B: Biological Sciences 220(1221):447–475
DOI 10.1098/rspb.1984.0013.

Elliott KH, Ricklefs RE, Gaston AJ, Hatch SA, Speakman JR, Davoren GK. 2013. High flight
costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in
penguins. Proceedings of the National Academy of Sciences of the United States of America
110(23):9380–9384 DOI 10.1073/pnas.1304838110.

English AWM. 1977. Structural correlates of forelimb function in fur seals and sea lions. Journal of
Morphology 151(3):325–352 DOI 10.1002/jmor.1051510303.

Feldkamp SD. 1987. Foreflipper propulsion in the California sea lion, Zalophus californianus.
Journal of Zoology 212:43–57 DOI 10.1111/j.1469-7998.1987.tb05113.x.

Felsenthal N, Zelzer E. 2017. Mechanical regulation of musculoskeletal system development.
Development 144(23):4271–4283 DOI 10.1242/dev.151266.

Fish FE. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming.
American Zoologist 36(6):628–641 DOI 10.1093/icb/36.6.628.

Fish FE. 2002. Balancing requirements for stability and maneuverability in cetaceans. Integrative
and Comparative Biology 42(1):85–93 DOI 10.1093/icb/42.1.85.

Fish FE. 2004. Structure and mechanics of nonpiscine control surfaces. IEEE Journal of Oceanic
Engineering 29(3):605–621 DOI 10.1109/JOE.2004.833213.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 42/48

http://dx.doi.org/10.1242/jeb.018986
http://dx.doi.org/10.1080/02724634.1997.10010976
http://dx.doi.org/10.1660/062.113.0201
http://dx.doi.org/10.1017/S0094837300020108
http://dx.doi.org/10.1016/0021-9290(89)90091-2
http://dx.doi.org/10.1111/j.1469-7998.1979.tb03424.x
http://dx.doi.org/10.1002/ar.20571
http://dx.doi.org/10.1016/0021-9290(87)90021-2
http://dx.doi.org/10.1002/ar.21415
http://dx.doi.org/10.1098/rspb.1984.0013
http://dx.doi.org/10.1073/pnas.1304838110
http://dx.doi.org/10.1002/jmor.1051510303
http://dx.doi.org/10.1111/j.1469-7998.1987.tb05113.x
http://dx.doi.org/10.1242/dev.151266
http://dx.doi.org/10.1093/icb/36.6.628
http://dx.doi.org/10.1093/icb/42.1.85
http://dx.doi.org/10.1109/JOE.2004.833213
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Fish FE, Battle JM. 1995. Hydrodynamic design of the humpback whale flipper. Journal of
Morphology 225(1):51–60 DOI 10.1002/(ISSN)1097-4687.

Frey E, Riess J. 1982. Considerations concerning plesiosaur locomotion. Neues Jahrbuch für
Geologie und Paläontologie, Abhandlungen 164(1–2):193–194
DOI 10.1127/njgpa/164/1982/193.

Gans C. 1982. Fibre architecture and muscle function. Exercise and Sport Science Reviews
10(1):160–207 DOI 10.1249/00003677-198201000-00006.

Gil L, Marcé-Nogué J, Sánchez M. 2015. Insights into the controversy over materials data for
the comparison of biomechanical performance in vertebrates. Palaeontologia Electronica
18.1.10A:1–24. Available at palaeo-electronica.org/content/2015/1095-controversy-in-materials-
data.

Godfrey SJ. 1984. Plesiosaur subaqueous locomotion: a reappraisal. Neues Jahrbuch für Geologie
und Palaontologie Monatshefte 11(11):661–672 DOI 10.1127/njgpm/1984/1984/661.

Gößling R, Herzog M, Witzel U, Bender B. 2014. Compensation of bending moments as a
nature-inspired design principle? In: Proceedings of the International Design Conference DESIGN
2014. Dubrovnik, Croatia.

Großmann F. 2006. Taxonomy, phylogeny and palaeoecology of the plesiosauroids (Sauropterygia,
Reptilia) from the Posidonia shale (Toarcian, Lower Jurassic) of Holzmaden, South West
Germany. Dissertation, Eberhard-Karls-Universität.

Huq E, Wall CE, Taylor AB. 2015. Epaxial muscle fiber architecture favors enhanced excursion
and power in the leaper Galago senegalensis. Journal of Anatomy 227(4):524–540
DOI 10.1111/joa.12351.

Jenkins FA, Goslow GE. 1983. The functional anatomy of the shoulder of the savannah monitor
lizard (Varanus exanthematicus). Journal of Morphology 175:195–216
DOI 10.1002/jmor.1051750207.

Kim NH, Sankar BV, Kumar AV. 2018. Introduction to Finite Element Analysis and Design.
Second Edition. Chichester: Wiley, 552.

Klenner S, Witzel U, Paris F, Distler C. 2015. Structure and function of the septum nasi and the
underlying tension chord in crocodylians. Journal of Anatomy 228(1):113–124
DOI 10.1111/joa.12404.

Krahl A, Witzel U. 2021. Foreflipper and hindflipper muscle reconstructions of Cryptoclidus
eurymerus in comparison to functional analogues: introduction of a myological mechanism for
flipper twisting. PeerJ 9(2):e12537 DOI 10.7717/peerj.12537.

Krahl A. 2021. The locomotory apparatus and paraxial swimming in fossil and living marine
reptiles: comparing Nothosauroidea, Plesiosauria, and Chelonioidea. PalZ 95(3):483–501
DOI 10.1007/s12542-021-00563-w.

Krahl A, Lipphaus A, Witzel U, Sander PM, Maffucci F, Hochscheid S. 2019. Humerus
osteology, myology, and finite element structure analysis of Cheloniidae. The Anatomical Record
303(8):2177–2191 DOI 10.1002/ar.24311.

Kummer B. 2005. Biomechanik. Köln: Deutscher Ärzte Verlag.

Kutch JJ, Valero-Cuevas FJ. 2011. Muscle redundancy does not imply robustness to muscle
dysfunction. Journal of Biomechanics 44(7):1264–1270 DOI 10.1016/j.jbiomech.2011.02.014.

Lingham-Soliar T. 2000. Plesiosaur locomotion: is the four-wing problem real or merely an
atheoretical exercise? Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen
217(1):45–87 DOI 10.1127/njgpa/217/2000/45.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 43/48

http://dx.doi.org/10.1002/(ISSN)1097-4687
http://dx.doi.org/10.1127/njgpa/164/1982/193
http://dx.doi.org/10.1249/00003677-198201000-00006
palaeo-electronica.org/content/2015/1095-controversy-in-materials-data
palaeo-electronica.org/content/2015/1095-controversy-in-materials-data
http://dx.doi.org/10.1127/njgpm/1984/1984/661
http://dx.doi.org/10.1111/joa.12351
http://dx.doi.org/10.1002/jmor.1051750207
http://dx.doi.org/10.1111/joa.12404
http://dx.doi.org/10.7717/peerj.12537
http://dx.doi.org/10.1007/s12542-021-00563-w
http://dx.doi.org/10.1002/ar.24311
http://dx.doi.org/10.1016/j.jbiomech.2011.02.014
http://dx.doi.org/10.1127/njgpa/217/2000/45
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Lipphaus A, Witzel U. 2018. Biomechanical study of the development of long bones: finite element
structure synthesis of the human second proximal phalanx under growth conditions. The
Anatomical Record 302(8):1389–1398 DOI 10.1002/ar.24006.

Liu S, Smith AS, Gu Y, Tan J, Liu CK, Turk G. 2015. Computer simulations imply
forelimb-dominated underwater flight in plesiosaurs. PLoS Computational Biology
11(12):e1004605 DOI 10.1371/journal.pcbi.1004605.

Louw GJ. 1992. Functional anatomy of the penguin flipper. Journal of the South African Veterinary
Association 63(3):113–120.

Lutz F, Mastel R, Runge M, Stief F, Schmidt A, Meurer A, Witte H. 2016. Calculation of muscle
forces during normal gait under consideration of femoral bending moments. Medical
Engineering & Physics 38(9):1008–1015 DOI 10.1016/j.medengphy.2016.05.005.

Main RP, Biewener AA. 2004. Ontogenetic patterns of limb loading, in vivo bone strains and
growth in the goat radius. The Journal of Experimental Biology 207(15):2577–2588
DOI 10.1242/jeb.01065.

Main RP, Biewener AA. 2007. Skeletal strain patterns and growth in the emu hindlimb during
ontogeny. The Journal of Experimental Biology 210(15):2676–2690 DOI 10.1242/jeb.004580.

Mayerl CJ, Brainerd EL, Blob RW. 2016. Pelvic girdle mobility of cryptodire and pleurodire turtles
during walking and swimming. The Journal of Experimental Biology 219(Pt. 17):2650–2658
DOI 10.1242/jeb.141622.

McCabe K, Henderson K, Pantinople J, Richards HL, Milne N. 2017. Curvature reduces bending
strains in the quokka femur. PeerJ 5(3):e3100 DOI 10.7717/peerj.3100.

Meers MB. 2003. Crocodylian forelimb musculature and its relevance to Archosauria. The
Anatomical Record 274(2):891–916 DOI 10.1002/(ISSN)1097-0185.

Merck JW. 1997. A phylogenetic analysis of the euryapsid reptiles. Journal of Vertebrate
Paleontology 17:65.

Milne N. 2016. Curved bones: an adaptation to habitual loading. Journal of Theoretical Biology
407(1):18–24 DOI 10.1016/j.jtbi.2016.07.019.

Motani R. 2009. The evolution of marine reptiles. Evolution: Education and Outreach 2(2):224–235
DOI 10.1007/s12052-009-0139-y.

Muscutt LE, Dyke G, Weymouth GD, Naish D, Palmer C, Ganapathisubramani B. 2017. The
four-flipper swimming method of plesiosaurs enabled efficient and effective locomotion.
Proceedings of the Royal Society B: Biological Sciences 284(1861):20170951
DOI 10.1098/rspb.2017.0951.

Narici MV, Landoni L, Minetti AE. 1992. Assessment of human knee extensor muscles stress
from in vivo physiological cross-sectional area and strength measurements. European Journal of
Applied Physiology and Occupational Physiology 65(5):438–444 DOI 10.1007/BF00243511.

Neenan JM, Klein N, Scheyer TM. 2013. European origin of placodont marine reptiles and the
evolution of crushing dentition in Placodontia. Nature Communications 4:1621
DOI 10.1038/ncomms2633.

Otero A, Gallina PA, Herrera Y. 2010. Pelvic musculature and function of Caiman latirostris.
Herpetological Journal 20:173–184.

Pace CM, Blob RW, Westneat MW. 2001. Comparative kinematics of the forelimb during
swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles.
The Journal of Experimental Biology 204:3261–3271 DOI 10.1242/jeb.204.19.3261.

Pinshow B, Fedak MA, Schmidt-Nielsen K. 1977. Terrestrial locomotion in penguins: It costs
more to waddle. Science 195(4278):592–594 DOI 10.1126/science.835018.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 44/48

http://dx.doi.org/10.1002/ar.24006
http://dx.doi.org/10.1371/journal.pcbi.1004605
http://dx.doi.org/10.1016/j.medengphy.2016.05.005
http://dx.doi.org/10.1242/jeb.01065
http://dx.doi.org/10.1242/jeb.004580
http://dx.doi.org/10.1242/jeb.141622
http://dx.doi.org/10.7717/peerj.3100
http://dx.doi.org/10.1002/(ISSN)1097-0185
http://dx.doi.org/10.1016/j.jtbi.2016.07.019
http://dx.doi.org/10.1007/s12052-009-0139-y
http://dx.doi.org/10.1098/rspb.2017.0951
http://dx.doi.org/10.1007/BF00243511
http://dx.doi.org/10.1038/ncomms2633
http://dx.doi.org/10.1242/jeb.204.19.3261
http://dx.doi.org/10.1126/science.835018
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Powell PL, Roy RR, Kanim P, Bello MA, Edgerton VR. 1984. Predictability of skeletal muscle
tension from architectural determinations in guinea pig hindlimbs. Journal of Applied Physiology
57(6):1715–1721 DOI 10.1152/jappl.1984.57.6.1715.

Rassier DE, MacIntosh BR, Herzog W. 1999. Length dependence of active force production in
skeletal muscle. Journal of Applied Physiology 86(5):1445–1457
DOI 10.1152/jappl.1999.86.5.1445.

Rayfield EJ. 2007. Finite element analysis and understanding the biomechanics and evolution of
living and fossil organisms. Annual Review of Earth and Planetary Sciences 35(1):541–576
DOI 10.1146/annurev.earth.35.031306.140104.

Reilly DT, Burstein AH. 1975. The elastic and ultimate properties of compact bone tissue. Journal
of Biomechanics 8(6):393–405 DOI 10.1016/0021-9290(75)90075-5.

Rhodin AGJ, Ogden JA, Conlogue GJ. 1981. Chondro-osseous morphology of Dermochelys
coriacea, a marine reptile with mammalian skeletal features. Nature 290:244–246
DOI 10.1038/290244a0.

Rieppel O, Reisz RR. 1999. The origin and early evolution of turtles. Annual Review of Ecology and
Systematics 30:1–22 DOI 10.1146/annurev.ecolsys.30.1.1.

Rivera ARV, Rivera G, Blob RW. 2013. Forelimb kinematics during swimming in the pig-nosed
turtle, Carettochelys insculpta, compared with other turtle taxa: rowing versus flapping,
convergence versus intermediacy. The Journal of Experimental Biology 216(Pt. 4):668–680
DOI 10.1242/jeb.079715.

Rivera ARV, Wyneken J, Blob RW. 2011. Forelimb kinematics and motor patterns of swimming
loggerhead sea turtles (Caretta caretta): are motor patterns conserved in the evolution of new
locomotor strategies? The Journal of Experimental Biology 214(19):3314–3323
DOI 10.1242/jeb.057364.

Rivera G, Rivera ARV, Blob RW. 2011. Hydrodynamic stability of the painted turtle (Chrysemys
picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods. The
Journal of Experimental Biology 214(Pt. 7):1153–1162 DOI 10.1242/jeb.046045.

Roberts TJ, Marsh RL, Weyand PG, Taylor CR. 1997. Muscular force in running turkeys: the
economy of minimizing work. Science 275(5303):1113–1115
DOI 10.1126/science.275.5303.1113.

Robinson JA. 1975. The locomotion of plesiosaurs. Neues Jahrbuch für Geologie und Paläontologie,
Abhandlungen 149:286–332.

Robinson JA. 1977. Intracorporal force transmission in plesiosaurs. Neues Jahrbuch Geologie
Paläontologie, Abhandlungen 153:86–128.

Russell AP, Bauer AM. 2008. The appendicular locomotor apparatus of Sphenodon and
normal-limbed squamates. In: Gans C, Parsons TS, eds. Biology of the Reptilia. Vol. 21. New
York: Academic Press, 1–465.

Sachs S, Hornung JJ, Kear BP. 2016. Reappraisal of Europe’s most complete Early Cretaceous
plesiosaurian: Brancasaurus brancai Wegner, 1914 from the Wealden facies of Germany. PeerJ
4:e2813 DOI 10.7717/peerj.2813.

Sacks RD, Roy RR. 1982. Architecture of the hind limb muscles of cats: functional significance.
Journal of Morphology 173(2):185–195 DOI 10.1002/jmor.1051730206.

Schmidt M, Mehlhorn M, Fischer MS. 2016. Shoulder girdle rotation, forelimb movement and the
influence of carapace shape on locomotion in Testudo hermanni (Testudinidae). The Journal of
Experimental Biology 219(Pt. 17):2693–2703 DOI 10.1242/jeb.137059.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 45/48

http://dx.doi.org/10.1152/jappl.1984.57.6.1715
http://dx.doi.org/10.1152/jappl.1999.86.5.1445
http://dx.doi.org/10.1146/annurev.earth.35.031306.140104
http://dx.doi.org/10.1016/0021-9290(75)90075-5
http://dx.doi.org/10.1038/290244a0
http://dx.doi.org/10.1146/annurev.ecolsys.30.1.1
http://dx.doi.org/10.1242/jeb.079715
http://dx.doi.org/10.1242/jeb.057364
http://dx.doi.org/10.1242/jeb.046045
http://dx.doi.org/10.1126/science.275.5303.1113
http://dx.doi.org/10.7717/peerj.2813
http://dx.doi.org/10.1002/jmor.1051730206
http://dx.doi.org/10.1242/jeb.137059
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Schreiweis DO. 1982. A comparative study of the appendicular musculature of penguins (Aves:
Sphenisciformes). Smithsonian Contributions to Zoology 341:1–46
DOI 10.5479/si.00810282.341.

Sellés de Lucas V, Dutel H, Evans SE, Gröning F, Sharp AC, Watson PJ, Fagan MJ. 2018. An
assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis
silvestris catus). Journal of the Royal Society Interface 15:20180278 DOI 10.1098/rsif.2018.0278.

Sheffield KM, Butcher MT, Shugart SK, Gander JC, Blob RW. 2011. Locomotor loading
mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and
evolutionary implications. The Journal of Experimental Biology 214(15):2616–2630
DOI 10.1242/jeb.048801.

Shufeldt RW. 1901. Osteology of the penguins. Journal of Anatomy and Physiology 35(3):390–405.

Snively E, Cotton JR, Ridgely R, Witmer LM. 2013. Multibody dynamics model of the head and
neck function in Allosaurus (Dinosauria, Theropoda). Palaeontologica Electronica
16(2):11A–29p.

Snively E, Russell AP. 2007. Functional variation of neck muscles and their relation to feeding style
in Tyrannosauridae and other large theropod dinosaurs. The Anatomical Record 290(8):934–957
DOI 10.1002/ar.20563.

Snover ML, Rhodin AGJ. 2008. Comparative ontogenetic and phylogenetic aspects of chelonian
chondro-osseous growth and skeletochronology. In: Wyneken J, Godfrey MH, Bels V, eds.
Biology of Turtles. Boca Raton: CRC Press, 17–43.

Snyder RC. 1954. The anatomy and function of the pelvic girdle and hindlimb in lizard
locomotion. The American Journal of Anatomy 95(1):1–45 DOI 10.1002/aja.1000950102.

Sues H-D. 1987. Postcranial skeleton of Pistosaurus and interrelationships of the Sauropterygia
(Diapsida). Zoological Journal of the Linnean Society 90:109–131
DOI 10.1111/j.1096-3642.1987.tb01351.x.

Suzuki D, Chiba K, Tanaka Y, Hayashi S. 2011. Myology of crocodiles III: pelvic girdle and
hindlimb. Fossils The Palaeontological Society of Japan 90:37–60.

Suzuki D, Hayashi S. 2010. Myology of crocodiles II: pectoral girdle and forelimb. Fossils The
Palaeontological Society of Japan 87:83–102 DOI 10.14825/kaseki.87.0_83.

Sverdlova NS, Witzel U. 2010. Principles of determination and verification of muscle forces in the
human musculoskeletal system: muscle forces to minimise bending stress. Journal of
Biomechanics 43(3):387–396 DOI 10.1016/j.jbiomech.2009.09.049.

Tarlo LB. 1958. The scapula of Pliosaurus macromerus Phillips. Palaeontology 1:193–199.

Tarsitano S, Riess J. 1982. Plesiosaur locomotion: underwater flight versus rowing. Neues Jahrbuch
für Geologie und Paläontologie, Abhandlungen 164:188–192 DOI 10.1127/njgpa/164/1982/188.

Taylor MA. 1989. Sea-saurians for sceptics. Nature 338(6217):625–626 DOI 10.1038/338625a0.

Vincent P, Bardet N, Houssaye A, Amaghzaz M, Meslouh S. 2013. New plesiosaur specimens
from the Maastrichtian phosphates of Morocco and their implications for the ecology of the
latest Cretaceous marine apex predators. Gondwana Research 24(2):796–805
DOI 10.1016/j.gr.2012.11.011.

Vincent P, Bardet N, Pereda Suberbiola X, Bouya B, Amaghzaz M, Meslouh S. 2011.
Zarafasaura oceanis, a new elasmosaurid (Reptilia: Sauropterygia) from the Maastrichtian
Phosphates of Morocco and the palaeobiogeography of latest Cretaceous plesiosaurs. Gondwana
Research 19(4):1062–1073 DOI 10.1016/j.gr.2010.10.005.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 46/48

http://dx.doi.org/10.5479/si.00810282.341
http://dx.doi.org/10.1098/rsif.2018.0278
http://dx.doi.org/10.1242/jeb.048801
http://dx.doi.org/10.1002/ar.20563
http://dx.doi.org/10.1002/aja.1000950102
http://dx.doi.org/10.1111/j.1096-3642.1987.tb01351.x
http://dx.doi.org/10.14825/kaseki.87.0_83
http://dx.doi.org/10.1016/j.jbiomech.2009.09.049
http://dx.doi.org/10.1127/njgpa/164/1982/188
http://dx.doi.org/10.1038/338625a0
http://dx.doi.org/10.1016/j.gr.2012.11.011
http://dx.doi.org/10.1016/j.gr.2010.10.005
http://dx.doi.org/10.7717/peerj.13342
https://peerj.com/


Walker JA, Westneat MW. 2000. Mechanical performance of aquatic rowing and flying.
Proceedings of the Royal Society of London B: Biological Sciences 267(1455):1875–1881
DOI 10.1098/rspb.2000.1224.

Walker WF. 1971a. A structural and functional analysis of walking in the turtle, Chrysemys picta
marginata. Journal of Morphology 134(2):195–214 DOI 10.1002/jmor.1051340205.

Walker WF. 1971b. Swimming in sea turtles of the family Cheloniidae. Copeia 1971:229–233
DOI 10.2307/1442822.

Walker WF. 1973. The locomotor apparatus of Testudines. In: Gans C, Parsons TS, eds. Biology of
Reptilia. Vol. 4. New York: Academic Press, 1–100.

Walker JA, Westneat MW. 2002. Kinematics, dynamics, and energetics of rowing and flapping
propulsion in fishes. Integrative and Comparative Biology 42:1032–1043
DOI 10.1093/icb/42.5.1032.

Watson DMS. 1924. The elasmosaurid shoulder-girdle and fore-limb. Proceedings of the Zoological
Society of London 58:885–917 DOI 10.1111/j.1096-3642.1924.tb03320.x.

Williamson MR, Dial KP, Biewener AA. 2001. Pectoralis muscle performance during ascending
and slow level flight in mallards (Anas platyrhynchos). Journal of Experimental Biology
204(3):495–507 DOI 10.1242/jeb.204.3.495.

Williston SW. 1914. Water reptiles of the past and present. Chicago: University of Chicago Press.

Wintrich T, Hayashi S, Houssaye A, Nakajima Y, Sander PM. 2017. A Triassic plesiosaur
skeleton and bone histology inform on evolution of a unique body plan. Science Advances
3(12):e1701144 DOI 10.1126/sciadv.1701144.

Wittmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft
tissues in fossils. In: Thomason JJ, ed. Functional Morphology in Vertebrate Paleontology. New
York: Cambridge University Press, 19–33.

Witzel U. 2020. Funktionsmorphologische Forschung mit Hilfe biomechanischer Ansätze im
Rahmen der Phylogenie und ontogenetischen Entwicklung zum Vertebraten. In: Werneburg I,
Betz O, eds. Phylogenie, Funktionsmorphologie und Bionik—Schriften zum 60. Phylogenetischen
Symposium in Tübingen. Tübingen: Scidinge Hall Verlag, 187–220.

Witzel U, Mannhardt J, Gößling R, Pd Micheli, Preuschoft H. 2011. Finite element analyses and
virtual syntheses of biological structures and their application to sauropod skulls. In: Klein N,
Remes K, Gee CT, Sander PM, eds. Biology of the Sauropod Dinosaurs: Understanding the Life of
Giants. Bloomington: Indiana University Press, 171–182.

Witzel U, Preuschoft H. 2005. Finite-element model construction for the virtual synthesis of the
skulls in vertebrates: case study of Diplodocus. The Anatomical Record 283(2):391–401
DOI 10.1002/ar.a.20174.

Witzel U, Krahl A, Sander PM. 2015. Hydrodynamische Untersuchung des Schimmvorgangs
eines jurassischen Plesiosauriers: Bestimmung des Körperwiderstands und der Vortriebskräfte
der Flossen. ZfB-Scriptum Veröffentlichungen des Zentrums für Biodokumentation 4:58.

Wolff J. 1893. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald.

Woodward BL,Winn JP, Fish FE. 2006.Morphological specializations of baleen whales associated
with hydrodynamic performance and ecological niche. Journal of Morphology
267(11):1284–1294 DOI 10.1002/jmor.10474.

Wyneken J. 1997. Sea turtle locomotion: mechanisms, behavior, and energetics. In: Lutz PL,
Musick JA, eds. The Biology of Sea Turtles. Boca Raton: CRC Press, 165–198.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 47/48

http://dx.doi.org/10.1098/rspb.2000.1224
http://dx.doi.org/10.1002/jmor.1051340205
http://dx.doi.org/10.2307/1442822
http://dx.doi.org/10.1093/icb/42.5.1032
http://dx.doi.org/10.1111/j.1096-3642.1924.tb03320.x
http://dx.doi.org/10.1242/jeb.204.3.495
http://dx.doi.org/10.1126/sciadv.1701144
http://dx.doi.org/10.1002/ar.a.20174
http://dx.doi.org/10.1002/jmor.10474
https://peerj.com/
http://dx.doi.org/10.7717/peerj.13342


Young VKH, Blob RW. 2015. Limb bone loading in swimming turtles: changes in loading facilitate
transitions from tubular to flipper-shaped limbs during aquatic invasions. Biology Letters
11(6):20150110 DOI 10.1098/rsbl.2015.0110.

Young VKH, Wienands CE, Wilburn BP, Blob RW. 2017. Humeral loads during swimming and
walking in turtles: Implications for morphological change during aquatic reinvasions. The
Journal of Experimental Biology 220(21):3873–3877 DOI 10.1242/jeb.156836.

Zug GR. 1971. Buoyancy, locomotion, morphology of the pelvic girdle and hindlimb, and systematics
of cryptodiran turtles. Michigan: University of Michigan Museum of Zoology.

Krahl et al. (2022), PeerJ, DOI 10.7717/peerj.13342 48/48

http://dx.doi.org/10.1098/rsbl.2015.0110
http://dx.doi.org/10.1242/jeb.156836
https://peerj.com/
http://dx.doi.org/10.7717/peerj.13342

	Determination of muscle strength and function in plesiosaur limbs: finite element structural analyses of Cryptoclidus eurymerus humerus and femur ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Summary and conclusions
	flink6
	References


