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synchrotron tomography of Gondwanan horseshoe crabs” (#67956) 
 
 Horseshoe crabs are an iconic clade of euarthropods with a long evolutionary history, 
and the only extant fully aquatic chelicerates. While currently only four species are in 
existence, their taxonomic diversity and morphological disparity used to be much greater in the 
Paleozoic and Mesozoic. Therefore, any paper dealing with fossil xiphosurids is of 
considerable interest to palaeobiologists and invertebrate and evolutionary biologists.  
 
 The current manuscript revises the age of Tasmaniolimulus, previously believed to be 
Permian, to the Triassic, which has implications for our understanding of the timing of the 
radiation of the family Austrolimulidae. In addition, it discusses the results of synchrotron CT 
scanning of four specimens of fossil Australian horseshoe crabs. The extremely high energies, 
brilliance and almost monochromatic character of synchrotron light allow a penetration and 
resolution unequalled by classical X-ray tomography. Therefore, synchrotron tomography is 
quickly becoming established as an extremely valuable technique in the study of fossil 
specimens. However, so far, synchrotron tomography had only been applied to one fossil 
horseshoe crab specimen. The four specimens scanned for this paper therefore represent a 
welcome addition, and provide some additional morphological data over what was known 
previously from more classical studies of the material using imaging in visible wavelengths. 
Consequently, this paper is of interest, and deserves to be published. There are, however, a 
number of issues that need to be addressed first.  
 
 On p. 14, line 221, the authors state that “... a limited portion of the spine was 
cuticularised.” What is this supposed to mean? What is “cuticularised”? Xiphosurids are 
euarthropods. Euarthropods are Ecdysozoa. Ecdysozoans, as one of their primary defining 
characters, have an external cuticle. In euarthropods, most of this cuticle (except for arthrodial 
membrane) is at least to some degree sclerotised to form an exoskeleton. So, a euarthropod, by 
definition, is externally encased in a sclerotised cuticle. I suppose the authors may be trying to 
say to say that the degree of sclerotisation varied along the spine, or that the whole spine was 
less sclerotised compared to the rest of the prosomal shield? This sentence does need rephrasing 
to make sense – talking about a portion of the external surface of an ecdysozoan being 
“cuticularised” is akin to talking about a portion of a mammalian spine being “notochordised”.  
 
 On p. 15, lines 227-228, it is stated that “The reconstruction of Victalimulus mcqueeni 
reveals evidence for the thoracetronic doublure, moveable spines and notches, and appendage 
impressions.”  

- First, after reviewing both Fig. 4 and the supplemental image, I fail to see the moveable 
spines – I can only make out the fixed spines of the thoracetron, and the intervening 
notches that accommodated the moveable spines, not the moveable spines themselves. 
Indeed, the caption to Fig. 4 itself states: “... X-ray tomographic slice showing fixed 
spines and moveable spine notches (white arrows) and thoracetronic doublure”; so 
the caption itself does not mention the presence of the actual moveable spines either. If 
the moveable spines are indeed visible anywhere, they should be indicated.  



- Second, the statement is somewhat misleading, considering that the original description 
by Riek & Gill (1971) already commented on the thoracetronic doublure, the presence 
of fixed spines and notches, and the impressions of the prosomal walking limbs. 
Therefore, these do not exactly represent new findings. 

 
On p. 16, the authors talk about “dorsal preservation”, and “ventral preservation”. It is not 

entirely clear what they mean by this: 
- Does it mean that only the dorsal (or ventral) exoskeleton is preserved?  
- Or, do the authors intend to say that the fossils are exposed from the dorsal (or ventral) 

side?  
- Or, do they intend to convey that the original orientation in which the specimens were 

preserved was with the dorsal (or ventral) side up? 
These are not trivial differences in meaning. The authors comment that “dorsal preservation” 
is more common than “ventral preservation” in horseshoe crabs. If they are referring to the 
surface of the fossil that is exposed, this is not surprising: the dorsal surface represents a 
relatively smooth, convex surface, whereas the concave ventral surface is much less regular. 
As such, the dorsal surface will represent a plane of weakness along which the matrix 
containing the fossil will preferentially fracture. It therefore makes sense for the majority of 
xiphosurid specimens to be exposed from the dorsal side – as is observed for most other dorso-
ventrally flattened euarthropods. However, the fact that these specimens are exposed on the 
dorsal side does not necessarily mean that they have been preserved dorsal side up: it is 
common for specimens which have been embedded dorsal side down to still crack out along 
the dorsal surface, because of the aforementioned reasons. Hence, if it is the intention of the 
authors to make the case that most horseshoe crab fossils were preserved with the dorsal side 
up, they need to provide additional arguments for the original orientation of the specimen – 
either from sedimentological characteristics of the surrounding matrix that allow polarity to be 
deduced, or from data documenting the original orientation of the fossil when collected. 
 
 On the same page, the authors also comment that “... a ventral orientation has a lower 
preservational protentional”. Again, if they are just referring to the side of the fossil that is 
exposed, it makes sense, as explained above, that the majority of fossils exposes the dorsal side. 
However, if the argument is that specimens being preserved with their ventral side up stand a 
lesser chance of preservation, this also makes sense: the ventral exoskeleton is considerably 
less sclerotised than the dorsal side. So, if a carcass is lying on the sea floor upside down, with 
its ventral side exposed, scavengers and currents will have free reign to tear it up. If, on the 
other hand, the carcass is not overturned, the heavy dorsal exoskeleton will to some extent help 
protect the more fragile ventral anatomy from being destroyed, allowing time for the carcass 
to be buried, potentially helping it to enter the fossil record. In this respect, a dorsal-side-up 
orientation may actually aid preservation of limbs and soft anatomy, rather than “damage” it, 
as the authors suggest. In that case, the overlying dorsal exoskeleton would obscure any 
underlying preserved parts, making it harder for them to be studied, but in itself would not 
“damage” them; in this respect, it is also important to note that at least in the case of non-
biomineralising arthropods, flattening of carcasses mostly results from decay-induced collapse 
of the carcass onto itself, rather than from compaction by the surrounding sediment. 



 
 On p. 19, lines 317-319, it is claimed that the Winterswijk Limulitella shows “extensive 
soft tissue traces”. At least based on the information provided in the paper by Zuber et al. 
(2017), this claim is entirely incorrect: the authors of that study only identified exoskeletal 
morphological features  of this fossil. They do refer to the presence of “muscular markings”, 
but as is clear from their figures, by this they do not mean actual muscle tissue, but rather the 
depressions on the prosomal shield associated with internal apodemes to which muscles would 
have attached. Hence, the only thing visible in their scans was the sclerotised, exoskeletal 
cuticle, which is neither soft, nor a tissue! 
 
 Apart from these issues, I have added some further small remarks and (mainly 
typographical) corrections as sticky notes to the attached annotated manuscript.  
 
 In conclusion, this manuscript does present some interesting data, and does merit to be 
published in PeerJ. However, before it can be published, the authors do need to rectify the 
several issues raised here. 
 
Peter Van Roy 
23 December 2021 
 



An earliest Triassic age for Tasmaniolimulus and
comments on synchrotron tomography of Gondwanan
horseshoe crabs (#67956)

1

First submission

Guidance from your Editor

Please submit by 24 Dec 2021 for the benefit of the authors  (and your $200 publishing discount) .

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

4 Figure file(s)

https://peerj.com/submissions/67956/reviews/1037463/materials/


For assistance email peer.review@peerj.com
Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.
Intro & background to show context.
Literature well referenced & relevant.
Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.
Figures are relevant, high quality, well
labelled & described.
Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.
Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.
Rigorous investigation performed to a
high technical & ethical standard.
Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.
All underlying data have been provided;
they are robust, statistically sound, &
controlled.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

mailto:peer.review@peerj.com
https://peerj.com/submissions/67956/reviews/1037463/
https://peerj.com/submissions/67956/reviews/1037463/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/


Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult. I suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.



An earliest Triassic age for Tasmaniolimulus and comments on
synchrotron tomography of Gondwanan horseshoe crabs
Russell D C Bicknell Corresp., 1 , Patrick M Smith 2, 3 , Tom Brougham 1 , Joseph J Bevitt 4

1 University of New England, Armidale, Australia
2 Australian Museum Research Institute, Sydney, Australia
3 Macquarie University, Sydney, Australia
4 Australian Nuclear Science and Technology Organisation, Sydney, Australia

Corresponding Author: Russell D C Bicknell
Email address: rdcbicknell@gmail.com

Constraining the timing of morphological innovations within horseshoe crab evolution is
cardinal for understanding when and how such a long-lived group exploited vacant
ecological niches over the majority of the Phanerozoic. To expand the knowledge on the
evolution of select extreme xiphosurid forms, we consider the four Australian taxa:
Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus
mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T.
patersoni arose after the Permian and the origin of over-developed genal spine structures
within Austrolimulidae is exclusive to the Triassic. To increase the availability of
morphological data pertaining to these unique forms, we also examined the holotypes of
the four horseshoe crabs using synchrotron radiation X-ray tomography (SRXT). Such non-
destructive in-situ imaging of the internal structures of palaeontological specimens aids in
the identification of novel morphological data by obviating the need for potentially
extensive preparation of fossils from the surrounding rock matrix, which is particularly
important for rare and/or delicate holotypes. Here, SRXT revealed additional data
regarding cardiac lobe morphologies of A. fletcheri and T. patersoni, and novel anatomical
information for V. mcqueeni, including the prominence of the thoracetronic doublure,
appendage impressions, and moveable spine notches. Unfortunately, the strongly
compacted D. peetae precluded the identification of any internal structures, but
appendage impressions were observed. The application of computational fluid dynamics to
high-resolution 3D reconstructions are proposed to understand the hydrodynamic
properties of divergent genal spine morphologies of austrolimulid xiphosurids.
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14 Abstract

15 Constraining the timing of morphological innovations within horseshoe crab evolution is 

16 cardinal for understanding when and how such a long-lived group exploited vacant ecological 

17 niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select 

18 extreme xiphosurid forms, we consider the four Australian taxa: Austrolimulus fletcheri, 

19 Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these 

20 taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and 
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21 the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the 

22 Triassic. To increase the availability of morphological data pertaining to these unique forms, we 

23 also examined the holotypes of the four horseshoe crabs using synchrotron radiation X-ray 

24 tomography (SRXT). Such non-destructive in-situ imaging of the internal structures of 

25 palaeontological specimens aids in the identification of novel morphological data by obviating 

26 the need for potentially extensive preparation of fossils from the surrounding rock matrix, which 

27 is particularly important for rare and/or delicate holotypes. Here, SRXT revealed additional data 

28 regarding cardiac lobe morphologies of A. fletcheri and T. patersoni, and novel anatomical 

29 information for V. mcqueeni, including the prominence of the thoracetronic doublure, appendage 

30 impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae 

31 precluded the identification of any internal structures, but appendage impressions were observed. 

32 The application of computational fluid dynamics to high-resolution 3D reconstructions are 

33 proposed to understand the hydrodynamic properties of divergent genal spine morphologies of 

34 austrolimulid xiphosurids.

35 Keywords: Euchelicerate, Xiphosurida, Austrolimulidae, Australia, Synchrotron radiation X-ray 

36 tomography

37
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39 Introduction

40 The increasing availability of three-dimensional (3D) data in the preceding two decades has 

41 revolutionised the acquisition of morphological data from both biological (Hita Garcia et al., 

42 2017; Parapar et al., 2017; Landschoff et al., 2018; Marcondes Machado et al., 2019) and 

43 palaeontological specimens (Sutton, 2008; Pardo & Anderson, 2016; Liu et al., 2017, 2019; Forel 

44 et al., 2021). Traditional lab-based micro-CT, along with more sophisticated synchrotron 

45 radiation X-ray tomography (SRXT) with neutron micro-tomography (NCT) have permitted non-

46 destructive visualisation of previously unknown and inaccessible morphological features for taxa 

47 across all of Animalia (Donoghue et al., 2006; Tafforeau et al., 2006; Sutton, 2008; Metscher, 

48 2009; Motchurova-Dekova & Harper, 2010; Faulwetter et al., 2013, 2014; Herrera et al., 2020; 

49 Snyder et al., 2020). This precludes the need for physical dissection and/or preparation of 

50 specimens, which is relevant when describing structures from rare or fragile material (e.g., 

51 Metscher, 2009; Haszprunar et al., 2011; Deans et al., 2012; Beutel et al., 2019; Willsch et al., 

52 2020). In palaeontology, 3D data has been used widely in the visualisation of fossils preserved in 

53 amber (Lak et al., 2008; Perrichot et al., 2008; Riedel et al., 2012; Xing et al., 2016a, b, 2018; 

54 Daza et al., 2020; Bolet et al., 2021) and also in the examination of fossils that are still 

55 surrounded in their original rock matrix (Moreau et al., 2014; Schwarzhans et al., 2018; Reid et 

56 al., 2019; Mayr et al., 2020). 

57 Research into fossil arthropods has benefitted greatly from the availability of non-

58 destructive 3D imaging techniques (Deans et al., 2012; Liu et al., 2016, 2020; Hegna et al., 2017; 

59 Wesener, 2019; Zhai et al., 2019a, b; Liu et al., 2020), particularly the diverse array of insects 

60 preserved within resins (Tafforeau et al., 2006; Lak et al., 2008; Pohl et al., 2010; Henderickx et 

61 al., 2012; Riedel et al., 2012). In stark contrast, extinct members of Xiphosurida (i.e., horseshoe 
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62 crabs) have received comparatively limited 3D examination. The anatomy of two extant 

63 xiphosurids, the American horseshoe crab [Limulus polyphemus (Linnaeus, 1758)] and the 

64 mangrove horseshoe crab [Carcinoscorpius rotundicauda (Latreille, 1802)] have been 

65 documented using micro-CT (Göpel & Wirkner, 2015; Bicknell et al., 2018a,  b, 2021c, d ). 

66 Magnetic resonance imaging has also been used in studies of the Japanese horseshoe crab 

67 [Tachypleus tridentatus (Leach, 1819)] (Kutara et al., 2019; Yuen et al., 2019). However, as 

68 Bicknell & Pates (2020) highlighted, there are over 80 extinct xiphosurids that have not been 

69 explored using 3D data and most 3D data collected from fossil xiphosurids have been surface 

70 scans (Schimpf et al., 2017). A recent study combined CT and computed laminography (Zuber et 

71 al., 2017) to image Limulitella Størmer, 1952 from the Winterswijk quarry complex, Middle 

72 Triassic (Anisian) Vossenfeld Formation, Muschelkalk, Netherlands (Klompmaker & Fraaije, 

73 2011; Klein, 2012; Sander et al., 2016; Zuber et al., 2017). These techniques revealed previously 

74 unknown morphological information that was not visible due to compression and ventral 

75 preservation of the specimen. However, no other fossil xiphosurids have been examined using 

76 comparable methods. Here we address this lack of data by presenting the first application of 

77 SRXT to holotypes of four Australian xiphosurids. In doing so, we also reconsider the temporal 

78 range of these four taxa. This revision uncovers a younger age for one genus, pushing the rise of 

79 Austrolimulidae within Australia into exclusively the Triassic.

80 Institutional acronyms

81 AM F: Australian Museum, Sydney, New South Wales, Australia. MMF: Geological Survey of 

82 New South Wales, Londonderry, New South Wales, Australia. NMV P: Museums Victoria, 

83 Carlton, Victoria, Australia. UTGD: Geology Department, University of Tasmania, Tasmania, 

84 Australia.
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85 Methods

86 We examined four of the five fossil horseshoe crabs known from Australia using SRXT: 

87 Austrolimulus fletcheri Riek, 1955 from the Hawkesbury Sandstone (Middle Triassic, Anisian), 

88 New South Wales (NSW); Dubbolimulus peetae Pickett, 1984 from the Napperby Formation 

89 (Middle Triassic, Ansian), NSW; Tasmaniolimulus patersoni Bicknell, 2019 from the Jackey 

90 Shale (Early Triassic, Induan), Tasmania; and Victalimulus mcqueeni Riek & Gill, 1971 from 

91 Koonwarra Fossil Bed (Early Cretaceous, Aptian), Victoria. All four taxa therefore fall within 

92 the distinct xiphosurid families Limulidae and Austrolimulidae (Bicknell, 2019; Bicknell et al., 

93 2021a; Lamsdell, 2021).

94 Non-destructive X-ray microtomographic measurements were conducted using the 

95 Imaging and Medical Beamline at the Australian Nuclear Science and Technology 

96 Organisation’s (ANSTO) Australian Synchrotron, Clayton, Victoria, Australia. 

97 A monochromatic beam energy of 70 keV was used for Dubbolimulus peetae and Victalimulus 

98 mcqueeni, with a sample-to-detector distance of 50 cm. X-rays were converted to visible photons 

99 and detected using the “Ruby detector”, a 20 μm thick Gadox/CsI(Tl)/CdWO4 scintillator screen 

100 coupled with a PCO.edge sCMOS camera (16-bit, 2560 x 2160 pixels) and a Nikon Makro 

101 Planar 50 mm lens to achieve a pixel size of 24.8 x 24.8 μm. A total of 1800 equal angle shadow-

102 radiographs were obtained (i.e., one radiograph every 0.10°) with an exposure length of 0.070 

103 seconds each as the samples were continuously rotated 180° about their vertical axes. Due to the 

104 restricted beam height and field-of-view, this radiograph capture procedure was repeated after 

105 lowering the specimen with respect to the beam after a full rotation. This produced a series of 

106 overlapping vertical radiographs capturing the full height of each specimen, which were then 

107 stitched together into a single set of radiographs prior to reconstruction into 3D volumes. For V. 
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108 mcqueeni the reconstructed data was binned to voxels of 49.6 μm for visualisation. 

109 Tasmaniolimulus patersoni and Austrolimulus fletcheri were similarly scanned with a pixel size 

110 of 40.29 x 40.29 μm. An incident monochromatic beam energy of 80 keV was used for T. 

111 patersoni and a broad range of higher energy X-rays (pink beam, peak energy of 220 keV) was 

112 used for A. fletcheri due to the high attenuation of available monochromatic X-rays.

113 The raw 16-bit radiographs were normalised relative to the beam calibration files, 

114 stitched using the in-house software IMBL Stitch, and reconstructed with CSIRO’s X-TRACT 

115 (Gureyev et al., 2011) software available on Australian Synchrotron Computing Infrastructure 

116 (ASCI). The filtered-back projection reconstruction method was used to form a 16-bit, three-

117 dimensional volume image of the sample.

118 The reconstructed slices for each fossil were imported into Mimics version 23.0 

119 (Materialise, Leuven, Belgium) and digitally prepared. Any artefacts in the tomographic slices 

120 were removed using the ‘Segmenting’ tool and the remaining components were segmented out. 

121 and converted to .STL files in Mimics, and imported into Geomagic Studio (3D Systems, North 

122 Carolina, USA) to be smoothed. The smoothed .STL files were used to generate 3D PDFs using 

123 Terta4D (Adobe Systems; see Supplemental Figures 1–4 found at 

124 https://osf.io/at528/?view_only=78985d12aca941dda8ac95a2cc191d93) Raw radiograph data 

125 associated with this research was uploaded to MorphoSource. Photographs of each specimen 

126 were taken either by the authors or by collection managers for comparison to the 3D 

127 reconstructions.

128 Geological context

129 The oldest Australia xiphosurid, Tasmaniolimulus patersoni, was found in the Jackey Shale of 

130 the Upper Parmeener Supergroup, Tasmania (Bicknell, 2019). This formation is largely 
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131 composed of cross-bedded quartz and felspathic sandstones, laminated dark grey shales and thin 

132 coal lenses (Pike, 1973). Stratigraphically, the fossil was located near the very top of the 

133 formation, ~3 m below the base of the overlying Ross Formation, exposed alongside a cliff on 

134 the Poatina Highway (41°48'05"S, 146°53'06"E) (Ewington et al., 1989; Bicknell, 2019). Based 

135 on the lithology, the unit likely represents deposition of lake and river sediments in a non-marine 

136 swamp with limited coastal influence (Banks, 1973; Ewington et al., 1989). While the Jackey 

137 Shale at the stratigraphic level of the collection locality lacks age diagnostic fossils, 

138 palynomorphs from other, temporally contiguous sites can be assigned to the Protohaploxypinus 

139 microcorpus Zone, equivalent to upper APP6 (see Price, 1997) and restricted to the Griesbachian 

140 substage, early Induan (Early Triassic) based on previous studies in the Sydney Basin (Laurie et 

141 al., 2016; Mays et al., 2020). This contradicts previous interpretations of latest Permian that used 

142 now outdated chronostratigraphic ages for this palynomorph zone An Early Triassic age is 

143 further supported by the vertebrate fauna and macro- and microflora of the Protohaploxypinus 

144 samoilovichii Zone from the overlying Ross Formation which pertains to the younger Smithian 

145 substage of the Olenekian (Early Triassic; Forsyth, 1989). The presence of abundant latest 

146 Permian macroflora at stratigraphic levels below the level of T. patersoni in the Jackey Shale 

147 does suggest that, at least at some locations, the formation does extend into the latest Permian 

148 (Ewington et al., 1989). Nonetheless, given the high stratigraphic position of T. patersoni, it 

149 appears more likely that this specimen is of Early Triassic age. 

150 Slightly younger is Dubbolimulus peetae, which was collected from the Napperby 

151 Formation (previously the “Ballimore Formation”) of the Gunnedah Basin in central New South 

152 Wales (Pickett, 1984). The only known specimen, with an associated counterpart, was found just 

153 south of Western Plains Zoo, Dubbo (at approximately 32°17'30.8"S 148°34'35.8"E). The 
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154 Napperby Formation consists of white, fine–medium grain, quartz-rich, ferruginous sandstone 

155 with occasional cross bedding. Thin horizons of grey to red brown shale and minor conglomerate 

156 lenses are interbedded with this sandstone. The stratigraphic horizon within which the specimen 

157 was found is a red brown, slightly micaceous shale. This lithology indicates a high-energy 

158 braided river system or lacustrine deposits (Tadros, 1993), possibly part of the same Triassic 

159 delta system that continues into the Sydney Basin to the east. The finer grained shale horizons 

160 likely represent lower-energy conditions which presumably occurred in quiet, cut-off river 

161 channels or small ponds. The possible presence of acritarchs (McMinn, 1982) suggest the unit 

162 may have experienced a slight coastal influence occasionally. A diverse macroflora assemblage 

163 has been described from both the fossil site itself (Pickett, 1984) and a nearby locality (Holmes, 

164 1982) which broadly correlate to the Dicroidium zuberi Zone (Helby, 1973, 1987; Retallack, 

165 1977, 1980; Helby et al., 1987) of the Ansian (earliest Middle Triassic) in the Sydney Basin. 

166 Palynomorphs from core within the Dubbo area, at Mirrie DOH I (McMinn, 1982) and Pibbon 

167 DOH 1 (McMinn, 1984), support this age interpretation with placement in the Aratrjsporites 

168 parvispinoslis Zone which correlates to the middle to upper Dicroidium zuberi Zone (Young & 

169 Laurie, 1966). A middle D. zuberi Zone stratigraphic position, which indicates an earliest Ansian 

170 age, is most likely given palynomorphs from other locations in the Gunnedah Basin suggest an 

171 age range between the upper Aratrisporites tenuispinosus Zone and lower Aratrjsporites 

172 parvispinoslis Zone.

173 Of a similar age is Austrolimulus fletcheri, from Beacon Hill Quarry, near the suburb of 

174 Brookvale, Sydney, New South Wales (Riek, 1955). The exact co-ordinates of the original 

175 collection site are unknown; however, is considered to be 33°45'11.2"S, 151°15'55.5"E. The 

176 specimen originates from a thin (8 m) shale lens in the Hawkesbury Sandstone. This lens mostly 
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177 consists of numerous thin, recessive, grey-red mudrock laminations with little bioturbation 

178 (Webby, 1970) and small amounts of rippling (Herbert, 1983). Overall, the Hawkesbury 

179 Sandstone was likely formed in a vast coastal floodplain made up of high energy braided rivers, 

180 scour channels, lakes, and sand dunes (Conaghan, 1980 and references therein). Shale lenses, 

181 like those at the A. fletcheri site, likely represent lower-energy regimes consisting of shallow 

182 water bodies disconnected from a main river channel as isolated shallow pools of water (Herbert, 

183 1980, 1997; Rust & Jones, 1987). Unfortunately, none of the diverse fossil fauna and flora found 

184 at Brookvale (see Bicknell & Smith in press for a recent overview) are insufficiently diagnostic 

185 for relative age estimation. However, the Hawkesbury Sandstone is well constrained within the 

186 Aratrisporites parvispinosus Zone and upper Dicroidium zuberi Zone based on palynomorphs 

187 and macroflora (Helby, 1973; Retallack, 1977, 1980; Helby et al., 1987). Similar to the 

188 Napperby Formation, this places it within the Anisian (earliest Middle Triassic) and likely within 

189 the earliest Anisian. Recent high-precision U-Pb CA-TIMS obtained from the Garie Formation, 

190 which underlies the Newport Formation and succeeding Hawkesbury Sandstone, is dated to the 

191 latest Olenekian (248.23±0.13 Ma and 247.87±0.11Ma; Metcalfe et al., 2015). This further 

192 supports an Anisian age for the Hawkesbury Sandstone as there is an unconformity in the 

193 Sydney Basin between Newport Formation and Hawkesbury Sandstone (Helby, 1973; Herbert, 

194 1980).

195 Victalimulus mcqueeni from Koonwarra Fossil Bed of the Strzelecki Group (Riek & Gill, 

196 1971), is the youngest xiphosurid known from Australia. A single partial specimen was found at 

197 a road cutting along the South Gippsland Highway, approximately 2.4 km east of Koonwarra ( 

198 38°33'48.9"S 145°57'33.9"E). The unit at this location consists of a thick (~7–8 m) lower and 

199 upper feldspathic sandstone bracketing a grey-green, fossiliferous mudstone (Waldman, 1971; 
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200 Jell & Roberts, 1986). The mudstone is made up of extremely fine alternating layers of a clay- 

201 and silt-dominated matrix. A freshwater lacustrine environment was originally suggested for the 

202 Koonwarra Fossil Bed, with the finely laminated mudstones representing a rhythmic varve 

203 formed under freezing conditions (Waldman, 1971, 1973, 1984). However, the highly diverse 

204 fossil fauna and flora (see overview in Poropat et al. 2018), instead suggests a cold, but not 

205 freezing, swamp or a lacustrine environment with seasonal flooding causing overbank-type 

206 deposits (Douglas & Williams, 1982; Jell & Roberts, 1986). Presence of the palynomorphs 

207 Clavatipollenite hughesii Couper, 1957 and Foraminisporis asymmetricus Dettmann, 1963 from 

208 the Koonwarra Fossil Bed, and absence of other palynomorphs from younger zones, indicate an 

209 age within Upper Cyclosporites hughesii subzone (Jell & Roberts, 1986; Seegets-Villiers & 

210 Wagstaff, 2016; Korasidis & Wagstaff, 2020; Wagstaff et al., 2020). This places the unit entirely 

211 within the Aptian Stage (Early Cretaceous). Fission track dating of volcanoclastic sediments in 

212 the Koonwarra Fossil Beds suggests an age of 118 ± 5–115 ± 6 Ma, which correlates to the mid-

213 Aptian (Gleadow & Duddy, 1980; Lindsay, 1982).

214 Results

215 The reconstructed tomographic volumes revealed additional morphological data that could not be 

216 observed from the external expression of the fossils. The density of the matrix surrounding 

217 Austrolimulus fletcheri precluded the unambiguous identification of many internal structures 

218 (Figure 1). However, the cardiac lobe can be more readily distinguished in the reconstructed 

219 volume and more depth is observed than exposed on the dorsal surface of the fossil (Figure 1C). 

220 Furthermore, the composition of the genal spines is less dense than the prosoma, suggesting a 

221 limited portion of the spine was cuticularized (Figure 1D). Dubbolimulus peetae shows no 

222 evidence of preserved internal structures, reflecting the strong dorsoventral compression of the 

PeerJ reviewing PDF | (2021:11:67956:0:1:NEW 24 Nov 2021)

Manuscript to be reviewed

peter
Sticky Note
... suggesting the spine was less sclerotised. It's an ecdysozoan - of course it's "cuticularised" all around!



223 specimen (Figure 2). However, an examination of the surface reconstruction reveals impression 

224 of the walking legs. The cardiac lobe of Tasmaniolimulus patersoni is the most prominent 

225 feature visible in the reconstruction (Figure 3), and which has been previously described in this 

226 taxon (Ewington et al., 1989; Bicknell, 2019). However, no internal structures are visible. The 

227 reconstruction of Victalimulus mcqueeni reveals evidence for the thoracetronic doublure, 

228 moveable spines and notches, and appendage impressions (Figure 4).

229 Discussion

230 Age of Tasmaniolimulus patersoni

231 The revised earliest Triassic age of Tasmaniolimulus patersoni has important implications for 

232 austrolimulid evolution. Tasmaniolimulus patersoni was originally considered to be of latest 

233 Permian age (Ewington et al., 1989; Lerner et al., 2017; Bicknell, 2019; Lamsdell, 2020) which 

234 indicated the first appearance of hypertrophied genal spines within Austrolimulidae at this time 

235 (Bicknell et al., 2020). However, the revised date shifts the first appearance of this trait to the 

236 earliest Triassic. Furthermore, T. patersoni is now either the oldest Triassic austrolimulid, or 

237 contemporaneous with Vaderlimulus tricki Lerner et al., 2017 and Psammolimulus gottingensis 

238 Lange, 1923—taxa that all have overdeveloped genal spine morphologies (Meischner, 1962; 

239 Lerner et al., 2017; Bicknell et al., 2021b).

240 The SRXT examination of the Australian xiphosurid fossils did not reveal much novel 

241 anatomy, nor traces of soft tissues. The aforementioned specimens were preserved primarily in 

242 sand- and siltstones which limits the preservation potential of fine, delicate structures. This is in 

243 contrast to the tomographic and laminographic reconstructions of xiphosurids described by 

244 Zuber et al. (2017) and which were preserved in fine grained, Muschelkalk-type limestones. 

245 These sediments tend to preserve soft-bodied anatomical details in exceptional detail (Vía et al., 
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246 1977; Briggs & Gall, 1990; Cartañà i Martí, 1994; Klug et al., 2005). Another limiting factor 

247 influencing the relatively poorer preservation of the Australian xiphosurids is differences in 

248 preservation orientation. Specifically, the Vossenfeld Formation Limulitella is preserved in 

249 ventral view and the Australian specimens are preserved dorsally. This difference may have 

250 limited the observable internal and ventral structures as ventral features would have been 

251 compressed and likely damaged by the dorsum. As such, any appendage data in the observed 

252 specimens is recorded in impressions in the prosoma. Interestingly, there are limited examples of 

253 horseshoe crabs preserved ventrally (Tschernyshev, 1933; Racheboeuf et al., 2002; Lamsdell & 

254 McKenzie, 2015; Hu et al., 2017; Zuber et al., 2017; Bicknell et al., 2019a). This limited record 

255 suggests that a ventral orientation has a lower preservational protentional.

256 Comments on application of synchrotron tomography to the study of fossil xiphosurids 

257 Palaeontological and biological collections house a wealth of specimens with academic 

258 and historic value. Digitisation of holotype specimens is a salient direction for recording and 

259 transferring fundamental anatomical information. These records are traditionally conducted by 

260 taking photographs or making line drawings. However, two-dimensional data and views cannot 

261 (by definition) display all characteristics needed for modern taxonomic and phylogenetic studies 

262 (Mathys et al., 2015; Bicknell et al., 2018a). As such, researchers often need to visit collections 

263 to examine specimens in person. This process can be prohibitive for logistic, cost, and policy 

264 reasons, to name a few. This complication can be circumvented by producing scans of 

265 taxonomically important and unique specimens. Such data is becoming a means of transferring 

266 important anatomical data to researchers across the globe and provide interested individuals with 

267 another medium with which to examine unique material.
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268 Non-destructive three-dimensional imaging using SRXT will continue to play a central 

269 role in anatomical studies of fossil horseshoe crabs, following the rapid adoption of this imaging 

270 modality across palaeontology. In particular, techniques that can more readily distinguish areas 

271 with very small differences in radiopacity, such as phase-contrast enhanced imaging, hold out the 

272 promise for more detailed examination of muscles and other internal structures in suitably well-

273 preserved specimens. For example, study of specimens of Mesolimulus walchi (Desmarest, 1822) 

274 from the Nusplingen Lithographic Limestone (Upper Jurassic, Kimmeridgian), Germany 

275 indicates that phosphatised muscle traces were likely to be preserved under the carapace (Briggs 

276 et al., 2005). Muscle traces have also been described from specimens of Euproops danae from 

277 the Upper Pennsylvanian (Virgilian) Lawrence Formation, Kansas (Feldman et al., 1993; 

278 Babcock & Merriam, 2000; Bicknell et al., 2021f). Further examination of the Lawrence 

279 Formation specimens would determine if the muscles exhibit moldic preservation—as is 

280 common for Mazon Creek fossils (Clements et al., 2019; Bicknell et al., 2021e)—or if there are 

281 additional, unexpressed anatomical features. More recently, neutron micro-tomography (NCT) is 

282 undergoing a renaissance in palaeontology, owing to the ability of neutrons to penetrate through 

283 typically radiopaque minerals such as iron pyrite, a high sensitivity to hydrogenous material, and 

284 thus to residual organic remains, (Gee et al., 2019a; Gee et al., 2019b; Na et al., 2021; Smith et 

285 al., 2021), and to increasing availability of high-quality neutron imaging facilities at nuclear 

286 research reactors and spallation neutron sources around the world (see list 

287 https://www.isnr.de/index.php/facilities/user-facilities).  The collection of novel soft anatomy 

288 from these and other fossil xiphosurids are vitally important in presenting and revising 

289 hypotheses regarding homology with extant xiphosurids (sensu Briggs et al., 2005; Bicknell et 

290 al., 2021f) and resolving conflicts between phylogenetic hypotheses (e.g., Ballesteros & Sharma, 
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291 2019; Bicknell et al., 2019b, 2020; Lamsdell, 2020). More broadly, this same approach can be 

292 applied to the as-of-yet unnamed xiphosuran specimens from the Fezouata Shale Lagerstätte 

293 (Lower Ordovician, Morocco; Van Roy et al., 2010), previous micro-CT imagery has yielded 

294 useful results and allowed for specimens to be differentiated in 3D (Kouraiss et al., 2019). 

295 Three-dimensional reconstructions are increasingly used in computational fluid dynamics 

296 (CFD) analyses to study the hydrodynamic properties of extinct aquatic taxa (Rahman et al., 

297 2015a; Darroch et al., 2017; Rahman, 2017; Gibson et al., 2019; Ferrón et al., 2020; Hebdon et 

298 al., 2020; Song et al., 2021). The majority of CFD studies have focused on enigmatic Ediacaran 

299 taxa (Rahman et al., 2015a; Rahman, 2017; Gibson et al., 2019), echinoderms (Rahman et al., 

300 2015b, 2020; Waters et al., 2017), and vertebrate groups (Dec, 2019; Troelsen et al., 2019; 

301 Ferrón et al., 2020, 2021). While fossil arthropods have received comparatively less attention 

302 than the aforementioned taxa (e.g., Pates et al., 2021; Song et al., 2021). CFD studies have 

303 modelled lift and drag experienced by modern horseshoe crabs (Bicknell & Pates, 2019; Davis et 

304 al., 2019). Extending CFDA studies to fossil xiphosurids will facilitate comparative studies of 

305 the hydrodynamic properties of the carapaces of extinct members of the clade, in addition to 

306 elucidating the effects of bizarre morphologies, such as the hypertrophied genal spines, on fluid 

307 flow. Such spines have been hypothesised to represent an adaptation to movement through 

308 unidirectional fluid flow in primarily freshwater or marginal marine environments (Lamsdell, 

309 2016, 2021; Bicknell & Pates, 2019; Bicknell & Shcherbakov, 2021); CFD provides the most 

310 compelling method for evaluating the likelihood of this hypothesis.

311 Conclusion
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312 Reconsidering the four Australian horseshoe crabs here, we have highlighted the rise of 

313 Austrolimulidae in the Gondwanan record began just after the end-Permian extinction. This 

314 timing also suggests that, globally, the development of hypertrophied spines within non-belinurid 

315 xiphosurids began after the end-Permian. We demonstrate that limited novel anatomical data 

316 were obtained for Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and 

317 Victalimulus mcqueeni. This is in contrast to extensive soft tissue traces revealed in 3D 

318 reconstructions a xiphosurid from the Vossenfeld Formation, a result of burial in a more 

319 favourable environment and a ventral preservation aspect. Future directions include examining 

320 similar fossils with NCT, an additional method that achieves an alternative and complementary 

321 contrast to XCT, and may resolve features that conventional lab-based- and synchrotron X-rays 

322 are unable to reveal. Future applications of these scan data include informing reconstructions 

323 needed for computational fluid dynamic analyses; a direction that may uncover the morpho-

324 functional use of overdeveloped spines common to Australian horseshoe crabs.
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755

756 Figure captions

757 Figure 1: Austrolimulus fletcheri from the Hawkesbury Sandstone (Middle Triassic, Anisian). 

758 AM F38275 counterpart of holotype. (A) Specimen under plain light. (B) 3D reconstruction of 

759 specimen, see Supplemental Figure 1. (C) X-ray tomographic slice showing pronounced cardiac 

760 lobe (white arrows). (D) X-ray tomographic slice showing difference in density between 

761 prosoma (red dotted line) and hypertrophied genal spine (blue lines). Image credit: (A) Joshua 

762 White.

763 Figure 2: Dubbolimulus fletcheri from the Napperby Formation (Middle Triassic, Ansian). 

764 MMF 27693, holotype. (A) Specimen under plain light. (B) 3D reconstruction of specimen 

765 showing appendage impressions (white arrows), see Supplemental Figure 2. Image credit: (A) 

766 David Barnes.

767 Figure 3: Tasmaniolimulus patersoni from the Jackey Shale (Early Triassic, Induan). UTGD 

768 123979, holotype. (A) Specimen under plain light. (B, C) 3D reconstruction of specimen, see 

769 Supplemental Figure 3. (B) Dorsal view. (C) Oblique view. (D, E) X-ray tomographic slices 

770 showing pronounced cardiac lobe (white arrows). (A) Coated in ammonium chloride sublimate 

771 and image converted to greyscale. Image credit: (A) Russell Bicknell.

772 Figure 4: Victalimulus mcqueeni from the Koonwarra Fossil Bed (Early Cretaceous, Aptian). 

773 NMV P22410B, holotype. (A) Specimen under plain light. (B) 3D reconstruction of specimen, 

774 see Supplemental Figure 4. (D) X-ray tomographic slice showing cardiac lobe (white arrows). 

775 (E) X-ray tomographic slice showing walking leg impressions (white arrows). (F) X-ray 
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776 tomographic slice showing fixed spines and moveable spine notches (white arrows) and 

777 thoracetronic doublure (black arrow). Image credit: (A) Frank Holmes.

778 Supplemental Figure 1: 3D interactive model of Austrolimulus fletcheri, AM F38275 as 

779 modelled from SXCT. 3D PDF found at 

780 https://osf.io/at528/?view_only=78985d12aca941dda8ac95a2cc191d93.

781 Supplemental Figure 2: 3D interactive model of Dubbolimulus fletcheri, MMF 27693

782 as modelled from SXCT. 3D PDF found at 

783 https://osf.io/at528/?view_only=78985d12aca941dda8ac95a2cc191d93.

784 Supplemental Figure 3: 3D interactive model of Tasmaniolimulus patersoni, UTGD 123979 as 

785 modelled from SXCT. 3D PDF found at 

786 https://osf.io/at528/?view_only=78985d12aca941dda8ac95a2cc191d93.

787 Supplemental Figure 4: 3D interactive model of Victalimulus mcqueeni, NMV P22410B as 

788 modelled from SXCT. 3D PDF found at 

789 https://osf.io/at528/?view_only=78985d12aca941dda8ac95a2cc191d93.

790
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Figure 1
Austrolimulus fletcheri from the Hawkesbury Sandstone (Middle Triassic, Anisian). AM
F38275 counterpart of holotype.

(A) Specimen under plain light. (B) 3D reconstruction of specimen, see Supplemental Figure
1. (C) X-ray tomographic slice showing pronounced cardiac lobe (white arrows). (D) X-ray
tomographic slice showing difference in density between prosoma (red dotted line) and
hypertrophied genal spine (blue lines). Image credit: (A) Joshua White.
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Figure 2
Dubbolimulus fletcheri from the Napperby Formation (Middle Triassic, Ansian). MMF
27693, holotype.

(A) Specimen under plain light. (B) 3D reconstruction of specimen showing appendage
impressions (white arrows), see Supplemental Figure 2. Image credit: (A) David Barnes.
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Figure 3
Tasmaniolimulus patersoni from the Jackey Shale (Early Triassic, Induan). UTGD 123979,
holotype.

(A) Specimen under plain light. (B, C) 3D reconstruction of specimen, see Supplemental
Figure 3. (B) Dorsal view. (C) Oblique view. (D, E) X-ray tomographic slices showing
pronounced cardiac lobe (white arrows). (A) Coated in ammonium chloride sublimate and
image converted to greyscale. Image credit: (A) Russell Bicknell.
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Figure 4
Victalimulus mcqueeni from the Koonwarra Fossil Bed (Early Cretaceous, Aptian). NMV
P22410B, holotype.

(A) Specimen under plain light. (B) 3D reconstruction of specimen, see Supplemental Figure
4. (D) X-ray tomographic slice showing cardiac lobe (white arrows). (E) X-ray tomographic
slice showing walking leg impressions (white arrows). (F) X-ray tomographic slice showing
fixed spines and moveable spine notches (white arrows) and thoracetronic doublure (black
arrow). Image credit: (A) Frank Holmes.
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