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ABSTRACT
Researchers interested in studying and constructing transcriptomes, especially for
non-model species, face the conundrum of choosing from a number of available
de novo and genome-guided assemblers. None of the popular assembly tools in use
today achieve requisite sensitivity, specificity or recovery of full-length transcripts on
their own. Here, we present a comprehensive comparative study of the performance
of various assemblers. Additionally, we present an approach to combinatorially aug-
ment transciptome assembly by using both de novo and genome-guided tools. In our
study, we obtained the best recovery and most full-length transcripts with Trinity and
TopHat1-Cufflinks, respectively. The sensitivity of the assembly and isoform recovery
was superior, without compromising much on the specificity, when transcripts from
Trinity were augmented with those from TopHat1-Cufflinks.

Subjects Bioinformatics, Genomics
Keywords De novo transcriptome assembly, Genome-guided transcriptome assembly,
Transcriptome, Misassembly, Transcriptome assembly, Model assembly

INTRODUCTION
High-throughput technology has changed our understanding of many facets of biology,

like diseases (Shendure & Lieberman Aiden, 2012), plant genetics (Egan, Schlueter &

Spooner, 2012; Simon et al., 2009), and synthetic biology (Mitchell, 2011). The advent of

DNA microarrays in the 90’s ushered an era of high-throughput genome-wide gene expres-

sion profiling studies (DeRisi et al., 1996; Golub et al., 1999; Schena et al., 1995; Schena

et al., 1996). DNA microarray, although a powerful technique, is dependent on gene

annotation, and, therefore, the genome sequence information. This is circumvented by

RNA sequencing (RNA-seq), which uses next-generation sequencing instruments, and can

be leveraged even in the absence of a genome to study the transcripts and their expression.

This shift from the semi-quantitative, hybridization-based approaches, as in DNA mi-

croarrays, to the quantitative, sequencing-based approaches has tremendously facilitated

gene expression analysis. RNA-seq experiments yield additional information on tran-

scriptome characterization and quantification, including strand-specificity, mapping of

fusion transcripts, small RNA identification and alternate splicing (Martin & Wang, 2011;
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Mortazavi et al., 2008; Ozsolak & Milos, 2011; Waern, Nagalakshmi & Snyder, 2011; Wang,

Gerstein & Snyder, 2009).

A number of tools have been developed for transcriptome assembly. The process of

assembly is quite complex. Factors such as varying expression levels among genes, presence

of homologues and spliced isoforms are responsible for this. The complexity is handled by

assemblers differently. Studies have identified k-mer size (Gruenheit et al., 2012; Robertson

et al., 2010) and seed length for read alignment (Schatz, Delcher & Salzberg, 2010) as

important parameters for short-read transcriptome assembly. The optimal k-mer size for

an assembly was found to be positively correlated with the number of reads used during

assembly (Zerbino & Birney, 2008). Experimental evidence also supports the importance of

k-mer length in distinguishing low- from highly-expressed genes during assembly (Gibbons

et al., 2009). Genome-guided tools use the seed length parameter while aligning reads to

a reference genome prior to assembly. An optimal seed length depends on the quality of

the reference genome and is set to a smaller value for divergent genomes (Darling et al.,

2004). Varying seed length varies the speed versus accuracy tradeoff during the process of

assembly.

Transcriptome assemblers may be classified as de novo or genome-guided tools. In

our study, we used Trinity (Grabherr et al., 2011; Haas et al., 2013), SOAPdenovo-Trans

(Xie et al., 2013), Oases (Schulz et al., 2012) and Trans-ABySS (Robertson et al., 2010)

from the de novo tools category, and TopHat-Cufflinks, (Kim et al., 2013; Roberts et al.,

2011; Trapnell, Pachter & Salzberg, 2009; Trapnell et al., 2012; Trapnell et al., 2010) and

Genome-guided Trinity (Haas, 2012) under the second category. De novo assembly tools

create short contigs from overlapping reads, which could be extended based on insert size

estimates. They could either involve construction of de Bruijn graphs using k-mers (for

short reads) or using an overlap-layout-consensus approach (for longer reads) (Nagarajan

& Pop, 2013). TopHat-Cufflinks is an alignment-cum-assembly pipeline, that involves

spliced read alignment to the genome and their subsequent assembly into transcripts.

It uses the genome template and read pairing to produce full-length or near full-length

transcripts. In genome-guided Trinity, the reads are aligned to the genome and partitioned

into read clusters, which are then individually assembled using Trinity.

Both de novo and genome-guided approaches have their own advantages (Martin &

Wang, 2011). De novo assembly tools are independent of the genome sequence, alignment

of reads to the genome and, thus, the ambiguity underlying this process. They can recover

transcript fragments from regions missing in the genome assembly. On the other hand,

genome-guided assembly approaches are relatively faster, less resource-intensive, can filter

out contamination and sequencing artifacts, can recover low-abundance transcripts, and

can fill gaps using the genome sequence resulting in full-length transcripts. In the absence

of a reference genome, genomes of closely-related organisms can be used for genome-

guided transcriptome assembly (Collins et al., 2008; Salzberg et al., 2008; Toth et al., 2007).

Different assemblers have different ranges of sensitivity and specificity, but none of

them comes close to assembling all the reads without any errors, into valid transcripts. To

enhance the detection sensitivity, one can think of combining assemblies from de novo and
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genome-guided approaches. However, any approach introduces at least some level of error

during assembly. These errors typically include splicing errors, redundancy, chimerism and

gaps. Therefore, along with the advantage of enhancement in sensitivity while combining

assemblies, there is also a risk of loss of specificity due to compounding of errors.

Here, we describe a detailed comparison of existing de novo and genome-guided

assemblers, and determine the best combination of those that can be used to augment

assembly, while increasing sensitivity and keeping the false assemblies to a minimum.

Given the growing importance of RNA-seq, this study will help establish a better workflow

for transcriptome assembly.

MATERIALS AND METHODS
Simulating RNA-seq reads
The Arabidopsis thaliana (TAIR10) complete genome sequence, coordinates for genes and

transposons were downloaded from ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10

genome release and the GFF file was parsed to obtain exonic coordinates. These were

used to simulate Illumina-like RNA-seq reads using Flux-simulator (Griebel et al., 2012)

(FS-nightly-build 1.1.1-20121119021549) with the following options supplied within a

parameter file (Supplemental Methods): NB MOLECULES (Number of RNA molecules

initially in the experiment): 5000000; SIZE DISTRIBUTION (Gaussian distribution of

fragment size as N(Mean, Standard deviation)): N(300,30); READ NUMBER (Total

number of reads to be simulated): 4000000; READ LENGTH: 76; PAIRED END: YES;

ERR FILE (Inbuilt Illumina error model for 76nt reads): 76. The resultant Illumina-like

reads were split into 2 fastq files corresponding to read1 and read2 using a Python script

from the Galaxy tool suite (Supplemental Methods).

Read assembly
The simulated reads were assembled using four de novo (Trinity r2012-06-08; Trans-ABySS

v1.3.2; Oases v0.2.08; SOAPdenovo-Trans v1.0) and two genome-guided (TopHat1 v2.0.4

that uses Bowtie1 (Langmead, 2010) v0.12.8 and Cufflinks v2.0.0; genome-guided Trinity

r2012-10-05 that uses GSNAP (Wu & Nacu, 2010) r2012-07-20 [V3]) transcriptome

assembly pipelines. Trinity and genome-guided Trinity use a fixed k-mer size of 25nt.

We used Trans-ABySS on ABySS (Simpson et al., 2009) (v1.3.3) multi-k-mer assemblies

(ranging from 20–64nt), Oases on Velvet (Zerbino & Birney, 2008) (v1.2.07) multi-k-mer

assemblies (every alternate k-mer ranging from 19–71nt) and SOAPdenovo-Trans with

a fixed k-mer size of 23nt. We also tested the TopHat2 (Kim et al., 2013) (v2.0.7 that uses

Bowtie v2.0.5)-Cufflinks pipeline on the simulated data but did not observe any difference

in the assembly statistics compared to the TopHat1-Cufflinks pipeline that uses Bowtie1.

All assemblers were run using default parameters (details in Supplemental Methods).

However, we fixed the parameter for minimum length of assembled fragment as 76nt

(equal to the length of the read). In the case of SOAPdenovo-Trans, contigs were used

instead of scaffolds for all downstream analyses, as the minimum length cutoff could not be

set for scaffolds.
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Redundancy assessment using CD-HIT-EST
We used CD-HIT-EST (Li & Godzik, 2002) (v4.5.4) to assess redundancy in each assembly.

It retained the longest sequence out of a cluster of sequences that share at least 95%

sequence similarity (−c 0.95) on either strand (−r 1), based on a word size of 8 (−n 8).

The accurate but slow mode (−g 1) was used for clustering. Further details on other

optional parameters used to run CD-HIT-EST are provided in Supplemental Methods.

Model assembly
We defined all read-covered transcript regions (TAIR10) as Model Assembly or MA as

previously described in the report by Mundry et al. (2012).

Calculation of N50 and N(MA)50 statistics for an assembly
N50 is defined as the minimum contig length for 50% of the assembly after sorting

the contigs in the descending order of their lengths. We calculated N50 values for all

assemblies, MA and the TAIR10 simulated transcripts, pre- and post-CD-HIT-EST. We

also calculated the N50 values for each assembler, while taking the MA cumulative size (nt)

as the denominator instead of the respective assembly sizes. We termed these N50 values as

the N(MA)50.

Mapping assemblies to MA using Megablast
The assembled fragments (query) were mapped against the MA fragments (subject) using

Megablast (Altschul et al., 1990) (blast+ v2.2.26) with default parameters (Supplemental

Methods). The Megablast hits were parsed in order to either maximize query coverage (to

compute misassembly statistics) or maximize subject coverage (to compute MA recovery

statistics). This was done to choose the best hits and discard the partially overlapping hits

when the unique coverage was lower than or equal to 10nt. The scripts used to remove

nested and partial overlaps from Megablast hits are provided in Supplemental Methods.

For misassembly statistics, each assembled fragment was categorized, based on mapping,

to either belong to a single MA source (≥90% mapping) or be chimeric across multiple

sources (misassembled, <90% mapping).

Expression level bins
We estimated the average “per-nucleotide coverage” (pnc) for all MA fragments, based on

their read support, as given below.

(No. of Reads × Read Length)

MA fragment length
.

The MA fragments were then categorized into 8 expression level bins, B1 to B8, the pnc

for each being: 1 for B1, >1 &≤2 for B2, >2 &≤3 for B3, >3 &≤4 for B4, >4 &≤5 for

B5, >5 &≤10 for B6, >10 &≤30 for B7, and >30 for B8. We chose denser sampling for

the lower pnc values and sparser sampling for the higher pnc values since we observed the

distribution of MA fragments to be denser in the lower pnc categories (Fig. S1).
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Recovery of isoforms
Using simulated data, we obtained the MA-equivalent for the exonic regions of

isoform-bearing genes, and performed a Megablast search of the assemblies against it

(Supplemental Methods). The Megablast hits were parsed to maximize subject coverage,

after removing nested and partial overlaps (same as described earlier). For all assemblers,

we calculated the number of exons recovered per isoform and the length recovery of each

exon.

Augmenting Trinity assembly with TopHat1-Cufflinks assembly
We mapped the Trinity assemblies against the TopHat1-Cufflinks transcripts using

Megablast. Using the subtractBed option from BEDTools (Quinlan & Hall, 2010), the

regions unique to TopHat1-Cufflinks transcripts were identified. These unique transcript

regions were used to augment the Trinity assembly.

Receiver Operating Characteristic (ROC) Curve
The ROC curve was plotted for each assembler using the simulated data. The sensitivity

(True Positive Rate, TPR) was estimated as % total length recovered by each assembler out

of the total MA size. The FPR (False Positive Rate, 100-specificity) was estimated as the

% assembled fragments that did not map to the MA fragments. For TopHat1-Cufflinks

assembly, and the unique regions to TopHat1-Cufflinks used to augment Trinity, mapping

was performed against TAIR10 transcripts.

Zebrafish transcriptome data analyses
To exemplify the recovery trends of isoforms and non-isoforms, we assembled the

transcriptome of zebrafish, Danio rerio, embryo (2dpf) using an RNA-seq dataset from

SRA (ERR003998, containing 22,286,504 paired reads, 76nt in length with a 200bp

insert size). These reads were assembled using de novo and genome-guided transcriptome

assemblers in the same manner as described for the simulated data (Trinity r2012-06-08;

Trans-ABySS v1.3.2; Oases v0.2.08; SOAPdenovo-Trans v1.02; TopHat1 v2.0.4 that uses

Bowtie1 v0.12.8 and Cufflinks v2.0.0; genome-guided Trinity r2012-10-05 that uses

GSNAP r2013-03-31 [V5]). The ENSEMBL zebrafish genome, Zv9, was used as the

reference for genome-guided assemblies. Further, 85 transcripts from the zebrafish hox

gene cluster were downloaded from ENSEMBL. These correspond to 49 genes, 23 of which

harbour 59 isoforms. We focused on the recovery of these transcripts by all assemblers.

Since isoforms carry greater sub-sequence similarity than non-isoforms, we pooled

all the 85 transcripts and identified their shared and unique regions using Megablast.

RNA-seq reads were then mapped to these, again using Megablast, in order to identify their

MA-equivalents and to estimate their average pnc. This served as the reference for recovery

comparison across all assemblers. Finally, the recovery of MAs in the shared and unique

categories was estimated also using Megablast, as described earlier, while maximising

subject coverage.
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RESULTS
We compared the performance of assemblers using a variety of assembly-based parameters

(numbers and lengths of assembled fragments, N50, N(MA)50 and extent of redundancy)

and mapping-based parameters (recovery of MA fragments (numbers and lengths),

mis-assembly, reliance on pnc) for isoforms and non-isoforms, and shared and unique

transcript regions.

Assembly statistics
We simulated Illumina-like paired-end 76nt RNA-seq reads for the exonic regions of the

Arabidopsis thaliana TAIR10 genome (see Methods for details), covering 15,532 TAIR10

transcripts. The transcript regions contiguously covered by reads were termed as Model

Assembly (MA) fragments and were used as a valid reference for mapping the assemblies.

A given transcript, therefore, comprised of one or more MA fragments, the shortest being

76nt in length. We obtained 70,382 MA fragments from the 15,532 TAIR10 transcripts.

The reads were assembled using Trinity (TNY), Trans-ABySS (TA), Oases (OS),

SOAPdenovo-Trans (SDT), TopHat1-Cufflinks (TC) and genome-guided Trinity (GGT)

(see Methods for details) with default parameters and a minimum assembled fragment

length of 76nt. We compared the numbers of assembled fragments, the minimum and

maximum assembled fragment lengths, their length frequency distributions, the N50 and

N(MA)50 statistics for the six assemblers, pre- and post-redundancy assessment in the

assembly using CD-HIT-EST.

The total number and lengths of assembled fragments varied widely across the six

assemblers (Table 1). The shortest fragment reported by all assemblers was 76nt (as fixed

by the minimum reporting length threshold). The range of fragments at the long end

varied across assemblers with the longest for TopHat1-Cufflinks at 10,502 nt (same as the

maximum MA fragment length, Table 1). This was expected since TopHat1-Cufflinks

is a genome-guided assembler that allows recovery of full-length or near full-length

transcripts.

We observed a 4- and ∼1.5-fold reduction in assembly size post-CD-HIT-EST for

Trans-ABySS and Oases, respectively (Table 1). For Trinity, genome-guided Trinity and

SOAPdenovo-Trans, we observed no difference pre- and post-CD-HIT-EST across the

entire distribution of assembled fragment lengths (Fig. 1). However, Trans-ABySS resulted

in a higher number of longer, redundant assembled fragments (Fig. 1) and a low number of

shorter assembled fragments.

Like the results from the frequency distribution statistics for long- and short-assembled

fragments, Trinity, genome-guided Trinity and SOAPdenovo-Trans yielded N50 values

closer to that of MA. However, Trans-ABySS, Oases and TopHat1-Cufflinks yielded N50

numbers that were much higher than that of the MA. Post-CD-HIT-EST, the N50 values

were not affected for most assemblers except for Trans-ABySS (Table 1).

In contrast, the N(MA)50 values, which are not dependent on the total size of any

assembly, were lower than that of the MA for Trinity, genome-guided Trinity and

SOAPdenovo-Trans, both pre- and post-CD-HIT-EST. For Trans-ABySS and Oases, the
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Table 1 Assembly statistics pre- and post-CD-HIT-EST.

TAIR10
transcripts

Model
Assembly
(MA)

Trinity Trans-ABySS Oases SOAP
denovo-Trans

Tophat1-
Cufflinks

Genome
guided
Trinity

Pre CD-HIT-EST

Total transcripts or fragments 15532 70382 45978 65594 52533 39533 8671 46064

Transcriptome size (nt) 2.61E+07 1.67E+07 1.27E+07 6.62E+07 4.21E+07 1.02E+07 1.15E+07 1.27E+07

N50 (nt) 1952 720 684 1390 1453 617 1624 646

N(MA)50 (nt) 1952 720 264 2802 2519 114 1136 254

Median transcript/fragment length (nt) 1456 85 115 804 523 103 1124 121

Min. transcript/fragment length (nt) 201 76 76 76 76 76 76 76

Max. transcript/fragment length (nt) 14623 10501 6888 7326 8128 6300 10502 7833

Post CD-HIT-EST

Total transcripts or fragments 14615 62528 45281 16060 28051 39471 8395 42968

Transcriptome size (nt) 2.45E+07 1.56E+07 1.21E+07 1.15E+07 1.85E+07 1.02E+07 1.11E+07 1.20E+07

N50 (nt) 1951 788 627 1194 1485 617 1621 661

N(MA)50 (nt) 1951 788 260 798 1680 155 1197 273

Median transcript/fragment length (nt) 1451 87 113 477 216 103 1121 120

Min. transcript/fragment length (nt) 201 76 76 76 76 76 76 76

Max. transcript/fragment length (nt) 14623 10501 6888 7326 8128 6300 10502 7833

Figure 1 Frequency distribution of lengths (nt) of Model Assembly (MA) & assembled transcript
fragments before (A) and after (B) CD-HIT-EST using simulated data. X-axis values are assembled
fragment length ranges in nucleotides (nt) and Y-axis values are the numbers of assembled fragments
in each length bin (Counts). TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC,
TopHat1-Cufflinks; GGT, genome-guided Trinity.

N(MA)50 values were relatively higher, and were reduced∼3 and∼1.5-fold respectively,

post-CD-HIT-EST. The N(MA)50 values were higher than that of the MA for TopHat1-

Cufflinks, both pre- and post-CD-HIT-EST.
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Mapping-based statistics
MA fragments, from TAIR10 transcripts corresponding to transposable elements and

transcript isoforms as per the GFF annotation, were not included in the expression-based

binning. We excluded these elements since they have stretches of identical sequences,

which posed a problem in assigning the pnc index due to unreliable mapping of reads and

assemblies to the correct isoform and/or transposable element. Out of a total of 70,382

MA fragments, we were thus left with 46,805 MA fragments, which still had certain level of

sub-sequence similarity, presumably arising from gene paralogs and SSRs. The numbers of

MA fragments finally obtained in different expression bins were: 15,706 in B1 (the lowest

expression bin), 9,722 in B2, 5,205 in B3, 2,797 in B4, 1,820 in B5, 4,522 in B6, 4,862 in B7

and 2,171 in B8 (the highest expression bin).

MA recovery statistics
The assembled transcript fragments from all assemblers were mapped to the MA using

Megablast to assign common identifiers for comparisons. We compared the numbers and

lengths of MA fragments recovered within all expression bins, B1 to B8, using the best hits

from Megablast.

Trinity detected the highest number of MA fragments in B1, followed by genome-

guided Trinity and SOAPdenovo-Trans (Fig. 2). However, the number of unique

transcripts detected was highest for TopHat1-Cufflinks, followed by Trinity, for the lowest

expression bin B1 (Fig. 2). The extent of overlapping (common detections) between

Trinity and either genome-guided Trinity or SOAPdenovo-Trans was 30% for the lowest

expression bin B1. The number of MAs detected was highest for Trinity for all expression

bins (B1–B8), with other assemblers showing better recovery with increase in expression.

In comparison to Trinity, the detection sensitivity for Oases and Trans-ABySS increased

with increased expression, as stated above, but the overall number of recovered MA

fragments remained lower in all expression bins (Fig. 2). TopHat1-Cufflinks showed a drop

in its detection sensitivity from B1 to B2, and a steady rise thereafter. For all assemblers,

with the exception of Trans-ABySS, we observed an increase in higher-order intersections

(common detections by 2, 3, 4, 5 or all 6 assemblers) across bins B2–B8, proportional to the

decrease in unique detections and lower order intersections (Fig. 2).

We observed that longer MA fragments tend to have higher read support, thus justifying

their assignment only to the higher expression bins, B3 onwards (Fig. 3, Fig. S1). The

shorter MA fragments displayed all levels of read support, and, therefore, were assigned

to all expression bins, B1 to B8 (Fig. 3, Fig. S1). Given this non-uniform distribution of

lengths in each expression bin, we compared the length recovery across assemblers, for

each expression bin, in different MA fragment length categories (Fig. 3).

For the shortest length category, 76nt, the median length recovery was close to

100% across all expression bins for all assemblers, with the exception of Trans-ABySS

(Fig. 3). The outlier (datapoints falling outside the interquartile range of % MA length

recovery) trend was highly variable across assemblers, and clustered closer to the median

for SOAPdenovo-Trans, followed by Trinity and genome-guided Trinity. For Trinity,
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Figure 2 The number of recovered Model Assembly (MA) fragments in different expression bins (Bin 1–8) using simulated data. The recovery of
MA fragments by 6 different assemblers was estimated across eight expression level categories (B1–B8) and then binned by per-nucleotide coverage
(pnc). The recovered fragments are presented as unique to an assembler or as an overlap between 2, 3, 4, 5, or all the 6 assemblers for each expression
bin. TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT, genome-guided Trinity.

Trans-ABySS, Oases and genome-guided Trinity, we observed the outliers clustering

around∼40% length recovery (∼30nt) for the MA fragments in the lowest expression bin

(B1) that matched the word size for Megablast (28nt). The outliers in the lowest expression

bin for TopHat1-Cufflinks, and those in the highest expression bin for Oases, spanned all

the way from∼40% to the median.

For the subsequent length categories, we observed a gradual increase in the median

length recovery from as low as 20% to all the way up to 100%, with an increase in the

expression levels. This gradual increase was also seen, to a minor extent, for the same bin

across MA length categories for most assemblers. TopHat1-Cufflinks showed a median

recovery of 100% across all expression bins and all MA fragment length categories. The

pattern of length recovery was similar for Trinity, SOAPdenovo-Trans and genome-guided

Trinity across all the expression bins and MA fragment length categories. Overall, these

three assemblers outperformed Trans-ABySS and Oases in terms of higher median MA

fragment lengh recovery and tighter distribution around the median (Fig. 3).

Misassembly statistics
We used Megablast-based mapping to evaluate the accuracy of assembled fragments,

and determine whether each assembled fragment belonged to a single MA source or

was a chimera across multiple sources (misassembled). We classified the assembled
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Figure 3 Recovered length (%) of Model Assembly (MA) fragments using simulated data. MA fragments were binned into different length
categories (≤76b, 76–300b, 300–500b, 500b–1kb, 1–1.5kb, 1.5–2kb, 2–3kb, 3–4kb, 4–5kb, 5–6.5kb), and the length recovered for each assembler
across expression bins (B1–B8) was visualized separately for each MA length bin. The black dots represent the outliers, the boxes represent the
25%–75% (Q1–Q3) interquartile range (IQR), the middle lines in the boxes represent the median, and the blue solid lines represent the whiskers
from these boxes till the minimum/maximum of the length range. Outliers fall below Q1 – (1.5 × IQR) or above Q3 + (1.5 × IQR). TNY, Trinity;
TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT, genome-guided Trinity.

fragments into three categories, ≥90%, between 60%–90%, and <60%, based on the

extent of their lengths mapped to any single MA fragment. They were further classified into

various assembled fragment length categories to check their relationship with assembly

quality, pre- and post-CD-HIT-EST. Trans-ABySS and Oases showed relatively higher

numbers of misassembled fragments (between 60%–90%, and <60% mapping) in the

200–400nt and 500–600nt ranges, respectively (Fig. 4). In the case of Trans-ABySS,

the extent of misassembly decreased post-CD-HIT-EST, whereas in the case of Oases,

it went up. We did not observe any difference in the extent of misassembly, pre- and

post-CD-HIT-EST, for any other assembler (Fig. 4). The extent of misassembly was

overestimated in TopHat1-Cufflinks as it additionally assembled transcript regions not

represented by reads, and therefore the MA, using the genomic information (Table 1).

For Trinity, SOAPdenovo-Trans and genome-guided Trinity, there was a clear trend of

decreasing misassembly with increasing assembled fragment length (Fig. 4). The degree of
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Figure 4 Assembly mapping statistics using simulated data. The assembled fragments were classified as >90%, between 60%–90% and <60%
categories based on the fraction mapped to a single Model Assembly (MA) fragment, pre- (A) and post- (B) CD-HIT-EST. TNY, Trinity; TA,
TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT, genome-guided Trinity.

misassembly was less for SOAPdenovo-Trans than for Trinity or genome-guided Trinity for

the shorter fragments.

Recovery of isoforms using simulated and zebrafish data
Next, we compared the extent of recovery of isoforms from the transcripts assembled with

various assemblers. We had a total of 24,846 exons in the MA fragments corresponding

to 2,970 isoforms. We mapped assembled fragments from all assemblers to these exons,

using Megablast, and maximized the exon coverage. Trinity, followed by genome-guided

Trinity and SOAPdenovo-Trans recovered the highest numbers of isoforms to 80%–100%

of their length (Fig. 5). We observed a correlation between the median pnc for each length

recovery category and the numbers of exons recovered per isoform. The median pnc

was in the range of 2–3 for unrecovered isoforms and 17–23 for those which were fully

recovered or close to fully recovered by all assemblers. Trans-ABySS and Oases, which

showed a relatively lower recovery, correlated with a higher median pnc, suggesting a

higher threshold of pnc needed for good recovery by those assemblers (Fig. 5).

In order to test whether our understanding of isoform recovery from simulated reads

holds true for a real dataset, we measured the recovery of shared and unique transcript

regions of the hox gene cluster in zebrafish (see Methods for details). We observed that

across assemblers, Trinity, followed by genome-guided Trinity and SOAPdenovo-Trans

recovered most and closer to full-length transcripts (Figs. 6–8). TopHat1-Cufflinks
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Figure 5 Isoform recovery statistics using simulated data. Recovery was estimated for the number
of exons per isoform in different Model Assembly (MA) length recovery categories (0%, >0%–20%,
>20%–40%, >40%–60%, >60%–80% and >80%–100%). The median per-nucleotide coverage (pnc)
of isoforms for each of these categories, represented as dots, was also estimated for each assembler.
TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT,
genome-guided Trinity.

Figure 6 Recovery of transcripts in the unique and shared regions of hox gene cluster in zebrafish. The
unique and shared regions of hox gene cluster from zebrafish Danio rerio with a minimum per-nucleotide
coverage (pnc) of 1 were extracted. The recovery was measured for these regions in the 0%, 0%–50% and
50%–100% recovery categories. The median pnc of isoforms for each of these categories is represented as
dots. TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT,
genome-guided Trinity.

recovered mostly full-length, but fewer, transcripts. Trans-ABySS and Oases recovered

fewer and truncated transcripts. The length recovery (% of MA length) by all assemblers,

except TopHat1-Cufflinks, displayed a dependency on pnc which was more obvious in the

recovery of shared regions of transcripts, as expected due to a wider range of read depth

(Figs. 6–7).

Augmenting transcriptome assembly
Since each assembler produced a set of unique transcripts or fragments, we proceeded

towards augmenting the assemblies, one with another. We ruled out most combinations of

assemblers, and chose Trinity and TopHat1-Cufflinks, as they produced the maximum

number of valid transcript fragments and full-length transcripts, respectively. After

aligning the Trinity transcript fragments to the TopHat1-Cufflinks transcripts and
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Figure 7 Heatmap analyses of %length recovery of shared and unique transcript regions of the
zebrafish hox gene cluster. The transcript regions were ranked in a descending order of their pncs.
TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT,
genome-guided Trinity; AGT, Augmented Trinity.
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Figure 8 Intersection histogram of recovered transcripts from the shared and unique regions of the
zebrafish hox gene cluster. TNY, Trinity; TA, TransABySS; OS, Oases; SDT, SOAPdenovo-Trans; TC,
TopHat1-Cufflinks; GGT, genome-guided Trinity.

augmenting the unique regions from TopHat1-Cufflinks to the Trinity assembly, we

obtained a cumulative size increase of 1.37 Mb in the assembly size (∼20% of original

Trinity assembly). The augmented assembly detected 1,377 MAs more than the original

Trinity assembly, and the MA recovery increased by 5,23,127nt after augmentation.

Relaxing the stringency of Megablast word size, from 28 to lower, would have improved

the MA length recovery further, though at the expense of losing isoform reconstruction

capability and sensitivity to variation in read-depth maintained by the fragmented

structure of Trinity transcriptome assembly. We further observed that the median length

recovery for the augmented Trinity (AGT) was overall better than Trinity alone (Fig. 9).

For MAs longer than 1500nt, this augmentation yielded full-length transcripts across all

expression levels (Fig. 9). Even for MAs around 500nt in length, we saw the advantage of

augmentation, at least for recovering more number of full-length transcripts. The outliers
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Figure 9 Recovered length (%) of fragments after augmenting Trinity-derived transcripts with that from TopHat1-Cufflinks using simulated
data. The length recovery was visualized in the same manner as described in Fig. 3. TNY, Trinity; TC, TopHat1-Cufflinks; AGT, Augmented Trinity.

in augmented Trinity were fewer than TopHat1-Cufflinks in all length categories. The

improved recovery with augmented Trinity proves that an integrative approach is useful,

particularly when one has access to genome in addition to the RNA-seq reads.

DISCUSSION
RNA-seq using next-generation sequencing is a powerful technology to understand

the transcriptome of an organism. Although, genome-guided assemblers like TopHat-

Cufflinks can assemble full-length transcripts, most de novo approaches and even

genome-guided Trinity, where the genome is used only to partition the RNA-seq reads,

are useful in detecting novel transcripts. In our comparative study, we found that

each assembler produced a set of unique transcripts or fragments, especially at lower

levels of expression (Fig. 2). Therefore, we started by asking whether one can obtain

a better transcriptome assembly by augmenting a de novo assembly with that from a

genome-guided approach. While this was a reasonable question to ask, the presence of

multiple tools, and the errors associated with each of them, compounded the problem. We

started by finding out the efficiency of individual tools, the ones that are popularly used

by the community, with the hope that we could choose from assemblers and combine the

results from them without compounding additional errors in the final assembly.

A lower threshold for minimum reported fragment length allows one to retain valid

assemblies (as demonstrated in Fig. 3) at the expense of increasing errors. However, in

our observations with read length as the minimum reported fragment length, the errors

were comparatively lesser than the number of valid assemblies (Fig. 4). Regardless of the

minimum reported fragment length, the extent of misassembly was different for different

assemblers. Oases and Trans-ABySS resulted in more misassemblies than the other tools

(Fig. 4). We suspected that a large number of redundant transcripts produced by Oases

and Trans-ABySS were possibly misassembled. Interestingly, however, when we compared

the misassembly statistics pre- and post-CD-HIT-EST, we found that Oases misassembled

more frequently in the non-redundant regions, compared to Trans-ABySS (Fig. 4).
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Due to higher sub-sequence similarity in isoforms, which contain more shared regions

than non-isoforms, the chances of misassembly are greater. The shared regions among

transcripts also pose additional difficulty in discerning their true source at the time of

estimating recovery using mapping. We analyzed the shared and unique regions within

isoforms separately in order to distinguish their recovery and underlying pnc patterns.

We mapped all the reads back to the model assemblies (MA) for measuring per-

nucleotide coverage (pnc). Given that the read-tracking is absent during the process of

assembly, we chose to not assign pnc to individual assemblies, since re-mapping of reads

using aligners might result in multiple hits. This compels the user to arbitrarily assign the

pnc to an assembled transcript fragment, which may or may not be the same as the pnc

estimated by an assembler. With simulated reads, the actual (simulated) and estimated pnc

(using Megablast) of MAs were found to be correlated (Fig. S2). Based on this, we expect

the estimated pnc of transcript fragments by any assembler to be positively correlated with

their actual pnc.

In addition to the simulated dataset, we used the zebrafish hox gene cluster for transcript

recovery analysis. Vertebrate hox genes are known to be involved during development, are

arranged in sets of uninterrupted clusters, and are in most cases expressed in a collinear

fashion (Kuraku & Meyer, 2009). Since they include both isoforms and non-isoforms,

they were ideal candidates for our comparative analyses on recovery of shared and unique

regions. We assembled RNA-seq reads from zebrafish embryo and identified the fragments

related to the hox gene cluster transcripts. We expected the shared regions to have a greater

read depth than the unique regions. Indeed, we found this to be reflected in terms of a

greater median pnc for the shared regions in the >50% recovery category (Figs. 6 and 7).

N50 is an assembly attribute widely used to compare the quality of genome and

transcriptome assemblies. In the absence of the knowledge of actual length distribution

in the sequenced dataset (transcripts sequenced), it is generally assumed that a higher

N50 implies a better assembly. We know that errors and redundancy in the transcriptome

assembly affect its total size. We observed that the range of assembled fragment lengths was

variable across assemblers (e.g., TopHat1-Cufflinks produced more full-length transcripts

and Trinity produced more number of small fragments than the rest of the assemblers).

Therefore, basing a quality metric on the total assembly size and assembled fragment

lengths to benchmark the assembly, like what the N50 does, can be highly inaccurate.

Instead, a quality metric based on the expected size of the transcriptome, NT50, or on

the read-covered regions of the transcriptome, N(MA)50, tends to provide a more accurate

benchmark. Indeed, we found that the N(MA)50 accurately reflects the recovery quotient

of an assembler (Table 1). The reduction in N(MA)50 pre- and post-CD-HIT-EST is most

reflective of the reduction in the assembly numbers (Table 1). In addition to N(MA)50,

we found that the median, interquartile range, minimum, maximum and outliers for

transcript assembly length were more useful in describing a transcriptome assembly.

Misassembly can occur as a result of subsequence similarity within reads which

manifests as highly branched nodes in a de Bruijn graph. This subsequence similarity,

along with mismatches/errors in sequencing reads, can also cause spurious blast hits that
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Figure 10 Receiver Operating Characteristic (ROC) curve for transcriptome assemblers using simu-
lated data. The sensitivity (True Positive Rate, TPR) and 100 - specificity (False Positive Rate, FPR) were
estimated as % total length recovered for each assembler out of the total Model Assembly (MA) size and
as the % assembled fragments that did not map to the MA fragments respectively. For TopHat1-Cufflinks
assembler, and the unique regions to TopHat1-Cufflinks used to augment Trinity, the mapping was
performed with the A. thaliana TAIR10 transcripts. TNY, Trinity; TA, TransABySS; OS, Oases; SDT,
SOAPdenovo-Trans; TC, TopHat1-Cufflinks; GGT, genome-guided Trinity; AGT, Augmented Trinity.

are seen as outliers in the box and whisker plot for MA recovery (Fig. 3). Spurious blast hits

resulting from subsequence similarity span from Megablast word size of 28nt onwards.

We observed fewer outliers of this kind in multi-k-mer based approaches like Oases

and Trans-ABySS. SOAPdenovo-Trans also appears to contain fewer spurious blast hits,

especially for the 76nt MA length category. It is known that the SOAPdenovo algorithm

discards a repetitive node if there is unequal read support on edges to and from that node,

and only builds parallel paths carrying the node if there are equal number of reads on either

edges (Li et al., 2010). Based on our observation of low redundancy in assemblies in the

76nt MA length category (Fig. 3), and higher % of assemblies mapping correctly in the

lower assembled fragment length categories (Fig. 4), we postulate that SOAPdenovo-Trans

discarded repetitive sequences from the assembly for these length categories. TransABySS,

pre-CD-HIT-EST, showed a higher frequency of assembled fragment lengths >200nt

(Fig. 1A). The frequency of assembled fragments in this length range was much lower,

post-CD-HIT-EST (Fig. 1B), suggesting higher redundancy in this range.

Finally, we found Trinity to perform best in transcript recovery across all expression

levels (Figs. 2 and 3), and the median length recovery by TopHat1-Cufflinks to always

be ∼100% (Fig. 3). These findings held true even with varied lengths and sequencing

coverages of RNA-seq reads (Table S1). Hence, we chose to combine the Trinity assemblies

with those from TopHat1-Cufflinks. This resulted in the detection of ∼1300 more

transcript fragments, corresponding to a cumulative increase in recovery of nearly

0.5Mb. The process resulted in an augmented assembly with greater sensitivity and only

minimal compromise in its specificity, while maintaining the expression-based fragmented

assembly structure of Trinity (Fig. 10). This proved that an integrative approach may be
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employed for recovering more transcript fragments, particularly when one has access to

genome assembly in addition to RNA-seq reads.
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