PeerJ Reviewing Manuscript

Stable isotope analyses of web-spinning spider assemblages along a headwater stream in Puerto Rico

Sean P. Kelly, Elvira Cuevas, Alonso Ramírez

Web-spinning spiders that inhabit stream channels are considered specialists of aquatic ecosystems and are major consumers of emerging aquatic insects, Owhile other spider taxa are more commonly found in riparian forests and as a result consume more terrestrial insects. In order Tto determine if there was a difference in spider taxa abundance between riverine web-spinning spider assemblages within the stream channel and the assemblages 10m into the riparian forest, we compared both day and night abundances for all webspinning spiders along a headwater stream in El Yunque National Forest in northeast Puerto Rico. By using a nonmetric dimensional scaling NMDS abundance analysis we were able to see a clear separation of the two spider assemblages. The second objective of the study was to determine if aquatic insect groups contributed more to the diet of the riverine spider assemblage and therefor stable isotope analyses of δ¹⁵N and δ¹³C for web-spinning spiders along with their possible prey were utilized. The results of the mixing model (IsoSource) however showed little difference in the diets of the riverine and riparian spider assemblages. This study highlights the strong connectivity between headwater streams and riparian forests. Despite the differences in taxa composition within the riverine and riparian areas both assemblages of spiders were shown to depend on emerging aquatic insects as a major food source.

Sean P. Kelly^{1*}, Elvira Cuevas¹, Alonso Ramirez²

- 1- Department of Biology, University of Puerto Rico Rio Piedras Campus, PO Box 70377, San Juan PR 00936-8377
- 2- Department of Environmental Science, University of Puerto Rico Rio Piedras Campus, PO Box 70377, San Juan PR 00936-8377

* Corresponding Author: Sean P. Kelly 43 Calle Ponce

San Juan, Puerto Rico 00917

(203)804-3390

spkelly.84@gmail.com

INTRODUCTION

1 2

- 3 Riparian zones have been identified as areas of high importance for maintaining
 - 4 biodiversity in aquatic and terrestrial habitats along with being an important interface for
- the exchange of resources, resulting in an ecosystem with unique environmental 5
 - 6 dynamics (Naiman & Decamps 1997; Naiman et al. 1993; Nakano & Murakami 2001).
- 7 The importance of terrestrial subsidies as an energy source in the food webs of headwater
 - 8 streams has long been recognized (Vannote et al. 1980), but only more recently has it
 - 9 become evident that aquatic subsidies can be equally important in terrestrial food webs
- 10 (Kato et al. 2003; Nakano & Murakami 2001; Polis et al. 1997; Sanzone 2001; Sanzone
- 11 et al. 2003). Emerging aquatic insects have been shown to be an important food source
- 12 for a variety of terrestrial predators (Nakano & Murakami 2001; Polis et al. 1997) and the
- 13 abundance of aquatic insects can affect the distribution of generalist predators,
- 14 insectivorous bats, reptiles, birds and spiders (Fukui et al. 2006; Iwata et al. 2003; Kato et 15 al. 2003; Marczak & Richardson 2007; Sabo & Power 2002).

16

18

19

20

17

Web spinning spiders are a particularly good model organism for studying the exchange of subsidies across riparian ecotones due to the fact that they are major

- consumers of emerging aquatic insects, and some taxa of web spinning spiders have been associated exclusively with fresh water ecosystems (eg. Tetragnatha (Tetragnathidae)
- 21 and Wendilgarda (Theridiosomatidae) (Coddington 1986; Eberhard-Crabtree 1989;
- 22 Gillespie 1987). The distribution of these spiders has been correlated with aquatic insect
- 23 abundances and for this reason these taxa of spiders are disproportionally more abundant
- 24 within the first few meters from the stream channel where emerging insects tend to
- 25 aggregate (Muehlbauer et al. 2014). The genus Tetragnatha has a worldwide distribution
- 26 and can be found on all continents (except Antarctica)(Aiken & Coyle 2000). Juvenile
- 27 and female Tetragnatha typically construct relatively large, horizontal orb-webs directly
- 28 above the surface of lentic and lotic bodies of freshwater (Gillespie 1987). Wendilgarda
- is another genus of spider known to be associated with freshwater ecosystems however 29
- 30 they are quite different from Tetragnatha in the sense that they are only found in tropical

Commented [LH1]: Here and elsewhere the use of the term "subsidies" annoys me. I know its use is common in ecology, but it reads like jargon to me, and certainly will not be understood by general readers. I can't think of an easy alternative, but it would be great if you can come up with

- 1 regions, and the majority of most taxa build a very reduced web structure that consists of one or
 - 2 two structural silk lines attached to rocks or vegetation along the stream with additional
- lines being attached to the water surface in order to snag drifting insects (Eberhard-
 - 4 Crabtree 1989; Eberhard 2001). Along with these aquatic specialists there has also been
- 5 evidence that a variety of other taxa of web-spinning spiders (Araneidae, Lyniphiidae and
 - 6 Theridiidae) have also been shown to be more abundant along streams where there are

7 greater densities of aquatic insects (Marczak & Richardson 2007).

8

11

12

Originally food web studies were generally conducted using observations in the field and gut content analyses, but recently the use of stable isotopes has become a

preferred method for several reasons. One benefit of using stable isotopes is that gut

content analyses are not viable methods for some organisms due to their feeding habits

13 (e.g. spiders who feed on liquefied tissue)(Foelix 2011). Another advantage of stable

14 isotopes is that it is able to infer relatively long term feeding habits due to the

- 15 bioaccumulation of δ^{15} N and δ^{13} C into the tissue of the consumer. A third advantage is
- that naturally occurring stable isotopes have been shown to be effective at identifying the
- 17 contribution of different prey items in the diets of consumers through the use of mixing
- 18 models (Peterson & Fry 1987; Phillips & Gregg 2003). This final aspect of stable isotope
- analyses is especially useful in aquatic and riparian food webs when determining the
- 20 importance of subsidies that cross ecosystem boundaries, such as leaf litter falling into
- 21 streams or emerging aquatic insects as food for terrestrial predators (Akamatsu et al.
- 22 2004; Burdon & Harding 2008; Davis et al. 2011; Hicks 1997; Sanzone 2001; Sanzone et
- 23 al. 2003; Walters et al. 2007).

24

- 25 This study had two main objectives in order to better understand the complex relationship
- 2625 between web spinning spiders and stream ecosystems. The first objective was to
- 2726 determine if there were differences in the composition of taxa in the assemblages of web-
- 2827 spinning spiders that were found within the stream channel compared to those 10m into
- 2928 the riparian area. Due to some spiders being specialists of aquatic ecosystems we
- 3029 predicted that these taxa would be in far greater abundance within the stream channel.

Commented [LH2]: The second part of the compound sentence is slightly confusing. When you say "and the majority of taxa..." (which I recommend changing to "most taxa", to what taxa are you referring? Most taxa other than Wendilgardia? I think this needs to be a separate sentence and the subject of the sentence clarified

Formatted: Body Text, Space Before: 0 pt, Line spacing: single, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 25 + Alignment: Left + Aligned at: -0.42" + Indent at: 0", Tab stops: 0.49", Left

	2	of these two assemblages using stable isotopic analyses. The majority of emerging
	3	aquatic insects remain very close to the stream channel and their abundance can drop
4		exponentially only a few meters into the riparian area (Muehlbauer et al. 2014), and so we
5		predicted that the assemblage of web-spinning spiders in the stream channel would have
	6	a diet that reflects a greater dependence on aquatic insects while the assemblage in the
7		riparian area would be feeding on a greater number of terrestrial insects.
8		
9		MATERIAL AND METHODS
10		
11		Study Area
12		
13		This study was conducted along the small headwater stream Quebrada Prieta within El
14		Yunque National Forest in northeastern Puerto Rico at latitude 18°18'N and longitude
15		65°47'W (Masteller 1993). The stream begins at around 600m above sea level and runs
16		into the Quebrada Sonadora at around 310m above sea level with an average slope of
17		20% (Masteller 1993). The stream ranges from 2-4m in width and is mainly composed of
18		large boulders and cobble with intermittent small pools with finer sediments of sand and
19		silt. In the year of the study, total rainfall was 397.7cm and the mean temperature was
20		$23.93(\pm 2.94)^{\circ}C$ (Luquillo-LTER). The stream is surrounded by a mainly closed canopy
21		of tabonuco (Dacryodes excels Vahl) forest which is the dominant tree species in the
22		Luquillo Mountains until around 600m in elevation (Masteller 1993). Other common
23		plant species include bullwood (Sloanea berteriana Choisy) and palms (Prestoea
24		montana Graham and Nicolson)(Masteller 1993).
25		
26		The macroinvertebrate community of Quebrada Prieta is diverse and is composed of a
27		variety of aquatic insects with the most abundant being trichopterans and
28		ephemeropterans but $\frac{\text{the majority of the} \underline{\text{most}}}{\text{shrimp}}$ biomass is dominated by $\underline{\text{the}}$ freshwater shrimp,
29		Atya lanipes, Xiphocaris elongataelongate, and Macrobrachium spp. (Masteller 1993). Other
30		members within the stream community are amphibious crabs, Epilobocera sinuatifrons,
31		and one algivorous goby species, Sicydium plumieri (Masteller 1993).

1 The second objective of the study was to determine if there were differences in the diets

Web-Spinning Spider Assemblages

1 2

- 3 A 100m reach of Quebrada Prieta was selected and then divided into four 25m
 - 4 subsections. Field work for this portion of the project was conducted from April to
 - 5 August 2012, with at least one week between sampling dates to minimize the possibility
 - 6 of impacting the study area. A 3m x 3m riverine quadrat was selected within the stream
- 7 channel in the first 25m section of stream, measuring 3m from the stream's edge into the
 - 8 stream channel. Each quadrat was selected to contain a random mixture of available
 - 9 substrates, such as boulders, vegetation and deadwood which may affect web-spinning
- spider distribution. All web-spinning spiders within the quadrat up to 2.5m in height
- were hand collected and preserved in 70% ethanol for later identification.

- 13 This process was then repeated for a riparian site 10m laterally from the stream
- 14 edge into the riparian forest from the riverine sampling site. The same sampling
- 15 procedure was then repeated for the next 25m section of the stream. On the following
- sampling date we would sample the remaining two 25m sections of the stream not
- 17 sampled during the previous visit. Each sampling date consisted of two riverine and two
- 18 riparian quadrats, with each sampling lasting about four hours for both nocturnal and
- 19 diurnal sampling. We conducted both diurnal and nocturnal sampling because some taxa
- 20 of web-spinning spiders (e.g. *Tetragnatha*) are more active at night and rarely build webs
- 21 during the day. Nocturnal sampling on average was conducted from 1900-2300, while
- 22 diurnal sampling on average was from 1000-1400. Sampling was only conducted during
- 23 favorable weather conditions, due to the fact that because spider webs are many times easily
- 24 destroyed by wind and rain (Foelix 2011). A total of four riverine quadrats and four
- 25 riparian quadrats were sampled both diurnally and nocturnally for a total of 16 quadrats
- 26 sampled. A Nonmetric Dimensional Scaling (NMDS) analysis along with a post-hoc
- 27 Analysis of Similarity (ANOSIM) were used to determine if there were differences in
- 28 taxa composition of the two web-spinning spider assemblages. A secondary post-hoc
- 29 analysis, Similarity Percentages (SIMPER), was used to determine which particular taxa
- 30 of spiders were causing a difference in the composition of the two assemblages. All of
- 31 these analyses were conducted with the statistical program PAST (Hammer et al. 2001).

~		_	
Sta	hle	Isoto	mes

- 3 $\frac{\text{In order to} \underline{\text{To}}}{\text{In order to} \underline{\text{To}}}$ verify that the spider assemblages and their prey had stable isotope signatures
 - 4 that fell within realistic ranges of the basal C sources we sampled the three principal
 - 5 energy sources for aquatic and terrestrial arthropods. The three C sources sampled were
- 6 stream leaf litter, periphyton, and terrestrial vegetation. Stream leaf litter was collected at
- 7 random throughout the 100m stream transect and was gently rinsed to remove any
- 8 macroinvertebrates. Periphyton was also sampled randomly by collecting rocks from the
- 9 stream, gently rinsing them to remove any macroinvertebrates, and then scrubbing them
 with a small wire brush. The resultant slurry was then collected into glass vials to be
 dried later. For terrestrial vegetation samples, green leaves were collected haphazardly
- 12 from C3 plants within the riparian forest.

13 14

15

16

17

18

19

20

21

22

Possible insect prey of the spider assemblages were collected for isotope analysis using several methods. Flying insects were collected using a passive sampling method with three Malaise traps that were placed between 0-25m, 25-75m, and 75-100m within the stream channel for approximately four hours during the diurnal and nocturnal spider sampling. Aquatic insect larvae were collected using hand nets throughout the 100m stream reach. Sampling was conducted in pools, riffles, and cascades to ensure that all major microhabitats were accounted for. The larval stages of Ephemeroptera, Trichoptera and Chironomidae were used for isotopic analysis, because they no longer feed as adults and thus their isotopic signature is fixed due to their feeding habits as aquatic nymphs. Adult stages were used for the orders Odonata and Tipulidae.

232425

26

27

28

In order to To compare the $\delta^{15}N$ and $\delta^{13}C$ stable isotope signals for the two different

spider assemblages, individuals were collected from a riverine transect within the stream channel and again from a riparian transect 10m parallel from the edge of the stream. In each transect web-spinning spiders were collected from the four most abundant families,

Tetragnathidae, Theridiosomatidae, Pholcidae and Uloboridae. Spiders were collected and maintained live in small containers for a day, in order to allow for the digestion of

Commented [LH3]: What I call the serial comma, and others call the Oxford comma, is not (or should not) be an optional issue of style. Use of the serial comma is essential to avoid confusion with certain sentence constructions. Strunk and White (Elements of Style) offer additional examples and arguments for its use.

Commented [LH4]: On another style point, you will note that I am eliminating "in order to" whenever I find it, and replacing it with the more succinct "to". Although most style guides continue to allow "in order to" I don't understand why. This construction adds nothing to the meaning of the sentence other than unnecessary words. I have a standing \$100 challenge with my students for them to find any example in which "in order to" is preferable to "to", and I've yet to lose any money.

```
1
       prey that may have been recently consumed to reduce the influence of the prey's isotopic
 2
       signal.
 3
   4
              Specimens were frozen (-20°C) for a minimum of 24 hours, then placed in a
       drying oven for a minimum of 48hrs (70°C) and finally ground to a fine powder for
 5
    6 isotopic analysis. Insects were identified to the family level (except for Lepidoptera
 7
       identified to order) and spiders were identified to the genus level (except for Wendilgarda
 8
       clara Keyserling 1886, identified to species). Composite taxa samples of a minimum of
       four individuals for spiders 1±0.05mg of animal tissue and 5±0.05mg of plant tissue was
 9
       measured for the natural abundances of <sup>15</sup>N and <sup>13</sup>C using ratio mass spectrometry at the
10
       Miami Stable Isotope Ecology Lab at the University of Miami in Florida. Natural
11
       abundances of stable isotopes for \delta^{13}C and \delta^{15}N were calculated as:
12
13
       \delta^{13}C or \delta^{15}N = [(R<sub>sample</sub>/R<sub>standard</sub>) - 1] x 1000
       where, R_{sample} = {}^{13}C.{}^{12}C or {}^{15}N.{}^{14}N ratio in the sample and R_{standard} = {}^{13}C/{}^{12}C ratio in Pee
14
       Dee Belemnite for \delta^{13}C and R_{standard} = {}^{15}N/{}^{14}N ratio in the atmosphere for \delta^{15}N (Peterson
15
16
       & Fry 1987).
17
              The stable isotopes <sup>15</sup>N and <sup>13</sup>C of insects were analyzed as composite samples
18
       with aquatic insect taxa compiled by family into one of five functional feeding groups:
19
20
       collector-gatherers (n=1), filterers (n=2), predators (n=3), scrapers (n=2) and shredders
21
       (n=2) (Ramirez & Gutierrez-Fonseca 2014). Terrestrial insects were grouped as either
22
       herbivorous (n=2) or predacious (n=2). For simplicity all seven groups of insects will be
23
       referred to as functional feeding groups, while understanding that the term is more
       generally used only for aquatic insects. Spider taxa were identified to genus and were
24
       grouped as either having been collected in riverine (n=7) or riparian (n=5) transects.
25
26
       Mean averages of \delta^{13}C and \delta^{15}N for each group were used in subsequent analyses with
       the program IsoSource (Phillips & Gregg 2003). The source increment was set at 1% and
27
```

the mass balance tolerance level was 0.1%. This mixing model was used to determine

the contribution of each insect group to the diet of the riverine and riparian spiders.

RESULTS

28

29

30

1 2 Web-Spinning Spider Assemblages 3 4 There were a total of fFour diurnal and four nocturnal samplings were conducted for both 5 riverine and riparian habitats. Five families of web-spinning spiders (Araneidae, 6 Pholcidae, Tetragnathidae, Theridiosomatidae and Uloboridae) were collected in varying 7 abundances from riverine and riparian quadrats (Table 1). The least abundant family was 8 Araneidae with only two individuals collected, while the family Theridiosomatidae was 9 the most abundant with 199 individuals collected from two taxa, Theridiosoma sp. and 10 Wendilgarda clara (Keyserling) (Table 1). The second most abundant family was 11 Tetragnathidae with 146 individuals collected from three genera, Chrysometa, Leucauge 12 and Tetragnatha (Table 1). Uloboridae was the third most abundant family with 32 13 individuals collected from the Miagrammopes genus (Table 1). Pholcidae was the 14 second to least abundant family with 28 individuals collected from the Modisimus genus 15 (Table 1). There were 265 spiders collected from the riverine habitat with a Shannon-16 Weiner index of H'=1.30 while in the riparian habitat 142 spiders were collected with a 17 Shannon-Weiner index of H'=1.56. 18 A NMDS analysis of the two web-spinning spider assemblages shows a clear spatial 19 20 separation of the eight riparian and eight riverine groups (Fig.1). This was statistically 21 verified with the post-hoc test ANOSIM, which showed a significant difference in the 22 degree of separation between the two assemblages (Bonferroni-corrected, p < 0.002, 23 R=0.722) (Fig. 1). An additional post-hoc analysis, SIMPER, found that around 48% of the dissimilarity between the assemblages was attributed to the abundance of 24 25 Wendilgarda clara. 26 27 **Basal Carbon Sources** 28 Stable isotope analyses of the basal C sources showed a difference of δ^{13} C in 29 30 terrestrial vegetation, periphyton and stream leaf litter. Terrestrial vegetation (-34.90%) was more depleted in δ^{13} C than aquatic periphyton (-32.40%) and stream leaf litter 31 (-25.50%) (Table 2). δ^{15} N values were very similar for C3 vegetation (-1.30%) and

- 1 periphyton (-0.80%) while stream leaf litter had the highest $\delta^{15}N$ value (0.80%). Despite
- $2\;$ these differences in $\delta^{13}C$ there was no clear separation between aquatic and terrestrial C
- signatures. $\delta^{13}C$ and $\delta^{15}N$ values for the composite samples of individual insects varied
- 4 among taxa. The family Helicopsychidae (Trichoptera) was the most depleted in $\delta^{13}C$
- 5 (-34.88%), while the family Lampyridae (Coleoptera) was the most enriched in $\delta^{13}C$
- 6 (-25.30%) (Table 2). The family Cicadoidea (Hemiptera) had the lowest δ^{15} N value
- 7 (-0.55%), while Lampyridae, a terrestrial predator, was not only the most enriched in
- $8~~\delta^{13}C$ but was also the most enriched in $\delta^{15}N$ (6.31‰) (Table 2). When taxa were
- 9 analyzed as either terrestrial (n=4) or aquatic (n=10) insects no significant difference was
- 10 found between δ^{13} C nor δ^{15} N in the two groups.

Aquatic and Terrestrial Insects

12 13 14

11

- There was a large amount of variation seen in the $\delta^{13} C$ and $\delta^{15} N$ values for the
- seven different functional feeding groups used in the dietary analysis of the spider
- assemblages. The terrestrial predator group of insects was the most enriched in δ^{13} C (-
- 17 $26.06 \pm 1.75\%$), followed by collector-gatherers (-26.63%), aquatic predators (-
- 18 27.26 \pm 0.68‰), shredders (-27.82 \pm 1.03‰), herbivores (-28.05 \pm 0.91‰), filterers (-28.59
- 19 $\pm 1.17\%$) and scrapers (-31.52 $\pm 4.75\%$) (Figure 2). Terrestrial predators (5.07 $\pm 1.75\%$)
- 20 were the most enriched in $\delta^{15}N$, followed by aquatic predators (4.35 \pm 1.20%), filterers
- 21 $(3.16\pm0.76\%)$, collector-gatherers (2.63%), scrapers $(2.27\pm0.45\%)$, shredders
- 22 $(1.81\pm1.47\%)$ and herbivores $(0.69\pm1.76\%)$ (Figure 2).

2324

Web-Spinning Spiders

- 26 Stable isotope analyses of the individual spider taxa showed less variation in δ^{13} C
- 27 and δ^{15} N values than was seen in the insect taxa. The genus *Modisimus* (Pholcidae)
- collected along the riparian transect was the most depleted in δ^{13} C (-28.49%), while
- 29 *Modisimus* collected from the riverine transect was the most enriched in δ^{13} C (-26.65%)
- 30 (Table 2). The genus *Chrysometa* (Tetragnathidae) from the riverine transect had the
- 31 highest δ^{15} N value (5.19), while riparian *Miagrammopes* (Uloboridae) had the lowest

- 1 δ^{15} N value (2.54‰) (Table 2). There was only a slight difference in δ^{13} C between the
- 2 combined riverine (-27.07 \pm 0.38%) and riparian taxa (-27.62 \pm 0.52%) (Figure 2). δ^{15} N
- 3 values only showed a slight difference between riverine (3.99±0.75‰) and riparian
- 4 (3.76±0.90‰) assemblages (Figure 2).

Dietary Analyses

7

- 8 Results from the mixing model, IsoSource (Phillips & Gregg 2003), showed that
 - 9 shredders (0-93%) and herbivores (0-65%) were the two insect groups that contributed
- 10 the most to the riverine spider diet while scrapers (0-24%) and terrestrial predators (0-
- 11 25%) contributed the least (Figure 2). Shredders (0-79%) and filterers (0-61%)
- 12 contributed the most to the riparian spider diet, while terrestrial predators (0-26%) and
- scrapers (0-34%) once again contributed the least to the spiders' diet (Figure 2).

14 15

DISCUSSION

- 17 The influence of emerging aquatic insects has been shown to affect web-spinning spider
- distributions in riparian areas, especially within the first 10m from the stream edge
- 19 (Collier et al. 2002; Kato et al. 2003; Kato et al. 2004; Sanzone et al. 2003). The
- 2019 majority of Most emerging aquatic insects follow a negative power function abundance curve
- 2420 and over 50% of their "signature" has been found to be within only 1.5m from the stream
- 2221 (Muehlbauer et al. 2014). We established our working hypotheses based on the strong
- 2322 link between web-spinning spiders and emerging aquatic insects and the fact that the
- 2423 majority of the insects congregate within only a few meters of the stream edge. First we
- 2524 proposed that there would be a different assemblage of web-spinning spiders, due to the
- 2625 presence of aquatic specialists (Tetragnatha and Wendilgarda), within the stream
- 2726 corridor compared to 10m into the riparian forest. We then proposed that because the
- 2827 majority of aquatic insects congregate within only a few meters of the stream, that the
- 2928 riverine spider assemblage in the stream corridor would be consuming more aquatic
- 3029 insects than riparian spiders. We found that there was indeed a significant difference
- 3130 between the riverine and riparian assemblages and that around 48% of the dissimilarity

- 1 between the assemblages was attributed to the abundance of Wendilgarda, a specialist of
- aquatic habitats.
- 2. In contrast, tThe results did not entirely support our second hypothesis. The
 - 3 analyses of stable isotopes showed no clear separation between the δ^{13} C signature for
- 4 aquatic and terrestrial prey due to the fact that because the aquatic food web was driven by leaf
 - 5 litter inputs from the terrestrial vegetation that resulted in similar δ^{13} C ranges for both
 - terrestrial and aquatic primary consumers, which are the typical prey for web-spinning
- spiders. The dietary analysis showed that the group of insects that contributed the most to
- 8 both spider assemblages was aquatic shredders.

17

- 10 The difference in assemblage composition between the stream channel and the
- 11 riparian forest was found to be driven mainly by an aquatic specialist, Wendilgarda,
- 12 which snare their prey directly from the water surface (Coddington 1986; Eberhard-
- 13 Crabtree 1989). Tetragnatha, another aquatic specialist (Aiken & Coyle 2000; Alvarez-
- 14 Padilla & Hormiga 2011; Gillespie 1987), was also only found only in riverine quadrats
- 15 however there were too few individuals to have any statistical significance. Studies of
- riparian spider assemblages in other parts of the world have found similar shifts in taxa 16
- composition, in which the abundance of some spiders was directly related to the distance
- 18 from the stream edge and that significant differences could be found within only 10m into
- 19 the riparian zone (Sanzone 2001; Sanzone et al. 2003). However, most the majority of
- 20 studies have only been conducted in temperate regions, and so farthere are still few studies
- have investigated whether this distribution of spider taxa also occurs along tropical streams.
- well. Some of the proposed biotic and abiotic factors that could explain the shift in
- 2322 spider distributions range from differences in vegetative complexity and structure to
- 2423 changes in humidity and temperature, but the most common factor associated with the
- 2524 distribution of web spinning spiders has been the abundance of aquatic insects(Kato et al.
- 2625 2003; Kato et al. 2004; Sanzone 2001; Sanzone et al. 2003).

27

- 28 Basal carbon sources (stream leaf litter, periphyton and C3 vegetation), prey items
- 29 (terrestrial and aquatic insects) and web spinning spiders (riverine and riparian) (Table 2)
- 30 were all found to have isotopic signals within the range of reported values from other

Formatted: List Paragraph, No bullets or numbering, Tab stops: Not at 0.49"

Formatted

Formatted: Space Before: 0.35 pt, Line spacing: Exactly 6.5 pt

Formatted: Body Text, Indent: Hanging: 0.42", Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 10 + Alignment: Left + Aligned at: -0.92" + Indent at: 0", Tab stops: 0.49", Left

PeerJ Reviewing Manuscript studies (Fry 1991; Kato et al. 2004; Lau et al. 2009; March & Pringle 2003; Ometto et al.

- 1 2006; Trudeau 2003). Terrestrial vegetation was the most depleted in δ^{13} C and δ^{15} N.
- stream leaf litter was the most enriched in δ^{13} C and δ^{15} N and periphyton was the 2
- intermediate of the two (Table 2). Allochthonous and autochthonous C sources in
 - 4 riparian food webs can vary considerably in their δ^{13} C signature ($\pm 10\%$) depending on
- 5 several factors such as plant taxa, water velocity, and canopy cover(Lau et al. 2009;
- 6 March & Pringle 2003; Ometto et al. 2006; Trudeau 2003). Basal carbon sources were
- 7 utilized in determining a reasonable range in which subsequent consumers should be
- 8 found, but not in determining a difference in aquatic or terrestrial resources for web spinning spiders.

12

13

14

15 16

17

18

19

Isotopic values of insect taxa were all found to be within the range of basal C sources and mean values for each functional feeding group reflected their particular food source,; however, there was no clear separation in the isotope signals between terrestrial and aquatic insects. Terrestrial predators and herbivores showed little variation in their δ^{13} C signal, -28.05±0.91% and -26.06±1.08% respectively. The enriched δ^{13} C signal in the predators is most likely associated with bioaccumulation more so than a change in C sources. Of all the insect groups, terrestrial herbivores and predators had the lowest and highest δ^{15} N values respectively, similar to what was reported in a study done by Kato et al. (2004) in Japan where they also found a difference of around 4‰ between terrestrial herbivores and predators (Kato et al. 2004).

20 21 22

23

24 25

28

The δ^{13} C signature for the aquatic insect groups, as mentioned earlier, was not statistically different from the terrestrial insects, and the majority most of the functional feeding

groups had overlapping values with terrestrial herbivores, emphasizing the importance of leaf litter inputs in the aquatic food web. Scrapers were found to be the most depleted in

- $\delta^{13}C_{\perp}$ and this group also showed the greatest range in their $\delta^{13}C$ signature (-1.52±4.75). 26
- The This variation is most likely the result of the two taxa that were collected for this 27 functional group. Helicopsychidae were severely depleted in δ^{13} C due to them being
- 29 obligate scrapers, feeding on C sources depleted in δ^{13} C such as periphyton and possibly
- other more depleted C sources that were not sampled in this study (e.g. aquatic moss). 30
- Leptophlebiidae are considered to be more generalists and at times may feed as collector-31

- 1 gatherers, despite the families overall classification as scrapers (Ramirez & Gutierrez-
- 2 Fonseca 2014). In a study by Sanzone et al. (2002), Helicopsychidae were also found to
- be one of the most depleted aquatic insect taxa (Sanzone et al. 2003). The aquatic insect
 - 4 groups had $\delta^{15}N$ signatures that fell within the two terrestrial extremes with aquatic
- 5 predators $(4.35\pm1.20\%)$ and shredders $(1.81\pm1.47\%)$ having respectively the highest and
- 6 lowest $\delta^{15}N$ signatures. Shredders along with being the most depleted in $\delta^{15}N$ also
- 7 showed the greatest variation, most likely due to the influence of Tipulidae in this group,
 - 8 which are generally considered as shredders although some taxa have been found to be
- 9 predacious (Ramirez & Gutierrez-Fonseca 2014). Collector-gatherers, scrapers and filterers were found to be intermediary with relatively little variation in their $\delta^{15}N$ values

11 (1.96-3.69‰).

12 13

14

15

16

17

18

19

20

The two spider assemblages showed very little difference in both their $\delta^{13}C$ and $\delta^{15}N$ signatures with riverine spiders being only slightly more enriched in both instances. Both spider assemblages had intermediary $\delta^{15}N$ values between predacious and non-predacious insects similarly to other riparian studies conducted along both temperate forest and desert streams (Kato et al. 2004; Sanzone et al. 2003). In our study we included only web-spinning spiders and this may explain the similarity between the two assemblages because other studies have found that differences in stable isotopes values can be associated with different hunting strategies (i.e. sit and wait, wandering or web

building) (Collier et al. 2002; Kato et al. 2004; Sanzone et al. 2003).

212223

24

25

26

27

28

29

30

31

The IsoSource analyses showed that aquatic shredders was the insect group that contributed the most to the diets in both riverine and riparian spider assemblages, with the group representing 0-79% of the diet in riparian spiders and 0-93% in riverine spiders. Allocthonous inputs from riparian forests has been shown to be extremely important for the food webs in headwater streams (Vannote et al. 1980; Wallace et al. 1997) and it has been calculated that terrestrial runoff can account for 75 to 90 percent of the C budget of a stream (Polis et al. 1997). This energy is then transferred back to riparian web-spinning spiders in the form of emerging aquatic insects that feed primarily on stream leaf litter, such as shredders (Kato et al. 2004). The importance of

- 1 allocthonous energy that indirectly effect riparian spider diets was also seen in headwater
- 2 streams of Japan, where 52.6% of the total dry biomass of prey caught in Tetragnathid
- 3 webs were insect taxa that feed primarily on terrestrial inputs(Kato et al. 2004).
 - 4 Our study highlights the importance of riparian ecotones as areas that contain a
- 5 unique biodiversity of web-spinning spider taxa that are specialists in aquatic habitats and
 - 6 are rarely found even after only a few meters from the water's edge. Dietary analyses
- 7 revealed that aquatic shredders made up the majority of the prey in the two spider
 - 8 assemblages. These results emphasize the importance of allocthonous inputs to aquatic
- 9 food webs in headwater streams and consequently the reciprocal importance of this
- 10 energy being converted by aquatic primary consumers that then emerge as adults and
- become an important food source for riparian predators.

CONCLUSION

13 14

- 15 The environment provided by the stream channel and that of the riparian vegetation
- 16 clearly created two unique web-spinning spider assemblages, in which specialized taxa of
- aquatic ecosystems were shown to be the major difference between the two study areas.
- 18 However, differences between these two habitats were potentially the result of structure
- 19 and microenvironment, rather than resources. Our diet analysis using stable isotopes
- 20 identified aquatic insects belonging to the shredder functional feeding group as the main
- 21 food source for both spider assemblages. Our findings highlight the importance of leaf
- 22 litter as a major energy source not only for aquatic consumers, but also for riparian food
- 23 webs as well. We also found strong evidence for the importance of subsidies across
- 24 ecotones, in this case from aquatic to terrestrial food webs, supporting current ecological
- 25 literature that highlights the importance of ecological subsidies.

26 27

ACKNOWLEDGMENTS

- 29 We would like to thank Dr. Ingi Agnarsson for his assistance in spider identification,
- 30 Pablo Gutiérrez for assistance in aquatic insect identification, Dr. Leonel Sternberg for
- 31 his help in the analysis of stable isotopes along with Alexandra Salcedo and Adolfo
- 32 Barragán for their help with fieldwork.

1		
2		LITERATURE CITED
3		
	4	AIKEN M, AND COYLE FA. 2000. HABITAT DISTRIBUTION, LIFE HISTORY
	5	AND BEHAVIOR OF TETRAGNATHA SPIDER SPECIES IN THE GREAT
	6	SMOKY MOUNTAINS NATIONAL PARK. JOURNAL OF ARACHNOLOGY
7		28:97-106.
	8	AKAMATSU F, TODA H, AND OKINO T. 2004. FOOD SOURCE OF RIPARIAN
9		SPIDERS ANALYZED BY USING STABLE ISOTOPE RATIOS.
10		ECOLOGICAL RESEARCH 19:655-662.
11		ALVAREZ-PADILLA F, AND HORMIGA G. 2011. MORPHOLOGICAL AND
12		PHYLOGENETIC ATLAS OF THE ORB-WEAVING SPIDER FAMILY
13		TETRAGNATHIDAE (ARANEAE: ARANEOIDEA). ZOOLOGICAL
14		JOURNAL OF THE LINNEAN SOCIETY 162:713-879.
15		BURDON FJ, AND HARDING JS. 2008. THE LINKAGE BETWEEN RIPARIAN
16		PREDATORS AND AQUATIC INSECTS ACROSS A STREAM-RESOURCE
17		SPECTRUM. FRESHWATER BIOLOGY 53:330-346.
18		CODDINGTON JA. 1986. THE GENERA OF THE SPIDER FAMILY
19		THERIDIOSOMATIDAE. SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY.
20		COLLIER KJ, BURY S, AND GIBBS M. 2002. A STABLE ISOTOPE STUDY OF
21		LINKAGES BETWEEN STREAM AND TERRESTRIAL FOOD WEBS
22		THROUGH SPIDER PREDATION. FRESHWATER BIOLOGY 47:1651-1659.
23		DAVIS JM, ROSEMOND AD, AND SMALL GE. 2011. INCREASING DONOR
24		ECOSYSTEM PRODUCTIVITY DECREASES TERRESTRIAL CONSUMER
25		RELIANCE ON A STREAM RESOURCE SUBSIDY. OECOLOGIA 167:821-
26		834.
27		EBERHARD-CRABTREE WG. 1989. NICHE EXPANSION IN THE SPIDER
28		WENDILGARDA GALAPAGENSIS ARANEAE, THERIDIOSOMATIDAE
29		ON COCOS ISLAND. V. 37, NO. 2, P. 163-168.
30		EBERHARD WG. 2001. TROLLING FOR WATER STRIDERS: ACTIVE
31		SEARCHING FOR PREY AND THE EVOLUTION OF REDUCED WEBS IN
32		THE SPIDER WENDILGARDA SP. (ARANEAE, THERIDIOSOMATIDAE).
33		JOURNAL OF NATURAL HISTORY 35:229-251.
34		FOELIX RF. 2011. BIOLOGY OF SPIDERS. NEW YORK: OXFORD UNIVERSITY
35		PRESS.
36		FRY B. 1991. STABLE ISOTOPE DIAGRAMS OF FRESHWATER FOOD WEBS.
37		ECOLOGY 72:2293-2297.
38		FUKUI DAI, MURAKAMI M, NAKANO S, AND AOI T. 2006. EFFECT OF
39		EMERGENT AQUATIC INSECTS ON BAT FORAGING IN A RIPARIAN
40		FOREST. JOURNAL OF ANIMAL ECOLOGY 75:1252-1258.
41		GILLESPIE RG. 1987. THE MECHANISM OF HABITAT SELECTION IN THE
42		LONG-JAWED ORB-WEAVING SPIDER TETRAGNATHA ELONGATA
43		(ARANEAE, TETRAGTNATHIDAE). JOURNAL OF ARACHNOLOGY 15:81
44		90.

- HAMMER O, HARPER DAT, AND RYAN PD. 2001. PAST: PALEONTOLOGICAL
 STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA
 ANALYSIS. PALAENTOLOGIA ELECTRONICA 4.
 - 4 HICKS BJ. 1997. FOOD WEBS IN FOREST AND PASTURE STREAMS IN THE
 - 5 WAIKATO REGION, NEW ZEALAND: A STUDY BASED ON ANALYSES
 - 6 OF STABLE ISOTOPES OF CARBON AND NITROGEN, AND FISH GUT
- 7 CONTENTS. NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER 8 RESEARCH 31:651-664.
- IWATA T, NAKANO S, AND MURAKAMI M. 2003. STREAM MEANDERS
 INCREASE INSECTIVOROUS BIRD ABUNDANCE IN RIPARIAN
 DECIDUOUS FORESTS. ECOGRAPHY 26:325-337.
- 12 KATO C, IWATA T, NAKANO S, AND KISHI D. 2003. DYNAMICS OF AQUATIC
 13 INSECT FLUX AFFECTS DISTRIBUTION OF RIPARIAN WEB-BUILDING
 14 SPIDERS. OIKOS 103:113-120.
- KATO C, IWATA T, AND WADA E. 2004. PREY USE BY WEB-BUILDING
 SPIDERS: STABLE ISOTOPE ANALYSES OF TROPHIC FLOW AT A
 FOREST-STREAM ECOTONE. ECOLOGICAL RESEARCH 19:633-643.
- LAU DCP, LEUNG KMY, AND DUDGEON D. 2009. WHAT DOES STABLE
 ISOTOPE ANALYSIS REVEAL ABOUT TROPHIC RELATIONSHIPS AND
 THE RELATIVE IMPORTANCE OF ALLOCHTHONOUS AND
- 21 AUTOCHTHONOUS RESOURCES IN TROPICAL STREAMS? A
- 22 SYNTHETIC STUDY FROM HONG KONG. FRESHWATER BIOLOGY 54:127-141.
- MARCH JG, AND PRINGLE CM. 2003. FOOD WEB STRUCTURE AND BASAL
 RESOURCE UTILIZATION ALONG A TROPICAL ISLAND STREAM
 CONTINUUM, PUERTO RICO. BIOTROPICA 35:84-93.
- MARCZAK LB, AND RICHARDSON JS. 2007. SPIDERS AND SUBSIDIES:
 RESULTS FROM THE RIPARIAN ZONE OF A COASTAL TEMPERATE
 RAINFOREST. JOURNAL OF ANIMAL ECOLOGY 76:687-694.
- MASTELLER EC. 1993. COMPARISON OF TROPICAL AND TEMPERATE
 EMERGENCE PHENOLOGY OF AQUATIC INSECTS FROM PUERTO RICO
 AND PENNSYLVANIA. JOURNAL OF THE KANSAS ENTOMOLOGICAL
 SOCIETY 66:192-199.
- MUEHLBAUER JD, COLLINS SF, DOYLE MW, AND TOCKNER K. 2014. HOW
 WIDE IS A STREAM? SPATIAL EXTENT OF THE POTENTIAL "STREAM
 SIGNATURE" IN TERRESTRIAL FOOD WEBS USING META-ANALYSIS.
 ECOLOGY 95:44-55.
- NAIMAN RJ, AND DECAMPS H. 1997. THE ECOLOGY OF INTERFACES:
 RIPARIAN ZONES. ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS
 28:621-658.
- NAIMAN RJ, DECAMPS H, AND POLLOCK M. 1993. THE ROLE OF RIPARIAN
 CORRIDORS IN MAINTAINING REGIONAL BIODIVERSITY.
 ECOLOGICAL APPLICATIONS 3:209-212.
- NAKANO S, AND MURAKAMI M. 2001. RECIPROCAL SUBSIDIES: DYNAMIC
 INTERDEPENDENCE BETWEEN TERRESTRIAL AND AQUATIC FOOD
 WEBS. PNAS 98.

- 1 OMETTO JHB, EHLERINGER J, DOMINGUES T, BERRY J, ISHIDA F, MAZZI E,
- 2 HIGUCHI N, FLANAGAN L, NARDOTO G, AND MARTINELLI L. 2006.
- THE STABLE CARBON AND NITROGEN ISOTOPIC COMPOSITION OF VEGETATION IN TROPICAL FORESTS OF THE AMAZON BASIN, BRAZIL. *BIOGEOCHEMISTRY* 79:251-274.
- PETERSON BJ, AND FRY B. 1987. STABLE ISOTOPES IN ECOSYSTEM STUDIES.
 ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS 18:293-320.
- 8 PHILLIPS DL, AND GREGG JW. 2003. SOURCE PARTITIONING USING STABLE 9 ISOTOPES: COPING WITH TOO MANY SOURCES. *OECOLOGIA* 136:261-10 269.
- POLIS GA, ANDERSON WB, AND HOLT RD. 1997. TOWARD AN INTEGRATION
 OF LANDSCAPE AND FOOD WEB ECOLOGY: THE DYNAMICS OF
 SPATIALLY SUBSIDIZED FOOD WEBS. ANNUAL REVIEW OF ECOLOGY
 AND SYSTEMATICS 28:289-316.
- 15 RAMIREZ A, AND GUTIERREZ-FONSECA PE. 2014. FUNCTIONAL FEEDING 16 GROUPS OF AQUATIC INSECT FAMILIES IN LATIN AMERICA:
- 17 A CRITICAL ANALYSIS AND REVIEW OF EXISTING LITERATURE. *JOURNAL*18 *OF TROPICAL BIOLOGY* 62:155-167.
- SABO JL, AND POWER ME. 2002. RIVER-WATERSHED EXCHANGE: EFFECTS
 OF RIVERINE SUBSIDIES ON RIPARIAN LIZARDS AND THEIR
 TERRESTRIAL PREY. ECOLOGY 83:1860-1869.
- SANZONE DM. 2001. LINKING COMUNITIES ACROSS ECOSYSTEM
 BOUNDARIES: THE INFLUENCE OF AQUATIC SUBSIDIES ON
 TERRESTRIAL PREDATORS PHD. UNIVERSITY OF GEORGIA.

26

27

28 29

30

- SANZONE DM, MEYER JL, MARTI E, GARDINER EP, TANK JL, AND GRIMM NB. 2003. CARBON AND NITROGEN TRANSFER FROM A DESERT STREAM TO RIPARIAN PREDATORS. *OECOLOGIA* 134:238-250.
- TRUDEAU V. 2003. THE EFFECT OF WATER VELOCITY ON STABLE CARBON AND NITROGEN ISOTOPE SIGNATURES OF PERIPHYTON. *LIMNOLOGY AND OCEANOGRAPHY* 48:2194.
- VANNOTE RL, MINSHALL GW, CUMMINS KW, SEDELL JR, AND CUSHING CE.
 1980. THE RIVER CONTINUUM CONCEPT. CANADIAN JOURNAL OF
 FISHERIES AND AQUATIC SCIENCES 37:130-137.
- WALLACE JB, EGGERT SL, MEYER JL, AND WEBSTER JR. 1997. MULTIPLE
 TROPHIC LEVELS OF A FOREST STREAM LINKED TO TERRESTRIAL
 LITTER INPUTS. SCIENCE 277:102-104.
- WALTERS DM, FRITZ KM, AND PHILLIPS DL. 2007. REACH-SCALE
 GEOMORPHOLOGY AFFECTS ORGANIC MATTER AND CONSUMER
 Δ13C IN A FORESTED PIEDMONT STREAM. FRESHWATER BIOLOGY
 52:1105-1119.

Table 1. Total number of individuals for each spider taxa collected from the eight riverine and eight riparian quadrats

Family	Genus	Riverine (n)	Riparian (n)	
Araneidae		1	1	
Pholcidae				
	Modisimus	20	8	
Tetragnathidae				
	Chrysometa	21	7	
	Leucauge	50	62	
	Tetragnatha	6	0	
Theridiosomatidae				
	Theridiosoma	5	22	
	Wendilgarda*	155	17	
Uloboridae				
	Miagrammopes	7	25	
Total		265	142	

* Identified to species, Wendilgarda clara (Keyserling, 1886)

Table 2. Stable isotope values of all samples used in subsequent IsoSource(Phillips & Gregg 2003) analyses. Insects were grouped by functional feeding groups: CG = Collector-Gatherer, Fi = Filterer, Pr = Predator, Sc = Scraper, Sh = Shredder, He = Herbivore.

	Order	Family	Genus	δ ¹³ C	$\delta^{15}N$
Stream leaf litter				-25.5	0.8
Terrestrial vegetation				-34.9	-1.3
Periphyton				-32.4	-0.8
Aquatic CG	Diptera	Chironomidae		-26.63	2.63
Aquatic Fi	Diptera	Simuliidae		-27.76	2.62
	Trichoptera	Hydropsychidae		-29.41	3.69
Aquatic Pr	Hemiptera	Veliidae		-27.83	2.96
	Odonata	Coenagrionidae		-27.42	4.98
	Trichoptera	Hydrobiosidae		-26.51	5.09
Aquatic Sc	Ephemeroptera	Leptophlebidae		-28.15	2.59
	Trichoptera	Helicopsychidae		-34.88	1.96
Aquatic Sh	Diptera	Tipulidae		-27.08	2.85
	Trichoptera	Calamoceratidae		-28.55	0.78
Terrestrial He	Hemiptera	Cicadoidea		-28.69	-0.55
	Lepidoptera			-27.40	1.94
Terrestrial Pr	Coleoptera	Lampyridae		-25.30	6.31
	Hymenoptera	Evaniidae		-26.82	3.83
Riparian	Aranea	Tetragnathidae	Chrysometa	-27.40	4.51
	Aranea	Tetragnathidae	Leucauge	-27.25	4.76
	Aranea	Theridiosomatidae	Theridiosoma	-27.74	3.55
	Aranea	Uloboridae	Miagrammopes	-27.24	2.54
	Aranea	Pholcidae	Modisimus	-28.49	3.44
Riverine	Aranea	Tetragnathidae	Chrysometa	-26.72	5.19
	Aranea	Tetragnathidae	Leucauge	-26.66	4.53
	Aranea	Tetragnathidae	Tetragnatha	-27.54	3.87
	Aranea	Theridiosomatidae	Theridiosoma	-27.34	3.84
	Aranea	Theridiosomatidae	Wendilgarda*	-27.24	4.24
	Aranea	Uloboridae	Miagrammopes	-27.35	2.90
	Aranea	Pholcidae	Modisimus	-26.65	3.40

^{*} Identified to species, Wendilgarda clara (Keyserling)

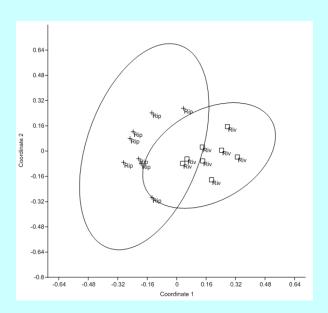


Figure 1. NMDS of web-spinning spider abundances for each sampling date. Riparian (Rip) quadrats (+) and riverine (Riv) quadrats (\square). Bray-Curtis 95% ellipses. ANOSIM Bonferroni-corrected p=0.002, R=0.7224

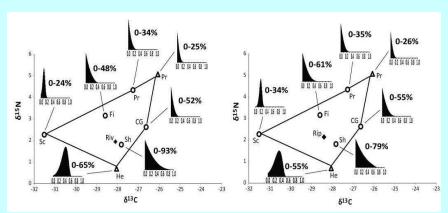


Figure 2. Mixing polygon for Riparian (Rip) and Riverine (Riv) spider assemblages (\spadesuit (adjusted for trophic fractionation) along with terrestrial and aquatic insects (\spadesuit) that are possible prey. Insects are grouped by their functional feeding groups: CG = Collector-Gatherer, Fi = Filterer, He = Herbivore, Pr = Predator, Sc = Scraper and Sh = Shredder. Histograms show the distribution of the possible percentages that the insect groups represent in the diet of each spider assemblage calculated using IsoSource (Source Increment: 1% , Tolerance Level: 0.1‰)(Phillips & Gregg 2003).