© 0o ~NOoO UL W N P

N R R R R R R R R R R
O ©W w~NO® U AWNRF O

W W W W W W W W NN DNDNDNDNDNDDNDDNDNDN
~N OO o B~ WON P O © 00N OO~ W DN B

The fecal microbiota of Thai school-aged children
associated with demographic factors and diet

Lucsame Gruneck', Eleni Gentekaki'?, Kongkiat Kespechara®, Justin Denny*, Thomas J.
Sharpton®®, Lisa K. Marriott*, Jackilen Shannon*, Siam Popluechai'*

!Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
2School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand

3Sooksatharana (Social Enterprise) Co., Ltd., Muang, Phuket, Thailand.

4OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, Unit-
ed States of America

SDepartment of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
®Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA

Corresponding Author:

Siam Popluechai'?

'Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
2School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand

Email address: siam@mfu.ac.th



38
39
40
41
42
43
44
45
46
47
48
49
| 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
| 73
74
75
76
| 77

Abstract

Background. Birth delivery method and breastfeeding practices contribute to microbiota
colonization. Other factors, including diet and demographic factors, -structure gut microbiome
assembly and diversity through childhood development. Fhe-eExploration of these factors,
especially these-which-influencein Southeast Asian children, remains limited.

Methods. We investigated fecal microbiota of 127 Fhai-school-aged children in Thailand using
quantitative PCR (qPCR) and-to assessed the influence of dietarybehaviors and demographic
factors on the gut microbiota. usins-a-multivariate Multivariate analysis (multiple factor analysis
(MFA) and Partial Least Squares Discriminant Analysis (PLS-DA) was used link particular gut
microbes to diet and demographic factors.

Results. Dietary-behaviers and demographic factors were associated with variation among gut
microbiota. The abundance of Gammaproteobacteria increased in children with infrequent
intake of high fat foods. Obese children possessed a lower level of Firmicutes and
Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower
levels among formula-fed children. Prevotella was more abundant in children who were
delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota,
it nonetheless was found to be significantly associated with microbiome composition.

Conclusions. Ourresults-elarify-the-extent to-which-eExogenous and demographic factors

associate with, and possibly drive, the assembly of the gut microbiome of an understudied
population of Fhai-school-aged children_in Thailand.

Introduction

Microbial colonization of the gut starts upon birth, and the composition of the microbiota
community diversifies throughout childhood. Proteobacteria and Actinobacteria dominate the gut
microbiome early in life (Zhuang et al., 2019). As infants develop, their gut microbiota
community becomes more complex and, at two to three years of age, its structure and
composition begins to more closely resemble that of adults (Rodriguez et al., 2015). Shifts in the
microbiota composition occur during this process and are influenced by several-factors-such-as
mode of delivery, feeding type, and diet (Martin et al., 2016; Rutayisire et al., 2016; Iddrisu et
al., 2021).

Early in life, the assembly of the gut microbiome highly depends on delivery mode and feeding
practices (Li et al., 2020; Mitchell et al., 2020; Coker et al., 2021). The guts-microbiome of
infants born vaginally are more enriched in Bifidobacterium and/or Bacteroides compared with
those infants delivered by cesarean section (Yang et al., 2019; Reyman et al., 2019; Niu et al.,
2020). Over time, the association between gut microbiota and mode of delivery weakens
(Rutayisire et al., 2016). Nonetheless, a-differences in the abundance of microbiota between
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children of different modes of delivery was-seen-persists in school-aged children-(i-e-seven-year
olds) (Salminen et al., 2004). Bifidobacterium dominates the gut of infants receiving breast milk
as compared to formula fed children (van den Elsen et al., 2019; Lawson et al., 2020). The
impact of breastfeeding duration persists later in life as-shown-in-a-eohortstudyofearhrschool-
aged-children(Zhong et al., 2019). Overall;these findingsimply-This suggests that a-histery-ef
delivery mode and feeding type could have a long-term impact on the diversity of one’s gut
microbiome.

Additional host-related factors such as ethnicity, age, and body mass index (BMI) contribute to
alterations of gut microbiota. Geographical factors and ethnicity significantly affect gut
microbiota profiles of school-aged children at the genus level (Liu et al., 2020). Although many
studies have already monitored compositional changes in the gut microbiota depending on one’s
age (e.g., comparing between childhood and adulthood) (Derrien, Alvarez & de Vos, 2019), data
on microbiota profiles among school-aged children remains limited (Odamaki et al., 2016).
Variation in the microbiome among children has also been linked to BMI (Bervoets et al., 2013;
Da Silva, Monteil & Davis, 2020; Shin & Cho, 2020). These changes have been associated with
diets which are precursors to weight gain and shape the gut microbiome (Voreades, Kozil &
Weir, 2014; Cho, 2021).

Diet can shape the human gut microbiota (Singh et al., 2017; Zmora, Suez & Elinav, 2019). In
children, diet explains most of the variation in gut microbiota profiles between countries or
continents (De Filippo et al., 2010; Nakayama et al., 2015) as already observed in adults (Yasir
et al., 2015; Escobar et al., 2015; Ghosh et al., 2020). Moving away from traditional diets with a
high concentration of fiber, fruits and vegetables towards a Western diet rich in animal protein,
fat and sugar is a cause of concern as high fat diets have been shown to disrupt the balance of gut
microbiota in animal models (Kim et al., 2012). This effect has also been observed in humans
where a decrease in the abundance of butyrate-producing bacteria has been noted in populations
consuming higher-fat diets (Wan et al., 2019). Ia-+ecentyearRecently Southeast Asian
populations have begun to adopt the Western diet (Ooraikul, Sirichote & Siripongvutikorn,
2008). However, only few studies have investigated the effects of this dietary pattern on the gut
microbiota of young Southeast Asians (Nakayama et al., 2017; Golloso-Gubat et al., 2020).

This study is the first to examine the impact of diet and demographic factors (gender, age, BMI
z-score, birth records, feeding type, and ethnicity) on the gut microbiota of Fhai-school-aged
children in Thailand. Multivariate analyses were implemented to determine the potential
contribution of multiple factors on variations of microbiota profiles as well as identifying most
relevant features (microbiota taxa) for each host variable. Our results provide a preliminary
overview of the associations observed between the abundance of gut microbiota and investigated
factors in school-aged children from Thailand.
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Materials & Methods

Ethics approval

All participants provided written informed consent (Supplementary File 1) and the study was
approved by the Ethics committee of Mae Fah Luang University (Ethics Registry: REH-61204).
The study was conducted in accordance with the Declaration of Helsinki.

Study population and group definition

We recruited 127 children from Ban Huai Rai Samakee elementary school in Chiang Rai,
Thailand. Recruitment of subjects was conducted by voluntary participation through the school’s
administration. Parents provided informed consent prior to participation. Demographic data
collection included gender, age, weight, height, ethnicity, history of birth delivery mode and
feeding practice (representing the feeding mode in infancy) (Supplementary File 2). The child"’s
weight and height were measured by class instructors. Information on birth delivery method and
feeding type were collected through child self-report and/or parental-report surveys. Body mass
index (BMI) derived from the weight (kg) and height (m?) ratio was converted into gender-
specific z-scores for BMI-for-age according to BMI cut-offs for children (5-19 years) set by
World Health Organization (de Onis et al., 2007). Z-scores for BMI-for-age were classified into
5 groups: severe thinness (SVThinness; < -3 SD; n = 1), thinness (> -3 SD to <-2 SD; n=5),
normal weight (> -2 SD to + <+1.0 SD; n = 83), overweight (OV; > +1SD to < +2SD; n = 20),
and obese (OB; > +2 SD; n = 18) (Fig. S1). Age groups were defined according to interquartile
range (IQR: 25%, 50%, and 75%): age_A (< 8.05 years; n = 32), age B (8.05 < years <11.06; n
=61), and age C (> 11.06 years; n = 34). Five ethnic groups were recorded in this study: Akha
(n =39), Chinese (n = 34), Lahu (n = 5), Thai (n = 19), and Thai Yai (n = 30). Birth delivery
mode comprised vaginal delivery (n = 85) and cesarean section (n = 42). Feeding types were
categorized into three groups: breastfeeding (n = 98), formula feeding (n = 20), and mixed
feeding (n =9).

Dietary information

Dietary habits of children were surveyed using a Thai short dietary behaviors screener developed
by Let’s Get Healthy! For use in Thai (“LGH20 Food Behaviors Screener, Thai”; OHSU
Institutional Review Board protocol #3694). The screener included 20 questions that grouped
participants across five dietary behavior categories: Healthy eating behavior (HEB), fruits and
vegetables (FV), high sugar foods and beverages (HSFB), high salt foods (HSF), and high fat
foods (HFF) (Supplementary File 3A). Answer options measuring frequency of consumption
were divided into four levels: Frequently (daily), sometimes (weekly), infrequently (monthly),
and never. The scores for HEB and FV were assigned as 3 (daily), 2 (weekly), 1 (monthly), or 0
(never). The responses for HSFB, HSF, and HFF were reverse scored. Total component scores
(i.e., a sum score for each category) were divided into quartiles to assign levels of risk (low, low
to moderate, moderate to high, and high (Supplementary File 3B and 3C). Highest frequencies of
HEB and FV consumption would be associated with low risk, while high risk would characterize
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children eating mostly HSFB, HSF, and HFF. The instrument screens general dietary behaviors,
but does not provide a quantitative assessment of portion size and frequency to permit
quantification of a specific food or nutrient intake. Instead, intake rankings permit categorization
of individuals according to overall dietary behaviors, such as healthy eating or high consumption
of fatty foods.

Sample collection, DNA extraction, and quantitative PCR

Fecal samples were collected from all children in sterilized containers and immediately frozen at
— 80 °C. Microbiota DNA was extracted from fecal samples using the innuPREP Stool DNA Kit
(Analytik Jena Biometra, Jena, Germany) according to the manufacturer’s instructions. DNA
yield and purity were determined using the Take 3 Micro-Volume Plate (Biotek, Winooski, VT,
USA). Absolute quantification of bacteria was then conducted by qPCR using Real-Time
Thermal Cyclers CFX96 Touch™ (Bio-Rad, Singapore). Primers targeting microbiota 16s rRNA
genes used in this study are summarized in Table S1. Reactions consisted of template DNA,
forward and reverse primers, 1X SYBR green (2X SensiFASTTM SYBR No-ROX mix,
BIOLINE, UK), and nuclease-free water. The assay conditions and calculations of microbiota
copy numbers were performed according to previously described protocol (Chumponsuk et al.,
2021). The average estimates of microbiota abundance by converting CT values were expressed
as logarithmic copy number per gram of wet weight feces.

Statistical analysis

A sum score for dietary behaviors of children was visualized as a bar plot with ggplot2
(Wickham H, 2009). The-aAssociation between dietary behavior was assessed using Spearman'’s
rank correlation and visualized with corrplot version 0.84 (Wei & Simko, 2017). Normality and
homogeneity of variance were tested by Shapiro-Wilk test and Levene’s test (stats package
version 4.0.3) (R Core Team, 2020a). Differences in the abundance of gut microbiota
(Supplementary File 4) between groups (dietary behaviors and demographic factors) were
determined by one-way ANOVA, Welch'’s t-test, and Kruskal-Wallis rank sum test (p < 0.05)
followed by multiple comparisons using Tukey’s HSD test, pairwise t-tests, and Dunn’s test with
Benjamini-Hochberg (BH) p-value correction (hereafter referred to as g-value) (stats package
version 4.0.3 (R Core Team, 2020a) and FSA package version 0.8.31 (Ogle, Wheeler & Dinno,
2020). Association between birth delivery mode and the abundance of gut microbiota was
determined by permutational multivariate analysis of variance (PERMANOVA) with adjustment
for covariates (age and feeding type). Group dispersions based on a maximum distance were

measured by betadisper with 999 permutations in the R package vegan (version 2.5-6) (Oksanen
et al., 2016). Multiple factor analysis (MFA) was performed to evaluate the influence of host
variables (dietary behaviors and demographic factors) on variations of gut microbiota using
FactorMine R version 2.3 (L&, Josse & Husson, 2008). Contribution of variables to the data set
was visualized with Factoextra version 1.0.7 (Kassambara & Mundt, 2020). To investigate the
most relevant features (microbiota taxa) in characterizing each host factor, Partial Least Squares-
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Discriminant Analysis (PLS-DA) was carried out by the mixOmics package version 6.12.2
(Rohart et al., 2017). Canonical mode with 100 iterations was used as a parameter for classifying
classes (groups of samples). Receiver operating characteristic curve (ROC curve) and area under
the curve (AUC) were also calculated to examine the validity of supervised classification results.
Predicted scores of categorical outcomes were compared between one class versus the others by
Wilcoxon test (Rohart et al., 2017). The classification accuracy of PLS-DA models is interpreted
as follows: no discrimination (AUC 0.5), low discrimination (AUC 0.6 to 0.7), acceptable (AUC
0.7 to 0.8), excellent (AUC 0.8 to 0.9), and outstanding (AUC > 0.9) (Lobo, Jiménez-valverde &
Real, 2008; Mandrekar, 2010). All analyses were performed in R software version 4.3 (R Core
Team, 2020b). A more detailed explanation of multivariate analyses is described in
Supplementary File 5.

Results

Dietary behaviors

The frequencies of dietary behaviors of children varied greatly in their score value (Fig. S2). To
determine their relationship between diet behaviors, we performed a correlation analysis based
on Spearman'’s rank correlation coefficient. After multiple testing corrections using the
Benjamini-Hochberg method, we found that high sugar foods and beverages consumption were
significantly correlated with high salty foods consumption (40 = 0.39, ¢ < 0.0001) and high fat
foods (rho = 0.25, ¢ = 0.01, Fig. S3). A positive association between high salt and high fat
behaviors was also detected (70 = 0.27, g = 0.01). Moreover, the fruits and vegetables

consumption were negatively correlated with every dietary behavior except for those associated
with healthy eating behaviors (rho = 0.2, ¢ = 0.04). This healthy eating behavior was negatively
correlated with consumption of fatty foods (rho =—0.23, ¢ = 0.02). Despite the strength of
association being considerably weak, the results identified a trend in children reporting high
unhealthy foods consumption (e.g., HSFB, HSF, HFF) also reporting low healthy foods
behaviors (HEB and FV).

Gut microbiota associated with dietary behaviors

MFA constructed by integration of dietary behaviors and abundance of gut microbiota revealed
variation in gut microbiota profiles of children (Supplementary File 6A). Bacteroides was highly
correlated with dimension 1 (Dim 1; »=0.91, p <0.0001), followed by Gammaproteobacteria (r
=0.90, p <0.0001) and total bacteria (» = 0.89, p < 0.0001) (Fig. 1A). Variation in the
abundances of these taxa was best explained by HFF behaviors, with an increasing trend in
microbial abundances indicated in HFF-low risk (coordinate = 1.43, p = 0.02; Fig. 1B). In Dim
2, the clusters were separated according to the number of individuals distributed in each diet
category. Ruminococcus (r =—-0.21, p = 0.02) and Akkermansia (r =—-0.26, p <0.01) described
the distribution of HFF-low risk in Dim 3 (coordinate = 1.83, p <0.0001) and Dim 4 (coordinate
=1.46, p <0.001), respectively (Fig. 1C). Both genera were decreased in individuals with low
HFF behaviors (Figure 1D). Other diet behaviors (HEB, FV, HSF, and HSFB), however, had a
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lower coordinate on the first, third and fourth axes of the MFA factor map than HFF suggesting
less contribution of these dietary behaviors to the variation in gut microbiota profiles of children
in this study.

Further analysis of the association between gut microbiota and dietary behaviors using PLS-DA
also identified relevant features (i.e., microbiota taxa) in classifying dietary behaviors based on
the level of consumption. Total bacteria and Gammaproteobacteria, highly contributed to
discrimination of samples along component 1 (Dim 1), and strongly characterized HFF-low risk
(AUC =0.81, p=0.04, Figs. 2A, S4A). The abundances of total bacteria (p = 0.02, Fig. 2C),
Gammaproteobacteria (p < 0.0001, Fig. 2E), and Lactobacillus (p = 0.01, Fig. 2D) were
significantly different among HFF categories. After adjustment by multiple comparisons using
the benjamini-Hochberg method, Gammaproteobacteria significantly increased in children with
low HFF compared to those with high HFF (¢ < 0.001), moderate to high risk HFF (¢ < 0.001),
and the highest HFF consumption (g = 0.03). In component 2 of PLS-DA for HFF, Lactobacillus
and Ruminococcus were the most discriminative bacteria in children reporting low HFF
consumption (AUC = 0.82, p = 0.03, Figs. 2B, S4B). However, a significant difference in the
abundance of Lactobacillus was detected between low HFF to moderate and high HFF
consumption after adjustment (¢ = 0.05, Fig. 2D). Moreover, PLS-DA for fruits and vegetables
(FV) consumption showed that total bacteria, Prevotella, Bacteroides, and Faecalibacterium
were the top three bacteria that separated children with high FV (FV-low risk) from those with
lower FV consumption (low to moderate risk and moderate to high risk FV consumption) (Fig.
S5A; AUC = 0.66, p = 0.01). The abundance of total bacteria was also significantly higher in
those reporting high FV as compared to those reporting lower FV consumption (¢ = 0.04, Fig.
S5C). Nevertheless, the classification was better in the second component where Roseburia and
Ruminococcus contributed to high FV consumption (Figs. S5B, S5D; AUC = 0.70, p < 0.001).
For high salty foods (HSF), Faecalibacterium characterized moderate to high HSF consumption
followed by Bifidobacterium and Roseburia on component 2, whereas Lactobacillus was
associated with low HSF consumption (Fig. S6; AUC = 0.70, p <0.001). When considering
healthy eating behavior (HEB) and consumption of high sugar foods and beverages (HSFB), the
supervised analysis yielded no discrimination between classes (AUC < 0.6, p > 0.05). Regarding
the observed variability of individuals with different levels of dietary consumption, both MFA
and PLS-DA analyses suggested that the consumption of high fat foods had the highest influence
on the gut microbiota abundances in children.

Associations between demographic factors and gut microbiota in children

Analysis of gut microbiota with integration of six demographic factors (gender, age, BMI Z-
score, ethnicity, birth delivery records, and feeding type) illustrated differences of association
patterns with the gut microbiota among the demographic categories (Fig. 3 and Supplementary
File 7). The MFA explained 18.6% and 8.3% of the variance in Dim 1 and Dim 2, respectively
(Fig. S7A). Bacteroides, Gammaproteobacteria, and total bacteria were the top three variables
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that described individual variation in Dim 1 (p < 0.0001, Fig. S7B). Their abundances decreased
in underweight (Thinness) and Thai ethnicity children, while an increasing trend contributed to
normal weight (Table 1, Figs. 3A, 3B). In Dim 2, Lactobacillus mainly described the variation of
individual profiles grouped by delivery mode (R? = 0.37, p < 0.0001), BMI z-score (R’ = 0.34, p
<0.0001), and age tertile (R’ = 0.31, p <0.0001) (Figs. 3C, 3D). Abundance of Lactobacillus
decreased in children delivered vaginally, and in those of normal weight, and oldest age (age_C)
but increased in those delivered by cesarean section, OB (obese), and youngest age (age A).
Increased Gammaproteobacteria in middle age students (age B), underweight (Thinness), and
Thai ethnicity characterized Dim 3 (respectively, Figs. S8A—S8C), while this bacteria was
decreased in Lahu ethnicity and oldest age (age C). Variation of individuals in Dim 4 was
mainly described by Firmicutes and ethnicity (R’ = 0.45, p < 0.0001): the abundance of these
bacteria was increased in children of Lahu and Thai ethnicity, but decreased in those of Chinese
and Akha ethnicity. In Dim 5, OV (increased) had a contrasting profile of Ruminococcus to OB
(decreased). A similar pattern of this bacterial genus was also described for mixed feeding
(increased) and formula feeding (decreased) (Figs. S8D). Considering all demographic variables
included in the MFA, gender had the least contribution to the variation in microbial abundances,
while other factors were associated with subtle differences, which may be of relevance to
profiling the gut microbiota in children.

Correlation between gut microbiota and BMI z-score

Comparisons of gut microbiota across BMI z-score groups showed a significant difference in the
abundances of Firmicutes (p < 0.01) and Ruminococcus (p = 0.01) (Figs. 4A—-4B). After
adjustment by multiple comparisons, the abundance of Firmicutes and Ruminococcus were
significantly higher in students of normal weight (g < 0.01) and OV (q < 0.05) compared to
obese. The supervised analysis also indicated discriminations of these microbiota taxa between
BMI z-score groups (Fig. 4C). Normal BMI was highly associated with increased abundance of
Ruminococcus (component 1: AUC = 0.63, p = 0.02, Figs. 4D, S9), while low abundance of
Firmicutes and Ruminococcus in OB discriminated them from those in other groups (component
1: AUC =0.68, p=0.02, Figs. 4D, S9). A decreasing trend in the abundance of
Gammaproteobacteria and Bacteroides contributed to thinness (AUC = 0.76, p = 0.04, Fig. 4E),
however, their association was less important.

Relation between gut microbiota abundance with age group
Differences in the abundance of Firmicutes (p = 0.05) and Bifidobacterium (p = 0.02) were
detected at different age tertiles of school-aged children (Fig. S10). Significant increase in

Firmicutes (¢ = 0.04) was found in oldest children over 11 years of age (age_C) compared to
those in age B (8.05 < age < 11.06 years) (Fig. SA). Age C also showed greater abundance of
Bifidobacterium than age A (¢ =0.02) and age B (¢ = 0.04) groups (Fig. 5B). Further
evaluation of age-associated differences in the gut microbiota of children by PLS-DA revealed
certain microbiota taxa contributing to the discrimination. The PLS-DA plot displayed variations
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in microbiota profiles according to age tertile (Fig. 5C). Feature classification indicated
Firmicutes, Bacteroides, Roseburia, Prevotella, and Ruminococcus as the top five more abundant
microbiota taxa in the oldest school children (age C) (Fig. 5D). Of these, Firmicutes had the
highest contribution to age_C in component 1 (AUC = 0.62, p = 0.03, Fig. S11). The model
supports that children over 11 years of age have a higher abundance of this microbiota phylum.

Comparison of microbiota abundance in different delivery modePrevotella-was-enrichedin
In this study, we included a record of childbirth to determine its association with the gut
microbiota. A comparison of means between the two birth delivery modes showed no significant
difference in their abundance of microbiota (Fig. S12). When we performed PERMANOVA with
adjustment for covariates (age and feeding type; Supplementary File 8), the test indicated that

birth delivery mode was significantly associated with the abundance of Prevotella (p = 0.03, Fig.
S13A), while no influence of sample dispersions was detected (p = 0.08, and S13B). Further
analyses using PLS-DA also revealed variations of gut microbiota abundance based on birth
delivery mode (Fig. S13C). The enrichment of Prevotella in vaginal delivery was clearly
distinguished from that observed in those delivered by cesarean section (component 1: AUC =
0.69, p <0.001, Figs. S13D, —S13E).

Differences in the abundance of gut microbiota of children associated with feeding type
The gut microbiota profile of children varied across feeding types (Fig. S14). A comparison of
microbiota abundances among the three feeding types (breastfeeding, formula feeding, and
mixed feeding) showed significant differences in the abundance of Firmicutes and
Bifidobacterium (p < 0.05). Both bacterial taxa were significantly higher in mixed feeding
children than in those receiving formula feeding (q < 0.05, Figs. 6C, 6D). Abundance of
Bifidobacterium was significantly increased in children breastfed as infants compared to those
formula fed as infants (g = 0.01, Fig. 6D). We then analyzed the association between gut
microbiota and feeding type using PLS-DA to identify key-discriminatory microbiota taxa.
Although the PLS-DA components displayed overlapping clusters (Fig. 6A), several
differentially abundant bacteria that contributed to the variation in feeding type were indicated
(Fig. 6B). The classification model suggested that Faecalibacterium (Fig. 6E), Firmicutes,
Roseburia and Bifidobacterium increased following mixed feeding in component 1 (AUC = 0.60,
p=0.31, Fig. S15A). In component 2, a similar pattern was observed for Firmicutes and
Ruminococcus (AUC = 0.71, p = 0.03), whereas Gammaproteobacteria increased in formula fed
children (AUC =0.79, p <0.0001) (Figs. 15B, S16A).

The influence of gender towards gut microbiota profile in children

Comparisons of the abundances of gut microbiota found no significant difference between
gender (Figs. S17). This factor, however, -accounted for 47% of the variation in microbial
abundances observed in component 1 of PLS-DA plots of gender (Figs. S18A). Classification
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models further demonstrated that Lactobacillus, Gammaproteobacteria, and Bacteroides were
the top three microbiota taxa associated with girls (Fig. S18B). Based on assessing the
discriminative ability of these microbiota taxa for each class (categorical variables), the test
indicated that the outcome had poor discrimination capacity to distinguish between classes (AUC
< 0.6, p > 0.05, Figs. S18C). The model indicated that gender did not influence the gut
microbiota profiles of children in this study.

Correlation between ethnicity and gut microbiota composition

No significant differences in the abundances of gut microbiota were found across ethnicity (Fig.
S19). When we included ethnicity in the PLS-DA, the model demonstrated the association of this
variable with the gut microbiota of children. While Bacteroides was the discriminative bacteria
in Lahu ethnicity, Gammaproteobacteria was enriched in individuals of Akha ethnicity
(component 1; AUC < 0.6, p > 0.05, Figs. S20A, S20B). However, a higher AUC value was
obtained in component 2, where Akkermansia discriminated Thai Yai from others (AUC = 0.68,

p <0.01), while Faecalibacterium and Roseburia were the most discriminative bacteria in Akha
ethnicity (AUC = 0.67, p <0.01, Figs. S20C, S20D). These models implied that ethnicity had a
slight influence on the gut microbiota of school-aged children.

Discussion

Our qPCR study of eleven microbiota taxa and total bacteria in the stool of 127 school-aged
children revealed associations with dietary behaviors and demographic factors. Supervised
analyses suggested that the gut microbiota profile was influenced by high fat foods consumption
and the demographic factors of BMI z-score, age, mode of birth delivery, method of milk
delivery, and ethnicity. Gender was not linked to variation in the gut microbiome in this study.

The human diet has a significant impact on the gut microbiota, as changes in the composition in
response to food consumption have been extensively documented (David et al., 2014; Zmora,
Suez & Elinav, 2019; Leeming et al., 2019). Here, we observed a significant increase in the
abundance of Gammaproteobacteria in children who scored lower on high fat foods behaviors
(characterized by the frequency of eating high fat foods, fried foods as well as food or dessert
which was cooked with coconut milk, butter, or margarine). Previous studies in animals, and an
in vitro model of the human gut using 16S rRNA gene sequencing, also showed that the
abundance of bacteria belonging to the Gammaproteobacteria class increased following a high-
fat diet consumption (Lecomte et al., 2015; Agans et al., 2018). To the best of our knowledge, a
similar finding has not been previously reported based on qPCR. Whether decrease in abundance
of Gammaproteobacteria is indeed associated with high fat diets in this population would require
additional validation using larger sized cohorts, and ideally combination of both high throughput
sequencing and qPCR for comparability across studies. An increased abundance of Lactobacillus
and Ruminococcus were also associated with lower HFF consumption. The abundances of these
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bacteria was-shewn-to-beis disturbed in animal models fed with-a high-fat diet (Daniel et al.,
2014; Resch et al., 2021), which indicates that these taxa may not grow well in the gut in the
presence of high-fat foods. Hence, in this study, lower reporting of HFF dietary behaviors among
children perhaps favors the growth of these bacteria. Furthermore, the-frequentreporting of high

fruits and vegetables consumption seemed te-highly-promete-the-enrichment-ofappeared
associated with total bacteria and Prevotella_ levels. These results are consistent with previous

studies of the-gut-mierebiomeof Asianpopulations—which-address-the influence of shifting from
traditional to Western diets (high-fat/low-fiber) on the gut microbiota of Asian populations.
Prevotella-type taxa were overrepresented in the gut of school-aged children in rural Thailand
when compared with children in urban areas, who harbored more Bacteroides-type bacteria.
Frequency of fruit and vegetable intake may therefore support different enterotypes, as was
already reported for Filipino children from rural Baybay as well as for Thai vegetarians
(Ruengsomwong et al., 2014; Nakayama et al., 2015, 2017). Outside of Asia, Prevotella
dominates the microbiota communities of rural African children consuming diets high in fiber

compared to those of European children (De Filippo et al., 2010). These converging findings
emphasize the importance of a fiber-rich food diet in-erderto colonize the gut with Prevotella
(Kisuse et al., 2018). High salty foods (HSF) intake affected the abundances of gut microbiota.
Specifically, the butyrate producer Faecalibacterium and Lactobacillus were differentially
associated with reported moderate to high salty foods and low salty foods consumption,
respectively. A similar contrasting profile between Roseburia (another butyrate-producing
bacterium) and Lactobacillus was previously shown in mice fed high- and low-salt diets. The
former was enriched in mice fed high-salt diet (Wang et al., 2017), while the proportion of the
latter was significantly reduced (Wang et al., 2017; Miranda et al., 2018). A similar finding has
also been noted in humans (Wilck et al., 2017). These findings suggest that high salt food
consumption impacts the abundance of specific gut microbiota members.

Changes in the gut microbiota profile of children have been associated with BMI status classified
based on both centiles (Bervoets et al., 2013) and z-scores (Golloso-Gubat et al., 2020; Shin &
Cho, 2020). In this study, a low abundance of Firmicutes and Ruminococcus was associated with
obesity, while normal and overweight children had a high abundance of these bacteria. These
findings are in contrast to previous studies based on 16S rRNA sequencing, whereby obese
children had a high abundance of Firmicutes (Da Silva, Monteil & Davis, 2020), while
Ruminococcus was nearly depleted in overweight/obese when compared to normal-weight
children (Karvonen et al., 2019). A longitudinal study conducted in school-aged children with
dietary records also highlighted a decrease of Ruminococcaceae in children who developed
obesity and had a high calorie intake (high carbohydrate/high fat and high protein/high fat)
associated with the obese status, (Rampelli et al., 2018). These findings suggest food intake and
weight gain could contribute to variability in the gut microbiome (Rampelli et al., 2018). Despite
unequal sample sizes and a different dietary assessment method herein, most obese children
(72%) consumed high fat foods quite frequently (moderate to high risk) (Fig. S21), while only
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33% ate fruits and vegetables (Fig. S22). Thus, the observed differences in microbiota abundance
in our study were likely influenced by high-calorie diets, although further study with more
participants, longer follow-up periods, and more extensive microbiome profiling is needed to
verify this hypothesis.

The abundance of Bifidobacterium can vary across the stages of life (Arboleya et al., 2016;
Saturio et al., 2021) and this genera is often—tts enrichment-enriched has-beenrepeatedly
ebserved-in the gut microbiota of children eempared-to-those-in-(Derrien et al., 2019). A similar
trend was also detected in our study with a high level of Bifidobacterium among school-aged
children grouped by age tertile. The abundance of Bifidobacterium was significantly high in
children aged over 11 years. Moreover, children in previous studies that fell into the same age
categories as in this study also had a higher fecal concentration of Bifidobacterium compared to
those that were older aged (Agans et al., 2011; Hollister et al., 2015; Zhong et al., 2019).
Concerning age variables, a gap may exist with these findings as we stratified individuals by

quantile ranges. Whether or not the presence of this particular bacterium is associated with age,
changes in Bifidobacterium levels from childhood to adolescence using narrow-age ranges may
be worth investigating in-erder-to better comprehend this relationship.

Both birth delivery method and feeding type appears to have a strong influence on the early-life
gut microbiota (Cukrowska et al., 2020; Mitchell et al., 2020). The impact of the former has been
shown in a large longitudinal analysis of gut microbiota from 600 newborns and 175 mothers,
which denoted significant differences in the composition of gut microbiota between cesarean
section born and vaginally delivered infants (Shao et al., 2019). The latter type of birth was
associated with a high abundance of Prevotella, as shown in newborns and during the first two
years of life (Dominguez-Bello et al., 2010; Bokulich et al., 2016). Although our study was
conducted in school-aged children, enrichment of this genus was still observed in those who
were born vaginally. This result implies that the impact of method of delivery may continue
beyond infancy. Furthermore, we found that the abundance of Bifidobacterium was lowest in
children who were formula fed as infants when compared with children who were either breast
fed or mixed fed during infancy. Bifidobacterium abundance is increased in the gut of breast-fed
infants rather than in those that are formula-fed. It has been speculated that the bacterium utilizes
human milk oligosaccharides (HMO) (Lee et al., 2015; Forbes et al., 2018; Lawson et al., 2020).
Our data suggests that a lack of exposure to breast milk at an early age may reduce abundance of
gut Bifidobacterium, while mixed-feeding may stabilize the abundance close to breastfeeding. As
time progresses, however, many other factors including the influence of one’s diet is expected to
also influence the makeup of one’s gut microbiome.

Ethnicity introduces variations in the gut microbiota profiles through diet (Khine et al., 2019;
Dwiyanto et al., 2021). Considering the small sample size of our study, however, our findings
did not have an adequate power to identify the associations between the consumption of ethnic-
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based diets and the abundance of gut microbiota. We did, however, observe a trend when
discriminating between ethnic groups. For instance, two genera within the phylum Firmicutes
(Faecalibacterium and Roseburia) were associated with children of Akha ethnicity, whereas
Akkermansia was mainly found to associate with the Thai-Yai ethnic group. These results are
inconclusive due to a lack of dietary data relating to ethic cultural practices.

Although our study demonstrated the independent effect of each host factor on the gut
microbiota, our results should be interpreted with caution. Major limitations include the lack of
sample size estimation and data on cultural practices (e.g., traditional diets, lifestyle, etc.). Since
recruitment of subjects was based on voluntary participation, the number of subcategories was
not homogeneous. In this regard, inter-individual variation was investigated using multivariate
statistical analyses with all concerned factors. The same method has been implemented in our
previous works (Gruneck et al., 2020; Chumponsuk et al., 2021). Moreover, we were unable to
collect data on cultural practices due to the language barriers, which might link to dietary
behaviors of these school-aged children. Both limitations described above serve to limit our
ability to explore correlations between important risk factors and the gut microbiome of school-
aged children. One such potential confounding factor, physical activity, should also be included
with future studies to better understand the role this plays together with BMI and diet.

Conclusions

This study highlights how diet influences gut microbiota. A high abundance of
Gammaproteobacteria was noted in children who reported consumption of few high fat foods .
Demographic factors such as BMI z-score, age, and feeding type also demonstrated their
potential associations with gut microbiota. Obese children were characterized by a low
abundance of Ruminococcus. Those over 11 years of age were found to have a high level of
Bifidobacterium, whereas this abundance decreased in children with a history of formula feeding.
Moreover, birth mode and ethnicity displayed a trend towards the enrichment of gut microbiota.
Considering all host variables, gender was not a determinant of microbiota profiles in this study.
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