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Abstract 38 

Background. Birth delivery method and breastfeeding practices contribute to microbiota 39 

colonization. Other factors, including diet and demographic factors,  structure gut microbiome 40 

assembly and diversity through childhood development. The eExploration of these factors, 41 

especially those which influencein Southeast Asian children, remains limited. 42 

 43 

Methods. We investigated fecal microbiota of 127 Thai school-aged children in Thailand using 44 

quantitative PCR (qPCR) and to assessed the influence of dietary behaviors and demographic 45 

factors on the gut microbiota. using a multivariate Multivariate analysis (multiple factor analysis 46 

(MFA) and Partial Least Squares Discriminant Analysis (PLS-DA) was used link particular gut 47 

microbes to diet and demographic factors. 48 

 49 

Results. Dietary behaviors and demographic factors were associated with variation among gut 50 

microbiota. The abundance of Gammaproteobacteria increased in children with infrequent 51 

intake of high fat foods. Obese children possessed a lower level of Firmicutes and 52 

Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower 53 

levels among formula-fed children. Prevotella was more abundant in children who were 54 

delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota, 55 

it nonetheless was found to be significantly associated with microbiome composition. 56 

 57 

Conclusions. Our results clarify the extent to which eExogenous and demographic factors 58 

associate with, and possibly drive, the assembly of the gut microbiome of an understudied 59 

population of Thai school-aged children in Thailand. 60 

 61 

Introduction 62 

Microbial colonization of the gut starts upon birth, and the composition of the microbiota 63 

community diversifies throughout childhood. Proteobacteria and Actinobacteria dominate the gut 64 

microbiome early in life (Zhuang et al., 2019). As infants develop, their gut microbiota 65 

community becomes more complex and, at two to three years of age, its structure and 66 

composition begins to more closely resemble that of adults (Rodríguez et al., 2015). Shifts in the 67 

microbiota composition occur during this process and are influenced by several factors such as 68 

mode of delivery, feeding type, and diet (Martin et al., 2016; Rutayisire et al., 2016; Iddrisu et 69 

al., 2021). 70 

 71 

Early in life, the assembly of the gut microbiome  highly depends on delivery mode and feeding 72 

practices (Li et al., 2020; Mitchell et al., 2020; Coker et al., 2021). The guts microbiome of 73 

infants born vaginally are more enriched in Bifidobacterium and/or Bacteroides compared with 74 

those infants delivered by cesarean section (Yang et al., 2019; Reyman et al., 2019; Niu et al., 75 

2020). Over time, the association between gut microbiota and mode of delivery weakens 76 

(Rutayisire et al., 2016). Nonetheless, a differences in the abundance of microbiota between 77 



children of different modes of delivery was seen persists in school-aged children (i.e. seven year 78 

olds) (Salminen et al., 2004). Bifidobacterium dominates the gut of infants receiving breast milk 79 

as compared to formula fed children (van den Elsen et al., 2019; Lawson et al., 2020). The 80 

impact of breastfeeding duration persists later in life as shown in a cohort study of early school-81 

aged children (Zhong et al., 2019). Overall, these findings imply This suggests that a history of 82 

delivery mode and feeding type could have a long-term impact on the diversity of one’s gut 83 

microbiome.  84 

 85 

Additional host-related factors such as ethnicity, age, and body mass index (BMI) contribute to 86 

alterations of gut microbiota. Geographical factors and ethnicity significantly affect gut 87 

microbiota profiles of school-aged children at the genus level (Liu et al., 2020). Although many 88 

studies have already monitored compositional changes in the gut microbiota depending on one’s 89 

age (e.g., comparing between childhood and adulthood) (Derrien, Alvarez & de Vos, 2019), data 90 

on microbiota profiles among school-aged children remains limited (Odamaki et al., 2016). 91 

Variation in the microbiome among children has also been linked to BMI (Bervoets et al., 2013; 92 

Da Silva, Monteil & Davis, 2020; Shin & Cho, 2020). These changes have been associated with 93 

diets which are precursors to weight gain and shape the gut microbiome (Voreades, Kozil & 94 

Weir, 2014; Cho, 2021). 95 

 96 

Diet can shape the human gut microbiota (Singh et al., 2017; Zmora, Suez & Elinav, 2019). In 97 

children, diet explains most of the variation in gut microbiota profiles between countries or 98 

continents (De Filippo et al., 2010; Nakayama et al., 2015) as already observed in adults (Yasir 99 

et al., 2015; Escobar et al., 2015; Ghosh et al., 2020). Moving away from traditional diets with a 100 

high concentration of fiber, fruits and vegetables towards a Western diet rich in animal protein, 101 

fat and sugar is a cause of concern as high fat diets have been shown to disrupt the balance of gut 102 

microbiota in animal models (Kim et al., 2012). This effect has also been observed in humans 103 

where a decrease in the abundance of butyrate-producing bacteria has  been noted in populations 104 

consuming higher-fat diets (Wan et al., 2019).  In recent year Recently Southeast Asian 105 

populations have begun to adopt the Western diet (Ooraikul, Sirichote & Siripongvutikorn, 106 

2008). However, only few studies have investigated the effects of this dietary pattern on the gut 107 

microbiota of young Southeast Asians (Nakayama et al., 2017; Golloso-Gubat et al., 2020). 108 

 109 

This study is the first to examine the impact of diet and demographic factors (gender, age, BMI 110 

z-score, birth records, feeding type, and ethnicity) on the gut microbiota of Thai school-aged 111 

children in Thailand. Multivariate analyses were implemented to determine the potential 112 

contribution of multiple factors on variations of microbiota profiles as well as identifying most 113 

relevant features (microbiota taxa) for each host variable. Our results provide a preliminary 114 

overview of the associations observed between the abundance of gut microbiota and investigated 115 

factors in school-aged children from Thailand. 116 

 117 



Materials & Methods 118 

Ethics approval 119 

All participants provided written informed consent (Supplementary File 1) and the study was 120 

approved by the Ethics committee of Mae Fah Luang University (Ethics Registry: REH-61204). 121 

The study was conducted in accordance with the Declaration of Helsinki.  122 

 123 

Study population and group definition 124 

We recruited 127 children from Ban Huai Rai Samakee elementary school in Chiang Rai, 125 

Thailand. Recruitment of subjects was conducted by voluntary participation through the school’s 126 

administration. Parents provided informed consent prior to participation. Demographic data 127 

collection included gender, age, weight, height, ethnicity, history of birth delivery mode and 128 

feeding practice (representing the feeding mode in infancy) (Supplementary File 2). The child'’s 129 

weight and height were measured by class instructors. Information on birth delivery method and 130 

feeding type were collected through child self-report and/or parental-report surveys. Body mass 131 

index (BMI) derived from the weight (kg) and height (m2) ratio was converted into gender-132 

specific z-scores for BMI-for-age according to BMI cut-offs for children (5-19 years) set by 133 

World Health Organization (de Onis et al., 2007). Z-scores for BMI-for-age were classified into 134 

5 groups: severe thinness (SVThinness; < -3 SD; n = 1), thinness (≥ -3 SD to < -2 SD; n = 5), 135 

normal weight (≥ -2 SD to + ≤ +1.0 SD; n = 83), overweight (OV; > +1SD to ≤ +2SD; n = 20), 136 

and obese (OB; > +2 SD; n = 18) (Fig. S1). Age groups were defined according to interquartile 137 

range (IQR: 25%, 50%, and 75%): age_A (≤ 8.05 years; n = 32), age_B (8.05 < years < 11.06; n 138 

= 61), and age_C (≥ 11.06 years; n = 34). Five ethnic groups were recorded in this study: Akha 139 

(n = 39), Chinese (n = 34), Lahu (n = 5), Thai (n = 19), and Thai Yai (n = 30). Birth delivery 140 

mode comprised vaginal delivery (n = 85) and cesarean section (n = 42). Feeding types were 141 

categorized into three groups: breastfeeding (n = 98), formula feeding (n = 20), and mixed 142 

feeding (n = 9). 143 

 144 

Dietary information 145 

Dietary habits of children were surveyed using a Thai short dietary behaviors screener developed 146 

by Let’s Get Healthy! For use in Thai (“LGH20 Food Behaviors Screener, Thai”; OHSU 147 

Institutional Review Board protocol #3694). The screener included 20 questions that grouped 148 

participants across five dietary behavior categories: Healthy eating behavior (HEB), fruits and 149 

vegetables (FV), high sugar foods and beverages (HSFB), high salt foods (HSF), and high fat 150 

foods (HFF) (Supplementary File 3A). Answer options measuring frequency of consumption 151 

were divided into four levels: Frequently (daily), sometimes (weekly), infrequently (monthly), 152 

and never. The scores for HEB and FV were assigned as 3 (daily), 2 (weekly), 1 (monthly), or 0 153 

(never). The responses for HSFB, HSF, and HFF were reverse scored. Total component scores 154 

(i.e., a sum score for each category) were divided into quartiles to assign levels of risk (low, low 155 

to moderate, moderate to high, and high (Supplementary File 3B and 3C). Highest frequencies of 156 

HEB and FV consumption would be associated with low risk, while high risk would characterize 157 



children eating mostly HSFB, HSF, and HFF. The instrument screens general dietary behaviors, 158 

but does not provide a quantitative assessment of portion size and frequency to permit 159 

quantification of a specific food or nutrient intake. Instead, intake rankings permit categorization 160 

of individuals according to overall dietary behaviors, such as healthy eating or high consumption 161 

of fatty foods. 162 

 163 

Sample collection, DNA extraction, and quantitative PCR 164 

Fecal samples were collected from all children in sterilized containers and immediately frozen at 165 

− 80 °C. Microbiota DNA was extracted from fecal samples using the innuPREP Stool DNA Kit 166 

(Analytik Jena Biometra, Jena, Germany) according to the manufacturer’s instructions. DNA 167 

yield and purity were determined using the Take 3 Micro-Volume Plate (Biotek, Winooski, VT, 168 

USA). Absolute quantification of bacteria was then conducted by qPCR using Real-Time 169 

Thermal Cyclers CFX96 Touch™ (Bio-Rad, Singapore). Primers targeting microbiota 16s rRNA 170 

genes used in this study are summarized in Table S1. Reactions consisted of template DNA, 171 

forward and reverse primers, 1X SYBR green (2X SensiFASTTM SYBR No-ROX mix, 172 

BIOLINE, UK), and nuclease-free water. The assay conditions and calculations of microbiota 173 

copy numbers were performed according to previously described protocol (Chumponsuk et al., 174 

2021). The average estimates of microbiota abundance by converting CT values were expressed 175 

as logarithmic copy number per gram of wet weight feces. 176 

 177 

Statistical analysis 178 

A sum score for dietary behaviors of children was visualized as a bar plot with ggplot2 179 

(Wickham H, 2009). The aAssociation between dietary behavior was assessed using Spearman'’s 180 

rank correlation and visualized with corrplot version 0.84 (Wei & Simko, 2017). Normality and 181 

homogeneity of variance were tested by Shapiro-Wilk test and Levene’s test (stats package 182 

version 4.0.3) (R Core Team, 2020a). Differences in the abundance of gut microbiota 183 

(Supplementary File 4) between groups (dietary behaviors and demographic factors) were 184 

determined by one-way ANOVA, Welch'’s t-test, and Kruskal-Wallis rank sum test (p < 0.05) 185 

followed by multiple comparisons using Tukey’s HSD test, pairwise t-tests, and Dunn’s test with 186 

Benjamini-Hochberg (BH) p-value correction (hereafter referred to as q-value) (stats package 187 

version 4.0.3 (R Core Team, 2020a) and FSA package version 0.8.31 (Ogle, Wheeler & Dinno, 188 

2020). Association between birth delivery mode and the abundance of gut microbiota was 189 

determined by permutational multivariate analysis of variance (PERMANOVA) with adjustment 190 

for covariates (age and feeding type). Group dispersions based on a maximum distance were 191 

measured by betadisper with 999 permutations in the R package vegan (version 2.5-6) (Oksanen 192 

et al., 2016). Multiple factor analysis (MFA) was performed to evaluate the influence of host 193 

variables (dietary behaviors and demographic factors) on variations of gut microbiota using 194 

FactorMine R version 2.3 (Lê, Josse & Husson, 2008). Contribution of variables to the data set 195 

was visualized with Factoextra version 1.0.7 (Kassambara & Mundt, 2020). To investigate the 196 

most relevant features (microbiota taxa) in characterizing each host factor, Partial Least Squares-197 



Discriminant Analysis (PLS-DA) was carried out by the mixOmics package version 6.12.2 198 

(Rohart et al., 2017). Canonical mode with 100 iterations was used as a parameter for classifying 199 

classes (groups of samples). Receiver operating characteristic curve (ROC curve) and area under 200 

the curve (AUC) were also calculated to examine the validity of supervised classification results. 201 

Predicted scores of categorical outcomes were compared between one class versus the others by 202 

Wilcoxon test (Rohart et al., 2017). The classification accuracy of PLS-DA models is interpreted 203 

as follows: no discrimination (AUC 0.5), low discrimination (AUC 0.6 to 0.7), acceptable (AUC 204 

0.7 to 0.8), excellent (AUC 0.8 to 0.9), and outstanding (AUC > 0.9) (Lobo, Jiménez-valverde & 205 

Real, 2008; Mandrekar, 2010). All analyses were performed in R software version 4.3 (R Core 206 

Team, 2020b). A more detailed explanation of multivariate analyses is described in 207 

Supplementary File 5.  208 

 209 

Results 210 

Dietary behaviors 211 

The frequencies of dietary behaviors of children varied greatly in their score value (Fig. S2). To 212 

determine their relationship between diet behaviors, we performed a correlation analysis based 213 

on Spearman'’s rank correlation coefficient. After multiple testing corrections using the 214 

Benjamini-Hochberg method, we found that high sugar foods and beverages consumption were 215 

significantly correlated with high salty foods consumption (rho = 0.39, q < 0.0001) and high fat 216 

foods (rho = 0.25, q = 0.01, Fig. S3). A positive association between high salt and high fat 217 

behaviors was also detected (rho = 0.27, q = 0.01). Moreover, the fruits and vegetables 218 

consumption were negatively correlated with every dietary behavior except for those associated 219 

with healthy eating behaviors (rho = 0.2, q = 0.04). This healthy eating behavior was negatively 220 

correlated with consumption of fatty foods (rho = –0.23, q = 0.02). Despite the strength of 221 

association being considerably weak, the results identified a trend in children reporting high 222 

unhealthy foods consumption (e.g., HSFB, HSF, HFF) also reporting low healthy foods 223 

behaviors (HEB and FV).  224 

 225 

Gut microbiota associated with dietary behaviors 226 

MFA constructed by integration of dietary behaviors and abundance of gut microbiota revealed 227 

variation in gut microbiota profiles of children (Supplementary File 6A). Bacteroides was highly 228 

correlated with dimension 1 (Dim 1; r = 0.91, p < 0.0001), followed by Gammaproteobacteria (r 229 

= 0.90, p < 0.0001) and total bacteria (r = 0.89, p < 0.0001) (Fig. 1A). Variation in the 230 

abundances of these taxa was best explained by HFF behaviors, with an increasing trend in 231 

microbial abundances indicated in HFF-low risk (coordinate = 1.43, p = 0.02; Fig. 1B). In Dim 232 

2, the clusters were separated according to the number of individuals distributed in each diet 233 

category. Ruminococcus (r = –0.21, p = 0.02) and Akkermansia (r = –0.26, p < 0.01) described 234 

the distribution of HFF-low risk in Dim 3 (coordinate = 1.83, p < 0.0001) and Dim 4 (coordinate 235 

= 1.46, p < 0.001), respectively (Fig. 1C). Both genera were decreased in individuals with low 236 

HFF behaviors (Figure 1D). Other diet behaviors (HEB, FV, HSF, and HSFB), however, had a 237 



lower coordinate on the first, third and fourth axes of the MFA factor map than HFF suggesting 238 

less contribution of these dietary behaviors to the variation in gut microbiota profiles of children 239 

in this study.  240 

 241 

Further analysis of the association between gut microbiota and dietary behaviors using PLS-DA 242 

also identified relevant features (i.e., microbiota taxa) in classifying dietary behaviors based on 243 

the level of consumption. Total bacteria and Gammaproteobacteria, highly contributed to 244 

discrimination of samples along component 1 (Dim 1), and strongly characterized HFF-low risk 245 

(AUC = 0.81, p = 0.04, Figs. 2A, S4A). The abundances of total bacteria (p = 0.02, Fig. 2C), 246 

Gammaproteobacteria (p < 0.0001, Fig. 2E), and Lactobacillus (p = 0.01, Fig. 2D) were 247 

significantly different among HFF categories. After adjustment by multiple comparisons using 248 

the benjamini-Hochberg method, Gammaproteobacteria significantly increased in children with 249 

low HFF compared to those with high HFF (q < 0.001), moderate to high risk HFF (q < 0.001), 250 

and the highest HFF consumption (q = 0.03). In component 2 of PLS-DA for HFF, Lactobacillus 251 

and Ruminococcus were the most discriminative bacteria in children reporting low HFF 252 

consumption (AUC = 0.82, p = 0.03, Figs. 2B, S4B). However, a significant difference in the 253 

abundance of Lactobacillus was detected between low HFF to moderate and high HFF 254 

consumption after adjustment (q = 0.05, Fig. 2D). Moreover, PLS-DA for fruits and vegetables 255 

(FV) consumption showed that total bacteria, Prevotella, Bacteroides, and Faecalibacterium 256 

were the top three bacteria that separated children with high FV (FV-low risk) from those with 257 

lower FV consumption (low to moderate risk and moderate to high risk FV consumption) (Fig. 258 

S5A; AUC = 0.66, p = 0.01). The abundance of total bacteria was also significantly higher in 259 

those reporting high FV as compared to those reporting lower FV consumption (q = 0.04, Fig. 260 

S5C). Nevertheless, the classification was better in the second component where Roseburia and 261 

Ruminococcus contributed to high FV consumption (Figs. S5B, S5D; AUC = 0.70, p < 0.001). 262 

For high salty foods (HSF), Faecalibacterium characterized moderate to high HSF consumption 263 

followed by Bifidobacterium and Roseburia on component 2, whereas Lactobacillus was 264 

associated with low HSF consumption (Fig. S6; AUC = 0.70, p < 0.001). When considering 265 

healthy eating behavior (HEB) and consumption of high sugar foods and beverages (HSFB), the 266 

supervised analysis yielded no discrimination between classes (AUC < 0.6, p > 0.05). Regarding 267 

the observed variability of individuals with different levels of dietary consumption, both MFA 268 

and PLS-DA analyses suggested that the consumption of high fat foods had the highest influence 269 

on the gut microbiota abundances in children. 270 

 271 

Associations between demographic factors and gut microbiota in children 272 

Analysis of gut microbiota with integration of six demographic factors (gender, age, BMI Z-273 

score, ethnicity, birth delivery records, and feeding type) illustrated differences of association 274 

patterns with the gut microbiota among the demographic categories (Fig. 3 and Supplementary 275 

File 7). The MFA explained 18.6% and 8.3% of the variance in Dim 1 and Dim 2, respectively 276 

(Fig. S7A). Bacteroides, Gammaproteobacteria, and total bacteria were the top three variables 277 



that described individual variation in Dim 1 (p < 0.0001, Fig. S7B). Their abundances decreased 278 

in underweight (Thinness) and Thai ethnicity children, while an increasing trend contributed to 279 

normal weight (Table 1, Figs. 3A, 3B). In Dim 2, Lactobacillus mainly described the variation of 280 

individual profiles grouped by delivery mode (R2 = 0.37, p < 0.0001), BMI z-score (R2 = 0.34, p 281 

< 0.0001), and age tertile (R2 = 0.31, p < 0.0001) (Figs. 3C, 3D). Abundance of Lactobacillus 282 

decreased in children delivered vaginally, and in those of normal weight, and oldest age (age_C) 283 

but increased in those delivered by cesarean section, OB (obese), and youngest age (age_A). 284 

Increased Gammaproteobacteria in middle age students (age_B), underweight (Thinness), and 285 

Thai ethnicity characterized Dim 3 (respectively, Figs. S8A–S8C), while this bacteria was 286 

decreased in Lahu ethnicity and oldest age (age_C). Variation of individuals in Dim 4 was 287 

mainly described by Firmicutes and ethnicity (R2 = 0.45, p < 0.0001): the abundance of these 288 

bacteria was increased in children of Lahu and Thai ethnicity, but decreased in those of Chinese  289 

and Akha ethnicity. In Dim 5, OV (increased) had a contrasting profile of Ruminococcus to OB 290 

(decreased). A similar pattern of this bacterial genus was also described for mixed feeding 291 

(increased) and formula feeding (decreased) (Figs. S8D). Considering all demographic variables 292 

included in the MFA, gender had the least contribution to the variation in microbial abundances, 293 

while other factors were associated with subtle differences, which may be of relevance to 294 

profiling the gut microbiota in children. 295 

 296 

Correlation between gut microbiota and BMI z-score 297 

Comparisons of gut microbiota across BMI z-score groups showed a significant difference in the 298 

abundances of Firmicutes (p < 0.01) and Ruminococcus (p = 0.01) (Figs. 4A–4B). After 299 

adjustment by multiple comparisons, the abundance of Firmicutes and Ruminococcus were 300 

significantly higher in students of normal weight (q < 0.01) and OV (q < 0.05) compared to 301 

obese. The supervised analysis also indicated discriminations of these microbiota taxa between 302 

BMI z-score groups (Fig. 4C). Normal BMI was highly associated with increased abundance of 303 

Ruminococcus (component 1: AUC = 0.63, p = 0.02, Figs. 4D, S9), while low abundance of 304 

Firmicutes and Ruminococcus in OB discriminated them from those in other groups (component 305 

1: AUC = 0.68, p = 0.02, Figs. 4D, S9). A decreasing trend in the abundance of 306 

Gammaproteobacteria and Bacteroides contributed to thinness (AUC = 0.76, p = 0.04, Fig. 4E), 307 

however, their association was less important. 308 

 309 

Relation between gut microbiota abundance with age group  310 

Differences in the abundance of Firmicutes (p = 0.05) and Bifidobacterium (p = 0.02) were 311 

detected at different age tertiles of school-aged children (Fig. S10). Significant increase in 312 

Firmicutes (q = 0.04) was found in oldest children over 11 years of age (age_C) compared to 313 

those in age_B (8.05 < age < 11.06 years) (Fig. 5A). Age_C also showed greater abundance of 314 

Bifidobacterium than age_A (q = 0.02) and age_B (q = 0.04) groups (Fig. 5B). Further 315 

evaluation of age-associated differences in the gut microbiota of children by PLS-DA revealed 316 

certain microbiota taxa contributing to the discrimination. The PLS-DA plot displayed variations 317 



in microbiota profiles according to age tertile (Fig. 5C). Feature classification indicated 318 

Firmicutes, Bacteroides, Roseburia, Prevotella, and Ruminococcus as the top five more abundant 319 

microbiota taxa in the oldest school children (age_C) (Fig. 5D). Of these, Firmicutes had the 320 

highest contribution to age_C in component 1 (AUC = 0.62, p = 0.03, Fig. S11). The model 321 

supports that children over 11 years of age have a higher abundance of this microbiota phylum.  322 

 323 

Comparison of microbiota abundance in different delivery modePrevotella was enriched in 324 

children that were delivered vaginally 325 

In this study, we included a record of childbirth to determine its association with the gut 326 

microbiota. A comparison of means between the two birth delivery modes showed no significant 327 

difference in their abundance of microbiota (Fig. S12). When we performed PERMANOVA with 328 

adjustment for covariates (age and feeding type; Supplementary File 8), the test indicated that 329 

birth delivery mode was significantly associated with the abundance of Prevotella (p = 0.03, Fig. 330 

S13A), while no influence of sample dispersions was detected (p = 0.08, and S13B). Further 331 

analyses using PLS-DA also revealed variations of gut microbiota abundance based on birth 332 

delivery mode (Fig. S13C). The enrichment of Prevotella in vaginal delivery was clearly 333 

distinguished from that observed in those delivered by cesarean section (component 1: AUC = 334 

0.69, p < 0.001, Figs. S13D, –S13E).  335 

 336 

Differences in the abundance of gut microbiota of children associated with feeding type 337 

The gut microbiota profile of children varied across feeding types (Fig. S14). A comparison of 338 

microbiota abundances among the three feeding types (breastfeeding, formula feeding, and 339 

mixed feeding) showed significant differences in the abundance of Firmicutes and 340 

Bifidobacterium (p < 0.05). Both bacterial taxa were significantly higher in mixed feeding 341 

children than in those receiving formula feeding (q < 0.05, Figs. 6C, 6D). Abundance of 342 

Bifidobacterium was significantly increased in children breastfed as infants compared to those 343 

formula fed as infants (q = 0.01, Fig. 6D). We then analyzed the association between gut 344 

microbiota and feeding type using PLS-DA to identify key-discriminatory microbiota taxa. 345 

Although the PLS-DA components displayed overlapping clusters (Fig. 6A), several 346 

differentially abundant bacteria that contributed to the variation in feeding type were indicated 347 

(Fig. 6B). The classification model suggested that Faecalibacterium (Fig. 6E), Firmicutes, 348 

Roseburia and Bifidobacterium increased following mixed feeding in component 1 (AUC = 0.60, 349 

p = 0.31, Fig. S15A). In component 2, a similar pattern was observed for Firmicutes and 350 

Ruminococcus (AUC = 0.71, p = 0.03), whereas Gammaproteobacteria increased in formula fed 351 

children (AUC = 0.79, p < 0.0001) (Figs. 15B, S16A).  352 

 353 

The influence of gender towards gut microbiota profile in children  354 

Comparisons of the abundances of gut microbiota found no significant difference between 355 

gender (Figs. S17). This factor, however,  accounted for 47% of the variation in microbial 356 

abundances observed in component 1 of PLS-DA plots of gender (Figs. S18A). Classification 357 



models further demonstrated that Lactobacillus, Gammaproteobacteria, and Bacteroides were 358 

the top three microbiota taxa associated with girls (Fig. S18B). Based on assessing the 359 

discriminative ability of these microbiota taxa for each class (categorical variables), the test 360 

indicated that the outcome had poor discrimination capacity to distinguish between classes (AUC 361 

< 0.6, p > 0.05, Figs. S18C). The model indicated that gender did not influence the gut 362 

microbiota profiles of children in this study.  363 

 364 

Correlation between ethnicity and gut microbiota composition 365 

No significant differences in the abundances of gut microbiota were found across ethnicity (Fig. 366 

S19). When we included ethnicity in the PLS-DA, the model demonstrated the association of this 367 

variable with the gut microbiota of children. While Bacteroides was the discriminative bacteria 368 

in Lahu ethnicity, Gammaproteobacteria was enriched in individuals of Akha ethnicity 369 

(component 1; AUC < 0.6, p > 0.05, Figs. S20A, S20B). However, a higher AUC value was 370 

obtained in component 2, where Akkermansia discriminated Thai Yai from others (AUC = 0.68, 371 

p < 0.01), while Faecalibacterium and Roseburia were the most discriminative bacteria in Akha 372 

ethnicity (AUC = 0.67, p < 0.01, Figs. S20C, S20D). These models implied that ethnicity had a 373 

slight influence on the gut microbiota of school-aged children.  374 

 375 

 376 

Discussion 377 

Our qPCR study of eleven microbiota taxa and total bacteria in the stool of 127 school-aged 378 

children revealed associations with dietary behaviors and demographic factors. Supervised 379 

analyses suggested that the gut microbiota profile was influenced by high fat foods consumption 380 

and the demographic factors of BMI z-score, age, mode of birth delivery, method of milk 381 

delivery, and ethnicity. Gender was not linked to variation in the gut microbiome in this study.  382 

 383 

The human diet has a significant impact on the gut microbiota, as changes in the composition in 384 

response to food consumption have been extensively documented (David et al., 2014; Zmora, 385 

Suez & Elinav, 2019; Leeming et al., 2019). Here, we observed a significant increase in the 386 

abundance of Gammaproteobacteria in children who scored lower on high fat foods behaviors 387 

(characterized by the frequency of eating high fat foods, fried foods as well as food or dessert 388 

which was cooked with coconut milk, butter, or margarine). Previous studies in animals, and an 389 

in vitro model of the human gut using 16S rRNA gene sequencing, also showed that the 390 

abundance of bacteria belonging to the Gammaproteobacteria class increased following a high-391 

fat diet consumption (Lecomte et al., 2015; Agans et al., 2018). To the best of our knowledge, a 392 

similar finding has not been previously reported based on qPCR. Whether decrease in abundance 393 

of Gammaproteobacteria is indeed associated with high fat diets in this population would require 394 

additional validation using larger sized cohorts, and ideally combination of both high throughput 395 

sequencing and qPCR for comparability across studies. An increased abundance of Lactobacillus 396 

and Ruminococcus were also associated with lower HFF consumption. The abundances of these 397 



bacteria was shown to beis disturbed in animal models fed with a high-fat diet (Daniel et al., 398 

2014; Resch et al., 2021), which indicates that these taxa may not grow well in the gut in the 399 

presence of high-fat foods. Hence, in this study, lower reporting of HFF dietary behaviors among 400 

children perhaps favors the growth of these bacteria. Furthermore, the frequent reporting of high 401 

fruits and vegetables consumption seemed to highly promote the enrichment ofappeared 402 

associated with total bacteria and Prevotella levels. These results are consistent with previous 403 

studies of the gut microbiome of Asian populations, which address the influence of shifting from 404 

traditional to Western diets (high-fat/low-fiber) on the gut microbiota of Asian populations. 405 

Prevotella-type taxa were overrepresented in the gut of school-aged children in rural Thailand 406 

when compared with children in urban areas, who harbored more Bacteroides-type bacteria. 407 

Frequency of fruit and vegetable intake may therefore support different enterotypes, as was 408 

already reported for Filipino children from rural Baybay as well as for Thai vegetarians 409 

(Ruengsomwong et al., 2014; Nakayama et al., 2015, 2017). Outside of Asia, Prevotella 410 

dominates the microbiota communities of rural African children consuming diets high in fiber 411 

compared to those of European children (De Filippo et al., 2010). These converging findings 412 

emphasize the importance of a fiber-rich food diet in order to colonize the gut with Prevotella 413 

(Kisuse et al., 2018). High salty foods (HSF) intake affected the abundances of gut microbiota. 414 

Specifically, the butyrate producer Faecalibacterium and Lactobacillus were differentially 415 

associated with reported moderate to high salty foods and low salty foods consumption, 416 

respectively. A similar contrasting profile between Roseburia (another butyrate-producing 417 

bacterium) and Lactobacillus was previously shown in mice fed high- and low-salt diets. The 418 

former was enriched in mice fed high-salt diet (Wang et al., 2017), while the proportion of the 419 

latter was significantly reduced (Wang et al., 2017; Miranda et al., 2018). A similar finding has 420 

also been noted in humans (Wilck et al., 2017). These findings suggest that high salt food 421 

consumption impacts the abundance of specific gut microbiota members.    422 

 423 

Changes in the gut microbiota profile of children have been associated with BMI status classified 424 

based on both centiles (Bervoets et al., 2013) and z-scores (Golloso-Gubat et al., 2020; Shin & 425 

Cho, 2020). In this study, a low abundance of Firmicutes and Ruminococcus was associated with 426 

obesity, while normal and overweight children had a high abundance of these bacteria. These 427 

findings are in contrast to previous studies based on 16S rRNA sequencing, whereby obese 428 

children had a high abundance of Firmicutes (Da Silva, Monteil & Davis, 2020), while 429 

Ruminococcus was nearly depleted in overweight/obese when compared to normal-weight 430 

children (Karvonen et al., 2019). A longitudinal study conducted in school-aged children with 431 

dietary records also highlighted a decrease of Ruminococcaceae in children who developed 432 

obesity and had a high calorie intake (high carbohydrate/high fat and high protein/high fat) 433 

associated with the obese status, (Rampelli et al., 2018). These findings suggest food intake and 434 

weight gain could contribute to variability in the gut microbiome (Rampelli et al., 2018). Despite 435 

unequal sample sizes and a different dietary assessment method herein, most obese children 436 

(72%) consumed high fat foods quite frequently (moderate to high risk) (Fig. S21), while only 437 



33% ate fruits and vegetables (Fig. S22). Thus, the observed differences in microbiota abundance 438 

in our study were likely influenced by high-calorie diets, although further study with more 439 

participants, longer follow-up periods, and more extensive microbiome profiling is needed to 440 

verify this hypothesis. 441 

 442 

The abundance of Bifidobacterium can vary across the stages of life (Arboleya et al., 2016; 443 

Saturio et al., 2021) and this genera is often. Its enrichment enriched has been repeatedly 444 

observed in the gut microbiota of children compared to those in (Derrien et al., 2019). A similar 445 

trend was also detected in our study with a high level of Bifidobacterium among school-aged 446 

children grouped by age tertile. The abundance of Bifidobacterium was significantly high in 447 

children aged over 11 years. Moreover, children in previous studies that fell into the same age 448 

categories as in this study also had a higher fecal concentration of Bifidobacterium compared to 449 

those that were older aged (Agans et al., 2011; Hollister et al., 2015; Zhong et al., 2019). 450 

Concerning age variables, a gap may exist with these findings as we stratified individuals by 451 

quantile ranges. Whether or not the presence of this particular bacterium is associated with age, 452 

changes in Bifidobacterium levels from childhood to adolescence using narrow-age ranges may 453 

be worth investigating in order to better comprehend this relationship.   454 

 455 

Both birth delivery method and feeding type appears to have a strong influence on the early-life 456 

gut microbiota (Cukrowska et al., 2020; Mitchell et al., 2020). The impact of the former has been 457 

shown in a large longitudinal analysis of gut microbiota from 600 newborns and 175 mothers, 458 

which denoted significant differences in the composition of gut microbiota between cesarean 459 

section born and vaginally delivered infants (Shao et al., 2019). The latter type of birth was 460 

associated with a high abundance of Prevotella, as shown in newborns and during the first two 461 

years of life (Dominguez-Bello et al., 2010; Bokulich et al., 2016). Although our study was 462 

conducted in school-aged children, enrichment of this genus was still observed in those who 463 

were born vaginally. This result implies that the impact of method of delivery may continue 464 

beyond infancy. Furthermore, we found that the abundance of Bifidobacterium was lowest in 465 

children who were formula fed as infants when compared with children who were either breast 466 

fed or mixed fed during infancy. Bifidobacterium abundance is increased in the gut of breast-fed 467 

infants rather than in those that are formula-fed. It has been speculated that the bacterium utilizes 468 

human milk oligosaccharides (HMO) (Lee et al., 2015; Forbes et al., 2018; Lawson et al., 2020). 469 

Our data suggests that a lack of exposure to breast milk at an early age may reduce abundance of 470 

gut Bifidobacterium, while mixed-feeding may stabilize the abundance close to breastfeeding. As 471 

time progresses, however, many other factors including the influence of one’s diet is expected to 472 

also influence the makeup of one’s gut microbiome.   473 

 474 

Ethnicity introduces variations in the gut microbiota profiles through diet (Khine et al., 2019; 475 

Dwiyanto et al., 2021). Considering the small sample size of our study, however, our findings 476 

did not have an adequate power to identify the associations between the consumption of ethnic-477 



based diets and the abundance of gut microbiota. We did, however, observe a trend when 478 

discriminating between ethnic groups. For instance, two genera within the phylum Firmicutes 479 

(Faecalibacterium and Roseburia) were associated with children of Akha ethnicity, whereas 480 

Akkermansia was mainly found to associate with the Thai-Yai ethnic group. These results are 481 

inconclusive due to a lack of dietary data relating to ethic cultural practices.  482 

 483 

Although our study demonstrated the independent effect of each host factor on the gut 484 

microbiota, our results should be interpreted with caution. Major limitations include the lack of 485 

sample size estimation and data on cultural practices (e.g., traditional diets, lifestyle, etc.). Since 486 

recruitment of subjects was based on voluntary participation, the number of subcategories was 487 

not homogeneous. In this regard, inter-individual variation was investigated using multivariate 488 

statistical analyses with all concerned factors. The same method has been implemented in our 489 

previous works (Gruneck et al., 2020; Chumponsuk et al., 2021). Moreover, we were unable to 490 

collect data on cultural practices due to the language barriers, which might link to dietary 491 

behaviors of these school-aged children. Both limitations described above serve to limit our 492 

ability to explore correlations between important risk factors and the gut microbiome of school-493 

aged children. One such potential confounding factor, physical activity, should also be included 494 

with future studies to better understand the role this plays together with BMI and diet. 495 

 496 

Conclusions 497 

This study highlights how diet influences gut microbiota. A high abundance of 498 

Gammaproteobacteria was noted in children who reported consumption of few high fat foods . 499 

Demographic factors such as BMI z-score, age, and feeding type also demonstrated their 500 

potential associations with gut microbiota. Obese children were characterized by a low 501 

abundance of Ruminococcus. Those over 11 years of age were found to have a high level of 502 

Bifidobacterium, whereas this abundance decreased in children with a history of formula feeding. 503 

Moreover, birth mode and ethnicity displayed a trend towards the enrichment of gut microbiota. 504 

Considering all host variables, gender was not a determinant of microbiota profiles in this study.  505 
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