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Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Mountain
wood tick) are two North American ticks that transmit spotted fevers associated Rickettsia.
Amblyomma maculatum transmits Rickettsia parkeri and Francisella tularensis, while D.
andersoni transmits R. rickettsii, Anaplasma marginale, Coltivirus (Colorado tick fever
virus), and F. tularensis. Increases in temperature causes mild winters and more extreme
dry periods during summers, which will affect tick populations in unknown ways. Here, we
used ecological niche modeling (ENM) to assess the potential geographic distributions of
these two medically important vector species in North America under current condition
and then transfer those models to the future under different future climate scenarios with
special interest in highlighting new potential expansion areas. Current model predictions
for A. maculatum showed suitable areas across the southern and Midwest United States,
and east coast, western and southern Mexico. For D. andersoni, our models showed broad
suitable areas across northwestern United States. New potential for range expansions was
anticipated for both tick species northward in response to climate change, extending
across the Midwest and New England for A. maculatum, and still farther north into Canada
for D. andersoni.
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17 Abstract

18 Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Mountain 

19 wood tick) are two North American ticks that transmit spotted fevers associated 

20 Rickettsia. Amblyomma maculatum transmits Rickettsia parkeri and Francisella 

21 tularensis, while D. andersoni transmits R. rickettsii, Anaplasma marginale, Coltivirus 

22 (Colorado tick fever virus), and F. tularensis. Increases in temperature causes mild 

23 winters and more extreme dry periods during summers, which will affect tick populations 

24 in unknown ways. Here, we used ecological niche modeling (ENM) to assess the potential 

25 geographic distributions of these two medically important vector species in North America 

26 under current condition and then transfer those models to the future under different future 

27 climate scenarios with special interest in highlighting new potential expansion areas. 

28 Current model predictions for A. maculatum showed suitable areas across the southern 

29 and Midwest United States, and east coast, western and southern Mexico. For D. 

30 andersoni, our models showed broad suitable areas across northwestern United States. 

31 New potential for range expansions was anticipated for both tick species northward in 

32 response to climate change, extending across the Midwest and New England for A. 

33 maculatum, and still farther north into Canada for D. andersoni.

34 Keywords

35 Gulf Coast tick, Rocky Mountain wood tick, Ecological niche modeling, Climate change, 

36 GCMs, RCPs, North America.

PeerJ reviewing PDF | (2021:12:69366:2:0:NEW 16 Mar 2022)

Manuscript to be reviewed



37 Introduction

38 Beside the tick Dermacentor variabilis, Amblyomma maculatum (Gulf Coast tick), 

39 and D. andersoni (Rocky Mountain wood tick) are three North American ticks that transmit 

40 spotted fever (Boorgula et al. 2020; CDC 2018; CDC 2019). Spotted fever rickettsioses 

41 (spotted fevers) are a group of bacterial pathogens that cause disease to humans by 

42 exposure to infected ticks or mites (CDC 2019). In the United States, there are several 

43 spotted fevers: Rocky Mountain spotted fever (RMSF), which is the most documented 

44 spotted fever, caused by Rickettsia rickettsii; R. parkeri rickettsiosis caused by Rickettsia 

45 parkeri; rickettsialpox caused by R. akari; and Pacific Coast tick fever caused by R. 

46 philippi (CDC 2019). Amblyomma maculatum transmits R. parkeri, and Francisella 

47 tularensis which cause diseases in humans, and Hepatozoon americanum, which causes 

48 health problems in dogs (Sonenshine 2018). Dermacentor andersoni transmits R. 

49 rickettsii, Anaplasma marginale, Coltivirus (Colorado tick fever virus), and Francisella 

50 tularensis (Alkishe et al. 2021; Dantas-Torres et al. 2012). 

51 Amblyomma maculatum and D. andersoni have different geographic distributions: 

52 A. maculatum occurs throughout the southern states of the Gulf Coast and Mid-Atlantic 

53 states (Cumbie et al. 2020), whereas D. andersoni occurs throughout the Rocky Mountain 

54 region, Nevada, California, and southwestern Canada (British Columbia, Alberta, and 

55 Saskatchewan; ADW 2021). Those different geographic ranges are associated with 

56 different climate conditions for each tick species (Fig. 1). Amblyomma maculatum is found 

57 in different months in different states with fall and winter considered as low-activity 

58 seasons for this species (Nadolny & Gaff 2018), whereas D. andersoni is found in hot and 

59 dry areas in summer (Wilkinson 1967).
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60 Climate warming is warming North America dramatically. Mean global temperature 

61 has increased more than 1°C owing to anthropogenic greenhouse gas emissions 

62 (Djalante 2019). This increasing temperature has caused mild winters with increasing rain 

63 more than snow during winter, and more extreme drier periods during summers 

64 (Wuebbles et al. 2017). Increasing temperature can also affect vector disease survival, 

65 abundance, and activity as well as transmission dynamics, re-emergence of vector-borne 

66 diseases, and geographic expansions (Rocklöv & Dubrow 2020).

67 Here, we used ecological niche modeling (ENM) to assess the geographic 

68 potential of these two medically important vectors of diseases in North America under 

69 current conditions and then transfer those models to the future under different scenarios, 

70 with special interest in highlighting potential range new expansion areas. We also assess 

71 the model uncertainty for projected future models to highlight areas with high versus low 

72 confidence of geographic expansions.

73

74

75 Methods

76 Data preparation

77 We obtained totals of 255 and 586 occurrence points for A. maculatum and D. 

78 andersoni, respectively. Those data were obtained from various sources: Global 

79 Biodiversity Information Facility (GBIF; http://www.gbif.org), VectorMap 

80 (http://vectormap.si.edu/), and BISON (https://bison.usgs.gov) (sources summarized in 

81 supplementary file; S1). We followed Cobos et al. (2018) in cleaning the data to remove 

82 errors that clearly fall outside of the known geographic distribution of the species, 
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83 duplicate records, and localities with missing or meaningless coordinates such as zero 

84 degrees latitude and zero degrees longitude (0oN, 0oE), or georeferencing errors (records 

85 in ocean and far from coast). We used the spTthin R package to reduce the data spatially 

86 based on a 50 km distance filter for several reasons: based on precision of the occurrence 

87 points in the area, environmental heterogeneity that present in the area, and to avoid 

88 problems with autocorrelation (Aiello‐Lammens et al. 2015). In the end, we had 93 and 

89 82 occurrence points for A. maculatum and D. andersoni, respectively. We divided the 

90 final occurrence data randomly into two sets: 50% for model calibration and 50% for 

91 evaluation steps involved in model calibration. For producing final models, we used the 

92 entire cleaned occurrence points.

93

94 Delineate the calibration area

95 The accessible area (M) is the set of places to which the species has had access 

96 over relevant time periods, and depends on the dispersal of the species from populations 

97 (Barve et al. 2011). Since the movement of tick species is associated with the movement 

98 of host species, we assumed ample dispersal abilities for the ticks (Nadolny & Gaff 2018; 

99 Sonenshine 2018). As such, we created 200 km buffer areas around the known 

100 occurrence points for each species (Fig. 1).

101

102 Environmental variables
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103 For the current time, bioclimatic variables were downloaded from WorldClim 

104 version 1.4, at 10’ spatial resolution (Hijmans et al. 2005) (available at 

105 http://www.worldclim.org). We removed variables 8, 9, 18, and 19 because of known 

106 spatial artefacts (Escobar 2020). The 15 remaining variables were masked to the 

107 calibration area (M) for each species. We then used principal component analysis (PCA) 

108 to reduce dimensionality and multicollinearity among those variables. After having PCA 

109 results, we created 11 sets of environmental variables that represent all possible 

110 combinations of the first four principal components to test them with other parameter 

111 settings to choose best models during model calibration, following Cobos et al. (2019) 

112 (see below).

113 For future climatic conditions, we used five general circulation models (GCMs) 

114 under two representative concentration pathway scenarios (RCP 4.5, and RCP 8.5). 

115 Future climate data layers were downloaded from the Climate Change, Agriculture and 

116 Food Security (CCAFS) database at 10’ resolution (available at: http://www.ccafs-

117 climate.org/data_spatial_downscaling). GCMs used were (1) National Center for 

118 Atmospheric Research (NCAR_CCSM4); (2) Met Office Hadley Centre (HadGEM2); (3) 

119 Model for Interdisciplinary Research on Climate (MIROC5); (4) Institut Pierre Simon 

120 Laplace (IPSL_CM5A); and (5) Russian Institute for Numerical Mathematics Climate 

121 Model Version 4 (INM_CM4). GCM choice was based on frequency of use in other such 

122 research applications, and on full availability of scenarios for both RCP scenarios.

123

124 Ecological niche modeling and model transfers
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125  The combination of 11 sets of environmental variables, 15 feature classes (all 

126 combinations of linear = l, quadratic = q, product = p, hinge = h), and 17 regularization 

127 multiplier values (0.1 to 1 at intervals of 0.1, and 2 to 10 at intervals of 1) resulted in 2805 

128 candidate models for each species. We evaluated candidate models based on statistical 

129 significance (partial ROC, P < 0.05; Peterson et al. 2008), predictive performance 

130 (omission rates, <5%; Anderson et al. 2003), and a criterion of minimum complexity 

131 (Akaike Information Criterion corrected for small sample sizes, AICc; Warren & Seifert 

132 2011). Specifically, we used differences between particular AICc values and the minimum 

133 values ( AICc < 2) to select best model parameter settings with which to produce final ∆
134 models.

135  

136 Final models

137 For creating final models, we used the complete set of occurrences and the 

138 parameterizations selected during model calibration. We created 10 bootstrap replicates, 

139 and transferred the models across North America (Mexico, United States and Canada) 

140 under current and future scenarios. We calculated medians of all replicate medians from 

141 final predictions for each calibration area in which final models were produced to 

142 summarize model results. Then, we binarized models using a threshold of allowable 

143 omission error rate (E) of 5%, assuming that as a percentage of data may have included 

144 errors that misrepresented environments used by the species. 

145 We calculated differences in suitable areas between current and the two future 

146 scenarios RCP (4.5, and 8.5). For representing changes of suitable areas, we used the 
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147 agreement of changes (stable, gain, loss) among the five GCMs per RCP scenario. 

148 Simply, for each RCP scenario, we took all projections to future conditions based on 

149 distinct GCMs and compared against the current projection, and quantified the agreement 

150 of gain and loss of suitable areas, as well as the stability of suitable and unsuitable 

151 conditions. All modeling analysis steps were done in R 3.5.1 (R Core Team. 2018) using 

152 Maxent 3.4.1 (Phillips et al. 2017), implemented in the kuenm package (Cobos et al. 

153 2019).

154

155 Uncertainty in model projections

156 We used the mobility-oriented parity metric (MOP, considering the nearest 5% of 

157 reference cloud) (Owens et al. 2013) to assess strict extrapolation risk. We also 

158 calculated variance arising from distinct sources (replicates, parameter settings, GCMs, 

159 and RCPs) in our model projections (Peterson et al. 2018). Both model variability and 

160 strict extrapolation were represented geographically following Owens et al. (2013) and 

161 Cobos et al. (2019), respectively. 

162

163 Results

164 Model calibration results

165 From among 2805 candidate models for each of A. maculatum and D. andersoni, 

166 2728 and 2554 were significantly better than random expectations, respectively (pROC 

167 test, p ≤ 0.05). Of these models, 2129 and 761 met the omission rate criteria, (i.e., OR ≤ 
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168 0.05) respectively. Based on AICc, 55 and two models were selected as best models for 

169 A. maculatum and D. andersoni, respectively. For A. maculatum, models performed better 

170 with the variables in set 1 (PC1, PC2, PC3, PC4), set 2 (PC1, PC2, PC3), set 3 (PC1, 

171 PC2, PC4), and set 6 (PC1, PC2), whereas for D. andersoni variables in sets 4 (PC1, 

172 PC3, PC4) and 7 (PC1, PC3).

173

174 Current and future potential distribution

175 Amblyomma maculatum

176 Current model predictions for A. maculatum showed suitable areas across the 

177 southern United States (Florida, Georgia, South and North Carolina, Virginia, West 

178 Virginia, Maryland, Delaware, Kentucky, Tennessee, Arkansas, Alabama, Mississippi, 

179 Louisiana, Oklahoma, and Texas), and in the Midwest (Missouri; eastern Kansas; 

180 southern Illinois, Indiana, and Ohio), and restricted areas of northeastern states (New 

181 Jersey and Pennsylvania). Suitable areas extend to include areas in western states 

182 (Arizona, California, Oregon, and Washington), although those areas are not likely 

183 accessible to the species (Fig. 2). Our models also showed suitable areas for the species 

184 across parts of eastern, western, and southern Mexico (Quintana Roo) (Fig. 2).

185 Future model transfers showed stable suitable areas (i.e., suitable in current time 

186 and in the future time) across the South, Midwest, and the Northeast, in the of United 

187 States (Fig. 2). Areas of range reduction (loss) were in restricted areas in Kansas, 

188 Oklahoma, and Texas. Range expansion (gain) was anticipated in the northeastern 

189 (Pennsylvania, New York, Connecticut, Rhode Island, Massachusetts, Vermont, New 
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190 Hampshire, Maine) and midwestern states (Kansas, Missouri, Nebraska, Iowa, Illinois, 

191 Indiana, Ohio, Michigan, Wisconsin) (Fig. 2). In general, we noted greater agreement 

192 among models in terms of losses and gains in the RCP 8.5 scenario compared to RCP 

193 4.5.

194

195 Dermacentor andersoni

196 Current-time range predictions for D. andersoni showed broad suitable areas 

197 across Washington, Idaho, Oregon, California, Montana, Nevada, Utah, Wyoming, and 

198 Colorado, in cases where this species is known to occur in the United States. Climatically 

199 suitable areas extended across the Midwest, and Northeast and in some southeastern 

200 states (Fig. 3), although these areas are not likely accessible to the species. Currently 

201 suitable areas were also observed in parts of central and western Canada (British 

202 Columbia, Alberta, Saskatchewan, and restricted areas in Manitoba) (Fig. 3).

203 Future model transfers showed stable suitable areas across the states listed 

204 above, with some degree of reduction in suitable areas in the western states including 

205 much of Washington, Oregon, California, Nevada, Arizona, New Mexico, and Utah, and 

206 restricted areas in Colorado, Idaho, and Montana (Fig. 3). Predictions for the two RCP 

207 scenarios showed closely similar patterns of range stability, expansion, and loss, with 

208 more agreement among models in the RCP 8.5 scenario (Fig 3).

209

210 Model uncertainty 
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211 MOP results for A. maculatum showed that strict extrapolative areas among future 

212 scenarios were concentrated in northern parts in North America, particularly in Canada, 

213 and in some restricted areas of the United States and southern Mexico (Fig. 2). Model 

214 variability results showed almost no variation coming from replicates and RCPs, but high 

215 contribution to variation from GCMs and parameter choice (Supplementary material; Fig. 

216 S3).

217 In D. andersoni, we noted high agreement of strictly extrapolative areas in both 

218 southern and northern North America, and in lesser degree in the eastern United States 

219 and Canada (Fig. 3). High model variability came mainly from parameter choice in the 

220 eastern United States; we noted low variation deriving from GCMs, RCPs, and replicates 

221 (Supplementary material; Fig. S4).

222

223 Discussion

224 The geographic distributions of A. maculatum and D. andersoni are much wider 

225 today than they were in the recent past. For example, A. maculatum has expanded its 

226 geographic range from the southeastern United States to become well established in the 

227 Northeast in Connecticut (Molaei et al. 2021), and in the Midwest in southern Illinois 

228 (Jolley 2020). Beside the movement of tick adults for long distances via their hosts to new 

229 areas, immature A. maculatum can also access new areas with the help of migratory 

230 birds; larvae and nymphs can move thousands of miles during bird migratory seasons 

231 from the southern United States north to southern Canada (Florin et al. 2014; Teel et al. 

232 2010). Cuervo et al. (2021) showed similar suitable ranges using current time predictors, 
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233 and demonstrated that levels of niche conservatism differed among different members of 

234 A. maculatum group (A. tigrinum and A. triste).

235 This study is the first to assess the geographic distributions of the spotted fever 

236 vectors A. maculatum and D. andersoni in North America under current and future climate 

237 conditions. We included uncertainty analyses (MOP analysis and model variability) in our 

238 future model projections to detect areas with strict extrapolation, and to assess variation 

239 coming from multiple sources, such as different GCMs and RCPs. We considered only 

240 abiotic climatic variables such as temperature and precipitation as predictors that may 

241 influence the geographic distributions of those tick species.

242 Our models predicted that suitable areas for A. maculatum will remain stable in 

243 most southern and Midwestern states, whereas few reductions in suitable areas were 

244 anticipated only in western parts of Texas, Oklahoma, and Kansas (Fig. 2). Most 

245 importantly, our models predicted newly suitable areas northward in the United States 

246 successfully, to cover areas that were recently discovered to hold new populations in 

247 Connecticut and Illinois (Jolley 2020; Molaei et al. 2021) (Fig. 4). For D. andersoni, our 

248 models showed broader suitable areas beyond its known range (from Washington state 

249 to Colorado). Midwestern and eastern states; however, most of the anticipated reduction 

250 in ranges were in areas not known to hold this tick species. Most of the anticipated 

251 expansions in range were in northward in Canada (Fig. 3).

252 Our projections suggested higher potential of A. maculatum to invade new areas 

253 outside its native range mainly in the southeastern United States. For D. andersoni, 

254 suitable areas were mostly in northern North America (United States and Canada). We 
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255 also noted more extensive strict extrapolative areas for D. andersoni than A. maculatum, 

256 especially in the eastern United States, which suggested caution about interpreting those 

257 areas as suitable for D. andersoni (Fig. 3).

258 Several significant limitations and caveats regarding predictions emerging from 

259 ecological niche modeling that should be considered. First, a species faces dispersal 

260 limitations and biotic interactions that may prevent it from occupying the full suitable area 

261 that corresponds to its fundamental ecological niche. Second, the variation in spatial 

262 precision associated with different occurrence data records, which can cause problems 

263 for model results. Third, data availability in which biases in sampling in regions more than 

264 others can cause biases in model output (Peterson 2014). All these points have been 

265 considered in the design of our methodology to achieve the most robust model possible.

266 In the United States, numbers of documented spotted fever cases have increased 

267 in recent years, especially in 2017, with 6248 new cases (CDC 2021). Previous analyses 

268 have noted overlap between reported cases in some states and suitable areas for spotted 

269 fever vectors including Dermacentor variabilis (Alkishe et al. 2021; Boorgula et al. 2020). 

270 Spotted fever case data collected by the Centers for Disease Control and Prevention, and 

271 used by Alkishe et al. (2021) however, were lacking in full detail on the type of pathogen 

272 and associated tick species, which made it difficult to interpret the source of the infection.

273 In summary, using ecological niche modeling allowed us to highlight suitable areas 

274 of two medically important tick species in North America. We showed the potential for 

275 expansion of those tick vectors into new areas that were not suitable in the past with 

276 emphasis on the newly discovered dispersal of A. maculatum to those newly suitable 
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277 areas in Illinois and Connecticut. We also showed the uncertainty and variability that can 

278 come from projection models to different times and places. These results help to 

279 recognize the uncertainty and source of variability in predicting suitability.
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408 Figure 1. Occurrence points and calibration areas for Amblyomma maculatum (blue dots 

409 and blue buffer) and Dermacentor andersoni (red dots and red buffer) in geographic and 

410 environmental space.

411

412 Figure 2. Left panel: Potential suitable areas of Amblyomma maculatum based on 

413 binarized (5% threshold) models under current conditions (in blue and gray), and future 

414 (blue = no longer suitable, red = newly suitable) conditions. Right panel: agreement in 

415 strict extrapolation areas among the five general circulation models. Results are 

416 presented for RCP 4.5 (top) and RCP 8.5 (bottom). 

417

418 Figure 3. Left panel: Potential suitable areas of Dermacentor andersoni based on 

419 binarized (5% threshold) models under current conditions (in blue and gray), and future 

420 (blue = no longer suitable, red = newly suitable) conditions. Right panel: agreement in 

421 strict extrapolation areas among the five general circulation models. Results are 

422 presented for RCP 4.5 (top) and RCP 8.5 (bottom). 

423

424 Figure 4. Detail of figure 2, showing the most recent confirmed established populations 

425 of Amblyomma maculatum in counties of Illinois and Connecticut in the United States 

426 (light blue boundaries) (Jolley 2020; Molaei et al. 2021). Gray indicates suitable areas 

427 under current and future conditions. Red color indicates newly suitable areas with climate 

428 change.
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Figure 1
Figure 1

Occurrence points and calibration areas for Amblyomma maculatum (blue dots and blue
buffer) and Dermacentor andersoni (red dots and red buffer) in geographic and
environmental space.
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Figure 2
Figure 2

Left panel: Potential suitable areas of Amblyomma maculatum based on binarized (5%
threshold) models under current conditions (in blue and gray), and future (blue = no longer
suitable, red = newly suitable) conditions. Right panel: agreement in strict extrapolation
areas among the five general circulation models. Results are presented for RCP 4.5 (top) and
RCP 8.5 (bottom).
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Figure 3
Figure 3

Left panel: Potential suitable areas of Dermacentor andersoni based on binarized (5%
threshold) models under current conditions (in blue and gray), and future (blue = no longer
suitable, red = newly suitable) conditions. Right panel: agreement in strict extrapolation
areas among the five general circulation models. Results are presented for RCP 4.5 (top) and
RCP 8.5 (bottom).
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Figure 4
Figure 4

Detail of figure 2, showing the most recent confirmed established populations of Amblyomma

maculatum in counties of Illinois and Connecticut in the United States (light blue boundaries)
(Jolley 2020; Molaei et al. 2021). Gray indicates suitable areas under current and future
conditions. Red color indicates newly suitable areas with climate change.
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