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Cyanobacteria are important participants in global biogeochemical process, but their
metabolic processes and genomic functions are incompletely understood. In particular,
operon structure, which can provide valuable metabolic and genomic insight, is difficult to
determine experimentally, and algorithmic operon predictions probably underestimate
actual operon extent. A software method is presented for enhancing current operon
predictions by incorporating information from whole-genome time-series expression
studies, using a Machine Learning classifier. Results are presented for the marine
cyanobacterium Crocosphaera watsonii. 22 operon enhancements are proposed.
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15 Abstract

16 Add your abstract here. Cyanobacteria are important participants in global biogeochemical 

17 process, but their metabolic processes and genomic functions are incompletely understood. In 

18 particular, operon structure, which can provide valuable metabolic and genomic insight, is 

19 difficult to determine experimentally, and algorithmic operon predictions probably underestimate 

20 actual operon extent. A software method is presented for enhancing current operon predictions 

21 by incorporating information from whole-genome time-series expression studies, using a 

22 Machine Learning classifier. Results are presented for the marine cyanobacterium Crocosphaera 

23 watsonii. 22 operon enhancements are proposed.

24

25 Introduction

26 Photosynthesizing bacteria (Phylum Cyanobacteria) are significant participants in global 

27 biogeochemical cycles. They arose on Earth 3.5 billion years ago1, and had oxygenated the 

28 atmosphere by 2.5 billion years ago2. Cyanobacteria participate in the ocean biological carbon 

29 pump3, which transports atmospheric greenhouse carbon dioxide to sequestration in the deep 

30 ocean. Nitrogen reducing cyanobacteria (diazotrophs) annually convert approximately 200 Tg of 

31 atmospheric dinitrogen to bioavailable form4 5. Cyanobacteria are used to produce medicines6 7 8, 

32 biofuels9 10, fertilizers11 12, cosmetics13, and food14.

33

34 Despite their ecological and commercial importance, the metabolic processes of many 

35 cyanobacteria have not been fully characterized; this is especially true for marine 

36 cyanobacteria, which are difficult to cultivate15. In particular, identification of operons 

37 (consecutive genes controlled by a single promoter and expressed as a single 

38 transcript) appears to be incomplete. Operon identification provides clues for the 
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39 inference of regulatory pathways16 17, supports interpretation of transcriptome 

40 experiments18, and can guide annotation of hypothetical genes. The expense of wetlab 

41 operon discovery has prompted the development of algorithms for predicting operons 

42 from assembled genomes16 18 19; predictions from one of these algorithms19 for 1336 

43 organisms are publicly available 

44 (http://www.microbesonline.org/operons/OperonList.html). However, few of these 

45 predictions have been experimentally verified and it is possible that operon sizes have 

46 been underestimated.

47

48 Information for honing in silico operon predictions can be extracted from time-series 

49 measurements of gene expression. Many cyanobacterial genes are not expressed at 

50 constant rates, but rather exhibit fluctuating transcript abundance in repeating patterns 

51 over a 24-hour cycle. For example, production of light-harvesting photosystem II 

52 proteins, which are only useful during daylight and whose half-lives are generally less 

53 than 12 hours20 21, approximately coincides with available light22. Since oxygen disables 

54 nitrogenase (the enzyme responsible for nitrogen fixation), diazotrophic cyanobacteria 

55 segregate nitrogenase from the oxygen evolved by photosynthesis23 24; segregation is 

56 sometimes temporal, with nitrogenase component proteins produced hours out of phase 

57 from photosystem II proteins25. Diel cycling, defined as a transcript abundance change 

58 of at least 2x over 24 hours, has been observed in 79% of genes of the diazotrophic 

59 cyanobacterium Crocosphaera watsonii26. Since genes in an operon are expected to 

60 have similar expression signatures27 28, a high degree of diel expression similarity 

61 among adjacent genes might indicate operon membership. Thus if two predicted 

62 operons are adjacent, are on the same DNA strand, and exhibit similar diel expression, 

63 then the predicted operons may in fact belong to a single common operon.

64

65 The approach presented here uses a Machine Learning classifier - specifically a 

66 Logistic Model Tree29 30 (LMT) - to determine when predicted operons in Crocosphaera 

67 should be merged. A common metric for quantifying expression similarity is Pearson’s 

68 Correlation Coefficient (PCC); however, our earlier work31 has determined that PCC has 

69 deficiencies when applied to the current problem. The “Area Between Linear 

70 Interpolations of Measurements” (ABLIM) metric, which we have presented elsewhere31, 

71 is more appropriate and is the basis of the research reported here. Based on the ABLIM 

72 metric, positive and negative example operons were located in the Crocosphaera 

73 watsonii genome. 48 kinds of classifier (Supplemental Table 1) were evaluated, and 

74 LMT was selected due to its high accuracy. Adjacent predicted operons were identified 

75 as candidates for merging, and the expression similarity of all genes was analyzed by 

76 the classifier. 22 pairs of candidate operon predictions are recommended for merging 

77 (Table 1). 

78
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79

80

81

82 Materials & Methods

83 Computed operon predictions (hereafter the “prior predictions”) for strain Crocosphaera 

84 watsonii were downloaded from http://www.microbesonline.org/operons/. Log-expression 

85 measurements for 4,407 Crocosphaera genes with 8 timepoints were retrieved from a study by 

86 Shi et al.26 For each gene, log-expressions were normalized to a mean of zero. A positive training 

87 set of operons for the classifier was collected by identifying all prior predicted operons in which 

88 at least 1 gene’s expression exhibited diel variation. A negative training set for the classifier was 

89 generated by identifying consecutive genes where at least 1 gene’s expression exhibited diel 

90 variation, and where each DNA strand is represented. (Since operons are transcribed as a single 

91 unit, and transcription is restricted to a single strand, these sets of genes cannot be operons.)

92

93 The classifier requires training and evaluation instances to be represented by vectors of numbers. 

94 For each prior in the training sets (and, later, for each merge candidate to be classified), the 

95 ABLIM distance between every pair of genes was computed; the instance was represented by a 

96 4-vector consisting of the minimum, mean, standard deviation, and maximum of the ABLIM 

97 distances. 48 classifiers (Supplemental Table 1) in the WEKA software suite32 33 were evaluated 

98 on the positive and negative sets using 5-fold cross-validation. The Logistic Model Tree (LMT) 

99 classifier gave the best accuracy on both the positive and negative data, and was therefore 

100 selected for the remainder of the study. The classifier was trained using all the positive and 

101 negative instances.

102

103 Pairs of prior predictions were identified as candidates for merging (Supplemental Table 2) if 

104 there were no intervening genes, if all genes lay on the same DNA strand and in the same contig, 

105 and if each prior contained at least 1 gene whose expression exhibited diel variation. A 4-vector 

106 representation of each candidate was computed as described above, and the representations were 

107 evaluated on the trained LMT classifier to generate classification scores (Figure 1). A candidate 

108 was accepted (i.e. all its genes are predicted to be in a single operon) if classifier score was > 0.5. 

109 Note that this score is not to be interpreted as a probability that the classification is correct. 

110

111 To estimate the accuracy of the classifier’s predictions, each negative training example in turn 

112 was censored from the training set; the model was then re-trained on the remaining data, and the 

113 censored example’s classification score was computed. A Gaussian distribution was computed 

114 for the classification scores thus generated. Given a candidate with score s, the cumulative 

115 probability of scores >= s is an estimate of the probability of erroneously accepting the 

116 candidate. Table 1 lists the accepted predictions, with their classifier scores and estimated error 

117 probabilities.

118
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119 Results

120 The positive training set consists of the 1195 operon predictions at 

121 http://www.microbesonline.org/operons/. The negative training set is listed in Supplemental 

122 Table 1. 48 classifiers in the WEKA software were evaluated on the training data. The Logistical 

123 Model Tree (LMT) had the highest accuracy (Supplemental Table 1).

124

125 79 pairs of prior operon predictions were identified as candidates for merging. Each prior 

126 consisted of 2 genes, at least 1 of which exhibited diel expression variation; all genes were on the 

127 same DNA strand and in the same contig, and there were no intervening genes between the 2 

128 priors. 22 pairs of priors were classified as belonging to a common operon (Table 1).

129

130 Discussion

131 Diel expression data was combined with prior operon predictions to compute 22 pairs of priors 

132 (Table 1) that appear to belong to common operons. It is recommended that each of these pairs 

133 be merged into a single prediction.

134

135 One reason for honing operon predictions is to gain insight into the function of unknown genes. 

136 When unknown genes share an operon with genes of known function, the known function can 

137 reasonably be hypothesized to relate to the unknown functions. In Table 1, unknown genes are 

138 marked in underlined bold. 8 prior predictions include operons where no gene has known 

139 function; in all these cases, the present analysis predicts that the prior prediction should be 

140 merged with another prior containing at least 1 gene of known function. Predicted operon 

141 membership per se may not be strong enough evidence to infer gene function, but it can provide 

142 the basis for hypothesizing function, and the hypothesis can be strengthened by other evidence.

143

144 Each operon (training priors and merge candidates) was represented by a 4-vector consisting of 

145 the minimum, mean, standard deviation, and maximum of the ABLIM distances among all gene 

146 pairs in the operon. None of these statistics alone was sufficient for training an accurate 

147 classifier. The LMT classifier had the best accuracy among the 44 classifiers that were evaluated 

148 (Supplemental Table 1). However, this does not imply that LMT should be used when analyzing 

149 other organisms. Future work on other organisms should repeat the classifier evaluation reported 

150 here, and should choose the best classifier for the organism at hand. 

151

152 The false-positive probability (column “P(false +)” in Supplemental Table 2) is a rough estimate. 

153 It has much in common with a p-value: the null hypothesis is that the prior operons should not be 

154 merged; the alternative hypothesis is that they should be merged; the statistic is the cumulative 

155 probability of the null hypothesis when a score is at least as strong as the score at hand. 

156 However, the cumulative probability is based on a negative training set of non-operons which is 

157 specific but not sensitive. No members of the negative set can possibly be operons, because both 

158 DNA strands are present. However no same-strand non-operons are present in the negative 
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159 training set, because these are difficult to ascertain. Thus there is a bias in the negative set, and 

160 the resulting P(false +) values should not be viewed as rigorous.

161

162

163

164 Conclusions

165 The work presented here demonstrates that Machine Learning analysis of diel expression studies 

166 can improve in silico predictions of operons. When a prior prediction is extended to include 

167 genes of unknown function, the function of the known genes in the prior might elucidate the 

168 function of the new unknown genes.

169

170 The approach presented here can be applied to other cyanobacteria for which diel studies and 

171 prior predicted operons are available. Since the method is based on similarity of diel signatures, 

172 best results should be expected from organisms whose genes exhibit strong and diverse diel 

173 variation. Organisms with weak diel variation can be expected to perform poorly, because the 4-

174 vectors that describe operons to the classifier would all be similar. Experiments with a diel 

175 study34 of the minimal bacterium Prochlorococcus marinus produced poor results with the 

176 approach presented here, possibly because the circadian clock mechanism is simplified in 

177 Prochlorococcus35 and its diel genes fluctuate more weakly than those of Crocosphaera.

178

179
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Table 1(on next page)

The 48 classifiers evaluated in this study.

48 classifiers, evaluated by 5-fold cross validation on the Crocosphaera time-series data, in
descending order of accuracy. Best accuracy was achieved by the Logistic Model Tree (LMT)
classifier, which was selected for this study.
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1
Classifier Accuracy

trees.LMT 95.28

functions.MultilayerPerceptron 95.03

functions.Logistic 92.8

meta.MultiClassClassifier 92.8

meta.RandomizableFilteredClassifier 91.89

functions.SimpleLogistic 91.56

lazy.IBk 91.31

trees.RandomForest 91.14

lazy.KStar 90.89

meta.Bagging 89.82

meta.RandomCommittee 89.32

trees.RandomTree 88.91

functions.SGD 88.49

meta.MultiClassClassifierUpdateable 88.49

trees.REPTree 88.49

trees.J48 88.25

rules.JRip 87.83

meta.RandomSubSpace 87.67

functions.VotedPerceptron 87.33

rules.DecisionTable 87.17

meta.LogitBoost 86.51

meta.FilteredClassifier 86.26

meta.IterativeClassifierOptimizer 86.09

rules.PART 85.6

meta.AdaBoostM1 85.51

functions.SMO 85.1

bayes.BayesNet 84.44

trees.HoeffdingTree 83.53

bayes.NaiveBayesMultinomial 83.44

bayes.NaiveBayesMultinomialUpdateable 83.44

bayes.NaiveBayes 82.7

bayes.NaiveBayesUpdateable 82.7

meta.AttributeSelectedClassifier 82.12

lazy.LWL 81.71

trees.DecisionStump 81.71

rules.OneR 81.29

bayes.NaiveBayesMultinomialText 66.14

functions.SGDText 66.14

meta.CVParameterSelection 66.14

meta.MultiScheme 66.14

meta.Stacking 66.14

meta.Vote 66.14

meta.WeightedInstancesHandlerWrapper 66.14

misc.InputMappedClassifier 66.14

rules.ZeroR 66.14

2 Supplemental Table 1 – 48 Classifiers evaluated by 5-fold cross validation, in descending order of accuracy. The LMT (Logistic 

3 Model Tree) classifier was chosen for this study.

4
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Figure 1(on next page)

Method for accepting/rejecting proposed merger of 2 prior predicted operons (red and
green).

Both priors must lie on the same DNA strand, and each must contain at least 1 gene with diel
variation. All pairwise ABLIM distances among the 4 genes are computed (blue). A 4-vector
comprising the minimum, mean, standard deviation, and maximum of the ABLIM distances is
computed (purple) and submitted to the LMT classifier. The classifier produces a score s.
Gaussian distributions over scores of positive (upper curve) and negative (lower curve) are
used to compute, respectively, the false negative and false positive probabilities.
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