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ABSTRACT
The truncate soft-shell clam Mya truncata is an important source of country food for
Inuit communities across the territory of Nunavut, Canada. M. truncata also plays an
important role inmarine ecosystems, yet there is little understanding of their life history
and condition in Canadian Arctic waters. To provide a foundation on which aspects
of the life history and condition of M. truncata of Baffin Island can be monitored in
the future with a changing climate and fishery development, this study estimated size
at maturity and provides insights into the spawning cycle and weight-length condition
indices of clams from inner Frobisher Bay and the north shore of the Hudson Strait.
Male and female M. truncata exhibited similar lengths at 50% attainment of sexual
maturity, 31 mm and 32 mm shell length (SL), respectively. Most (77%) of the sexually
mature M. truncata collected from inner Frobisher Bay in late August and 35% of
clams collected from the Hudson Strait in early September were in the ripe stage of
gonadal development. These results lead us to suggest a spring spawning season and that
M. truncata invest in gonadal development for the next year’s spawning during the late
summer-early autumn ice-free season while phytoplankton concentrations are high.
Dry bodyweight-SL relationships were used to show that M. truncata condition can
differ significantly over small and large spatial scales based on plotted 95% confidence
intervals.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology, Zoology
Keywords Soft-shell clams, Life history, Condition, Arctic, Nunavut, Frobisher Bay, Hudson
Strait,Mya truncata

INTRODUCTION
The Inuit of the Canadian Arctic have traditionally depended upon harvesting country food
for nourishment (Chan et al., 2006; NCRI, 2005). A popular source of country food for
communities across Nunavut is the truncate soft-shell clam,Mya truncata, and where high
densities occur there is interest in commercial fishery development. Because the Arctic
marine environment is increasingly affected by climate change (Hinzman et al., 2005),
marine species, includingM. truncata, may be impacted in ways that alter their physiology
and subsequent life history, condition, and reproductive potential. For example, rising
temperatures and earlier ice break-up may increase growth rates and advance spawning
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times (Philippart et al., 2003; Steeves et al., 2018). In addition, increases in freshwater runoff
and reductions in the geographic extent and duration of ice cover in marine environments
are expected to increase the ratio of phytoplankton to ice algae over the course of a year
and alter phytoplankton species and size composition (Blais et al., 2017; Makela, Witte
& Archambault, 2017; Park et al., 2015; Smyth, Tyrell & Tarrant, 2004). Changes in the
attributes of planktonic algae with climate change could affect body condition, or the
mass of an individual at a given length, as M. truncata depends on phytoplankton for
nutrition (Makela, Witte & Archambault, 2017; Sun et al., 2007). Subsequently, changes
in condition could affect life history traits, reproductive potential, and recruitment. In a
rapidly changing Arctic environment, it is important to provide baseline information on
population condition and life history traits of M. truncata that could be affected by both
harvesting and climate change.

In North America,M. truncata is typically found in coastal intertidal and subtidal waters
of the Arctic, with its southern boundary identified as Massachusetts Bay, Massachusetts,
U.S.A. (Lubinsky, 1980). In the Canadian Arctic, M. truncata occur in the intertidal and
subtidal zones where density has been observed to increase with depth, with maximum
densities found at 40m in some areas (Siferd, 2005). Studies ofMya arenaria show juvenile
soft-shell clams tend to occupy the intertidal zone, while adults tend to concentrate in
the lower intertidal and subtidal zones (Matthiessen, 1960; Powers et al., 2006).M. truncata
is an integral part of the Arctic ecosystem, providing a means of energy transfer from
primary producers to bearded seals and walrus, two of the primary consumers of bivalve
molluscs in Canada’s Arctic and sources of country food for Inuit (Banfield & Brooks, 1977;
Welch et al., 1992). In recreational fisheries in Canada’s Arctic, clams are dug at low tide
to contribute to Inuit diets, and so are essential for transferring energy and nutrients from
sea to land.

Despite its ecological importance, the life history and condition of M. truncata in the
Canadian Arctic is poorly understood. To date, studies of M. truncata in North America
have focused on aging and growth, developing methods to estimate abundance through
siphon counts, bioaccumulation, inferring past pollutant fluctuations from fossils, predator
induced siphon regeneration, presence of Toxoplasma gondii, incorporation of fatty acids
from sea ice algae, and the significance of this species as a biomonitor of wastewater
(Atwell, Hobson & Welch, 1998; Bourgoin & Risk, 1987; Siferd, 1997; Siferd, 2005; Siferd
& Welch, 1992; Welch & Martin-Bergmann, 1990; Welch et al., 1992; Amiraux et al., 2021;
Fung et al., 2021; Schaefer, Deslauriers & Jeffries, 2021). Studies of M. truncata in other
parts of the world have assessed spawning season, responses to heat stress, molecular
characterization, and fatty acid composition, among other topics (Amaro, Duineveld &
Tyler, 2005; Birkely, Grahl-Nielsen & Gulliksen, 2003; Sleight et al., 2018; Sparagano et al.,
2002). From sustainable fishery development, conservation, and environmentalmonitoring
perspectives it is also important to establish size at attainment of sexual maturity, spawning
events, and an effective method to evaluate and compare the condition of populations of
M. truncata in the Canadian Arctic.

Condition indices compare the weight of an individual at a given length to individuals of
a similar length, where the individual with the higher weight has a higher condition index
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(Rennie & Verdon, 2008). One method to assess and compare condition of M. truncata is
to develop a standard weight equation derived from length-weight data representing the
entire geographic range of the species (Murphy, Willis & Springer, 1991; Blackwell, Brown
&Willis, 2000; Gerow, Hubert & Anderson-Sprecher, 2004). However, when it comes to
M. truncata, data required to develop suitable standard weight equations based on the
geographic extent of the species is lacking. Alternatively, condition studies involving clams
have used a ratio of body weight to shell length (Ellis et al., 2002; Pillay, Branch & Forbes,
2007) and relationships between body weight and length can also be used to compare
condition between populations.

Length-based condition indices need to be free from length-related bias. Otherwise, a
change in condition within or between populations could simply result from a change in
average size of individuals in the population and thereby misrepresent condition (Gerow,
Hubert & Anderson-Sprecher, 2004). Misrepresentation of population condition could
mislead conservation studies and fisheries management decisions. A reliable method to
assess condition of M. truncata populations will need to eliminate length bias to produce
reliable results.

This study examines the sex and stage of gonadalmaturity ofmale and femaleM. truncata
from two sites within inner Frobisher Bay and two sites on the north shore of the Hudson
Strait to establish size at sexual maturity and provide information on the reproductive cycle
and spawning in Canadian Arctic waters. In addition, the body condition of M. truncata
was examined to investigate whether in the absence of data required to develop a standard
weight equation, a ratio of body weight to shell length or weight-length relationships are
best suited for evaluating and comparing the condition ofM. truncata.

MATERIALS & METHODS
Study sites
Sampling sites were chosen through consultation with local Hunters and Trappers
Associations to establish where communities collect clams during the ice-free season.
M. truncata were collected at low tide from the intertidal zone at two sites within inner
Frobisher Bay (hereafter FB), near the community of Iqaluit and two sites on the north
shore of the Hudson Strait (hereafter HS) (i.e., south coast of Baffin Island), near the
community of Kimmirut (Fig. 1). One site near Iqaluit was accessible by road (Site I1),
while the other was roughly 15 km across FB and only accessible by boat (Site I2). Similarly,
one site near Kimmirut was accessible by road (Site K1), and the other was located roughly
15 km from the community into the Hudson Strait (Site K2). The substrate type of the
intertidal zone at all sites was sand with sparsely distributed small and large rocks (10–30 cm
diameter) often with attached fucoid macroalgae. The sediment type within Frobisher Bay
has been further classified as sandymud, with increasing gravelly sandy-mudwith increased
proximity to the community of Iqaluit (Deering et al., 2018). No published account of the
sediment classification near Kimmirut was found, but the sediment at the study sites was
observed to be similar to sites near Iqaluit. In FB, 99 clams were collected from 28–30
August 2018, with weather requiring three visits to collect clams from the two FB sites. In
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Figure 1 Map of southern Baffin Island showing the locations of two study communities (i.e., Iqaluit
and Kimmirut), and sites whereM. truncatawere collected near each community (I1, I2, K1, K2). Inset
map illustrates the territory of Nunavut, Canada and study location. Map data from GADM database of
Global Administrative Areas (http://gadm.org/).

Full-size DOI: 10.7717/peerj.13231/fig-1

HS, 247 clams were collected from two sites on 12 September 2018. These sample dates
coincided with the new moon phase when maximum tidal amplitudes of 10.4 m and 12.1
m occurred within Iqaluit and Kimmirut coastal waters, respectively. Clams were buried
10–30 cm in the sediment and were dug out from the lower intertidal zone using garden
trowels. Community members indicated clams are concentrated in the lower intertidal
zone to apparently avoid ice scour during the winter months. All clams encountered in the
sediment were collected, with no discrimination for size. All clams were kept in cool sea
water during transport back to the community where they were immediately frozen and
maintained at −20 ◦C for subsequent analysis.

Sex determination and gonadal staging
In the laboratory, frozen clams were thawed, and a Vernier caliper was used to measure
shell length (SL; ±1.0 mm) from the anterior tip of the shell to the posterior edge. Clams
were gently pried open, and a scalpel was used to sever the adductor muscles at the point
of attachment to the shell. The entire animal, including the adductor muscles, was then
removed from the shell. When present, a negligible sample (<0.001 g) of gonadal tissue
was removed to determine sex and stage of gonadal development. Subsequently, the body
of each clam, without the negligible sample of gonadal tissue, was individually dried to
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constant weight (±0.0001 g) at 60 ◦C. This analysis provided the dry body weight (DW) of
each clam.

Clams that did not exhibit gonadal development (i.e., no gonadal tissue visible on the
clam’s body) could not be sexed and were classified as undifferentiated and considered
immature. Gonadal smears were examined at 10–40× magnification and used to assign
each clam to one of five stages of gonadal development based on the scale defined by
Brousseau (1987): (1) indifferent, (2) developing, (3) ripe, (4) spawning (partially spent),
and (5) spent. To aid in classification, gonadal smears of M. truncata were also compared
to photographs of histological preparations of gonadal tissue of M. arenaria from Ireland
(Cross et al., 2012; Cross, 2011). In the current study, M. truncata classified as indifferent
possessed gonadal follicles, but no lumen or cavity was present, and no developing egg
or sperm cells were found in at least three gonadal smears examined for each clam. As
such, clams classified as indifferent were considered to be immature and lumped with
clams classified as undifferentiated. Clams with gonads that exhibited follicular lumen and
possessed egg or sperm cells developing on the periphery of the lumen were classified as
developing. Ripe clams displayed more fully developed egg or sperm cells with tails and
many of these gametes were free within the follicular lumen. Although many of the egg
and sperm cells had been discharged in clams classified as spawning, there were still some
free gametes within the follicular lumen. In spent clams, the follicular lumen was empty
and there were no developing eggs or sperm on the periphery of the lumen. None of the
clams examined during this study were classified as spent.

Maturity ogive
Separate male and female size at maturity ogives were constructed for clams collected
across all sites by quantifying the proportion of male or female clams that were sexually
mature within each five mm SL class. The sex ratio of sexually mature clams was used to
estimate the sex of immature clams (i.e., undifferentiated and indifferent stages combined).
Specifically, the 1.14:1 female: male sex ratio was used wherein 53% of all immature clams
within each five mm SL class were deemed female and 47% were deemed male. The best
fit model for each maturity ogive was selected using AICc, where models tested included
binomial (logit link and probit link), Gompertz, and Weibull distributions.

Shell length analysis by site, sex, and maturity
A one-way analysis of variance (ANOVA) was used to examine variation inM. truncata SL
among all four sample sites (i.e., two in each of FB and HS). Tests of normality and equality
of variance were performed using the Shapiro–Wilk’s normality test and the Levenemedian
test, respectively. When assumptions of normality and equality of variance could not be
met by transformation, the non-parametric Kruskal–Wallis ANOVA on ranks was used
and Dunn’s post-hoc test if the result was significant. Tukey’s HSD post-hoc test was used
when parametric analysis indicated significant differences.

A linear model was used to examine variation in SL among immature clams and mature
male and mature female clams by community (i.e., FB and HS) using the following
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equation:

SLi= β0+β1Community∗β2Sex+ε. (1)

Here, β0 represents the intercept, β1Community is the community where the clam was
collected, either FB or HS, β2Sex is the sex of the clam, either immature, male, or female,
and ε is the error term. Model assumptions were validated by testing for patterns in
residuals of model covariates. Tukey’s HSD post-hoc test was performed on the model to
make pairwise comparisons among SL at sex at each site.

Length-based condition indices
A DW condition index was calculated forM. truncata using the following equation:

CIDW= (DW÷SL)×1000. (2)

This equation multiplies (DW ÷ SL) by 1000 to avoid working with values <1. This dry
weight condition index was used as opposed to wet weight indices as recommended by
previous bivalve studies to avoid accounting for water content in condition calculations
(Higgins, 1938; Mo & Nielson, 1992). As fish deplete their energy reserves, water content
increases in muscle tissue and energy storage organs to replace lost protein and lipids,
making dry weight condition indices the most accurate way to infer condition (Lucas &
Beninger, 1985;Grant & Brown, 1999). Fulton’s condition factor (Ricker, 1975) was not used
in this study because it is known to be length biased in the estimation of average condition
in fish (Rennie & Verdon, 2008). To evaluate SL-related bias in the condition index, data
from FB and HS were pooled and plotted against SL. The most suitable regression model
for this relationship was selected using Akaike’s second order information criterion (AICc;
Burnham & Anderson, 2002), where models tested included linear, quadratic, exponential,
and cubic distributions, and model parameters and level of significance were calculated.
Length-related bias was defined by a coefficient of determination (R2) > 0.8, and significant
p-value in the linear model, which is similar to the method used by studies that examine
relative weights using standard weights (Gerow, Hubert & Anderson-Sprecher, 2004).

Weight-shell length relationships
In the case of length-bias in CIDW, DW-SL relationships were developed for M. truncata
collected from each site in FB and HS. The most suitable regression model for each
relationship was selected using AICc. Analyses of Covariance (ANCOVAs), designed to
test for interactions between variables, were performed between populations in FB and
HS to test for differences in relationships. When an ANCOVA indicated a significant
difference in weight-SL relationships between populations, the data were plotted with
the 95% confidence intervals (CIs) to identify where the difference occurred. Sites were
compared within communities, i.e., sites I1 vs. I2 and K1 vs. K2, and between communities,
i.e., I1 vs. K2 and I2 vs. K2, restricting the within and between community comparisons to
populations that exhibited similar size ranges (i.e., K1 clams did not exceed 47 mm SL and
were removed from the between community comparisons).
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Table 1 Numbers of immature, female, andmale truncate soft-shell clams examined at each site, and
the resulting F:M sex ratio.

Community Site Immature Female Male Sex Ratio (F:M)

I1 4 24 13 1.85:1Iqaluit
I2 9 23 24 0.95:1
K1 42 15 9 1.67:1

Kimmirut
K2 36 69 69 1: 1

All Sites Combined 91 131 115 1.14:1

Data cleaning and software
A total of 8 outliers, 1 from site I1 (34 mm in SL, ripe female), 4 from site K1 (all<17 mm
SL and undifferentiated), and 3 from site K2 (all<24 mm SL and undifferentiated), all with
weights outside the normal range of clams collected, were removed from the data set by
testing linear regressions of DW vs. log SL using the Bonferroni Outlier Test, which detects
outliers that have the ability to shift the mean (Doornbos, 1981). One clam collected from
Iqaluit was removed from analysis as it was 80 mm, and outside the normal SL range of
clams collected. All statistical analyses were performed in R version 3.5.1 for windows (R
Core Team, 2018) and the significance level was set to α= 0.05. This study was reviewed
and approved by Memorial University’s Institutional Animal Care Committee (Project #
18-01-SG).

RESULTS
Shell length
Overall, 337 truncate soft-shell clams were examined: 115 male, 131 female, and 91
immature (i.e., undifferentiated (82) and indifferent (9) stages combined). There were
more female truncate soft-shell clams collected at sites I1 and K1 while the sex ratios were
equal or nearly equal at sites I2 and K2 (Table 1). Analysis indicated the sex of animals
examined was independent of site (Chi-squared =3.77, df = 3, p= 0.29).

Shell length differed significantly among sites where the average shell length of clams
collected at site K1(30 mm ± 1.2 SE) was significantly lower than site K2 (47.8 mm ± 1.2)
and both sites in FB (I1 44.5 mm ± 1.6, I2 46.4 mm ± 0.6) (Tukey’s HSD all p< 0.001)
(Fig. 2). Analysis revealed that the mean SL of immature clams did not differ significantly
between FB and HS (32.5 mm± 1.5, 24.4 mm± 0.6, respectively) (Tukey’s HSD p= 0.09;
Fig. 3). However, the mean SL of immature clams from each community was significantly
lower than mature males and females from each community (p< 0.01). The mean SL of
females from FB (50.8 mm ± 1.4) did not differ significantly from females (53 mm ± 1.4)
or males (50.6 mm ± 1.3) from HS (p= 0.9, p= 1.0, respectively). Males from FB (43.6
mm ± 1.4) were significantly smaller than females from FB and males and females from
HS (p= 0.02, p< 0.01, p< 0.01, respectively; Fig. 3).

Stage of gonadal development
In Frobisher Bay, 11.3% of the truncate soft-shell clams examined were classified as
undifferentiated, 2.1% were in the indifferent phase of gonadal development, 8.2% were

Wood et al. (2022), PeerJ, DOI 10.7717/peerj.13231 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.13231


Figure 2 Boxplots of the shell length (mm) of truncate soft-shell clams collected from two sites near
Iqaluit (I1 and I2), and two sites near Kimmirut (K1 and K2).Homogenous subsets via ANOVA and
post-hoc analysis are shown (i. e., A and B). Horizontal lines within the boxes represent the median den-
sity. Lower and upper edge of the boxes show the first and third quartiles, respectively. Lower and upper
whiskers represent density estimates outside of the interquartile range.

Full-size DOI: 10.7717/peerj.13231/fig-2

Figure 3 Boxplots of the shell length of Immature (I), Female (F), andMale (M) truncate soft-shell
clams collected from Frobisher Bay (FB) and Hudson Strait (HS).Homogenous subsets via ANOVA and
post-hoc analysis are shown (i. e., A, B, and C). Horizontal lines within the boxes represent the median
density. Lower and upper edge of the boxes show the first and third quartiles, respectively. Lower and up-
per whiskers represent density estimates outside of the interquartile range.

Full-size DOI: 10.7717/peerj.13231/fig-3

developing, 77.4% were ripe, 1.0% were spawning, and 0% were spent. In the Hudson
Strait, 30.5% of clams were undifferentiated, 4.1% indifferent, 30.0% developing, 34.9%
ripe, 0.5% spawning, and 0% were spent. Overall, ripe individuals accounted for 89.3% of
the mature clams examined from FB and 53.5% of the mature clams from HS.

Maturity ogive
A logistic regression with a binomial distribution and logit link provided the best fit to
both the male and female maturity data based on AICc scores (Table 2). This model is
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Table 2 Akaike’s information criteria (AICc) values obtained from four different models applied to
maturity curves for male and female truncate soft-shell clams. Models in bold font exhibited the lowest
AICc value and highest weight.

Logistic model AICc dAICc df Weight

Males
Logit −1.2 0.0 2 0.38
Probit −1.3 0.1 2 0.36
Gompertz −1.7 0.8 2 0.25
Weibull −3.8 8.5 3 <0.01

Females
Logit −1.2 0.0 2 0.39
Probit −1.2 0.2 2 0.36
Gompertz −1.5 0.9 2 0.25
Weibull −3.8 8.8 3 <0.01

Figure 4 Shell length maturity ogives for female (A) andmale (C) truncate soft-shell clams from
southern Baffin Island, Nunavut, and histograms of the number of female (B) andmale (D) clams
examined at each five mm shell length-class. Shell length at 50% maturity is also shown.

Full-size DOI: 10.7717/peerj.13231/fig-4

represented by the formula log(p/1-p)= α+βXwhere p represents the probability of being
mature, X is shell length, and α and β are constants.

The majority (90.1%) of the 91 truncate soft-shell clams classified as immature did
not possess gonads while 9.9% possessed gonads in the early stage of differentiation (i.e.,
indifferent). The immature clams exhibited a range in SL of 11–40 mm. In females, the SL
at first attainment of sexual maturity was 28 mm, SL at 50% attainment of sexual maturity
(L50) was 32 mm, and all females exhibiting a SL ≥42 mm were sexually mature (Fig. 4A).
For the males, SL at first attainment of sexual maturity was 23 mm, SL at L50 was 31 mm,
and all males exhibiting a SL ≥42 mm were sexually mature (Fig. 4C).
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Table 3 Akaike’s information criteria (AICc) values obtained from four models applied to dry weight
condition index (CIDW) versus shell length (SL) relationships for truncate soft-shell clams collected
from all four study sites. Model in bold exhibits the lowest AICc value and highest weight.

Model AICc dAICc df Weight

Linear 2704.5 2387.7 3 <0.001
Quadratic 2705.6 2388.8 4 <0.001
Exponential 316.8 0.0 3 1
Cubic 2697.4 2380.6 5 <0.001

Table 4 Akaikes information criteria (AICc) values obtained from four models applied to dry weight
versus shell length (SL) relationships for each site within Frobisher Bay and Hudson Strait. Model in
bold exhibits the lowest AICc value and highest weight.

Logistic Model AICc dAICc df Weight

Linear 88.3 144.8 3 <0.001
Quadratic 77.1 133.6 4 <0.001
Exponential −56.5 0.0 3 1.0

Site I1

Cubic 77.6 134.1 5 <0.001
Linear 154.7 243.9 3 <0.001
Quadratic 152.7 241.9 4 <0.001
Exponential −89.2 0.0 3 1.0

Site I2

Cubic 155.3 244.4 5 <0.001
Linear 424.6 492.4 3 <0.001
Quadratic 232.8 300.6 4 <0.001
Exponential −67.8 0.0 3 1.0

Site K1

Cubic 327.1 395.0 5 <0.001
Linear 59.2 113.3 3 <0.001
Quadratic 23.6 77.7 4 <0.001
Exponential −54.1 0.0 3 1.0

Site K2

Cubic 25.9 80.0 5 <0.001

Body condition
The exponential model provided the best fit to the pooled CIDW-SL relationship (Table 3).
Pooled data across all sites showed significant positive relationships and a high coefficient
of determination between CIDW and SL (n= 337, R2

= 0.837, p< 2.2−16), precluding its
utility to compare average condition among the populations studied (Gerow, Hubert &
Anderson-Sprecher, 2004; Rennie & Verdon, 2008).

The exponential model was the best model to use for comparisons of the DW-SL
relationships between sites within FB and HS (Table 4), and all DW-SL relationships were
highly correlated (Table 5). ANCOVA revealed the only significant difference in DW-SL
relationships occurred between sites in FB (slope t-value =2.965, p= 0.004, intercept
t-value = −1.864, p= 0.070). Plots of the line of best fit with 95% CIs indicate clams
within the 49 to 63 mm SL range from site I2 exhibited a significantly higher dry weight at
SL than clams from site I1 (Fig. 5).
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Table 5 Summary of regression constants and correlation coefficients (r2) for dry weight versus shell
length (SL) relationships obtained for two sites near Iqaluit and two sites near Kimmirut. The number
of clams (n) at each site is also shown.

Regression Constants

Community Site n Slope Intercept r2

Iqaluit I1 41 0.13 3.44 0.772
I2 56 0.09 3.52 0.801

Kimmirut K1 64 0.35 3.09 0.720
K2 72 0.32 3.10 0.744

Figure 5 Dry weight versus shell length relationship for truncate soft-shell clams from two sites within
Frobisher Bay; sites I1 (solid line and circle points) and I2 (dashed line and triangular points). The 95%
confidence intervals are shown in grey.

Full-size DOI: 10.7717/peerj.13231/fig-5

Among the two FB sites and site K2, ANCOVA analysis found no significant differences
between DW-SL relationships between site I1 and K2 (slope t-value =−0.243, p= 0.808,
intercept t-value = −0.142, p= 0.887). However, subsequent pair-wise comparisons
between the two sites in FB and site K2 revealed that the DW-SL relationships of sites I2
and K2 differed significantly (Estimate = 0.600, S.E. = 0.120, df = 224, t-ratio = 4.99,
p< 0.001). Figure 6 shows that clams≥49 mm SL from site I2 had higher DW than similar
sized clams from site K2.

DISCUSSION
According to the maturity ogive which was constructed based on samples taken in late
summer, the size at which 50% of the M. truncata population of southern Baffin Island is
sexually mature is 31 mm in males and 32 mm in females. This size is small in comparison
to the size at which M. arenaria, a sister species to M. truncata, is sexually mature in other
parts of Canada, such as in the Gulf of St. Lawrence at 41 mm (Department Fisheries and

Wood et al. (2022), PeerJ, DOI 10.7717/peerj.13231 11/21

https://peerj.com
https://doi.org/10.7717/peerj.13231/fig-5
http://dx.doi.org/10.7717/peerj.13231


Figure 6 Dry weight versus shell length relationships for truncate soft-shell clams from two sites: one
within Frobisher Bay (I2; solid line and circle points), and one within Hudson Strait (K2; dashed line
and triangular points). 95% confidence intervals are shown in grey.

Full-size DOI: 10.7717/peerj.13231/fig-6

Oceans Canada (DFO), 1996). This could be due to differences between species, or that
clams occurring in colder waters have slower growth rates and mature at a smaller size
compared to southern populations (Weymouth, McMillin & Rich, 1931). It should be noted
that M. truncata have truncated shells, which may also influence comparisons of the size
at maturity between M. truncata and M. arenaria. It is conceivable that the significant
difference in shell length between males and females from FB and of FB males compared to
both sexes from HS could have affected maturity ogives. However, given that M. arenaria
does not show sex-specific differences in growth rates (Brousseau, 1979), it would seem
unlikely that differences in SL would influence our results. Further, FB males accounted for
only 32% of the males examined and their size distribution was within the range of males
and females from all sites. These observations lead us to conclude shell length differences
between sexes and populations had no influence on the maturity ogives.

Most of the mature clams collected in FB in late August and just over half of the
mature clams collected in HS two weeks later in mid-September were in the ripe stage of
gonadal development. M. arenaria in the northwest Atlantic commence gametogenesis in
late winter or early spring and spawn from June to September, sometimes with a second
fall spawning event taking place (reviewed by Christian, Grant & Meade, 2010). Spawning
in bivalves is thought to be triggered by increasing water temperatures, such as in the
spring (Chicharo & Chicharo, 2000), and fluctuations in chlorophyll a concentration,
where phytoplankton blooms provide food for larvae (Brandner et al., 2017; Chicharo &
Chicharo, 2000). The spawning period of M. truncata has been observed to occur in April
in the North Sea (Amaro, Duineveld & Tyler, 2005), with larvae observed in the water
column of the White Sea from June to August, peaking in July (Günther & Fedyakov,
2000). Brandner et al. (2017) used D-shaped larvae abundance to infer the spawning time

Wood et al. (2022), PeerJ, DOI 10.7717/peerj.13231 12/21

https://peerj.com
https://doi.org/10.7717/peerj.13231/fig-6
http://dx.doi.org/10.7717/peerj.13231


of various bivalve species inWestern Svalbard, as D-shaped larvae are the first larval stage to
occur post-spawning (Sullivan, 1948). They observed D-shaped M. truncata larvae in May
with maximum chlorophyll a concentration, and a second cohort in September when the
chlorophyll a concentration was low (Brandner et al., 2017). To summarize, past research
has shown thatM. truncata spawn in early spring, occasionally with a second fall spawning
event.

Another factor that may help to infer the spawning period of M. truncata is
phytoplankton abundance as larvalMya sp. filter feed on surroundingmicroplankton, such
as autotrophic phytoplankton and cyanobacteria (Raby et al., 1997). During ice-covered
months in FB, ice algae occupy the underside of the ice and are of higher concentration
than phytoplankton in the water beneath, and algae mix with phytoplankton to produce a
maximum chlorophyll a concentration in the summer once ice has melted (Hsiao, 1992).
In HS, chlorophyll a concentration due to phytoplankton production is highest in the
summer for similar reasons (Harvey, Therriault & Simard, 1997). Around southern Baffin
Island, ice cover occurred from the end of November 2017 to mid-July 2018, and ice
cover returned towards the end of November 2018 (Canadian Ice Service, 2018). Therefore,
M. truncata collected from southern Baffin Island during this studymay have spawned from
late September to early November to align with chlorophyll a concentration for feeding
larvae before ice cover returned. Conversely, M. truncata collected during this study
may have spawned in spring-summer to align with the maximum summer chlorophyll
a concentration and had already commenced gametogenesis for next spring-summer
spawning. It is unclear whether M. truncata collected during this study had spawned in
the spring-summer and were preparing for a second fall spawning event as observed by
Brandner et al. (2017). Spawning is an energy-demanding process for clams, includingMya
sp. (Beninger & Lucas, 1984; Darriba, Juan & Guerra, 2005; Gauthier-Clerc et al., 2002),
and energy demands for spawning and subsequently post-spawning condition may dictate
whether a second spawning event takes place in a year. To fully understand the spawning
season ofM. truncata in Canadian Arctic waters, it will be important to seasonally monitor
stages of gonadal development. Future studies should also consider whether variation
in ice cover from year-to-year and differences in phytoplankton species composition
and production that may arise with climate change can influence the spawning season.
It is noteworthy, that size and condition were found to be more important than age
for determining spawning in M. arenaria, and so the age of the populations examined
in this study is hypothesized to have no effect on spawning potential (Newell & Hidu,
1986). This study provides a baseline to monitor potential changes in aspects of the life
history of truncate soft-shell clams of southern Baffin Island with climate change-induced
environmental fluctuations.

Many fisheries and aquaculture operations use body condition to infer the health of
a population, including bivalves (Lucas & Beninger, 1985). In the past, mollusc studies
using condition factor indices have either not checked for length-bias in data (e.g., Pillay,
Branch & Forbes, 2007), constrained size ranges to avoid length bias altogether (e.g., Ellis et
al., 2002), or used weight to length relationships instead of condition factor indices (e.g.,
Eckblad, 1971). In the current study, strong relationships were identified between CIDW
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and SL, indicating length-related bias in this calculated condition index. Therefore, the
present study assessed body condition between sites using DW to SL relationships. The
use of standard weight condition indices was not a viable option for the present study as
M. truncata length and weight data is not available for the geographic extent of the species.
This study only examined clams from four sites, but will contribute length and weight data
for a future database for eastern Nunavut to derive standard weights forM. truncata using
relative weight condition indices. Since clams in higher condition are defined as having a
greater mass than their counterparts at the same length, weight-SL relationships allow for
condition analyses when there is not enough data to examine relative weights to standard
weights. Future studies may also want to consider the use of condition indices outlined by
Higgins (1938) among others (e.g., Crosby & Gale, 1990) that use shell volume instead of
shell length for bivalves, as shell volume may help to eliminate length-bias concerns.

For the DW- SL relationship observed between FB sites, a significant difference emerged
at a SL of 52 mm. At this size, 100% of male and female clams were mature. Therefore, it is
possible that body conditionmay be affected by stage of gonadalmaturity. As gametogenesis
involves building gametes from energy reserves, when there is limited or no food, the
condition of clams post-spawning would be lower than during gametogenesis (Gauthier-
Clerc et al., 2002). Therefore, in the future, it would be beneficial to account for how body
condition may vary with time as clams cycle through gonadal development. Nevertheless,
the body condition of bivalves can be the result of a variety of factors, such as current
velocity, phytoplankton abundance, sediment suspension, or sewage effluent and heavy
metal contamination that could lower body condition (Filgueira et al., 2014; Jorgensen,
1996; Page et al., 1984; Nobles & Zhang, 2015). These factors may have contributed to
differences in condition observed on small and large spatial scales, along with other
anthropogenic factors such as differences in fishing pressure and subsequent density
(i.e., site I1 and K1 are not as heavily harvested as I2 and K2). Spatial differences in body
conditionmay also infer differences in reproductive potential, as body condition in bivalves
at the ripe stage of gonadal development, right before spawning, tends to be higher than at
other periods of gonadal development (e.g.,Adjei-Boateng & Wilson, 2013; Etim, 1996), and
higher body condition infers higher reproductive output in bivalves (Jokela, 1996). These
hypotheses should be tested in future studies to thoroughly understand the reproductive
potential of populations of M. truncata of southern Baffin Island as it relates to biological
condition.

CONCLUSION
This study provides a first estimate of the size at sexualmaturity forM. truncata populations
in the southern region of Baffin Island and demonstrates a method to assess and compare
body condition of populations in the absence of sufficient data to derive standard weight
equations. This is the first study to investigate the stage of gonadal development in
M. truncata in the Baffin Island region. Because our analysis was limited to a single point-
in-time collection, it was not possible to determine the spawning cycle or the potential
for two spawning events per year. Given the geographic location of our study and limited
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ice-free season for phytoplankton production, we suspect that the high proportion of ripe
clams collected in August-September is indicative of a late summer-autumnal development
of the gonad and gametes while food availability is high. Strong length-bias was identified
in condition indices for these populations, which led to the use of dry body weight to
shell length relationships to compare individual condition among populations. This study
provides baseline information to monitor how Arctic M. truncata will be affected by
potentially life history-altering climate change effects for conservation and management
purposes and is expected to help future community-based resource harvest plans for
recreational fishery development that has the potential to provide significant benefits in
terms of revenues and job creation.
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