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ABSTRACT
The Swiss Upper Marine Molasse (OMM) documents a transgression event dated to
around 21 to 17 million years in which dolphin and other vertebrate remains have
been reported. We revised the whole cetacean (whales and dolphins) OMM assemblage
available in main collections, focusing on the identification and interpretation of
periotics (bone that contains the inner ear). Periotics are rare, but they provide the
richest taxonomic information in the sample and hint to environmental associations.
Micro-computerized tomography allowed the reconstruction of bony labyrinths for
comparisons and environmental interpretations. Three families are represented by pe-
riotics: Kentriodontidae, Squalodelphinidae and Physeteridae. The cetacean taxonomic
composition of the Swiss OMM reinforces biogeographical patterns reported for the
Mediterranean and Paratethys during the Burdigalian at a regional scale and the Calvert
cetacean fauna of the northwest Atlantic at oceanic scale.

Subjects Evolutionary Studies, Marine Biology, Paleontology, Taxonomy, Zoology
Keywords Cetacea, Odontoceti, Burdigalian, Upper Marine Molasse, Periotic, Paratethys,
Kentriodontidae, Squalodelphinidae, Physeteridae, Kentriodon

INTRODUCTION
The Swiss Molasse (Fig. 1) is a textbook example of a foreland basin (Sissingh, 1998) and
includes two marine transgression-regression cycles, spanning from the Rupelian to the
Serravalian (Labhart, 1985; Swiss Committee on Stratigraphy, 2020). Among the vertebrate
fossils of the Molasse, remains of cetaceans (whales and dolphins) are known. Climatic
changes and major geographic rearrangements in the Tethys and Paratethys (including
the closure of the Tethys Seaway) may have played a significant role in the cetacean
composition at regional and global scales (Steeman et al., 2009; Bianucci & Landini, 2002).
Cetacean fossils in Swiss localities belong to sediments of the second transgression event,
dated 21–17 million years ago (Ma). The Upper Marine Molasse or ‘Obere Meeresmolasse’
(hereafter referred to as OMM) is an informal lithostratigrahic group composed of
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Figure 1 Reconstruction of the Paratethys during the Burdigalian. (A) Western Europe with
Switzerland marked in red, modified from Rögl (1998) and Berger et al. (2005); (B) maximal flooding
of the Paratethys over the Swiss Plateau at ca. 18–17.5 Ma, during the deposition of the St. Gallen Fm.,
based on Schlüchter et al. (2019). Localities: Brüttelen (orange), Madiswil (yellow), and Staffelbach
(green).

Full-size DOI: 10.7717/peerj.13251/fig-1

two formations; the underlying Lucerne Formation, and the St. Gallen Formation.
Jost, Kempf & Kälin (2016) provided a comprehensive stratigraphic overview and discussed
the palaeocological interpretations.

The OMM cetacean assemblage is represented by a large, but fragmentary sample.
Similar preservation patterns are known for other coeval localities such as the ‘Molasse
of Baltringen’ in Germany and ‘Pietra di Cantoni’ in northern Italy (Bianucci & Landini,
2002). Here, we focus on the description of seven well-preserved periotics and revise all
(new and previously reported) cetacean remains in major Swiss collections in order to
provide an overview in the context of new taxonomic advances.

The periotic bone contains the inner ear (cochlea and semicircular canals) and has
become isolated from the skull in many odontocetes (Mead & Fordyce, 2009). This element
not only provides substantial taxonomic information, but also insights into habitat
preferences (Costeur et al., 2018) and is therefore extremely valuable in highly-fragmentary
assemblages (Aguirre-Fernández et al., 2017; Steeman, 2009).

The Miocene fossil record of cetaceans (whales and dolphins) in the circum-
Mediterranean region (Mediterranean and Paratethys) is known from localities in Egypt,
southern France, southern Germany, Italy, Malta, Spain and Switzerland (Bianucci et
al., 2011; Dominici et al., 2020). Revisions of several neighbouring faunas prompted this
reappraisal of Swiss specimens. The current work builds upon the overview by Pilleri
(1986a). We report hitherto unknown kentriodontid and squalodelphinid fossils and we
dispute the presence of putative delphinids in the Swiss Marine Molasse. This paper takes
a more conservative view on taxonomic affinities than that in Pilleri (1986a). Figure 2
shows the relationships of families reported as present in the Mediterranean and Paratethys
during the Burdigalian in Bianucci & Landini (2002) and in the OMM according to Pilleri
(1986a).
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Figure 2 Families present in the Mediterranean and Paratethys during the Burdigalian according to
Bianucci & Landini (2002). Topology based on Lloyd & Slater (2021), except for Dalpiazinidae (nomen
dubium), for which the hypothesis byMuizon (1988a) is depicted. Groups marked with an asterisk were
reported as present in the OMM by Pilleri (1986a). Delphinids (gray) were reported in Pilleri (1986a) for
the OMM, but here reassigned to Kentriodontidae. Silhouettes represent groups with extant representa-
tives and are credited to Chris Huh (CC BY-SA 3.0), obtained from phylopic.org.

Full-size DOI: 10.7717/peerj.13251/fig-2

MATERIALS AND METHODS
Anatomical descriptions follow the nomenclature of Mead & Fordyce (2009) for external
(bone) structures and Ekdale (2013) for internal (bony labyrinth, i.e., cochlea and
semicircular canals) structures. External measurements of the periotic were made with
calipers, following Kasuya (1973). Open nomenclature follows the recommendations in
Sigovini, Keppel & Tagliapietra (2016). Micro-computed tomography (µCT) data of seven
periotics were obtained at the University of Zurich using a Nikon XT H 255 ST µCT
scanner (scanning resolution of 20 µm). Segmentation of the earbones and their bony
labyrinth endocasts was performed using Mimics Innovation Suite 19.0. Bony labyrinth
measurements that serve as correlates for hearing sensitivity are based on the methods
described in Racicot & Preucil (2021). The 3D models of all the periotics and their bony
labyrinths are available at the MorphoMuseuM repository (Aguirre-Fernández, Hilfiker &
Jost, 2022). A phylogenetic analysis based on the matrix in Kimura (2018) and originally
published in Lambert, Bianucci & Urbina (2014, see their appendix 1 for list of characters)
was performed. The matrix included 23 taxa and 37 characters, for which only the periotic
characters were coded for NMBE 5023942 (characters 20–26: 1020000) and NMBE
5023943(characters 20–26: ?120000), leaving all other characters as ‘‘?’’. The parsimony
analysis was performed in TNT 1.5 (Goloboff & Catalano, 2016), treating all characters as
unordered (non-additive) with equal weights. The search was performed under the default
settings under ‘‘traditional search’’ (TBR swapping algorithm, 10 trees were saved per
replication) for 100,000 replications.

Collection acronyms
MGL Cantonal Museum of Geology Lausanne, Lausanne, Switzerland.
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NHMB Natural History Museum Basel, Basel, Switzerland.
NMBE Natural History Museum Bern, Bern, Switzerland.
PIMUZ Paleontological Institute and Museum, University of Zurich, Zurich,

Switzerland.

RESULTS
General remarks on OMM cetaceans
A total of 290 cetacean elements were observed in the collections housed at MGL, NHMB,
NMBE and PIMUZ. All elements were found isolated (i.e., single bones rather than
articulated skeletons); almost all were fragmentary (i.e., bones were broken and had
missing parts) and some were also abraded or polished. The most frequent elements were
by far teeth (69%), followed by vertebrae (16%) and periotics (7%). Teeth and vertebrae
are of poor taxonomic value and belong to a range of odontocete groups. Few other
skull elements are also too fragmentary for unambiguous identification. The Table S1
includes basic information on all material studied, with previous (i.e., Pilleri, 1986a)
and new (this study) taxonomic opinions. We focus below on the periotics and their bony
labyrinths because they are themost informative elements for taxonomy and environmental
interpretations available in the OMM cetacean sample.

SYSTEMATIC PALAEONTOLOGY
Cetacea Brisson, 1762
Odontoceti Flower, 1864
Delphinida de Muizon, 1988b
Kentriodontidae Slijper, 1936
cf.Kentriodon
(Figs. 3–4)

Description and remarks
NMBE 5023944 (left periotic), figured in Pilleri (1986a:Plate 5D); NMBE 502345 (right
periotic) figured in Pilleri (1986a:Plate 5G); NMBE 5023946 (left periotic) mentioned in
Pilleri (1986a: p.29), all three from Brüttelen-Fluh; and NMBE 5036436 (right periotic;
figured in Pilleri (1986a:Plate 8K) fromMadiswil-Ghürn. All four specimens were identified
as delphinidans in Pilleri (1986a). Both localities correspond to sediments of the Lucerne
Fm. (Fig. 1). The Swiss kentriodontid periotics strongly resemble several species of
Kentriodon, such as K. pernix, K. obscurus, K. hoepfneri, K. nakajimai and K. sugawarai in
overall shape, dimensions and proportions. Small variation in shape (e.g., in the pinching
of the anteroventral angle or the ventral inflexion of the posterior process of the periotic),
size and proportions observed among the Swiss kentriodontid periotics (Fig. 3) are within
the range of intraspecific variation reported by Barnes & Mitchell (1984) for a sample of 31
isolated periotics from the Sharktooth Hill Bonebed and may therefore represent a single
species. The anterior process of kentriodontids and other delphinidans is short, thick and
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Figure 3 Periotics of cf.Kentriodon. (A–D) NMBE 5023944; (E–H) NMBE 5023945; (I–L) NMBE
5023946; and (M–P) NMBE 5036436 featuring the 3D models (available for download from the
MorphoMuseuM repository). The lower row illustrates anatomical landmarks of the periotic as seen
in NMBE 5036436. Views: dorsal: A, E, I, M; ventral: B, F, J, N; medial: C, G, K, O; lateral: D, H, L, P.

Full-size DOI: 10.7717/peerj.13251/fig-3

with a squared-off (dorsoventral) margin in lateral view (Kasuya, 1973). The apex of the
anterior process is mediolaterally pinched and slightly deflected medially. The length of the
anterior process is similar to that of the pars cochlearis (Table 1); the posterior process is
relatively short (anteromedially) and directed ventrally; the outline of the pars cochlearis is
slightly oval, longer (in anteroposterior axis) than it is wide. The aperture for the cochlear
aqueduct is located dorsally and posterior to the aperture for the vestibular aqueduct, both
aqueducts are roughly the same size (Fig. 3). The mallear fossa is round; the vestibular
window is round and relatively large; the fenestra rotunda is teardrop-shaped; the posterior
bullar facet is smooth (Fig. 3). There is an anterointernal sulcus clearly visible in medial
view (Fig. 3). The parabullary ridge is ventrally concave (Fig. 3).

The bony labyrinths of NMBE 5023944–5023946, and NMBE 5036436 (Fig. 4) share
features of other odontocetes, such as the small vestibular apparatus as compared to the
cochlea, the low number of spiral turns in the cochlea and their loose coiling. Although
the comparisons are limited because the bony labyrinth of Kentriodon pernix remains

Aguirre-Fernández et al. (2022), PeerJ, DOI 10.7717/peerj.13251 5/20

https://peerj.com
https://doi.org/10.7717/peerj.13251/fig-3
http://dx.doi.org/10.7717/peerj.13251


Figure 4 Bony labyrinths of cf.Kentriodon. (A–C) NMBE 5023944; (D–F) NMBE 5023945 (reflected);
(G–I) NMBE 5023946; (J–L) NMBE 5036436 (reflected). The lower row illustrates anatomical landmarks
of the bony labyrinth as seen in NMBE 5036436. Views: anterior: A, D, G, J; dorsal: B, E, H, K; lateral: C, F,
I, L.

Full-size DOI: 10.7717/peerj.13251/fig-4

undescribed, published cochlear measurements of the bony labyrinth of Kentriodon pernix
indicate a strong similarity to the Swiss kentriodontids (Table 1).
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Table 1 Periotic and inner ear measurements of the fossil kentriodontids (in mm); 1 USNM 8060 as
externally measured byKellogg (1927a) and internally (bony labyrinth) by Churchill et al. (2016); + as
preserved.

NMBE NMBE NMBE NMBE Kentriodon
5023944 5023945 5023946 5036436 pernix 1

Periotic
Greatest length of periotic 25 + 25 27 23.6 28.8
Width of the periotic 16.6 15.3 15.1 14.5 16.9
Length of pars cochlearis 12 12.6 13.3 13.7 —
Height of pars cochlearis 8.1 9 9.3 7.9 10.5
Width of the pars cochlearis 8 8.3 7.7 8.5 —
Length of anterior process 12 12 11.3 13 13.4
Inner ear endocast
Cochlear turns (t) 1.5 1.7 1.5 1.7 1.7
Cochlear length 25 29 29 27 27.6
Axial height (h) 4 4 4 3.7 4
Axial pitch (h/t) 2.7 2.3 2.7 2.1 2.3

Platanistoidea Gray, 1863
Squalodelphinidae fam. gen. sp. Dal Piaz, 1917
(Figs. 5–6)

Description and remarks
NMBE 5023942 (right periotic), figured in Pilleri (1986a: Plate 5F) and NMBE 5023943(left
periotic), figured in Pilleri (1986a: Plate 5E) were both found in Brüttelen-Fluh (Lucerne
Fm). Both periotics were identified in Pilleri (1986a) as squalodontids. Our phylogenetic
analysis returned 216 equally-parsimonious trees with a score of 59. The majority rule
tree is very similar to that of Lambert, Bianucci & Urbina (2014) and Kimura (2018) and
places NMBE 5023942 and NMBE 5023943 as two distinct taxa within a clade formed
by Squalodelphinidae + Dilophodelphis (Fig. 7). The synapomorphies of the clade that
includes NMBE 5023942 and sister taxa is the presence of an articular rim—labeled
in Fig. 5 as recurved lateral sulcus based on Aguirre-Fernández & Fordyce (2014); and a
large aperture of the cochlear aqueduct (characters 20 and 22 of Lambert, Bianucci &
Urbina, 2014). The OMM earbones (Fig. 5) differ in the following features: (1) the shape
of their anterior processes (being longer and more slender in NMBE 5023943), (2) the
prominent anterointernal sulcus of NMBE 5023943 (absent in NMBE 5023942, (3) the
ventral deflection of the anterior process in NMBE 5023942 (absent in NMBE 5023943);
and (4) the deeper anterior bullar facet in NMBE 5023942. The prominent anterior bullar
facet with well-defined medial and lateral boundaries (sensu Lambert, Bianucci & Urbina,
2014, Fig. 6) is a diagnostic character also present in other squalodelphinids such as
Squalodelphis fabianii, Notocetus vanbenedeni, and Huaridelphis raimondii. The tuberosity
in the posteromedial part of the anterior process is also present in Huaridelphis raimondii
(see Lambert, Bianucci & Urbina, 2014, figs. 6A and B) and other squalodelphinids (e.g.,
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Figure 5 Periotics of Squalodelphinidae indet. (A–D) NMBE 5023942; (E–H) NMBE 5023943. Views:
anterior: A, E; ventral: B, F; medial: C, G; lateral: D, H.

Full-size DOI: 10.7717/peerj.13251/fig-5

Figure 6 Bony labyrinths of Squalodelphinidae indet. (A–C) NMBE 5023942 (reflected horizontally);
(D–F) NMBE 5023943. Views: anterior: A, D; dorsal: B, E; lateral: C, F.

Full-size DOI: 10.7717/peerj.13251/fig-6

Squalodelphis fabianii and Notocetus vanbenedeni), but is not restricted to this group, as
it is also shown in some squalodontids, eurhinodelphinids, xenorophids and Waipatia
(Lambert, Bianucci & Urbina, 2014; Fordyce, 1994). Some putative family-diagnostic
characters such as a square-shaped pars cochlearis and a dorsally-oriented aperture for the
cochlear aqueduct (sensu Lambert, Bianucci & Urbina, 2014) are absent in NMBE 5023942:
the pars cochlearis has a relatively circular outline, the aperture for the cochlear aqueduct
is indeed large, but not dorsally-oriented. The Swiss squalodelphinid periotics are smaller
than Phocageneus, and comparable in size to Huaridelphis raimondii, the smallest known
member of Squalodelphinidae (Lambert, Bianucci & Urbina, 2014).

The bony labyrinths of NMBE 5023942 and 5023943 are shown in Fig. 6. The shape
of the cochlea is relatively flat compared to other platanistoids such as Waipatia and

Aguirre-Fernández et al. (2022), PeerJ, DOI 10.7717/peerj.13251 8/20

https://peerj.com
https://doi.org/10.7717/peerj.13251/fig-5
https://doi.org/10.7717/peerj.13251/fig-6
http://dx.doi.org/10.7717/peerj.13251


Figure 7 Fifty-percent majority rule tree summarizing the 216 equally parsimonious trees obtained
from the parsimony analysis. Allodelphinidae and Eurhinodelphinidae collapsed. Numbers below nodes
indicate their frequency among trees in percentage.

Full-size DOI: 10.7717/peerj.13251/fig-7

Awamokoa (for comparisons, see Viglino et al., 2021). Published measurements of the bony
labyrinths of Phocageneus and Notocetus vanbenedeni show a slightly larger cochlear length
and a quarter to half a cochlear turn more than the OMM squalodelphinids, but the axial
pitches are overall very similar (Table 2).

Physeteroidea Gray, 1821
Physteridae Gray, 1821
Physeteridae indet.
(Figs. 8–9)

Description and remarks
NMBE 5036437 (left periotic) was found in Staffelbach-Böl (St. Gallen Formation). The
periotic is comparatively large and robust (Fig. 8). Of the four characters relevant to the
periotic mentioned in the phylogenetic analysis of Lambert, Bianucci & De Muizon (2017),
NMBE 5036437 shares with other physeteroids the very small anterior bullar facet and
the enlarged accessory ossicle (judged by the size of the fovea epitubaria). The accessory
ossicle is fused to the periotic in some physeteroids (e.g., the Gross Pampau physeteroid in
Montañez Rivera & Hampe, 2020), but not in NMBE 5036437 (accessory ossicle missing).
The posterior part of the posterior process of NMBE 5036437 is directed posteroventrally
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Table 2 Periotic and inner ear measurements of fossil squalodelphinids (in mm; e = estimated); 1 as externally measured byKellogg (1957) for
USNM 21039, and internally measured by Churchill et al. (2016) for USNM 182942; 2 as measured in Viglino et al. (2021).

NMBE 5023942 NMBE 5023943 Phocageneus 1 Notocetus 2

Periotic
Greatest length of periotic 33(e) 35(e) 40 —
Width of the periotic 19.8 15.9 20 —
Length of pars cochlearis 13.9 14.7 — —
Height of pars cochlearis 11.4 10 14.2 —
Width of the pars cochlearis 8.8 8.2 — —
Length of anterior process 15.6 16 21 —
Inner ear endocast
Cochlear turns (t) 1.5 1.7 2 2
Cochlear length 26 30 43.5 32
Axial height (h) 3.8 4 4.7 5.9
Axial pitch (h/t) 2.5 2.3 2.3 2.9

as in other physeterids and unlike in kogiids. The high and small dorsal crest (lateral to
the internal acoustic meatus) of NMBE 5036437 is a feature seen in other physeterids such
as Aulophyseter, Orycterocetus and Physeter. NMBE 5036437 falls in the size range of both
Aulophyseter andOrycterocetus, overall shape and proportions of the pars cochlearis and the
anterior and posterior processes resemble Aulophyseter morricei Kellogg 1927b, but some
features are also comparable to Orycterocetus crocodilinus Kellogg 1965 and deserve further
comparisons, which were done using photos of the holotypes of Aulophyseter morricei and
Orycterocetus crocodilinus, hereafter referred to by their generic names: In dorsal view, the
pars cochlearis of NMBE 5036437 is larger than that of Aulophyseter and Orycterocetus, but
closer in proportions to Aulophyseter. The elongated shape of the internal acoustic meatus
resembles Orycterocetus. The aperture for the cochlear aqueduct is larger than the aperture
of the vestibular aqueduct as inOrycterocetus. The anterior tip of the anterior process points
anteriorly as in Orycterocetus. In ventral view, the fenestra rotunda has a kidney-shaped
outline, which is distinct from both Aulophyseter andOrycterocetus. The anterior process is
square-shaped and facing ventrally as inAulophyseter. The posterior process is more slender
than in both Aulophyseter and Orycterocetus, and the tip of the process is pointing slightly
more ventrolaterally. The posterior bullar facet is smooth, unlike in both Aulophyseter and
Orycterocetus, but it is unclear whether this is the result of abrasion. In medial view, the
anterior process is more robust (higher), and the dorsal crest is less pronounced than in
both Aulophyseter and Orycterocetus.

Although the external dimensions of the periotic NMBE 5036437 are very similar to
those of Aulophyseter morricei, there are strong differences in the cochlear length and axial
height, also reflected in the axial pitch (Table 3 and Fig. 9).

DISCUSSION
At a larger scale, the connection of the Paratethys with the Indian Ocean and the
Mediterranean during the Aquitanian favoured the distribution of warm-water faunas;
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Figure 8 Periotic of Physeteridae indet.NMBE 5036437. Views: dorsal: A; ventral: B; medial: C; lateral:
D.

Full-size DOI: 10.7717/peerj.13251/fig-8

Figure 9 Bony labyrinth of Physeteridae indet.NMBE 5036437. Views: anterior: A; dorsal: B; lateral: C.
Full-size DOI: 10.7717/peerj.13251/fig-9

Table 3 Periotic and inner ear measurements of fossil physeterid NMBE 5036437, and Aulophyseter
morricei (in mm; e = estimated); 1average of up to 9 periotics, as externally measured inKellogg (1927b,
p.20) and internally (bony labyrinth) by Churchill et al. (2016, Table S2) for SDSNH 55015.

NMBE 5036437 Aulophyseter morricei 1

Periotic
Greatest length of periotic 37.3 39
Width of the periotic 25.7 26
Length of pars cochlearis 21.6 —
Height of pars cochlearis 21.3 19
Width of the pars cochlearis 12 —
Length of anterior process 20 20.1
Inner ear endocast
Cochlear turns (t) 1.7 1.7
Cochlear length 43 32.1
Axial height (h) 7.5 5.7
Axial pitch (h/t) 4.3 3.2

these conditions prevailed until the late Burdigalian, when the seaway between the
Mediterranean and the Indian Ocean closed, the eastern Paratethys became isolated
(forming the so-called Kotsakhurian Sea) and the central/western Paratethys became
much reduced (Rögl, 1998). The late Burdigalian is marked by a large diversity of
odontocetes and the subsequent demise of many longirostrine forms, possibly linked
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to climatic changes at the beginning of the Middle Miocene (Bianucci & Landini, 2002).
The kentriodontid and squalodelphinid periotics here reported come from localities of
the Brüttelen-Muschelnagelfluh Member, right at the base of the Lucerne Formation and
therefore from older sediments of the OMM. The Brüttelen-Muschelnagelfluh Member is
chronologically interpreted at the base of the Burdigalian and environmentally interpreted
as shallow marine (Schwab, 1960). In contrast, the physeterid periotic was found in
sediments of the Staffelbach-Grobsandstein Bed, a local unit at the base of the St. Gallen
Fm which is environmentally interpreted as sublittoral (ca. 100 m deep) based on the rich
chondrichthyan composition (Jost, Kempf & Kälin, 2016). Further, the chondrichthyan
composition of the Staffelbach-Grobsandstein Bed is extremely similar to that of the Rhone
Valley (Jost, Kempf & Kälin, 2016), a pattern also reported for the mollusc and echinoid
faunas, which place Switzerland in a transitional zone between the Central Paratethys
faunas (eastwards) and the Rhone Basin and the Mediterranean faunas(westwards) for the
Early Burdigalian (Kroh & Menkveld-Gfeller, 2006).

Despite recent efforts to disentangle the relationships of kentriodontids and redefine
the group, their monophyly is still a matter of debate (e.g., Guo & Kohno, 2021; Peredo,
Uhen & Nelson, 2018; Lambert et al., 2017). Regardless, the type-bearing genus Kentriodon
and its closest relatives were cosmopolitan and diverse in the early Miocene (Guo &
Kohno, 2021). Bianucci & Landini (2002) reported the presence of kentriodontids in five
Burdigalian-Langhian European localities: Baltringen (southern Germany), Rosignano and
Vignale (northern Italy), Cursi-Melpignano quarries of the Salento Peninsula (southern
Italy), and Switzerland. The designation of NMBE 502344 and NMBE 502345 (Fig. 3)
to Kentriodontidae corroborates the suggestion already made by Bianucci & Varola
(1994), contrasting with a previous identification as delphinidan earbones (Pilleri,
1986a see plate 5 D & G and plate 8 K). The two skull-based and highly-diagnostic
kentriodontid species Rudicetus squalodontoides (Burdigalian–Messinian, 18–6 Ma) and
Tagicetus joneti (late Serravallian, 12.7–11.6 Ma) do not have preserved periotics (Bianucci,
2001; Lambert, Estevens & Smith, 2005). Bianucci & Varola (1994) reported kentriodontid
periotics from the same area as R. squalodontoides (Pietra leccese), contemporaneous
with the Swiss localities. Further, Bianucci & Varola (1994) reassigned other earbones
(previously recognized as Delphinidae in Pilleri, 1986b; Pilleri, Gihr & Kraus, 1989) from
Piedmont and Baltringen to Kentriodontidae. Kentriodon hoepfneri from Gross Pampau,
Germany (Kazár & Hampe, 2014) and the kentriodontid remains from Bihor County,
Romania (Kazár & Venczel, 2003) are from younger (middle Miocene) sediments. Studies
on intraspecific variation of periotics are needed to better understand their disparity. Barnes
& Mitchell (1984) interpreted a large sample of isolated periotics from the Sharktooth Hill
Bonebed as belonging to a single species (Kentriodon obscurus), combining two species
previously known as Grypolithax obscura and Grypolithax pavida, both described in
Kellogg (1931). Remarkably, Barnes & Mitchell (1984) listed six characters that denote
the range of intraspecific variation within Kentriodon obscurus, whereas the only noticeable
morphological difference separating the holotype of Kentriodon pernix from this sample
was the more circular internal acoustic meatus (Kentriodon pernix was reported from the
Calvert Formation (North Atlantic), whereas the Sharktooh Hill Bonebed is located in
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the North Pacific). Kasuya (1973) reported little intraspecific variation in extant species,
as Martins et al. (2020) also did for the cochleae of harbor porpoises. Bony labyrinth
measurements that correlate to hearing sensitivity indicate that Kentriodon pernix (and
possibly other kentriodontids) may have been among the earliest odontocetes to use a
narrow-band-high-frequency (NBHF) biosonar (Racicot & Preucil, 2021; Galatius et al.,
2018). NBHF may have evolved to avoid predation by large echolocating predators such as
orcas (Morisaka & Connor, 2007), but their fossil record does not extend into the Miocene.
Odontocetes with a similar niche to orcas include macroraptorial physeteroids (Racicot &
Preucil, 2021; Galatius et al., 2018) and ‘squalodontids’ (Kellogg, 1923), both abundant in
European Miocene localities.

Squalodelphinidae is a monophyletic group sister to Platanistidae (Lambert, Bianucci
& Urbina, 2014) with a distribution in both latitudinal hemispheres in the Pacific and
Atlantic coasts (Bianucci, Urbina & Lambert, 2015). The highest diversity centers in the
North Atlantic at around the early Miocene and suggests a close connection between
the European and North American faunas (Bianucci, Urbina & Lambert, 2015). The
periotics here described represent the first record of Squalodelphinidae in Switzerland
and are contemporaneous with Medocinia tetragorhina from the Burdigalian locality
Saint-Medard-en-Jalle in France (de Muizon, 1988a) and Squalodelphis fabianii from the
Libano Sandstone in northern Italy (Bianucci & Landini, 2002; Dal Piaz, 1917), of which
the periotics are either lacking (in the former) or unprepared and still in situ (probably in
the latter, as the tympanic bulla is still in situ). Smaller squalodelphinids such as the OMM
specimens, about the size ofHuaridelphis raimondii could be interpreted as having occupied
a similar niche to that of the extant Delphinus delphis, preying on small fish (Bianucci et
al., 2018). The identification of NMBE 5023942 and NMBE 5023943 as squalodelphinids
remains tentative, as eurhinodelphinids also show a similar morphology, including a
developed anterior bullar facet and a large aperture for the cochlear aqueduct. The pars
cochlearis is relatively round (particularly in NMBE 5023942) and not square-shaped as in
many squalodelphinids.

Among the taxa here studied, Physeteridae is also attested by the many teeth from the
OMM housed in collections, as already reported in Pilleri (1986a). Here, the physeteroid
Helvicetus rugosus Pilleri 1986a is regarded as nomen dubium. The range of sizes, shapes and
degrees of wear of physeteroid teeth suggest a high diversity of this group in the OMM, but a
revision of the teeth is out of the scope of this paper. Bianucci & Landini (2002) reported the
presence of physeterids in many Burdigalian-Langhian localities around theMediterranean
(Baltringen, the Rhone Valley, Rosignano and Vignale, and the Salento Peninsula) ranging
all across the Miocene, pointing to a considerable radiation of this group in the area at
that time. Several isolated physeterid periotics are known from the ‘pietra leccese’ (Salento
Peninsula) and ‘pietra di cantoni’ (Rosignano and Vignale), possibly representing more
than five genera, according to Bianucci & Landini (2002).

Pilleri (1986a) mentioned that Cuvier reported a scapula that can only belong to
Balaenoptera, reportedly found in Lake Geneva, but such a specimen was not located.
Given the age of the sediments and the size of the isolated elements that can only be
diagnosed to Cetacea indet., we assume that only odontocetes are represented in the
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sample. This pattern reflects a global early Miocene ‘dark age’ for mysticetes, which has
been linked to environmental changes at around the Oligocene-Miocene boundary and led
to the decline of coastal assemblages. While toothed mysticetes went extinct, filter feeders
thrived offshore and recolonized coastal environments in the middle Miocene (Marx,
Fitzgerald & Fordyce, 2019).

Overall, the faunal composition of the OMM fits the interpretations outlined in Bianucci
& Landini (2002) for the Mediterranean/Paratethys fauna during the Burdigalian. On a
broader geographic scale, there is a clear association with the contemporaneous and
extremely diverse Calvert fauna on the eastern coast of North America, with representatives
of at least six families in common: Squalodontidae, Eurhinodelphinidae, Squalodelphinidae,
Kentriodontidae, Physeteridae and Ziphiidae (Bianucci & Landini, 2002;Gottfried, Bohaska
& Whitmore Jr, 1994).

CONCLUSIONS
There is a prevalence of isolated, fragmented, and sometimes abraded cetacean remains
in the OMM. The teeth are the most frequent elements. Periotics are rare, but
diagnostic. The seven periotics herein described attest to the presence of Kentriodontidae,
Squalodelphinidae (two morphotypes) and Physeteridae. Previous assignations of periotics
to Delphinidae in Pilleri (1986a) plate 5 D & G and plate 8 K in the OMM (and elsewhere;
see Bianucci & Varola, 1994) are indeed kentriodontids. Previous assignations of periotics
to Squalodontidae Pilleri (1986a) plate 5 E & F in the OMM are here identified as
squalodelphinids. Physeteridae is represented by one periotic from the St. Gallen Formation.
The faunal composition is similar to that reported for the Burdigalian at a regional
(Mediterranean and Paratethys) scale (Bianucci & Landini, 2002), with representatives of
families also found in the Calvert Fm on the western Atlantic coast (Gottfried, Bohaska &
Whitmore Jr, 1994).
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