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Background. Birth delivery method and breastfeeding practices are known to contribute to microbiota
colonization. Other factors, however, impact gut microbiome assembly and diversity through childhood
development. The exploration of these factors, especially those which influence Southeast Asian children,
remains limited.

Methods. We investigated fecal microbiota of 127 Thai school-aged children using quantitative PCR
(qPCR) and assessed the influence of dietary behaviors and demographic factors on the gut microbiota
using a multivariate analysis (multiple factor analysis (MFA) and Partial Least Squares Discriminant
Analysis (PLS-DA).

Results. Dietary behaviors and demographic factors were associated with variation among gut
microbiota. The abundance of Gammaproteobacteria increased in children with infrequent intake of high
fat foods. Obese children possessed a lower level of Firmicutes and Ruminococcus. Bifidobacterium was
enriched in pre-teen aged children and detected at lower levels among formula fed children. Prevotella
were more abundant in children who were delivered vaginally. While ethnicity explained a small amount
of variation in the gut microbiota, it nonetheless appeared significantly linked to microbiome
composition.

Conclusions. Our results clarify the extent to which exogenous and demographic factors associate with
and possibly drive the assembly of the gut microbiome of an understudied population of Thai school-aged
children.
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Abstract

Background. Birth delivery method and breastfeeding practices are knownto contribute to
microbiota colonization. Other factors, however, impact-gut microbiome assembly and diversity
through childhood development. The exploration of these factors, especially those which
influence Southeast Asian children, remains limited.

Methods. We investigated fecal microbiota of 127 Thai school-aged children using quantitative
PCR (gqPCR) and assessed the influence of dietary behaviors and demographic factors on the gut
microbiota using a multivariate analysis (multiple factor analysis (MFA) and Partial Least
Squares Discriminant Analysis (PLS-DA).

Results. Dietary behaviors and demographic factors were associated with variation among gut
microbiota. The abundance of Gammaproteobacteria increased in children with infrequent
intake of high fat foods. Obese children possessed a lower level of Firmicutes and
Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower
levels among formula-fed children. Prevotella were more abundant in children who were
delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota,
it nonetheless appeared significantly linked to microbiome composition.

Conclusions. Our results clarify the extent to which exogenous and demographic factors
associate with and possibly drive the assembly of the gut microbiome of an understudied
population of Thai school-aged children.

Introduction

Microbial colonization of the gut starts upon birth, butthe composition of the microbiota
community diversifies throughout childhood. Bacteria belonging to-the phyla Proteobacteria and
Actinobacteria dominate the gut microbiome early in life (Zhuang et al., 2019). As infants
develop, their gut microbiota community becomes more complex and, at two to three years of
age, its structure and composition begins to more closely resemble that of adults (Rodriguez et
al., 2015). Shifts in the microbiota composition are-knewn-to occur during this process and are
influenced by several factors such as mode of delivery, feeding type, and diet (Martin et al.,
2016; Rutayisire et al., 2016; Iddrisu et al., 2021).

Previous-studies-have shown-thatearly in life, the assembly of the gut microbiome is-highly
dependent on delivery mode and feeding practices (Li et al., 2020; Mitchell et al., 2020; Coker et
al., 2021). The guts of infants born vaginally are more enriched in Bifidobacterium and/or
Bacteroides compared with those infants delivered by cesarean section (Yang et al., 2019;
Reyman et al., 2019; Niu et al., 2020). Over time, the association between gut microbiota and
mode of delivery weakens (Rutayisire et al., 2016). Nonetheless, a difference in the abundance of
microbiota between children of different modes of delivery was seen in school-aged children (i.e.
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seven years old) (Salminen et al., 2004). Bifidobacterium dominates the gut of infants receiving
breast milk as compared to formula fed children (van den Elsen et al., 2019; Lawson et al.,
2020). The impact of breastfeeding duration persists later life as shown in a cohort study of early
school-aged children (Zhong et al., 2019). Overall, these findings imply that a history of delivery
mode and feeding type could have a long-term impact on diversity of one’s gut microbiome.

Additional host-related factors such as ethnicity, age, and BMI contribute to alterations of gut
microbiota. Centrolling for geographical factors and differentethnic backgrounds significantly
affected gut microbiota profiles of school-aged children with-substantial differences-detected at
the genus level (Liu et al., 2020). Although many studies have already monitored compositional
changes in the gut microbiota depending on one’s age (e.g., comparing between childhood and
adulthood) (Derrien, Alvarez & de Vos, 2019), data on microbiota profiles among school-aged
children remains limited (Odamaki et al., 2016). Variation in the microbiome among children has
also been linked to BMI (Bervoets et al., 2013; Da Silva, Monteil & Davis, 2020; Shin & Cho,
2020). These changes have been associated with diets which are precursors to weight gain and
shape the gut microbiome (Voreades, Kozil & Weir, 2014; Cho, 2021).

Diet can shape the human gut mlcroblota (Slngh et al , 2017; Zmora, Suez & Elinav, 2019).
hanges-in D its-(Senghor et al.,
2018) In chlldren d-Letar-)Lehe;ees explalqmost of the variation in gut mlcroblota profiles
between countries or continents (De Filippo et al., 2010; Nakayama et al., 2015) as already
observed in adults (Yasir et al., 2015; Escobar et al., 2015; Ghosh et al., 2020). Moving away
from traditional diets with a high concentration of fiber, fruits and vegetables towards a Western
diet rich in animal protein, fat and sugar is a cause of concern as high fat diets have been shown
to disrupt the balance of gut microbiota in animal models (Kim et al., 2012). This effect has also

been observed in humans where a decrease in the abundance of butyrate-producing bacteria has
been noted in populatlons consummg hlgher fat dlets (Wan et al. 2019) Aeeelcdmgl-y—these

This study is the first to examine the impact of diet and demographic factors (gender, age, BMI
z-score, birth records, feeding type, and ethnicity) on the gut microbiota of Thai school-aged
children. Multivariate analyses were implemented to determine the potential contribution of
multiple factors on variations of microbiota profiles as well as identifying most relevant features
(microbiota taxa) for each host variable. Our results provide a preliminary overview of the
associations observed between the abundance of gut microbiota and investigated factors in
school-aged children from Thailand.

Materials & Methods
Ethics approval
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All participants provided written informed consent (Supplementary File 1) and the study was
approved by the Ethics committee of Mae Fah Luang University (Ethics Registry: REH-61204).
The study was conducted in accordance with the Declaration of Helsinki.

Study population and group definition

We recruited 127 children from Ban Huai Rai Samakee elementary school in Chiang Rai,
Thailand. Recruitment of subjects was conducted by voluntary participation through the school’s
administration. Parents provided informed consent prior to participation. Demographic data
collection included gender, age, weight, height, ethnicity, history of birth delivery mode and
feeding practice (representing the feeding mode in infancy) (Supplementary File 2). The child's
weight and height were measured by class instructors. Information on birth delivery method and
feeding type were collected through child self-report and/or parental-report surveys. Body mass
index (BMI) derived from the weight (kg) and height (m?) ratio was converted into gender-
specific z-scores for BMI-for-age according to BMI cut-offs for children (5-19 years) set by
World Health Organization (de Onis et al., 2007). Z-scores for BMI-for-age were classified into
5 groups: severe thinness (SVThinness; < -3 SD; n = 1), thinness (= -3 SD to <-2 SD; n =35),
normal weight (> -2 SD to + <+1.0 SD; n = 83), overweight (OV; > +1SD to <+2SD; n = 20),
and obese (OB; > +2 SD; n = 18) (Fig. S1). Age groups were defined according to interquartile
range (IQR: 25%, 50%, and 75%): age A (< 8.05 years; n = 32), age B (8.05 <years <11.06; n
=61), and age C (= 11.06 years; n = 34). Five ethnic groups were recorded in this study: Akha
(n=39), Chinese (n = 34), Lahu (n = 5), Thai (n = 19), and Thai Yai (n = 30). Birth delivery
mode comprised vaginal delivery (n = 85) and cesarean section (n = 42). Feeding types were
categorized into three groups: breastfeeding (n = 98), formula feeding (n = 20), and mixed
feeding (n =9).

Dietary information

Dietary habits of children were surveyed using a Thai short dietary behaviors screener developed
by Let’s Get Healthy! for use in Thai (“LGH20 Food Behaviors Screener, Thai”’; OHSU
Institutional Review Board protocol #3694). The screener included 20 questions that grouped
participants across five dietary behavior categories: Healthy eating behavior (HEB), fruits and
vegetables (FV), high sugar foods and beverages (HSFB), high salt foods (HSF), and high fat
foods (HFF) (Supplementary File 3A). Answer options measuring frequency of consumption
were divided into four levels: Frequently (daily), sometimes (weekly), infrequently (monthly),
and never. The scores for HEB and FV were assigned as 3 (daily), 2 (weekly), 1 (monthly), or 0
(never). The responses for HSFB, HSF, and HFF were reverse scored. Total component scores
(i.e., a sum score for each category) were divided into quartiles to assign levels of risk (low, low
to moderate, moderate to high, and high (Supplementary File 3B and 3C). Highest frequencies of
HEB and FV consumption would be associated with low risk, while high risk would characterize
children eating mostly HSFB, HSF, and HFF. The instrument screens general dietary behaviors,
but does not provide a quantitative assessment of portion size and frequency to permit
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quantification of a specific food or nutrient intake. Instead, intake rankings permit categorization
of individuals according to overall dietary behaviors, such as healthy eating or high consumption
of fatty foods.

Sample collection, DNA extraction, and quantitative PCR

Fecal samples were collected from all children in sterilized containers and immediately frozen at
— 80 °C. Microbiota DNA was extracted from fecal samples using the innuPREP Stool DNA Kit
(Analytik Jena Biometra, Jena, Germany) according to the manufacturer’s instructions. DNA
yield and purity were determined using the Take 3 Micro-Volume Plate (Biotek, Winooski, VT,
USA). Absolute quantification of bacteria was then conducted by qPCR using Real-Time
Thermal Cyclers CFX96 Touch™ (Bio-Rad, Singapore). Primers targeting microbiota 16s rRNA
genes used in this study are summarized in Table S1. Reactions consisted of template DNA,
forward and reverse primers, 1 X SYBR green (2X SensiFASTTM SYBR No-ROX mikx,
BIOLINE, UK), and nuclease-free water. The assay conditions and calculations of microbiota
copy numbers were performed according to previously described protocol (Chumponsuk et al.,
2021). The average estimates of microbiota abundance by converting CT values were expressed
as logarithmic copy number per gram of wet weight feces.

Statistical analysis

A sum score for dietary behaviors of children was visualized as a bar plot with ggplot2
(Wickham H, 2009). The-association between dietary behavior categories was assessed using
Spearman's rank correlation and visualized with corrplot version 0.84 (Wei & Simko, 2017).
Normality and homogeneity of variance were tested by Shapiro-Wilk test and Levene’s test (stats
package version 4.0.3) (R Core Team, 2020a). Differences in the abundance of gut microbiota
(Supplementary File 4) between groups (dietary behaviors and demographic factors) were
determined by one-way ANOVA, Welch's t-test, and Kruskal-Wallis rank sum test (p < 0.05)
followed by multiple comparisons using Tukey’s HSD test, pairwise t-tests, and Dunn’s test with
Benjamini-Hochberg (BH) p-value correction (hereafter referred to as g-value) (stats package
version 4.0.3 (R Core Team, 2020a) and FSA package version 0.8.31 (Ogle, Wheeler & Dinno,
2020). The-association between birth delivery mode and the abundance of gut microbiota was
determined by permutational multivariate analysis of variance (PERMANOVA) with adjustment
for covariates (age and feeding type). Group dispersions based on a maximum distance were
measured by betadisper with 999 permutations in the vegan R package(Oksanen et al., 2016).
Multiple factor analysis (MFA) was performed to evaluate the influence of host variables
(dietary behaviors and demographic factors) on variations of gut microbiota using FactorMine R
version 2.3 (L&, Josse & Husson, 2008). The-contribution of variables to the data set was
visualized with Factoextra version 1.0.7 (Kassambara & Mundt, 2020). To investigate the most
relevant features (microbiota taxa) in characterizing each host factor, Partial Least Squares-
Discriminant Analysis (PLS-DA) was carried out by the mixOmics package version 6.12.2
(Rohart et al., 2017). Canonical mode with 100 iterations was used as a parameter for classifying
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classes (groups of samples). Receiver operating characteristic curve (ROC curve) and area under
the curve (AUC) were also calculated to examine the validity of supervised classification results.
Thepredicted scores of the-categorical outcomes were compared between one class versus the
others by Wilcoxon test (Rohart et al., 2017). The classification accuracy of PLS-DA models is
interpreted as follows: no discrimination (AUC 0.5), low discrimination (AUC 0.6 to 0.7),
acceptable (AUC 0.7 to 0.8), excellent (AUC 0.8 to 0.9), and outstanding (AUC > 0.9) (Lobo,
Jiménez-valverde & Real, 2008; Mandrekar, 2010). All analyses were performed in R software
version 4.3 (R Core Team, 2020b). A more detailed explanation of multivariate analyses is
described in Supplementary File 5.

Results

Dietary behaviors

The frequencies of dietary behaviors of children varied greatly in their score value (Fig. S2). To
determine their relationship between dietary behaviors, we performed a correlation analysis

based on Spearman's rank correlation coefficient. We found that high sugar foods and beverages
behaviors were significantly correlated with high salty foods behawviors (40 = 0.39, ¢ < 0.0001)

and high fat foods behawviors (10 = 0.25, ¢ = 0.01, Fig. S3) aftermultiple testing corrections

using the Benjamini-Hochberg method, A positive association between high salt and high fat
behaviors were also detected (rho = 0.27, ¢ = 0.01). Moreover, the fruits and vegetables

behaviors were negatively correlated with every dietary behavior except forthese with healthy
eating behaviors (7o = 0.2, g = 0.04). This healthy eating behavior was negatively correlated
with high fat fooeds behaviers(rho = —0.23, ¢ = 0.02). Despite the strength of association being
considerably weak, the results identified a trend in children reporting high unhealthy foods
behaviors (e.g., HSFB, HSF, HFF) also reporting low healthy foods behaviors (HEB and FV).

Gut microbiota associated with dietary behaviors

The MFA constructed by integration of dietary behaviors and abundance of gut microbiota
revealed variation in gut microbiota profiles of children (Supplementary File 6A). Bacteroides
was highly correlated with dimension 1 (Dim 1; »=0.91, p < 0.0001), followed by
Gammaproteobacteria (r = 0.90, p <0.0001) and total bacteria (» = 0.89, p < 0.0001) (Fig. 1A).
Variation in the abundances of these taxa was best explained by HFF behaviors, with an
increasing trend in microbial abundances indicated in HFF-low risk (coordinate = 1.43, p = 0.02;
Fig. 1B). In Dim 2, the clusters were separated according to the number of individuals distributed
in each diet category. Ruminococcus (r =—-0.21, p = 0.02) and Akkermansia (r =—0.26, p < 0.01)
described the distribution of HFF-low risk in Dim 3 (coordinate = 1.83, p <0.0001) and Dim 4
(coordinate = 1.46, p < 0.001), respectively (Fig. 1C). Both genera were decreased in individuals
with low HFF behaviors (Figure 1D). Other diet behaviors (HEB, FV, HSF, and HSFB),
however, had a lower coordinate on the first, third and fourth axes of the MFA factor map than
HFF suggesting less contribution of these dietary behaviors to the variation in gut microbiota
profiles of children in this study.
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Further analysis of the association between gut microbiota and dietary behaviors using PLS-DA
also identified the relevant features (i.e., microbiota taxa) in classifying dietary behaviors based
on the level of consumption. Total bacteria and Gammaproteobacteria, which-highly contributed
to the-discrimination of samples along component 1 (Dim 1), alsg strongly characterized HFF-
low risk (AUC = 0.81, p = 0.04, Figs. 2A, S4A). The abundances of total bacteria (p = 0.02, Fig.
2C), Gammaproteobacteria (p < 0.0001, Fig. 2E), and Lactobacillus (p = 0.01, Fig. 2D) were
significantly different among HFF behaviors. After adjustment by multiple comparisons using
the Benjamini-Hochberg method, Gammaproteobacteria significantly increased in children with
low HFF behaviors compared to those with low to moderate risk behaviors (¢ < 0.001), moderate
to high risk HFF behaviors (¢ < 0.001), and the highest HFF behaviors (¢ = 0.03). In component
2 of PLS-DA for HFF behaviors, Lactobacillus and Ruminococcus were the most discriminative
bacteria in children reporting low HFF behaviors (AUC = 0.82, p = 0.03, Figs. 2B, S4B).
However, a significant difference in the abundance of Lactobacillus was detected between low
HFF behaviors to moderate and high HFF behaviors after adjustment (¢ = 0.05, Fig. 2D).
Moreover, PLS-DA for fruits and vegetables (FV) behaviors showed that total bacteria,
Prevotella, Bacteroides, and Faecalibacterium were the top il ee bacteria that separated children
with high FV behaviors (FV-low risk) from those with lower FV behaviors (low to moderate risk
and moderate to high risk FV behaviors) (Fig. SSA; AUC = 0.66, p = 0.01). The abundance of
total bacteria was also significantly higher in those reporting high FV behaviors as compared to
those reporting lower FV behaviors (¢ = 0.04, Fig. S5C). Nevertheless, the classification was
better in the second component where Roseburia and Ruminococcus contributed to high FV
behaviors (Figs. S5B, S5D; AUC = 0.70, p < 0.001). For high salty foods (HSF) behaviors,
Faecalibacterium characterized moderate to high HSF behaviors followed by Bifidobacterium
and Roseburia on component 2, whereas Lactobacillus was associated with low HSF behaviors
(Fig. S6; AUC = 0.70, p < 0.001). When considering healthy eating behavior and high sugar
foods and beverages behaviors, the supervised analysis yielded no discrimination between
classes (AUC < 0.6, p > 0.05). Regarding the observed variability of individuals with different
levels of dietary consumption, both MFA and PLS-DA analyses suggested that high fat foods
behaviors had the highest influence on the gut microbiota abundances in children.

Associations between demographic factors and gut microbiota in children

The-analysis of gut microbiota with integration of six demographic factors (gender, age, BMI z-
score, ethnicity, birth delivery records, and feeding type) illustrated differences of association
patterns with the gut microbiota among the demographic categories (Fig. 3 and Supplementary
File 7). The MFA explained 18.6% and 8.3% of the variance in Dim 1 and Dim 2, respectively
(Fig. STA). Bacteroides, Gammaproteobacteria, and total bacteria were the top three variables
that described individual variation in Dim 1 (p < 0.0001, Fig. S7B). Their abundances decreased
in underweight (Thinness) and Thai ethnicity children, while an increasing trend contributed to
normal weight (Table 1, Figs. 3A, 3B). In Dim 2, Lactobacillus mainly described the variation of
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individual profiles grouped by delivery mode (R* = 0.37, p < 0.0001), BMI z-score (R°=0.34, p
<0.0001), and age tertile (R’ = 0.31, p < 0.0001) (Figs. 3C, 3D). Abundance of Lactobacillus
decreased in children delivered vaginally, and in those of normal weight, and oldest age (age C)
but increased in those delivered by cesarean section, OB (obese), and youngest age (age A).
Increased Gammaproteobacteria in middle-aged students (age B), underweight (Thinness), and
Thai ethnicity characterized Dim 3 (respectively, Figs. SSA—S8C), while this bacterium was
decreased in Lahu ethnicity and oldest age (age C). Variation of individuals in Dim 4 was
mainly described by Firmicutes and ethnicity (R’ = 0.45, p < 0.0001): the abundance of these
bacteria was increased in children of Lahu and Thai ethnicity, but decreased in those of Chinese
and Akha ethnicity. In Dim 5, OV (increased) had a contrasting profile of Ruminococcus to OB
(decreased). A similar pattern of this bacterial genus was also described for mixed feeding
(increased) and formula feeding (decreased) (Fig. S8D). Considering all demographic variables
included in the MFA, gender had the least contribution to the variation in microbial abundances,
while other factors were associated with subtle differences, which may be of relevance to
profiling the gut microbiota in children.

Correlation between gut microbiota and BMI z-score

Comparisons of gut microbiota across BMI z-score groups showed a significant difference in the
abundances of Firmicutes (p < 0.01) and Ruminococcus (p = 0.01) (Figs. 4A, 4B). After
adjustment by multiple comparisons, the abundance of Firmicutes and Ruminococcus were
significantly higher in students of normal weight (¢ <0.01) and OV (g < 0.05) compared to
obese. The supervised analysis also indicated discriminations of these microbiota taxa between
BMI z-score groups (Fig. 4C). Normal BMI was highly associated with increased abundance of
Ruminococcus (component 1: AUC =0.63, p =0.02, Figs. 4D, S9), while low abundance of
Firmicutes and Ruminococcus in OB discriminated them from those in other groups (component
1: AUC=0.68, p =0.02, Figs. 4D, S9). A decreasing trend in the abundance of
Gammaproteobacteria and Bacteroides contributed to thinness (AUC = 0.76, p = 0.04, Fig. 4E),
however, their association was less important.

The abundance of gut microbiota differed between age tertile

Differences in the abundance of Firmicutes (p = 0.05) and Bifidobacterium (p = 0.02) were
detected at different age tertiles of school-aged children (Fig. S10). Significant increase in
Firmicutes (¢ = 0.04) was found in oldest children over 11 years of age (age C) compared to
those in age B (8.05 <age < 11.06 years) (Fig. 5A). Age C also showed greater abundance of
Bifidobacterium than age A (g = 0.02) and age B (¢ = 0.04) groups (Fig. 5B). Further
evaluation of age-associated differences in the gut microbiota of children by PLS-DA revealed
certain microbiota taxa contributing to the discrimination. The PLS-DA plot displayed variations
in microbiota profiles according to age tertile (Fig. 5C). Feature classification indicated
Firmicutes, Bacteroides, Roseburia, Prevotella, and Ruminococcus as the top five more abundant
microbiota taxa in the oldest school children (age C) (Fig. 5D). Of these, Firmicutes had the

Peer] reviewing PDF | (2021:10:67085:1:0:NEW 15 Jan 2022)



Peer]

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

highest contribution to age C in component 1 (AUC = 0.62, p = 0.03, Fig. S11). The model
supports that children over 11 years of age have a higher abundance of this microbiota phylum.

Prevotella was enriched in children that were delivered vaginally

In this study, we included a record of childbirth to determine its association with the gut
microbiota. A comparison of means between the two birth delivery modes showed no significant
difference in their abundance of microbiota (Fig. S12). When we performed PERMANOVA with
adjustment for covariates (age and feeding type; Supplementary File 8), the test indicated that
birth delivery mode was significantly associated with the abundance of Prevotella (p = 0.03, Fig.
S13A), while no influence of sample dispersions was detected (p = 0.08, Figs. S13A, S13B).
Further analyses using PLS-DA also revealed variations of gut microbiota abundance based on
birth delivery mode (Fig. S13C). The enrichment of Prevotella in vaginal delivery was clearly
distinguished from that observed in those delivered by cesarean section (component 1: AUC =
0.69, p <0.001, Figs. S13D, S13E).

Differences in the abundance of gut microbiota of children associated with feeding type
The gut microbiota profile of children varied across feeding types (Fig. S14). A comparison of
microbiota abundances among the three feeding types (breastfeeding, formula feeding, and
mixed feeding) showed significant differences in the abundance of Firmicutes and
Bifidobacterium (p < 0.05). Both bacterial taxa were significantly higher in mixed feeding
children than in those receiving formula feeding (¢ < 0.05, Figs 6C, 6D). Abundance of
Bifidobacterium was significantly increased in children breastfed as infants compared to those
formula fed as infants (¢ = 0.01, Fig. 6D). We then analyzed the association between gut
microbiota and feeding type using PLS-DA to identify key-discriminatory microbiota taxa.
Although the PLS-DA components displayed overlapping clusters (Fig. 6A), several
differentially abundant bacteria that contributed to the variation in feeding type were indicated
(Fig. 6B). The classification model suggested that Faecalibacterium (Fig. 6E), Firmicutes,
Roseburia and Bifidobacterium increased following mixed feeding in component 1 (AUC = 0.60,
p=0.31, Fig. S15A). In component 2, a similar pattern was observed for Firmicutes and
Ruminococcus (AUC = 0.71, p = 0.03), whereas Gammaproteobacteria increased in formula fed
children (AUC = 0.79, p <0.0001) (Figs. 15B, S16A).

Gender had no detectable influence on the gut microbiota profile of children

Comparisons of the abundances of gut microbiota found no significant difference between
gender (F1o. S17). This factor, however, accounted for 47% of the variation in microbial
abundances observed in component 1 of PLS-DA plots of gender (Fig. S18A). Classification
models further demonstrated that Lactobacillus, Gammaproteobacteria, and Bacteroides were
the top three microbiota taxa associated with girls. Based on assessing the discriminative ability
of these microbiota taxa for each class (categorical variables), the test indicated that the outcome
had poor discrimination capacity to distinguish between classes (AUC < 0.6, p > 0.05, Fig. S18).
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The model indicated that gender did not influence the gut microbiota profiles of children in this
study.

Ethnicity had a slight influence on the gut microbiota

No significant differences in the abundances of gut microbiota were found across ethnicity (Fig.
$19). When we included ethnicity in the PLS-DA, the model demonstrated the association of this
variable with the gut microbiota of children. While Bacteroides was the discriminative bacteria
in Lahu ethnicity, Gammaproteobacteria was enriched in individuals of Akha ethnicity
(component 1; AUC < 0.6, p > 0.05, Figs. S20A, S20B). However, a higher AUC value was
obtained in component 2, where Akkermansia discriminated Thai Yai from others (AUC = 0.68,
p <0.01), while Faecalibacterium and Roseburia were the most discriminative bacteria in Akha
ethnicity (AUC = 0.67, p < 0.01, Figs. S20C, S20D). These models implied that ethnicity had a
slight influence on the gut microbiota of school-aged children.

Discussion

Our gPCR study of eleven microbiota taxa and total bacteria in the stool of 127 school-based
children revealed associations with dietary behaviors and demographic factors. Supervised
analyses suggested that the gut microbiota profile was influenced by high fat foods behawviors and
the demographic factors of BMI z-score, age, mode of birth delivery, method of milk delivery,
and ethnicity. Gender was not linked to variation in the gut microbiome in this study.

The human diet is known to-have a significant impact on the gut microbiota, as changes in the
composition in response to food consumption have been extensively documented (David et al.,
2014; Zmora, Suez & Elinav, 2019; Leeming et al., 2019). Here, we observed a significant
increase in the abundance of Gammaproteobacteria in children who scored lower on high fat
foods behaviors (characterized by the frequency of eating high fat foods, fried foods as well as
food or dessert which was cooked with coconut milk, butter, or margarine). Previous studies in
animals and an in vitro model of the human gut using 16S rRNA gene sequencing, also showed
that the abundance of bacteria belonging to the Gammaproteobacteria class increased following
a high-fat diet consumption (Lecomte et al., 2015; Agans et al., 2018). To the best of our
knowledge, a similar finding has not been previously reported based on qPCR. Whether decrease
in abundance of Gammaproteobacteria is indeed associated with high fat diets in this population
would require additional validation using larger sized cohorts, and ideally combination of both
high throughput sequencing and qPCR for comparability across studies. An increased abundance
of Lactobacillus and Ruminococcus were also associated with lower HFF behaviors. The
abundances of these bacteria was shown to be disturbed in animal models fed with a high-fat diet
(Daniel et al., 2014; Resch et al., 2021), which indicates that these taxa may not grow well in the
gut in the presence of high-fat foods. Hence, in this study, lower reporting of HFF dietary
behaviors among children perhaps favors the growth of these bacteria. Furthermore, the frequent
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reporting of high fruits and vegetables behaviors seemed to highly promote the enrichment of
total bacteria and Prevotella. These results are consistent with previous studies of the gut
microbiome of Asian populations which address the influence of shifting from traditional diets to
Western diets (high-fat/low-fiber) on the gut microbiota. Prevotella-type taxa were
overrepresented in the gut of school-aged children in rural Thailand when compared with
children in urban areas, who harbored more Bacteroides-type bacteria. The-frequency of fruit
and vegetable intake may therefore support the-different enterotypes in-thisregard as was already
reported for Filipino children from rural Baybay city as well as for Thai vegetarians
(Ruengsomwong et al., 2014; Nakayama et al., 2015, 2017). Outside of Asia, Prevotella
dominated the microbiota communities of rural African children consuming diets high in fiber
compared to those of European children (De Filippo et al., 2010). These converging findings
emphasize the importance of a fiber-rich food diet in-order to colonize the gut with Prevotella
(Kisuse et al., 2018). High salty foods (HSF) behaviors-had-an-effect on the abundances of gut
microbiota. Specifically, the butyrate producer Faecalibacterium and Lactobacillus were
differentially associated with reported moderate to high salty foods behaviors and low salty
foods behaviors, respectively. A similar contrasting profile between Roseburia (another butyrate-
producing bacterium) and Lactobacillus was previously shown in mice fed high- and low-salt
diets. The former was enriched in mice fed high-salt diet (Wang et al., 2017), while the
proportion of the latter was significantly reduced (Wang et al., 2017; Miranda et al., 2018). A
similar finding has also been noted in humans (Wilck et al., 2017). These findings suggest that
high salt food consumption impacts the abundance of specific gut microbiota members.

Changes in the gut microbiota profile of children have been associated with BMI status classified
based on both centiles (Bervoets et al., 2013) and z-scores (Golloso-Gubat et al., 2020; Shin &
Cho, 2020). In this study, a low abundance of Firmicutes and Ruminococcus was associated with
obesity, while normal and overweight children had a high abundance of these bacteria. These
findings are in contrast to previous studies based on 16S rRNA sequencing, whereby obese
children had a high abundance of Firmicutes (Da Silva, Monteil & Davis, 2020), while
Ruminococcus was nearly depleted in overweight/obese when compared to normal-weight
children (Karvonen et al., 2019). A longitudinal study conducted in school-aged children with
dietary records also highlighted a decrease of Ruminococcaceae in children who developed
obesity and had a high calorie intake (high carbohydrate/high fat and high protein/high fat)
associated with the obese status, (Rampelli et al., 2018). These findings suggest a-connection
between-food intake and weight gain which could contribute to variability in the gut microbiome
(Rampelli et al., 2018). Despite unequal sample sizes and a different dietary assessment method
herein, most obese children (72%) consumed high fat foods quite frequently (moderate to high
risk) (Fig. S21), while only 33% ate fruits and vegetables (Fig. S22). Thus, the observed
differences in microbiota abundance in our study were likely influenced by high-calorie diets,
although further study with more participants, longer follow-up periods, and more extensive
microbiome profiling is needed to verify this hypothesis.
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The abundance of Bifidobacterium as-an-early-life genus can vary across the stages of life
(Arboleya et al., 2016; Saturio et al., 2021). Its enrichment has been repeatedly observed in the
gut microbiota of children compared to those in adults; who showed-a- marked decline-in-the
Bifidobacterium population-(Derrien, Alvarez & de Vos, 2019). A similar trend was also
detected in our study with a high level of Bifidobacterium among school-aged children grouped
by age tertile. The abundance of Bifidobacterium was significantly high in children aged over 11
years. Moreover, children in previous studies that fell into the same age categories as in this
study also had a higher fecal concentration of Bifidobacterium compared to those that were older
aged (Agans et al., 2011; Hollister et al., 2015; Zhong et al., 2019). Concerning age variables, a
gap may exist with these findings as we stratified individuals by tertile ranges. Whether or not
the presence of this particular bacterium is associated with age, changes in Bifidobacterium
levels from childhood to adolescence using narrow-age ranges may be worth investigating in
order to better comprehend this relationship.

Both birth delivery method and feeding type appears to have a strong influence on the early-life
gut microbiota (Cukrowska et al., 2020; Mitchell et al., 2020). The impact of the former has been
shown in the-Jargest longitudinal analysis of gut microbiota from 600 newborns and 175
mothers, which denoted significant differences in the composition of gut microbiota between
cesarean section born and vaginally delivered infants (Shao et al., 2019). The latter type of birth
was associated with a high abundance of Prevotella, as shown in newborns and during the first
two years of life (Dominguez-Bello et al., 2010; Bokulich et al., 2016). Although our study was
conducted in school-aged children, enrichment of this genus was still observed in those who
were born vaginally. This result implies that the impact of method of delivery may continue
beyond infancy. Furthermore, we found that the abundance of Bifidobacterium was lowest in
children who were formula fed as infants when compared with children who were either breast
fed or mixed fed during infancy. Bifidobacterium abundance is increased in the gut of breast-fed
infants rather than in those that are formula-fed. It has been speculated that the bacterium utilizes
human milk oligosaccharides (HMO) (Lee et al., 2015; Forbes et al., 2018; Lawson et al., 2020).
Our data suggests that a lack of exposure to breast milk at an early age may reduce abundance of
gut Bifidobacterium, while mixed-feeding may stabilize the abundance close to breastfeeding. As
time progresses, however, many other factors including the influence of one’s diet is expected to

also 1nﬂuence the makeup of one’s gut mlcroblome lhea:efe;e—eur—ﬁndmgs-reqame-a—lm;e

Previous-studies-have suggested-that ethnicity introduced, variations in the gut microbiota profiles
through dietary habits (Khine et al., 2019; Dwiyanto et al., 2021). Considering the small sample

size of our study, however, our findings did not have an adequate power to identify the
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associations between the consumption of ethnic-based diets and the abundance of gut microbiota.
We did, however, observe a trend when discriminating between ethnic groups. For instance, two
genera within the phylum Firmicutes (Faecalibacterium and Roseburia) were associated with
children of Akha ethnicity, whereas Akkermansia was mainly found to associate with the Thai-
Yai ethnic group. These results are inconclusive due to a lack of dietary data relating to ethic
cultural practices. Accordin it would be of interest to-more s ively examine

Although our study demonstrated the independent effect of each host factor on the gut
microbiota, our results should be interpreted with caution. Major limitations include the number
of samples (subgroup size) and lack of data on cultural practices (e.g., traditional diets, lifestyle,
etc.), which both serve to limit our ability to explore correlations between important risk factors
and the gut microbiome of school-aged children. One such potential confounding factor, physical
activity, should also be included with future studies in-order to better understand the role this
plays together with BMI and diet.

Conclusions
This study prowvi

features-when-classifying host factors.-Our results highlight how dietary behaviors influence,
variations-in-the gut microbiota. A high abundance of Gammaproteobacteria was noted in
children who reported few high fat foods behaviors. Demographic factors such as BMI z-score,
age tertile, and feeding type also demonstrated their potential associations with gut microbiota.
Obese children were characterized by a low abundance of Ruminococcus. Those over 11 years of
age were found to have a high level of Bifidobacterium, whereas this abundance decreased in
children with a history of formula feeding. Moreover, birth mode and ethnicity displayed a trend
towards the enrichment of gut microbiota. Considering all host variables, gender was not a
determinant of microbiota profiles in this study. Furtherlarge-scale-and long-term-studies
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HSFB — high sugar foods and beverages

HSF — high salt foods

HFF — high fat foods

OV — overweight

OB — obese

age A —age of children < 8.05 years

age B — age of children between 8.05 and 11.06 years (8.05 < years < 11.06)
age C — age of children > 11.06 years
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Gut microbiota and categorical variables (demographic factors) that most described
variation of individuals in each dimension obtained by the MFA
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1 Table 1 Gut microbiota and categorical variables (demographic factors) that most described
2 variation of individuals in each dimension obtained by the MFA
Dimension described Correlation Dimension
. . by quantitative with the described by PCoordinate; p-
Dimension . . . . .
variable (bacterial dimension (r); categorical value®
taxon) p-value® variable
. 0.90;<0.0001 | rhinness BMIz ) ) 65 001
Bacteroides score)
1 Gammaproteobacteria 0.88; < 0.0001 Thai ethnicity —-1.29; <0.001
total bacteria ) Normal weight .
0.85; <0.0001 (BMI 7-score) 1.19; p <0.001
Vaginal delivery —0.81; p <0.0001
Normal weight )
(BMI z-score) —0.77; p <0.0001
2 Lactobacillus 0.26;<0.01 dAge C —0.76, p <0.001
Cesarean section 0.81; p <0.001
OB (BMI z-score) | 1.29; p <0.0001
dAge A 1.06; p <0.0001
dAge B 1.00; p < 0.0001
ggg:)‘gs (BML 5 03 » < 0.0001
3 ja | 0.21;0.02 - —
Gammaproteobacteria | 0.21; Thai cthnicity | 1.58: p < 0.0001
Lahu ethnicity —2.45; p <0.0001
dAge C —0.92; p <0.0001
Lahu ethnicity 1.59; p <0.0001
_ Thai ethnicity 0.85; p <0.0001
4 0.29; 0.01 ; — .
Firmicutes ’ Chinese ethnicity | —1.08; p <0.001
Akha ethnicity —0.97; p <0.01
OV (BMI z-score) | 1.16; p <0.0001
_ OB (BMI z-score) | —1.07; p <0.01
5 R 0.29; <0.0001 . : :
umococcs Mixed feeding | 1.02, p < 0.01
Formula feeding | —1.21; p <0.0001
3 2An F-test was used to assess whether the variable had a significant influence on the dimension. PA positive value
4  indicates an increasing trend, while a negative value represents a decreasing trend. °A t-test was done to see whether
5  the coordinates of the individuals in one category are significantly different from others. 4Age tertile (corresponding
6  to25%, 50 %, and 75 %); age A <8.05 years, age B 8.05 <age < 11.06 years, age C > 11.06 years.
7
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Figure 1

Multiple factor analysis (MFA) of the integration of gut microbiota and dietary behaviors
of school-aged children.

The correlation circle plot showing the correlation between quantitative variables (microbiota
taxa at the phylum, class, and genus levels) and dimensions (A: Dim 1 and 2, C: Dim 3 and
4). A variable that is close to the circle is highly correlated to the dimension. (B) The factor
map of individual profiles grouped by high fat foods (HFF) behaviors in Dim 1 and 2. (D) The
factor map of individual profiles grouped by high fat foods (HFF) behaviors in Dim 3 and 4.

The categorical variables were specified by the 95% confidence ellipses.
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Figure 2

Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with high fat foods (HFF) behaviors.

Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = 'median’) is maximum in component 1 (A) and component 2 (B).
Horizontal bars indicate each bacterial taxon assigned to HFF behaviors and their length
corresponds to the loading weight. The importance of the bacteria contributing to the
dimension runs from bottom to top. (C-E) Boxplots showing normalized bacterial abundances
based on logl0 gPCR 16S rRNA copy number per gram of feces. Asterisks indicates a
significant difference in bacterial abundance among HFF behaviors (***q < 0.001, *q < 0.05,

Tukey’s HSD test and pairwise t-tests with Benjamini-Hochberg p-value correction method).
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Figure 3

Multiple factor analysis (MFA) of the integration of gut microbiota in school-aged
children and demographic factors.

The factor map of individual profiles grouped by BMI z-score (A), ethnicity (B), age tertile
(corresponding to 25 %, 50 %, and 75 %); age A < 8.05 years, age B 8.05 < age < 11.06
years, age C = 11.06 years (C), and birth delivery mode (D). Individual variables were

specified by the 95% confidence ellipses.
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Figure 4

Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different BMI z-score groups.

(A-B) Boxplots showing normalized bacterial abundances based on log10 gPCR 16S rRNA
copy number per gram of feces. Significant differences in the abundance of Firmicutes and
Ruminococcus were found between BMI z-score groups after adjusting p-values for multiple
comparisons (g < 0.05, Tukey’s HSD test and Dunn’s test with Benjamini-Hochberg p-value
correction method). (C) The sample plot represents variations in gut bacterial profiles of
school-aged children with different BMI z-score groups (95% confidence ellipses). An
explained variance was based on X-variate (normalized bacterial abundances). (D-E)
Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = 'median’) is maximum in component 1 and 2 of the sample plot.
Horizontal bars indicate each bacterial taxon assigned to BMI z-score levels and their length
corresponds to the loading weight. The importance of the bacteria contributing to the
dimension runs from the bottom to the top of the figure. OV = overweight, OB = obese. BMI
z-score cut-off points were based on WHO Multicentre Growth Reference Study Group (2006);
SVThinness (severe thinness) < -3SD, Thinness = -3SD to < -25D, Normal = -2SD to < +1SD,
OV (overweight) > +1SD to < +2SD, OB (obese) > +2SD.

Peer] reviewing PDF | (2021:10:67085:1:0:NEW 15 Jan 2022)



PeerJ Manuscript to be reviewed

A 10{ ANOVA p=0.0013 4<qof S —
5 = C [ Gut microbiota in Children: PLS-DA
3o AR >
o) X "
S« [y
9 = o o: * .
£ E - s D
i_l__ 9 V& [ -.- i
o . 8.
L ) | ° )
816 fed -2
P : d ! ? T S
~ Thinness Normal ov OB % n
(o]
Bﬁ11 Kruskal-Wallis, p = 0.01 Q
2 . ©
n P o o
S 2101 , .8
S8 o ol X —24AThinness
Q< 91 s . -+ Normal
Q = .o] o
Q& oL 0B
- 8- e?®
g S q<0.01 v | .
2 71 - =0 0 5
2 g <0.05 X-variate 1: 49% expl. var
S _9<005
—- 6. . . . . .
D Thinness  Normal ov OB E
Maximal contribution on comp1 Minimal contribution on comp1
Bifidobacterium Bifidobacterium -
Total_bacteria BMI z-score Total_bacteria -
Lactobacillus ® Thinness Lactobacillus _
® Normal
Prevotella oV prevotella |
Faecalibacterium e OB Faecalibacterium _
Gamma proteobacteria Gamma proteobacteria _
Bacteroidetes Bacteroidetes _
Ruminococcus | Ruminococcus |
Firmicutes Firmicutes |
[ I | | i | | | | |
0.0 01 02 0.3 04 00 01 02 03 04

Peer] reviewing PDF | (2021:10:67085:1:0:NEW 15 Jan 2022)



Peer]

Figure 5

Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different age tertile (corresponding to 25 %, 50 %, and 75 %); age A <
8.05 years, age B 8.05 < age < 11.06 years, age C = 11.06 years.

(A-B) Boxplots showing normalized bacterial abundances based on log1l0 gPCR 16S rRNA
copy number per gram of feces. Asterisks indicate a significant difference in microbiota
abundance among feeding types (*q < 0.05, Tukey’s HSD test and Dunn’s test with
Benjamini-Hochberg p-value correction method). (C) The sample plot represents variations in
gut microbiota profiles of children with different age tertile (95% confidence ellipses). An
explained variance was based on X-variate (normalized bacterial abundances). (D)
Discriminant analysis demonstrating variable selection (microbiota taxa) for which the
median (method = 'median’) is maximum in component 1 of the sample plot. Horizontal bars
indicate each bacterial taxon assigned to age tertile and their length corresponds to the
loading weight. The importance of the bacteria contributing to the dimension runs from the

bottom to the top of the figure.
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Figure 6

Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged
children with different feeding types (representing the feeding mode in infancy).

(A) The sample plot represents variations in gut microbiota profiles of school-aged children
with different feeding types (95% confidence ellipses). An explained variance was based on
X-variate (normalized bacterial abundances). (B) Discriminant analysis demonstrating
variable selection (bacterial taxa) for which the median (method = 'median’) is maximum in
component 1 of the sample plot. Horizontal bars indicate each bacterial taxon assigned to
feeding type and their length corresponds to the loading weight. The importance of the
bacteria contributing to the dimension runs from the bottom to the top of the figure. (C-E)
Boxplots showing normalized bacterial abundances based on log10 qPCR 16S rRNA copy
number per gram of feces. Asterisks indicates a significant difference in bacterial abundance
among feeding types (**q < 0.01, *q < 0.05, Tukey’s HSD test and Dunn’s test with

Benjamini-Hochberg p-value correction method).
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