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Background. Birth delivery method and breastfeeding practices are known to contribute to microbiota
colonization. Other factors, however, impact gut microbiome assembly and diversity through childhood
development. The exploration of these factors, especially those which influence Southeast Asian children,
remains limited.

Methods. We investigated fecal microbiota of 127 Thai school-aged children using quantitative PCR
(qPCR) and assessed the influence of dietary behaviors and demographic factors on the gut microbiota
using a multivariate analysis (multiple factor analysis (MFA) and Partial Least Squares Discriminant
Analysis (PLS-DA).

Results. Dietary behaviors and demographic factors were associated with variation among gut
microbiota. The abundance of Gammaproteobacteria increased in children with infrequent intake of high
fat foods. Obese children possessed a lower level of Firmicutes and Ruminococcus. Bifidobacterium was
enriched in pre-teen aged children and detected at lower levels among formula fed children. Prevotella
were more abundant in children who were delivered vaginally. While ethnicity explained a small amount
of variation in the gut microbiota, it nonetheless appeared significantly linked to microbiome
composition.

Conclusions. Our results clarify the extent to which exogenous and demographic factors associate with
and possibly drive the assembly of the gut microbiome of an understudied population of Thai school-aged
children.
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38 Abstract

39 Background. Birth delivery method and breastfeeding practices are known to contribute to 

40 microbiota colonization. Other factors, however, impact gut microbiome assembly and diversity 

41 through childhood development. The exploration of these factors, especially those which 

42 influence Southeast Asian children, remains limited.

43

44 Methods. We investigated fecal microbiota of 127 Thai school-aged children using quantitative 

45 PCR (qPCR) and assessed the influence of dietary behaviors and demographic factors on the gut 

46 microbiota using a multivariate analysis (multiple factor analysis (MFA) and Partial Least 

47 Squares Discriminant Analysis (PLS-DA).

48

49 Results. Dietary behaviors and demographic factors were associated with variation among gut 

50 microbiota. The abundance of Gammaproteobacteria increased in children with infrequent 

51 intake of high fat foods. Obese children possessed a lower level of Firmicutes and 

52 Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower 

53 levels among formula fed children. Prevotella were more abundant in children who were 

54 delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota, 

55 it nonetheless appeared significantly linked to microbiome composition.

56

57 Conclusions. Our results clarify the extent to which exogenous and demographic factors 

58 associate with and possibly drive the assembly of the gut microbiome of an understudied 

59 population of Thai school-aged children.

60

61 Introduction

62 Microbial colonization of the gut starts upon birth, but the composition of the microbiota 

63 community diversifies throughout childhood. Bacteria belonging to the phyla Proteobacteria and 

64 Actinobacteria dominate the gut microbiome early in life (Zhuang et al., 2019). As infants 

65 develop, their gut microbiota community becomes more complex and, at two to three years of 

66 age, its structure and composition begins to more closely resemble that of adults (Rodríguez et 

67 al., 2015). Shifts in the microbiota composition are known to occur during this process and are 

68 influenced by several factors such as mode of delivery, feeding type, and diet (Martin et al., 

69 2016; Rutayisire et al., 2016; Iddrisu et al., 2021).

70

71 Previous studies have shown that early in life, the assembly of the gut microbiome is highly 

72 dependent on delivery mode and feeding practices (Li et al., 2020; Mitchell et al., 2020; Coker et 

73 al., 2021). The guts of infants born vaginally are more enriched in Bifidobacterium and/or 

74 Bacteroides compared with those infants delivered by cesarean section (Yang et al., 2019; 

75 Reyman et al., 2019; Niu et al., 2020). Over time, the association between gut microbiota and 

76 mode of delivery weakens (Rutayisire et al., 2016). Nonetheless, a difference in the abundance of 

77 microbiota between children of different modes of delivery was seen in school-aged children (i.e. 
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78 seven years old) (Salminen et al., 2004). Bifidobacterium dominates the gut of infants receiving 

79 breast milk as compared to formula fed children (van den Elsen et al., 2019; Lawson et al., 

80 2020). The impact of breastfeeding duration persists later life as shown in a cohort study of early 

81 school-aged children (Zhong et al., 2019). Overall, these findings imply that a history of delivery 

82 mode and feeding type could have a long-term impact on diversity of one’s gut microbiome. 

83

84 Additional host-related factors such as ethnicity, age, and BMI contribute to alterations of gut 

85 microbiota. Controlling for geographical factors and different ethnic backgrounds significantly 

86 affected gut microbiota profiles of school-aged children with substantial differences detected at 

87 the genus level (Liu et al., 2020). Although many studies have already monitored compositional 

88 changes in the gut microbiota depending on one’s age (e.g., comparing between childhood and 

89 adulthood) (Derrien, Alvarez & de Vos, 2019), data on microbiota profiles among school-aged 

90 children remains limited (Odamaki et al., 2016). Variation in the microbiome among children has 

91 also been linked to BMI (Bervoets et al., 2013; Da Silva, Monteil & Davis, 2020; Shin & Cho, 

92 2020). These changes have been associated with diets which are precursors to weight gain and 

93 shape the gut microbiome (Voreades, Kozil & Weir, 2014; Cho, 2021).

94

95 Diet can shape the human gut microbiota (Singh et al., 2017; Zmora, Suez & Elinav, 2019). 

96 Changes in the composition is influenced by a variety of foods and dietary habits (Senghor et al., 

97 2018). In children, dietary choices explain most of the variation in gut microbiota profiles 

98 between countries or continents (De Filippo et al., 2010; Nakayama et al., 2015) as already 

99 observed in adults (Yasir et al., 2015; Escobar et al., 2015; Ghosh et al., 2020). Moving away 

100 from traditional diets with a high concentration of fiber, fruits and vegetables towards a Western 

101 diet rich in animal protein, fat and sugar is a cause of concern as high fat diets have been shown 

102 to disrupt the balance of gut microbiota in animal models (Kim et al., 2012). This effect has also 

103 been observed in humans where a decrease in the abundance of butyrate-producing bacteria has  

104 been noted in populations consuming higher-fat diets (Wan et al., 2019). Accordingly, these 

105 findings highlight the potential impacts of adopting the Western dietary pattern on the 

106 composition of one’s gut microbiota.

107

108 This study is the first to examine the impact of diet and demographic factors (gender, age, BMI 

109 z-score, birth records, feeding type, and ethnicity) on the gut microbiota of Thai school-aged 

110 children. Multivariate analyses were implemented to determine the potential contribution of 

111 multiple factors on variations of microbiota profiles as well as identifying most relevant features 

112 (microbiota taxa) for each host variable. Our results provide a preliminary overview of the 

113 associations observed between the abundance of gut microbiota and investigated factors in 

114 school-aged children from Thailand.

115

116 Materials & Methods

117 Ethics approval
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118 All participants provided written informed consent (Supplementary File 1) and the study was 

119 approved by the Ethics committee of Mae Fah Luang University (Ethics Registry: REH-61204). 

120 The study was conducted in accordance with the Declaration of Helsinki. 

121

122 Study population and group definition

123 We recruited 127 children from Ban Huai Rai Samakee elementary school in Chiang Rai, 

124 Thailand. Recruitment of subjects was conducted by voluntary participation through the school’s 

125 administration. Parents provided informed consent prior to participation. Demographic data 

126 collection included gender, age, weight, height, ethnicity, history of birth delivery mode and 

127 feeding practice (representing the feeding mode in infancy) (Supplementary File 2). The child's 

128 weight and height were measured by class instructors. Information on birth delivery method and 

129 feeding type were collected through child self-report and/or parental-report surveys. Body mass 

130 index (BMI) derived from the weight (kg) and height (m2) ratio was converted into gender-

131 specific z-scores for BMI-for-age according to BMI cut-offs for children (5-19 years) set by 

132 World Health Organization (de Onis et al., 2007). Z-scores for BMI-for-age were classified into 

133 5 groups: severe thinness (SVThinness; < -3 SD; n = 1), thinness (≥ -3 SD to < -2 SD; n = 5), 

134 normal weight (≥ -2 SD to + ≤ +1.0 SD; n = 83), overweight (OV; > +1SD to ≤ +2SD; n = 20), 

135 and obese (OB; > +2 SD; n = 18) (Fig. S1). Age groups were defined according to interquartile 

136 range (IQR: 25%, 50%, and 75%): age_A (≤ 8.05 years; n = 32), age_B (8.05 < years < 11.06; n 

137 = 61), and age_C (≥ 11.06 years; n = 34). Five ethnic groups were recorded in this study: Akha 

138 (n = 39), Chinese (n = 34), Lahu (n = 5), Thai (n = 19), and Thai Yai (n = 30). Birth delivery 

139 mode comprised vaginal delivery (n = 85) and cesarean section (n = 42). Feeding types were 

140 categorized into three groups: breastfeeding (n = 98), formula feeding (n = 20), and mixed 

141 feeding (n = 9).

142

143 Dietary information

144 Dietary habits of children were surveyed using a Thai short dietary behaviors screener developed 

145 by Let’s Get Healthy! for use in Thai (“LGH20 Food Behaviors Screener, Thai”; OHSU 

146 Institutional Review Board protocol #3694). The screener included 20 questions that grouped 

147 participants across five dietary behavior categories: Healthy eating behavior (HEB), fruits and 

148 vegetables (FV), high sugar foods and beverages (HSFB), high salt foods (HSF), and high fat 

149 foods (HFF) (Supplementary File 3A). Answer options measuring frequency of consumption 

150 were divided into four levels: Frequently (daily), sometimes (weekly), infrequently (monthly), 

151 and never. The scores for HEB and FV were assigned as 3 (daily), 2 (weekly), 1 (monthly), or 0 

152 (never). The responses for HSFB, HSF, and HFF were reverse scored. Total component scores 

153 (i.e., a sum score for each category) were divided into quartiles to assign levels of risk (low, low 

154 to moderate, moderate to high, and high (Supplementary File 3B and 3C). Highest frequencies of 

155 HEB and FV consumption would be associated with low risk, while high risk would characterize 

156 children eating mostly HSFB, HSF, and HFF. The instrument screens general dietary behaviors, 

157 but does not provide a quantitative assessment of portion size and frequency to permit 

PeerJ reviewing PDF | (2021:10:67085:1:0:NEW 15 Jan 2022)

Manuscript to be reviewed



158 quantification of a specific food or nutrient intake. Instead, intake rankings permit categorization 

159 of individuals according to overall dietary behaviors, such as healthy eating or high consumption 

160 of fatty foods.

161

162 Sample collection, DNA extraction, and quantitative PCR

163 Fecal samples were collected from all children in sterilized containers and immediately frozen at 

164 − 80 °C. Microbiota DNA was extracted from fecal samples using the innuPREP Stool DNA Kit 

165 (Analytik Jena Biometra, Jena, Germany) according to the manufacturer’s instructions. DNA 

166 yield and purity were determined using the Take 3 Micro-Volume Plate (Biotek, Winooski, VT, 

167 USA). Absolute quantification of bacteria was then conducted by qPCR using Real-Time 

168 Thermal Cyclers CFX96 Touch™ (Bio-Rad, Singapore). Primers targeting microbiota 16s rRNA 

169 genes used in this study are summarized in Table S1. Reactions consisted of template DNA, 

170 forward and reverse primers, 1X SYBR green (2X SensiFASTTM SYBR No-ROX mix, 

171 BIOLINE, UK), and nuclease-free water. The assay conditions and calculations of microbiota 

172 copy numbers were performed according to previously described protocol (Chumponsuk et al., 

173 2021). The average estimates of microbiota abundance by converting CT values were expressed 

174 as logarithmic copy number per gram of wet weight feces.

175

176 Statistical analysis

177 A sum score for dietary behaviors of children was visualized as a bar plot with ggplot2 

178 (Wickham H, 2009). The association between dietary behavior categories was assessed using 

179 Spearman's rank correlation and visualized with corrplot version 0.84 (Wei & Simko, 2017). 

180 Normality and homogeneity of variance were tested by Shapiro-Wilk test and Levene’s test (stats 

181 package version 4.0.3) (R Core Team, 2020a). Differences in the abundance of gut microbiota 

182 (Supplementary File 4) between groups (dietary behaviors and demographic factors) were 

183 determined by one-way ANOVA, Welch's t-test, and Kruskal-Wallis rank sum test (p < 0.05) 

184 followed by multiple comparisons using Tukey’s HSD test, pairwise t-tests, and Dunn’s test with 

185 Benjamini-Hochberg (BH) p-value correction (hereafter referred to as q-value) (stats package 

186 version 4.0.3 (R Core Team, 2020a) and FSA package version 0.8.31 (Ogle, Wheeler & Dinno, 

187 2020). The association between birth delivery mode and the abundance of gut microbiota was 

188 determined by permutational multivariate analysis of variance (PERMANOVA) with adjustment 

189 for covariates (age and feeding type). Group dispersions based on a maximum distance were 

190 measured by betadisper with 999 permutations in the vegan R package (Oksanen et al., 2016). 

191 Multiple factor analysis (MFA) was performed to evaluate the influence of host variables 

192 (dietary behaviors and demographic factors) on variations of gut microbiota using FactorMine R 

193 version 2.3 (Lê, Josse & Husson, 2008). The contribution of variables to the data set was 

194 visualized with Factoextra version 1.0.7 (Kassambara & Mundt, 2020). To investigate the most 

195 relevant features (microbiota taxa) in characterizing each host factor, Partial Least Squares-

196 Discriminant Analysis (PLS-DA) was carried out by the mixOmics package version 6.12.2 

197 (Rohart et al., 2017). Canonical mode with 100 iterations was used as a parameter for classifying 
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198 classes (groups of samples). Receiver operating characteristic curve (ROC curve) and area under 

199 the curve (AUC) were also calculated to examine the validity of supervised classification results. 

200 The predicted scores of the categorical outcomes were compared between one class versus the 

201 others by Wilcoxon test (Rohart et al., 2017). The classification accuracy of PLS-DA models is 

202 interpreted as follows: no discrimination (AUC 0.5), low discrimination (AUC 0.6 to 0.7), 

203 acceptable (AUC 0.7 to 0.8), excellent (AUC 0.8 to 0.9), and outstanding (AUC > 0.9) (Lobo, 

204 Jiménez-valverde & Real, 2008; Mandrekar, 2010). All analyses were performed in R software 

205 version 4.3 (R Core Team, 2020b). A more detailed explanation of multivariate analyses is 

206 described in Supplementary File 5. 

207

208 Results

209 Dietary behaviors

210 The frequencies of dietary behaviors of children varied greatly in their score value (Fig. S2). To 

211 determine their relationship between dietary behaviors, we performed a correlation analysis 

212 based on Spearman's rank correlation coefficient. We found that high sugar foods and beverages 

213 behaviors were significantly correlated with high salty foods behaviors (rho = 0.39, q < 0.0001) 

214 and high fat foods behaviors (rho = 0.25, q = 0.01, Fig. S3) after multiple testing corrections 

215 using the Benjamini-Hochberg method. A positive association between high salt and high fat 

216 behaviors were also detected (rho = 0.27, q = 0.01). Moreover, the fruits and vegetables 

217 behaviors were negatively correlated with every dietary behavior except for those with healthy 

218 eating behaviors (rho = 0.2, q = 0.04). This healthy eating behavior was negatively correlated 

219 with high fat foods behaviors (rho = –0.23, q = 0.02). Despite the strength of association being 

220 considerably weak, the results identified a trend in children reporting high unhealthy foods 

221 behaviors (e.g., HSFB, HSF, HFF) also reporting low healthy foods behaviors (HEB and FV). 

222

223 Gut microbiota associated with dietary behaviors

224 The MFA constructed by integration of dietary behaviors and abundance of gut microbiota 

225 revealed variation in gut microbiota profiles of children (Supplementary File 6A). Bacteroides 

226 was highly correlated with dimension 1 (Dim 1; r = 0.91, p < 0.0001), followed by 

227 Gammaproteobacteria (r = 0.90, p < 0.0001) and total bacteria (r = 0.89, p < 0.0001) (Fig. 1A). 

228 Variation in the abundances of these taxa was best explained by HFF behaviors, with an 

229 increasing trend in microbial abundances indicated in HFF-low risk (coordinate = 1.43, p = 0.02; 

230 Fig. 1B). In Dim 2, the clusters were separated according to the number of individuals distributed 

231 in each diet category. Ruminococcus (r = –0.21, p = 0.02) and Akkermansia (r = –0.26, p < 0.01) 

232 described the distribution of HFF-low risk in Dim 3 (coordinate = 1.83, p < 0.0001) and Dim 4 

233 (coordinate = 1.46, p < 0.001), respectively (Fig. 1C). Both genera were decreased in individuals 

234 with low HFF behaviors (Figure 1D). Other diet behaviors (HEB, FV, HSF, and HSFB), 

235 however, had a lower coordinate on the first, third and fourth axes of the MFA factor map than 

236 HFF suggesting less contribution of these dietary behaviors to the variation in gut microbiota 

237 profiles of children in this study. 
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238

239 Further analysis of the association between gut microbiota and dietary behaviors using PLS-DA 

240 also identified the relevant features (i.e., microbiota taxa) in classifying dietary behaviors based 

241 on the level of consumption. Total bacteria and Gammaproteobacteria, which highly contributed 

242 to the discrimination of samples along component 1 (Dim 1), also strongly characterized HFF-

243 low risk (AUC = 0.81, p = 0.04, Figs. 2A, S4A). The abundances of total bacteria (p = 0.02, Fig. 

244 2C), Gammaproteobacteria (p < 0.0001, Fig. 2E), and Lactobacillus (p = 0.01, Fig. 2D) were 

245 significantly different among HFF behaviors. After adjustment by multiple comparisons using 

246 the Benjamini-Hochberg method, Gammaproteobacteria significantly increased in children with 

247 low HFF behaviors compared to those with low to moderate risk behaviors (q < 0.001), moderate 

248 to high risk HFF behaviors (q < 0.001), and the highest HFF behaviors (q = 0.03). In component 

249 2 of PLS-DA for HFF behaviors, Lactobacillus and Ruminococcus were the most discriminative 

250 bacteria in children reporting low HFF behaviors (AUC = 0.82, p = 0.03, Figs. 2B, S4B). 

251 However, a significant difference in the abundance of Lactobacillus was detected between low 

252 HFF behaviors to moderate and high HFF behaviors after adjustment (q = 0.05, Fig. 2D). 

253 Moreover, PLS-DA for fruits and vegetables (FV) behaviors showed that total bacteria, 

254 Prevotella, Bacteroides, and Faecalibacterium were the top three bacteria that separated children 

255 with high FV behaviors (FV-low risk) from those with lower FV behaviors (low to moderate risk 

256 and moderate to high risk FV behaviors) (Fig. S5A; AUC = 0.66, p = 0.01). The abundance of 

257 total bacteria was also significantly higher in those reporting high FV behaviors as compared to 

258 those reporting lower FV behaviors (q = 0.04, Fig. S5C). Nevertheless, the classification was 

259 better in the second component where Roseburia and Ruminococcus contributed to high FV 

260 behaviors (Figs. S5B, S5D; AUC = 0.70, p < 0.001). For high salty foods (HSF) behaviors, 

261 Faecalibacterium characterized moderate to high HSF behaviors followed by Bifidobacterium 

262 and Roseburia on component 2, whereas Lactobacillus was associated with low HSF behaviors 

263 (Fig. S6; AUC = 0.70, p < 0.001). When considering healthy eating behavior and high sugar 

264 foods and beverages behaviors, the supervised analysis yielded no discrimination between 

265 classes (AUC < 0.6, p > 0.05). Regarding the observed variability of individuals with different 

266 levels of dietary consumption, both MFA and PLS-DA analyses suggested that high fat foods 

267 behaviors had the highest influence on the gut microbiota abundances in children.

268

269 Associations between demographic factors and gut microbiota in children

270 The analysis of gut microbiota with integration of six demographic factors (gender, age, BMI z-

271 score, ethnicity, birth delivery records, and feeding type) illustrated differences of association 

272 patterns with the gut microbiota among the demographic categories (Fig. 3 and Supplementary 

273 File 7). The MFA explained 18.6% and 8.3% of the variance in Dim 1 and Dim 2, respectively 

274 (Fig. S7A). Bacteroides, Gammaproteobacteria, and total bacteria were the top three variables 

275 that described individual variation in Dim 1 (p < 0.0001, Fig. S7B). Their abundances decreased 

276 in underweight (Thinness) and Thai ethnicity children, while an increasing trend contributed to 

277 normal weight (Table 1, Figs. 3A, 3B). In Dim 2, Lactobacillus mainly described the variation of 
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278 individual profiles grouped by delivery mode (R2 = 0.37, p < 0.0001), BMI z-score (R2 = 0.34, p 

279 < 0.0001), and age tertile (R2 = 0.31, p < 0.0001) (Figs. 3C, 3D). Abundance of Lactobacillus 

280 decreased in children delivered vaginally, and in those of normal weight, and oldest age (age_C) 

281 but increased in those delivered by cesarean section, OB (obese), and youngest age (age_A). 

282 Increased Gammaproteobacteria in middle-aged students (age_B), underweight (Thinness), and 

283 Thai ethnicity characterized Dim 3 (respectively, Figs. S8A–S8C), while this bacterium was 

284 decreased in Lahu ethnicity and oldest age (age_C). Variation of individuals in Dim 4 was 

285 mainly described by Firmicutes and ethnicity (R2 = 0.45, p < 0.0001): the abundance of these 

286 bacteria was increased in children of Lahu and Thai ethnicity, but decreased in those of Chinese  

287 and Akha ethnicity. In Dim 5, OV (increased) had a contrasting profile of Ruminococcus to OB 

288 (decreased). A similar pattern of this bacterial genus was also described for mixed feeding 

289 (increased) and formula feeding (decreased) (Fig. S8D). Considering all demographic variables 

290 included in the MFA, gender had the least contribution to the variation in microbial abundances, 

291 while other factors were associated with subtle differences, which may be of relevance to 

292 profiling the gut microbiota in children.

293

294 Correlation between gut microbiota and BMI z-score

295 Comparisons of gut microbiota across BMI z-score groups showed a significant difference in the 

296 abundances of Firmicutes (p < 0.01) and Ruminococcus (p = 0.01) (Figs. 4A, 4B). After 

297 adjustment by multiple comparisons, the abundance of Firmicutes and Ruminococcus were 

298 significantly higher in students of normal weight (q < 0.01) and OV (q < 0.05) compared to 

299 obese. The supervised analysis also indicated discriminations of these microbiota taxa between 

300 BMI z-score groups (Fig. 4C). Normal BMI was highly associated with increased abundance of 

301 Ruminococcus (component 1: AUC = 0.63, p = 0.02, Figs. 4D, S9), while low abundance of 

302 Firmicutes and Ruminococcus in OB discriminated them from those in other groups (component 

303 1: AUC = 0.68, p = 0.02, Figs. 4D, S9). A decreasing trend in the abundance of 

304 Gammaproteobacteria and Bacteroides contributed to thinness (AUC = 0.76, p = 0.04, Fig. 4E), 

305 however, their association was less important.

306

307 The abundance of gut microbiota differed between age tertile

308 Differences in the abundance of Firmicutes (p = 0.05) and Bifidobacterium (p = 0.02) were 

309 detected at different age tertiles of school-aged children (Fig. S10). Significant increase in 

310 Firmicutes (q = 0.04) was found in oldest children over 11 years of age (age_C) compared to 

311 those in age_B (8.05 < age < 11.06 years) (Fig. 5A). Age_C also showed greater abundance of 

312 Bifidobacterium than age_A (q = 0.02) and age_B (q = 0.04) groups (Fig. 5B). Further 

313 evaluation of age-associated differences in the gut microbiota of children by PLS-DA revealed 

314 certain microbiota taxa contributing to the discrimination. The PLS-DA plot displayed variations 

315 in microbiota profiles according to age tertile (Fig. 5C). Feature classification indicated 

316 Firmicutes, Bacteroides, Roseburia, Prevotella, and Ruminococcus as the top five more abundant 

317 microbiota taxa in the oldest school children (age_C) (Fig. 5D). Of these, Firmicutes had the 

PeerJ reviewing PDF | (2021:10:67085:1:0:NEW 15 Jan 2022)

Manuscript to be reviewed



318 highest contribution to age_C in component 1 (AUC = 0.62, p = 0.03, Fig. S11). The model 

319 supports that children over 11 years of age have a higher abundance of this microbiota phylum. 

320

321 Prevotella was enriched in children that were delivered vaginally

322 In this study, we included a record of childbirth to determine its association with the gut 

323 microbiota. A comparison of means between the two birth delivery modes showed no significant 

324 difference in their abundance of microbiota (Fig. S12). When we performed PERMANOVA with 

325 adjustment for covariates (age and feeding type; Supplementary File 8), the test indicated that 

326 birth delivery mode was significantly associated with the abundance of Prevotella (p = 0.03, Fig. 

327 S13A), while no influence of sample dispersions was detected (p = 0.08, Figs. S13A, S13B). 

328 Further analyses using PLS-DA also revealed variations of gut microbiota abundance based on 

329 birth delivery mode (Fig. S13C). The enrichment of Prevotella in vaginal delivery was clearly 

330 distinguished from that observed in those delivered by cesarean section (component 1: AUC = 

331 0.69, p < 0.001, Figs. S13D, S13E). 

332

333 Differences in the abundance of gut microbiota of children associated with feeding type

334 The gut microbiota profile of children varied across feeding types (Fig. S14). A comparison of 

335 microbiota abundances among the three feeding types (breastfeeding, formula feeding, and 

336 mixed feeding) showed significant differences in the abundance of Firmicutes and 

337 Bifidobacterium (p < 0.05). Both bacterial taxa were significantly higher in mixed feeding 

338 children than in those receiving formula feeding (q < 0.05, Figs 6C, 6D). Abundance of 

339 Bifidobacterium was significantly increased in children breastfed as infants compared to those 

340 formula fed as infants (q = 0.01, Fig. 6D). We then analyzed the association between gut 

341 microbiota and feeding type using PLS-DA to identify key-discriminatory microbiota taxa. 

342 Although the PLS-DA components displayed overlapping clusters (Fig. 6A), several 

343 differentially abundant bacteria that contributed to the variation in feeding type were indicated 

344 (Fig. 6B). The classification model suggested that Faecalibacterium (Fig. 6E), Firmicutes, 

345 Roseburia and Bifidobacterium increased following mixed feeding in component 1 (AUC = 0.60, 

346 p = 0.31, Fig. S15A). In component 2, a similar pattern was observed for Firmicutes and 

347 Ruminococcus (AUC = 0.71, p = 0.03), whereas Gammaproteobacteria increased in formula fed 

348 children (AUC = 0.79, p < 0.0001) (Figs. 15B, S16A). 

349

350 Gender had no detectable influence on the gut microbiota profile of children

351 Comparisons of the abundances of gut microbiota found no significant difference between 

352 gender (Fig. S17). This factor, however,  accounted for 47% of the variation in microbial 

353 abundances observed in component 1 of PLS-DA plots of gender (Fig. S18A). Classification 

354 models further demonstrated that Lactobacillus, Gammaproteobacteria, and Bacteroides were 

355 the top three microbiota taxa associated with girls. Based on assessing the discriminative ability 

356 of these microbiota taxa for each class (categorical variables), the test indicated that the outcome 

357 had poor discrimination capacity to distinguish between classes (AUC < 0.6, p > 0.05, Fig. S18). 
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358 The model indicated that gender did not influence the gut microbiota profiles of children in this 

359 study. 

360

361 Ethnicity had a slight influence on the gut microbiota

362 No significant differences in the abundances of gut microbiota were found across ethnicity (Fig. 

363 S19). When we included ethnicity in the PLS-DA, the model demonstrated the association of this 

364 variable with the gut microbiota of children. While Bacteroides was the discriminative bacteria 

365 in Lahu ethnicity, Gammaproteobacteria was enriched in individuals of Akha ethnicity 

366 (component 1; AUC < 0.6, p > 0.05, Figs. S20A, S20B). However, a higher AUC value was 

367 obtained in component 2, where Akkermansia discriminated Thai Yai from others (AUC = 0.68, 

368 p < 0.01), while Faecalibacterium and Roseburia were the most discriminative bacteria in Akha 

369 ethnicity (AUC = 0.67, p < 0.01, Figs. S20C, S20D). These models implied that ethnicity had a 

370 slight influence on the gut microbiota of school-aged children. 

371

372

373 Discussion

374 Our qPCR study of eleven microbiota taxa and total bacteria in the stool of 127 school-based 

375 children revealed associations with dietary behaviors and demographic factors. Supervised 

376 analyses suggested that the gut microbiota profile was influenced by high fat foods behaviors and 

377 the demographic factors of BMI z-score, age, mode of birth delivery, method of milk delivery, 

378 and ethnicity. Gender was not linked to variation in the gut microbiome in this study. 

379

380 The human diet is known to have a significant impact on the gut microbiota, as changes in the 

381 composition in response to food consumption have been extensively documented (David et al., 

382 2014; Zmora, Suez & Elinav, 2019; Leeming et al., 2019). Here, we observed a significant 

383 increase in the abundance of Gammaproteobacteria in children who scored lower on high fat 

384 foods behaviors (characterized by the frequency of eating high fat foods, fried foods as well as 

385 food or dessert which was cooked with coconut milk, butter, or margarine). Previous studies in 

386 animals and an in vitro model of the human gut using 16S rRNA gene sequencing, also showed 

387 that the abundance of bacteria belonging to the Gammaproteobacteria class increased following 

388 a high-fat diet consumption (Lecomte et al., 2015; Agans et al., 2018). To the best of our 

389 knowledge, a similar finding has not been previously reported based on qPCR. Whether decrease 

390 in abundance of Gammaproteobacteria is indeed associated with high fat diets in this population 

391 would require additional validation using larger sized cohorts, and ideally combination of both 

392 high throughput sequencing and qPCR for comparability across studies. An increased abundance 

393 of Lactobacillus and Ruminococcus were also associated with lower HFF behaviors. The 

394 abundances of these bacteria was shown to be disturbed in animal models fed with a high-fat diet 

395 (Daniel et al., 2014; Resch et al., 2021), which indicates that these taxa may not grow well in the 

396 gut in the presence of high-fat foods. Hence, in this study, lower reporting of HFF dietary 

397 behaviors among children perhaps favors the growth of these bacteria. Furthermore, the frequent 
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398 reporting of high fruits and vegetables behaviors seemed to highly promote the enrichment of 

399 total bacteria and Prevotella. These results are consistent with previous studies of the gut 

400 microbiome of Asian populations which address the influence of shifting from traditional diets to 

401 Western diets (high-fat/low-fiber) on the gut microbiota. Prevotella-type taxa were 

402 overrepresented in the gut of school-aged children in rural Thailand when compared with 

403 children in urban areas, who harbored more Bacteroides-type bacteria. The frequency of fruit 

404 and vegetable intake may therefore support the different enterotypes in this regard as was already 

405 reported for Filipino children from rural Baybay city as well as for Thai vegetarians 

406 (Ruengsomwong et al., 2014; Nakayama et al., 2015, 2017). Outside of Asia, Prevotella 

407 dominated the microbiota communities of rural African children consuming diets high in fiber 

408 compared to those of European children (De Filippo et al., 2010). These converging findings 

409 emphasize the importance of a fiber-rich food diet in order to colonize the gut with Prevotella 

410 (Kisuse et al., 2018). High salty foods (HSF) behaviors had an effect on the abundances of gut 

411 microbiota. Specifically, the butyrate producer Faecalibacterium and Lactobacillus were 

412 differentially associated with reported moderate to high salty foods behaviors and low salty 

413 foods behaviors, respectively. A similar contrasting profile between Roseburia (another butyrate-

414 producing bacterium) and Lactobacillus was previously shown in mice fed high- and low-salt 

415 diets. The former was enriched in mice fed high-salt diet (Wang et al., 2017), while the 

416 proportion of the latter was significantly reduced (Wang et al., 2017; Miranda et al., 2018). A 

417 similar finding has also been noted in humans (Wilck et al., 2017). These findings suggest that 

418 high salt food consumption impacts the abundance of specific gut microbiota members.  

419

420 Changes in the gut microbiota profile of children have been associated with BMI status classified 

421 based on both centiles (Bervoets et al., 2013) and z-scores (Golloso-Gubat et al., 2020; Shin & 

422 Cho, 2020). In this study, a low abundance of Firmicutes and Ruminococcus was associated with 

423 obesity, while normal and overweight children had a high abundance of these bacteria. These 

424 findings are in contrast to previous studies based on 16S rRNA sequencing, whereby obese 

425 children had a high abundance of Firmicutes (Da Silva, Monteil & Davis, 2020), while 

426 Ruminococcus was nearly depleted in overweight/obese when compared to normal-weight 

427 children (Karvonen et al., 2019). A longitudinal study conducted in school-aged children with 

428 dietary records also highlighted a decrease of Ruminococcaceae in children who developed 

429 obesity and had a high calorie intake (high carbohydrate/high fat and high protein/high fat) 

430 associated with the obese status, (Rampelli et al., 2018). These findings suggest a connection 

431 between food intake and weight gain which could contribute to variability in the gut microbiome 

432 (Rampelli et al., 2018). Despite unequal sample sizes and a different dietary assessment method 

433 herein, most obese children (72%) consumed high fat foods quite frequently (moderate to high 

434 risk) (Fig. S21), while only 33% ate fruits and vegetables (Fig. S22). Thus, the observed 

435 differences in microbiota abundance in our study were likely influenced by high-calorie diets, 

436 although further study with more participants, longer follow-up periods, and more extensive 

437 microbiome profiling is needed to verify this hypothesis.
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438

439 The abundance of Bifidobacterium as an early-life genus can vary across the stages of life 

440 (Arboleya et al., 2016; Saturio et al., 2021). Its enrichment has been repeatedly observed in the 

441 gut microbiota of children compared to those in adults, who showed a marked decline in the 

442 Bifidobacterium population (Derrien, Alvarez & de Vos, 2019). A similar trend was also 

443 detected in our study with a high level of Bifidobacterium among school-aged children grouped 

444 by age tertile. The abundance of Bifidobacterium was significantly high in children aged over 11 

445 years. Moreover, children in previous studies that fell into the same age categories as in this 

446 study also had a higher fecal concentration of Bifidobacterium compared to those that were older 

447 aged (Agans et al., 2011; Hollister et al., 2015; Zhong et al., 2019). Concerning age variables, a 

448 gap may exist with these findings as we stratified individuals by tertile ranges. Whether or not 

449 the presence of this particular bacterium is associated with age, changes in Bifidobacterium 

450 levels from childhood to adolescence using narrow-age ranges may be worth investigating in 

451 order to better comprehend this relationship.  

452

453 Both birth delivery method and feeding type appears to have a strong influence on the early-life 

454 gut microbiota (Cukrowska et al., 2020; Mitchell et al., 2020). The impact of the former has been 

455 shown in the largest longitudinal analysis of gut microbiota from 600 newborns and 175 

456 mothers, which denoted significant differences in the composition of gut microbiota between 

457 cesarean section born and vaginally delivered infants (Shao et al., 2019). The latter type of birth 

458 was associated with a high abundance of Prevotella, as shown in newborns and during the first 

459 two years of life (Dominguez-Bello et al., 2010; Bokulich et al., 2016). Although our study was 

460 conducted in school-aged children, enrichment of this genus was still observed in those who 

461 were born vaginally. This result implies that the impact of method of delivery may continue 

462 beyond infancy. Furthermore, we found that the abundance of Bifidobacterium was lowest in 

463 children who were formula fed as infants when compared with children who were either breast 

464 fed or mixed fed during infancy. Bifidobacterium abundance is increased in the gut of breast-fed 

465 infants rather than in those that are formula-fed. It has been speculated that the bacterium utilizes 

466 human milk oligosaccharides (HMO) (Lee et al., 2015; Forbes et al., 2018; Lawson et al., 2020). 

467 Our data suggests that a lack of exposure to breast milk at an early age may reduce abundance of 

468 gut Bifidobacterium, while mixed-feeding may stabilize the abundance close to breastfeeding. As 

469 time progresses, however, many other factors including the influence of one’s diet is expected to 

470 also influence the makeup of one’s gut microbiome. Therefore, our findings require a more 

471 thorough investigation using larger cohorts to validate whether the influence of birth method 

472 and/or feeding type plays an oversized role in determining one’s microbiome or if other factors 

473 displace these risk factors over time.  

474

475 Previous studies have suggested that ethnicity introduced variations in the gut microbiota profiles 

476 through dietary habits (Khine et al., 2019; Dwiyanto et al., 2021). Considering the small sample 

477 size of our study, however, our findings did not have an adequate power to identify the 
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478 associations between the consumption of ethnic-based diets and the abundance of gut microbiota. 

479 We did, however, observe a trend when discriminating between ethnic groups. For instance, two 

480 genera within the phylum Firmicutes (Faecalibacterium and Roseburia) were associated with 

481 children of Akha ethnicity, whereas Akkermansia was mainly found to associate with the Thai-

482 Yai ethnic group. These results are inconclusive due to a lack of dietary data relating to ethic 

483 cultural practices. Accordingly, it would be of interest to more comprehensively examine 

484 whether differences in gut microbiota are related to the ethnic backgrounds of school-aged 

485 children as a result of their unique dietary preferences. 

486

487 Although our study demonstrated the independent effect of each host factor on the gut 

488 microbiota, our results should be interpreted with caution. Major limitations include the number 

489 of samples (subgroup size) and lack of data on cultural practices (e.g., traditional diets, lifestyle, 

490 etc.), which both serve to limit our ability to explore correlations between important risk factors 

491 and the gut microbiome of school-aged children. One such potential confounding factor, physical 

492 activity, should also be included with future studies in order to better understand the role this 

493 plays together with BMI and diet.

494

495 Conclusions

496 This study provides information on host factors that independently influence the gut microbiota 

497 profiles of school-aged children in Southeast Asia. Our study of a supervised multivariate 

498 analysis of qPCR data unraveled subtle differences in the gut microbiota and revealed important 

499 features when classifying host factors. Our results highlight how dietary behaviors influence 

500 variations in the gut microbiota. A high abundance of Gammaproteobacteria was noted in 

501 children who reported few high fat foods behaviors. Demographic factors such as BMI z-score, 

502 age tertile, and feeding type also demonstrated their potential associations with gut microbiota. 

503 Obese children were characterized by a low abundance of Ruminococcus. Those over 11 years of 

504 age were found to have a high level of Bifidobacterium, whereas this abundance decreased in 

505 children with a history of formula feeding. Moreover, birth mode and ethnicity displayed a trend 

506 towards the enrichment of gut microbiota. Considering all host variables, gender was not a 

507 determinant of microbiota profiles in this study. Further large-scale and long-term studies 

508 collecting information on additional lifestyle factors are needed in order to better understand 

509 important contributions to shaping the gut microbiota.

510
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516 HEB – Healthy eating behavior

517 FV – fruits and vegetables 
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518 HSFB – high sugar foods and beverages

519 HSF – high salt foods 

520 HFF – high fat foods 

521 OV – overweight

522 OB – obese

523 age_A – age of children ≤ 8.05 years

524 age_B – age of children between 8.05 and 11.06 years (8.05 < years < 11.06)

525 age_C – age of children ≥ 11.06 years

526
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Table 1(on next page)

Gut microbiota and categorical variables (demographic factors) that most described
variation of individuals in each dimension obtained by the MFA
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1 Table 1 Gut microbiota and categorical variables (demographic factors) that most described 

2 variation of individuals in each dimension obtained by the MFA

Dimension

Dimension described 

by quantitative 

variable (bacterial 

taxon)

Correlation 

with the 

dimension (r); 

p-valuea

Dimension 

described by 

categorical 

variable

bCoordinate; p-

valuec

0.90; < 0.0001
Thinness (BMI z-

score)
–1.62; < 0.01

0.88; < 0.0001 Thai ethnicity –1.29; < 0.0011

Bacteroides

Gammaproteobacteria

total bacteria
0.85; < 0.0001

Normal weight 

(BMI z-score)
1.19; p < 0.001

Vaginal delivery –0.81; p < 0.0001

Normal weight 

(BMI z-score)
–0.77; p < 0.0001

dAge_C –0.76, p < 0.001

Cesarean section 0.81; p < 0.001

OB (BMI z-score) 1.29; p < 0.0001

2 Lactobacillus 0.26; < 0.01

dAge_A 1.06; p < 0.0001
dAge_B 1.00; p < 0.0001

Thinness (BMI 

z-score)
2.03; p < 0.0001

Thai ethnicity 1.58; p < 0.0001

Lahu ethnicity –2.45; p < 0.0001

3 Gammaproteobacteria 0.21; 0.02

dAge_C –0.92; p < 0.0001

Lahu ethnicity 1.59; p < 0.0001

Thai ethnicity 0.85; p < 0.0001

Chinese ethnicity –1.08; p < 0.001
4 Firmicutes 0.29; 0.01

Akha ethnicity –0.97; p < 0.01

OV (BMI z-score) 1.16; p < 0.0001

OB (BMI z-score) –1.07; p < 0.01

Mixed feeding 1.02, p < 0.01
5 Ruminococcus 0.29; < 0.0001

Formula feeding –1.21; p < 0.0001
3 aAn F-test was used to assess whether the variable had a significant influence on the dimension. bA positive value 

4 indicates an increasing trend, while a negative value represents a decreasing trend. cA t-test was done to see whether 

5 the coordinates of the individuals in one category are significantly different from others. dAge tertile (corresponding 

6 to 25 %, 50 %, and 75 %); age_A ≤ 8.05 years, age_B 8.05 < age < 11.06 years, age_C ≥ 11.06 years.

7
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Figure 1
Multiple factor analysis (MFA) of the integration of gut microbiota and dietary behaviors
of school-aged children.

The correlation circle plot showing the correlation between quantitative variables (microbiota
taxa at the phylum, class, and genus levels) and dimensions (A: Dim 1 and 2, C: Dim 3 and
4). A variable that is close to the circle is highly correlated to the dimension. (B) The factor
map of individual profiles grouped by high fat foods (HFF) behaviors in Dim 1 and 2. (D) The
factor map of individual profiles grouped by high fat foods (HFF) behaviors in Dim 3 and 4.
The categorical variables were specified by the 95% confidence ellipses.
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Figure 2
Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with high fat foods (HFF) behaviors.

Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = ’median’) is maximum in component 1 (A) and component 2 (B).
Horizontal bars indicate each bacterial taxon assigned to HFF behaviors and their length
corresponds to the loading weight. The importance of the bacteria contributing to the
dimension runs from bottom to top. (C–E) Boxplots showing normalized bacterial abundances
based on log10 qPCR 16S rRNA copy number per gram of feces. Asterisks indicates a
significant difference in bacterial abundance among HFF behaviors (***q < 0.001, *q < 0.05,
Tukey’s HSD test and pairwise t-tests with Benjamini-Hochberg p-value correction method).
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Figure 3
Multiple factor analysis (MFA) of the integration of gut microbiota in school-aged
children and demographic factors.

The factor map of individual profiles grouped by BMI z-score (A), ethnicity (B), age tertile
(corresponding to 25 %, 50 %, and 75 %); age_A ≤ 8.05 years, age_B 8.05 < age < 11.06
years, age_C ≥ 11.06 years (C), and birth delivery mode (D). Individual variables were
specified by the 95% confidence ellipses.
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Figure 4
Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different BMI z-score groups.

(A–B) Boxplots showing normalized bacterial abundances based on log10 qPCR 16S rRNA
copy number per gram of feces. Significant differences in the abundance of Firmicutes and
Ruminococcus were found between BMI z-score groups after adjusting p-values for multiple
comparisons (q < 0.05, Tukey’s HSD test and Dunn’s test with Benjamini-Hochberg p-value
correction method). (C) The sample plot represents variations in gut bacterial profiles of
school-aged children with different BMI z-score groups (95% confidence ellipses). An
explained variance was based on X-variate (normalized bacterial abundances). (D–E)
Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = ’median’) is maximum in component 1 and 2 of the sample plot.
Horizontal bars indicate each bacterial taxon assigned to BMI z-score levels and their length
corresponds to the loading weight. The importance of the bacteria contributing to the
dimension runs from the bottom to the top of the figure. OV = overweight, OB = obese. BMI
z-score cut-off points were based on WHO Multicentre Growth Reference Study Group (2006);
SVThinness (severe thinness) < -3SD, Thinness ≥ -3SD to < -2SD, Normal ≥ -2SD to ≤ +1SD,
OV (overweight) > +1SD to ≤ +2SD, OB (obese) > +2SD.
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Figure 5
Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different age tertile (corresponding to 25 %, 50 %, and 75 %); age_A ≤
8.05 years, age_B 8.05 < age < 11.06 years, age_C ≥ 11.06 years.

(A–B) Boxplots showing normalized bacterial abundances based on log10 qPCR 16S rRNA
copy number per gram of feces. Asterisks indicate a significant difference in microbiota
abundance among feeding types (*q < 0.05, Tukey’s HSD test and Dunn’s test with
Benjamini-Hochberg p-value correction method). (C) The sample plot represents variations in
gut microbiota profiles of children with different age tertile (95% confidence ellipses). An
explained variance was based on X-variate (normalized bacterial abundances). (D)
Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = ’median’) is maximum in component 1 of the sample plot. Horizontal bars
indicate each bacterial taxon assigned to age tertile and their length corresponds to the
loading weight. The importance of the bacteria contributing to the dimension runs from the
bottom to the top of the figure.
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Figure 6
Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different feeding types (representing the feeding mode in infancy).

(A) The sample plot represents variations in gut microbiota profiles of school-aged children
with different feeding types (95% confidence ellipses). An explained variance was based on
X-variate (normalized bacterial abundances). (B) Discriminant analysis demonstrating
variable selection (bacterial taxa) for which the median (method = ’median’) is maximum in
component 1 of the sample plot. Horizontal bars indicate each bacterial taxon assigned to
feeding type and their length corresponds to the loading weight. The importance of the
bacteria contributing to the dimension runs from the bottom to the top of the figure. (C–E)
Boxplots showing normalized bacterial abundances based on log10 qPCR 16S rRNA copy
number per gram of feces. Asterisks indicates a significant difference in bacterial abundance
among feeding types (**q < 0.01, *q < 0.05, Tukey’s HSD test and Dunn’s test with
Benjamini-Hochberg p-value correction method).
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