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Advances in high-throughput sequencing and ‘omics technologies are revolutionizing
studies of naturally occurring microbial communities. Comprehensive investigations of
microbial lifestyles require the ability to interactively organize and visualize genetic
information and to incorporate subtle differences that enable greater resolution of complex
data. Here we introduce anvi’o, an advanced analysis and visualization platform that offers
automated and human-guided characterization of microbial genomes in metagenomic
assemblies, with interactive interfaces that can link ‘omics data from multiple sources into
a single, intuitive display. Its extensible visualization approach distills multiple dimensions
of information about each contig, offering a dynamic and unified work environment for
data exploration, manipulation, and reporting. Using anvi’o, we re-analyzed publicly
available datasets and explored temporal genomic changes within naturally occurring
microbial populations through de novo characterization of single nucleotide variations, and
linked cultivar and single-cell genomes with metagenomic and metatranscriptomic data.
Anvi’o is an open-source platform that empowers researchers without extensive
bioinformatics skills to perform and communicate in-depth analyses on large ‘omics
datasets.
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19 Abstract

20 Advances in high-throughput sequencing and ‘omics technologies are revolutionizing 

21 studies of naturally occurring microbial communities. Comprehensive investigations of 

22 microbial lifestyles require the ability to interactively organize and visualize genetic 

23 information and to incorporate subtle differences that enable greater resolution of complex 

24 data. Here we introduce anvi’o, an advanced analysis and visualization platform that offers 

25 automated and human-guided characterization of microbial genomes in metagenomic 

26 assemblies, with interactive interfaces that can link ‘omics data from multiple sources into 

27 a single, intuitive display. Its extensible visualization approach distills multiple dimensions 

28 of information about each contig, offering a dynamic and unified work environment for 

29 data exploration, manipulation, and reporting. Using anvi’o, we re-analyzed publicly 

30 available datasets and explored temporal genomic changes within naturally occurring 

31 microbial populations through de novo characterization of single nucleotide variations, and 

32 linked cultivar and single-cell genomes with metagenomic and metatranscriptomic data. 

33 Anvi’o is an open-source platform that empowers researchers without extensive 

34 bioinformatics skills to perform and communicate in-depth analyses on large ‘omics 

35 datasets.
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38 Introduction

39 High-throughput sequencing of the environmental DNA has become one of the most 

40 effective ways to study naturally occurring microbial communities. By circumventing the 

41 need for cultivation, shotgun metagenomics—the direct extraction and sequencing of DNA 

42 fragments from a sample—provides access to the enormous pool of microbial diversity that 

43 marker gene surveys have unveiled (Handelsman et al. 1998; Sogin et al. 2006). Early 

44 studies using capillary sequencing techniques (Venter et al. 2004) and, more recently, 

45 massively-parallel techniques (Angly et al. 2006; Edwards et al. 2006), led to descriptions 

46 of microbially-mediated activities and their functional interactions that have provided 

47 novel insights into medicine (Turnbaugh et al. 2006), biotechnology (Lorenz & Eck 2005), 

48 and evolution (Woyke et al. 2006).

49 Current high-throughput sequencing technologies generate an astonishing amount of 

50 sequence data, although the lengths of highly accurate DNA sequence reads fall short of 

51 bacterial genome sizes by orders of magnitude. Multiple online resources can annotate 

52 metagenomic short reads (Meyer et al. 2008; Zakrzewski et al. 2013), however, their 

53 relatively small information content compared to the length of coding regions constrains 

54 accurate functional inferences (Wommack et al. 2008; Carr & Borenstein 2014). Despite 

55 these limitations, researchers have used metagenomic short reads successfully to 

56 investigate and compare the functional potential of various environments (Tringe et al. 

57 2005; Dinsdale et al. 2008; Delmont et al. 2012). 
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58 The assembly of short reads into contiguous DNA segments (contigs) leads to improved 

59 annotations because of the greater information content of longer sequences, including the 

60 genomic context of multiple coding regions. Several factors affect the assembly 

61 performance (Pop 2009; Luo et al. 2012; Mende et al. 2012), and the feasibility of the 

62 assembly-based approaches varies across environments (Sharon et al. 2013; Iverson et al. 

63 2012). Nevertheless, increasing read lengths (Sharon et al. 2015), novel experimental 

64 approaches (Delmont et al. 2015), advances in computational tools (Brown et al. 2012), 

65 and improvements in assembly algorithms and pipelines (Boisvert et al. 2012; Peng et al. 

66 2012; Zerbino & Birney 2008; Treangen et al. 2013) continue to make assembly-based 

67 metagenomic workflows more tractable. Additional advances emerge from genomic 

68 binning techniques that employ contextual information to organize unconnected contigs 

69 into biologically relevant units, i.e. draft genomes, plasmids, and phages (Venter et al. 2004; 

70 Tyson et al. 2004). Draft genomes frequently provide deeper insights into bacterial 

71 lifestyles that would otherwise remain unknown (Stein et al. 1996; Alonso-Sáez et al. 2012; 

72 Kantor et al. 2015) and offer an opportunity to identify single-nucleotide polymorphisms 

73 that differentiate members or strains of a microbial population (Tyson et al. 2004). Genome 

74 binning processes typically take advantage of sequence composition and the coverage of 

75 contigs across multiple samples. Despite associated challenges (Wooley et al. 2010; Luo et 

76 al. 2012), researchers have successfully employed these assembly and binning techniques 

77 to identify near-complete novel draft genomes from metagenomic datasets generated from 

78 various environments (Venter et al. 2004; Tyson et al. 2004; Hess et al. 2011; Raveh-Sadka 

79 et al. 2015). This workflow has become more practicable thanks to recently introduced 

80 human-guided (Albertsen et al. 2013; Sharon et al. 2013) and automated (Alneberg et al. 
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81 2014; Wu et al. 2014; Kang et al. 2015) approaches and software pipelines that lend 

82 themselves to the identification of genome bins.

83 Beyond these advances, comprehensive analysis of assembled metagenomic data requires 

84 the ability to manipulate and mine complex datasets within a visualization framework that 

85 immediately reports the end result of these operations. Available tools for the visualization 

86 of metagenomic contigs usually employ self-organizing maps (Sharon et al. 2013) or 

87 principal component analysis plots (Alneberg et al. 2014; Cantor et al. 2015; Laczny et al. 

88 2015). Although these visualization strategies can describe the organization of contigs, they 

89 do not present the distribution of contigs across samples along with supporting data such 

90 as GC-content, inferred taxonomy, or other automatically generated or user-specified 

91 information for each contig in one display. Interactive visualization tools that report the 

92 influence of contextual information on the human-guided contig binning and that provide 

93 the ability to modify the membership of contigs in genome bins would improve the quality 

94 of draft genomes. A platform that consolidates advanced visualization and analysis 

95 infrastructure with an open design that allows the addition of novel algorithms could serve 

96 as a test bed for sharing new analytical paradigms and contribute to the dissemination of 

97 good practices in the field of metagenomics.

98 Here we introduce anvi’o, an advanced analysis and visualization platform for ‘omics data, 

99 and describe its assembly-based metagenomic workflow, which includes human-guided 

100 and automated metagenomic binning, interactive data exploration, manipulation, 

101 visualization, and reporting. To demonstrate anvi’o, we re-analyzed (1) a relatively low-

102 complexity metagenomic dataset from an infant gut microbiome sampled daily (Sharon et 
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103 al. 2013) and (2) a collection of datasets that represent the combined efforts of multiple 

104 investigators (Rodriguez-R et al. 2015; Overholt et al. 2013; Mason et al. 2012, 2014; 

105 Yergeau et al. 2015) who studied the microbial response to the 2010 Deepwater Horizon 

106 (DWH) oil spill (Atlas & Hazen 2011).

107 Material and Methods

108 Anvi’o is an analysis and visualization platform for ‘omics data. It provides an interactive 

109 and extensible visualization interface that distills multiple dimensions of information into a 

110 single, intuitive display. The platform is written predominantly in Python, JavaScript, and C, 

111 and relies on scalable vector graphics (SVG) for most visualization tasks. The visualization 

112 core, implemented from scratch in JavaScript, uses low-level SVG object manipulation 

113 functions with minimal overhead to optimize performance. Anvi’o displays tree structures 

114 with data or metadata layers that describe the properties of each leaf on the tree. The 

115 platform stores computed data in self-contained database files that can be interrogated 

116 using structured query language (SQL) through SQLite, an open source transactional SQL 

117 database engine that does not require any database server or configuration. The user 

118 interacts with anvi’o through command line clients or a graphical web browser. The 

119 platform generates static HTML web pages to summarize analysis results. Reliance on self-

120 contained database files and static HTML output facilitates transfer of intermediate or final 

121 stages of analyses between computers. In this study we emphasize anvi’o’s metagenomic 

122 workflow, but the platform can also meet the analysis and visualization requirements of 

123 other ‘omics data types. Anvi’o is a community-driven, open-source project. The source 
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124 code is licensed under the GNU General Public License, and publicly available at 

125 https://merenlab.org/projects/anvio.

126 Anvi’o metagenomics workflow

127 Preparing a metagenomic dataset for an analysis with anvi’o requires a co-assembly of 

128 short reads from all or a subset of samples to create community contigs, followed by the 

129 mapping of short reads from individual samples back to these contigs. The FASTA file of 

130 community contigs and BAM files reporting mapping results for each sample provide the 

131 initial input for anvi’o. The BAM file format is the binary representation of the Sequence 

132 Alignment/Map (SAM) format (Li et al. 2009), which is the standard output for most widely 

133 used mapping software, including BWA (Li & Durbin 2009), Bowtie2 (Langmead & Salzberg 

134 2012), and CLC Genomics Workbench (http://www.clcbio.com). Subsequent to the 

135 generation of BAM files, a typical analysis of multiple metagenomic samples with anvi’o 

136 entails the following steps (Figure 1): (1) generating a contigs database, (2) profiling each 

137 sample individually and merging the resulting single profiles, (3) visualizing results 

138 interactively, performing human-guided binning, or refining automatically identified bins, 

139 and (4) summarizing results.

140 Contigs database. Anvi’o uses this essential database to store contig (or scaffold) 

141 information that does not vary from sample to sample (i.e., k-mer frequencies, functional 

142 annotation of open reading frames (ORFs), or GC content). To ensure that longer contigs 

143 are given more statistical weight during automated binning and more visibility in 

144 interactive displays, anvi’o breaks up large contigs into multiple splits, which remain soft-

145 linked throughout the workflow and are reconstructed in the correct order in result 
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146 summaries. The user can override the default split size of 20,000 bases when creating the 

147 contigs database. Smaller split sizes increase the resolution of information stored in 

148 databases and displayed in the interactive interface during later steps of analysis at the 

149 expense of added computational complexity and decreased performance for applications 

150 that require robust k-mer frequency statistics per split. When the user creates a contigs 

151 database from a given FASTA file, anvi’o identifies splits and computes k-mer frequency 

152 tables for each contig and split separately. Optionally, anvi’o can identify ORFs, process 

153 functional and taxonomic annotations for ORFs, and search contigs for hidden Markov 

154 model (HMM) profiles to be stored in the contigs database for later use. Currently, anvi’o 

155 installs four previously published HMM profiles for bacterial single-copy gene collections 

156 (Alneberg et al. 2014; Campbell et al. 2013; Dupont et al. 2012; Creevey et al. 2011). 

157 Presence or absence of these genes in contigs provides a metric for estimating the level of 

158 completeness of genome bins during the interactive human-guided binning (see ‘Binning’). 

159 The system also generates completion and redundancy (multiple occurrence of one or 

160 more single-copy genes in a bin) statistics in real-time to inform human-guided binning. 

161 Beyond single-copy genes, users can populate the contigs database with curated HMM 

162 profiles to identify the presence of protein families of interest. The contigs database also 

163 stores inferred functions and likely taxonomic origin of all recognized ORFs. Users can 

164 provide these data as a standard matrix file or use one of the pre-existing parsers. The 

165 initial version supports annotation files generated by the RAST annotation server (Aziz et 

166 al. 2008), but the design allows inclusion of annotations from other sources.

167 Profile database. In contrast to the contigs database, an anvi’o profile database stores 

168 sample-specific information about contigs. Profiling a BAM file with anvi’o creates a single 
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169 profile that reports properties (i.e., the mean coverage) for each contig in a single sample. 

170 Each profile database links to a contigs database, and anvi’o can merge single profiles that 

171 link to the same contigs database into merged profiles. The structure of single and merged 

172 profiles differs slightly: when multiple single profiles are merged, each property reported 

173 for each contig in single profiles becomes its own table in the merged profile database. For 

174 instance, the ‘mean coverage column’ from the single-profile data table for sample A and 

175 sample B would, when merged, become the ‘mean coverage table’ with sample A and 

176 sample B as columns. Anvi’o identifies these merged tables as views, and the user can 

177 switch between views in the interactive interface. This modularity fosters the quick 

178 implementation of new binning strategies and evaluation of results without requiring 

179 changes in the code. Profile databases also store other essential information such as 

180 frequencies of nucleotides at variable positions  (see ‘Computing variability’), and contig 

181 collections (see ‘Binning’).

182 De novo characterization of nucleotide variation within samples. The alignment of 

183 short reads to a particular contig can generate one or more mismatches. The source of a 

184 mismatch may be artificial, such as stochastic sequencing or PCR error, however, some 

185 mismatches may represent ecologically informative variation. During the profiling step, 

186 anvi’o keeps track of nucleotide variation (base frequencies) among reads from each 

187 sample that map to the same community contig and stores that information in the profile 

188 database for each sample. To lessen the impact of sequencing and mapping errors in 

189 reported frequencies, anvi’o relies on the following conservative heuristic to determine 

190 whether to report the variation at a nucleotide position:
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191
𝑛2

𝑛1
> (1𝑏)

(𝑥
1
𝑏 ‒ 𝑚)

+ 𝑐

192 where n1 and n2 represent the frequency of the most frequent and the second most 

193 frequent bases in a given nucleotide position, x represents the coverage, and b, m, and c 

194 represent empirically adjusted model parameters equal to 3, 1.45, and 0.05, respectively. 

195 This approach sets a dynamic baseline for the minimum amount of variation present at a 

196 given nucleotide position, as a function of coverage depth, for that nucleotide position to be 

197 reported. According to this conservative heuristic, the minimum ratio for n2 to n1 would be 

198 0.29 for 20X coverage (x), 0.13 for 50X coverage, 0.08 for 100X coverage, and ~0.05 for 

199 very large values of coverage as the minimum required ratio of n2 to n1 approaches c. This 

200 computation- and storage-efficient strategy reports a short list of sample-specific variable 

201 nucleotide positions that are unlikely to originate from PCR or sequencing errors. The user 

202 has the option to instruct the profiler to store all observed frequencies for more 

203 statistically appropriate but computationally intensive downstream analyses.

204 Profiling variability. To interpret the ecological significance of sample-specific variable 

205 positions across samples, anvi’o installs a helper program, anvi-gen-variability-profile 

206 (AGVP). The user can specify filters that employ information from the experimental design 

207 to instruct AGVP’s generation of a more refined variability profile.  The current version of 

208 AGVP processes variable positions in a genome bin (see ‘Genome binning’) based on 

209 multiple user-defined, optional filters, including the number of variable positions to sample 

210 from each split, minimum ratio of the competing nucleotides at a reported variable 
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211 position, minimum number of samples in which a nucleotide position is reported as a 

212 variable position, minimum coverage of a given variable nucleotide position in all samples, 

213 and the minimum scattering power of a variable nucleotide position across samples. 

214 Samples in a merged profile can be organized into one or more groups (g) based on the 

215 nucleotide identity of the competing bases (b) at a given variable position, p. Scattering 

216 power then represents the number of samples in the second largest group. For example, at 

217 one extreme b is identical in all samples at position p, so g equals 1 and the scattering 

218 power of p is 0. At the other extreme, p harbors a different b in every sample, thus g is equal 

219 to the number of samples and the scattering power of p equals 1. A value of g between 

220 these two extremes yields a scattering power of >1. Since groups (g) are defined by not 

221 only the presence but also the identity of competing nucleotides at a given position across 

222 samples, the user can employ scattering power to query only those variable nucleotide 

223 positions that reoccur, and discard the ones that show stochastic behavior that is more 

224 likely to result from sequencing or PCR errors, or mapping inconsistencies.

225 Genome binning. Anvi’o metagenomic workflow offers two modes for binning contigs into 

226 draft genomes: automated binning, and human-guided binning. The result of a binning 

227 process corresponds to a collection in a profile database. Each collection consists of one or 

228 more bins, with each bin containing one or more splits. When anvi’o merges multiple 

229 profiles, it passes coverage values of each split across samples to CONCOCT (Alneberg et al. 

230 2014) for automated identification of genome bins. CONCOCT uses Gaussian mixture 

231 models to predict the cluster membership of each contig while automatically determining 

232 the optimal number of clusters in the data through a variational Bayesian approach 

233 (Alneberg et al. 2014). The merged profile database stores the result of automated binning 
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234 as a collection. Anvi’o provides the user with a straightforward interactive interface to 

235 visualize automated binning results and to refine poorly resolved bins. CONCOCT is 

236 automatically installed with anvi’o, but the user can import clustering results from other 

237 automated binning techniques into separate collections in the profile database. During the 

238 merging step, anvi’o can generate a hierarchical clustering of contigs using multiple 

239 clustering configurations. A clustering configuration text file describes one or more data 

240 sources for the hierarchical clustering algorithm. A clustering configuration can request the 

241 retrieval of data for each contig from a profile database (such as a single attribute or a 

242 view), from a contigs database or from an external user-selected data source. A clustering 

243 configuration can also specify normalizations for each data source for anvi’o to employ 

244 when mixing multiple sources of information prior to the clustering analysis. The current 

245 version of anvi’o uses three default clustering configurations for merged profiles: ‘tnf’, ‘tnf-

246 cov’, and ‘cov’. Configuration ‘tnf’ uses k-mer frequencies to represent the sequence 

247 composition of contigs for clustering. The default ‘k’ is 4, but the user can set different 

248 values for ‘k’ in new contigs databases. Configuration ‘tnf-cov’ mixes k-mer frequencies 

249 from the contigs database with log-normalized coverage vectors from the merged profile 

250 database. This configuration considers both sequence composition and the coverage across 

251 samples in a manner similar to CONCOCT. Configuration ‘cov’ uses only the coverage 

252 information from the profile database and ignores sequence composition. Each clustering 

253 configuration stores a Newick-formatted tree description of contigs in the profile database, 

254 which later becomes the central organizing framework of the interactive interface. 

255 Different clustering configurations can generate alternative organizations of contigs and 

256 the user can switch between visualizations of these organizations while working with the 
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257 interactive interface to investigate different aspects of the data. The modular design behind 

258 the clustering infrastructure allows the user to add new clustering configurations without 

259 changing the code base and improves the human-guided binning process. Anvi’o can 

260 generate a complete and comprehensive summary of a collection upon completion of the 

261 binning process. The summary output is a user-friendly static HTML web site that can be 

262 viewed on any computer with or without an anvi’o installation or network access.

263 Interactive interface. The interface has the ability to display large tree structures and 

264 overlay numerical and categorical data across the tree. This approach allows anvi’o to 

265 display splits with a particular organization dictated by a tree structure, and associate each 

266 leaf with a single item in each layer mapped across the entire tree. These items can display 

267 numerical or categorical information (such as GC-content, or taxonomy). The interface can 

268 direct human-guided binning and refinement of bins. The user can create a new collection 

269 to organize contigs into bins through mouse clicks, or load and modify collections 

270 previously stored in the profile database. The advanced search function of the interface can 

271 identify contigs that meet specific criteria and highlight their location on the tree, bin them 

272 together, or direct their removal from existing bins. The right-click menu provides fast 

273 access to NCBI tools to query public databases, and gives access to detailed inspection page 

274 for a given contig. The detailed inspection page displays coverage values and frequencies of 

275 variable bases for each nucleotide position in each sample for a given contig and it overlays 

276 ORFs and HMM hits on the contig. The interactive interface uses SVG objects for 

277 visualization and displayed trees can be exported as high-quality, publication-ready 

278 figures.
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279 Limitations. Certain steps of the anvi’o metagenomic workflow (such as profiling and 

280 merging) require intensive computation while others (such as visualization and human-

281 guided genome binning) perform more efficiently on personal computers due to their 

282 interactive nature. Anvi’o optimally runs on server systems for non-interactive and 

283 parallelizable steps and on personal computers for visualization tasks. However, the design 

284 of anvi’o does not impose any limits on different configurations: the entire workflow can be 

285 run on a server as an independent web service, or on a personal computer with or without 

286 network access. The interactive interface can display a very large number of SVG objects, 

287 and its performance depends on the user’s configuration since all interactive computations 

288 are done on the user’s web browser. For the analyses in this study, we used cluster nodes 

289 with 48 to 512 Gb memory and 2.4 to 2.7 Ghz CPUs to complete all computation-intensive 

290 anvi’o tasks (i.e., profiling and sample merging) and a high-end laptop computer with 16 Gb 

291 memory and a 2.7 Ghz CPU for all other anvi’o tasks (i.e., visualization and summary of 

292 results). We successfully used the interactive interface to visualize up to 500,000 SVG 

293 objects and trees that contained up to 25,000 leaves on our high-end laptop computer, 

294 however large visualization tasks decrease the responsiveness of the interface. One of the 

295 biggest limitations of anvi’o is the number of splits that can be clustered for human-guided 

296 binning. Human-guided binning may not be possible for datasets containing more than 

297 25,000 splits because hierarchical clustering algorithms do not scale well with a time 

298 complexity of O(n2) or more. To work around this limitation, the user can mix automated 

299 and human-guided approaches by starting with automated clustering, and refining coarse 

300 genome bins through the ‘anvi-refine’ program. In this workflow, the user refines 

301 automatically identified bins with high redundancy estimations into high-quality draft 
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302 genomes. The URL http://merenlab.org/projects/anvio provides a detailed guide for best 

303 practices.

304 Preparation of publicly available sequencing datasets

305 Noise filtering, assembly, mapping, and functional characterization of contigs. For 

306 each dataset, we analyzed the raw metagenomic data with illumina-utils library (Eren et al. 

307 2013) version 1.4.1 (available from https://github.com/meren/illumina-utils) to remove 

308 noisy sequences using ‘iu-filter-quality-minoche’ program with default parameters, which 

309 implements the noise filtering described by Minoche et al. (Minoche et al. 2011). CLC 

310 Genomics Workbench (version 6) (http://www.clcbio.com) performed all assembly and 

311 mapping tasks on a server computer with 1 TB memory and 4 CPUs (2.0 Ghz each with ten 

312 cores) running Linux CentOS version 6.4. We used the default CLC parameters for 

313 assembly. For mapping, we required 97% sequence identity over 100% of the read length, 

314 and exported results as BAM files. We used RAST (Aziz et al. 2008) and myRAST (available 

315 from http://blog.theseed.org/downloads/) for functional characterization of contigs.

316 Infant gut metagenomes. Sharon et al. (Sharon et al. 2013) collected daily infant gut 

317 samples at days 15-19 and 22-24 after birth including biological replicate samples on days 

318 15, 17 and 22. Shotgun metagenomic analyses for the 11 samples share the NCBI Sequence 

319 Read Archive accession ID SRA052203. We co-assembled all samples after quality filtering. 

320 Since the reliability of k-mer frequency statistics and annotation specificity deteriorates 

321 with decreasing contig length, we chose an arbitrary contig minimum length of 1,000 base 

322 pairs. We mapped short reads from each sample back to these contigs (Supplementary 

323 Table 1), then used anvi’o to perform profiling and merging of samples, followed by 
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324 human-guided binning. After splitting draft genomes from our human-guided binning into 

325 1,000 bp pieces, we used blastn version 2.2.28+ (Altschul et al. 1990) to determine their 

326 level of concordance with the draft genomes published by Sharon et al. (available at 

327 http://ggkbase.berkeley.edu/carrol). Analyses of variability between closely related draft 

328 genomes included only a single shotgun metagenome for each sampling day (using the 

329 metagenome with the largest number of reads from days 15, 17 and 22) to simplify 

330 computational complexity. We used AGVP to access the variable positions reported in the 

331 merged profile database by specifying a maximum of 5 nucleotide positions from each split, 

332 and only retaining positions with a scattering power of three (see ‘Profiling variabilty’ for 

333 the definition). We used the interactive interface for human-guided genome binning.

334 Deep Horizon samples. We used anvi’o to interrogate several previously published 

335 cultivar and single cell genomic, metagenomic, and metatranscriptomic datasets for 

336 environmental nucleic acid preparations from Pensacola Beach (Florida, USA) sand 

337 samples and Gulf of Mexico (GOM) water samples before and after the 2010 Deep Horizon 

338 oil spill.

339 Overholt isolates. Data for ten culture genomes from Overholt et al. (Overholt et al. 2013) 

340 are publicly available as NCBI BioProject PRJNA217943. We concatenated all 10 cultivar 

341 genomes into a single FASTA file for downstream analyses.

342 Rodriguez-R metagenomes. Raw metagenomic sequencing data for 16 samples from 

343 Rodriguez-R et al. (Rodriguez-R et al. 2015) are publicly available as NCBI BioProject 

344 PRJNA260285. After noise filtering, we mapped short reads from each sample back to 

345 Overholt isolates (Supplementary Table 1). Anvi’o profiled and merged the resulting BAM 
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346 files. In parallel, we co-assembled the metagenomic dataset, and discarded contigs smaller 

347 than 1,000 base pairs. After mapping short reads back to the co-assembled contigs 

348 (Supplementary Table 1), anvi’o profiled individual BAM files and CONCOCT version 0.4.0 

349 (Alneberg et al. 2014) performed automated binning. We summarized the CONCOCT 

350 results using 'anvi-summarize' and used 'anvi-refine' to interactively partition CONCOCT 

351 bins into high-quality draft genomes with high-completion and low-redundancy estimates. 

352 Mason single-cell genomes, metagenomes, and metatranscriptomes, and Yergeau 

353 metagenomes. The web site http://mason.eoas.fsu.edu/ posts quality-filtered data for 

354 three single-cell genomes (single amplified genomes; SAGs), three metagenomes, and two 

355 metatranscriptomes (Mason et al. 2012, 2014). We obtained quality-filtered data for 

356 metagenomes previously reported by Yergeau et al. (Yergeau et al. 2015) from 

357 http://metagenomics.anl.gov/linkin.cgi?project=1012. We used the Yergeau metagenomic 

358 data only from the three samples collected from BM57 station, which is 3.87 km from the 

359 wellhead. Figure S1 summarizes our co-assembly, mapping, and analysis steps for these 

360 datasets. We first co-assembled short reads from the three Mason SAGs and independently 

361 co-assembled short reads from the three Mason metagenomes. Next, we mapped short 

362 reads from each of the Mason metagenomic, metatranscriptomic, and SAG datasets, as well 

363 as the three Yergeau metagenomes, to the co-assembled metagenomic dataset, and 

364 separately to the co-assembled SAG genome dataset generating two BAM files for each 

365 sample (Figure S1; Supplementary Table 1). We independently profiled each of the 

366 resultant BAM files (16 from Mason, 6 from Yergeau samples), and merged the 11 profiles 

367 from BAM file mappings to the metagenomic co-assemblies and separately merged the 11 

368 profiles from BAM file mappings to the SAG co-assemblies. We instructed anvi’o through an 
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369 additional clustering configuration to employ only three Mason metagenomes for 

370 hierarchical clustering of contigs. We subsequently processed the merged profiles (1) to 

371 quantify the presence of short reads from metagenomic and metatranscriptomic reads 

372 matching to SAGs, (2) to quantify the presence of short reads from SAGs in the 

373 metagenomic contigs, and (3) to identify draft genomes through human-guided binning. To 

374 compare variability across samples, we generated variability profiles with AGVP program 

375 for each genome bin that we identified in the metagenomic assembly. To generate 

376 variability profiles for each genome bin, we instructed AGVP to sample up to 5 co-occurring 

377 variable nucleotide positions from each split in proximal and distal samples.

378 We used R version 3.1.2 (R Development Core Team 2011) for the analysis of variance 

379 (ANOVA) (via ‘aov’ function) and to run the Tukey-Kramer post-hoc test on ANOVA results 

380 (via ‘TukeyHSD’ function), the R library ggplot version 1.0.0 (Ginestet 2011) for all 

381 visualizations that were not done by anvi’o, and Inkscape version 0.48 

382 (https://inkscape.org/) to finalize figures for publication. 

383 https://github.com/meren/anvio-methods-paper-analyses gives access to the shell and R 

384 scripts we implemented to generate variability profiles and to visualize results.

385 Results and discussion

386 Characterization of variable nucleotide positions in genome bins

387 The co-assembly of 11 samples in the infant gut dataset yielded 4,189 contigs with a 

388 minimal length of 1,000 bp, a total assembly size of 35.8 Mbp and an N50 of 36.4 kbp. On 
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389 average, 92.4% (std: 4.43%) of all reads mapped back to contigs from each sample. The 

390 human-guided binning of the infant gut data with anvi’o converged upon 12 bacterial and 

391 one fungal genome bin that largely agree with the draft genomes Sharon et al. reported 

392 (Sharon et al. 2013). Supplementary Table 1 reports the quality filtering and mapping 

393 statistics, as well as the attributes of recovered genome bins. Figure 2 demonstrates the 

394 interactive interface of anvi’o, as it displays (1) the clustering dendrogram for contigs 

395 based upon their composition and differential coverage, (2) auxiliary layers that report 

396 information about contigs stored in the contigs database (GC-content, RAST taxonomy, 

397 number of genes, etc.), (3) view layers that report information about contigs across 

398 samples stored in the profile database (Panel A shows the mean coverage view, panel B 

399 exemplifies three other views), and (4) our draft genome bins. Having access to sample-

400 independent auxiliary layers as well as sample-specific view layers that provide 

401 information for each contig in one interactive display improves the user’s ability to work 

402 interactively with a given co-assembly. The URL http://merenlab.org/data/ gives read-

403 only access to the interactive interface shown in Figure 2 and the automatically generated 

404 anvi’o summary for this analysis.

405 Anvi’o can characterize positional nucleotide variation during the profiling step without 

406 requiring reference genomes. This information provides the basis for inferring subtle 

407 population dynamics within genome bins. We applied our analysis of nucleotide variation 

408 to three genome bins in the infant gut dataset: the two most abundant bins, 

409 Enterococcus faecalis and Staphylococcus epidermidis, with average coverage of ~480X, and 

410 ~60X respectively, as well as the Staphylococcus aureus bin that becomes abundant during 

411 the final three days of sampling with an average coverage of ~50X. Anvi’o’s profiling 
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412 reported across all samples 3,241, 29,682 and 12,194 variable positions for the E. faecalis, 

413 S. epidermidis, and S. aureus bins respectively. Using the raw numbers for each sample in 

414 the three bins (Supplementary Table 1), we first analyzed the variation density, which we 

415 define as the number of variable positions per kbp of contigs in a genome bin. S. epidermidis 

416 exhibited the highest variation density with a value of 2.27 on day 16 (second day of 

417 sampling). We then used AGVP to focus only on those nucleotide positions that showed 

418 consistent variation across samples by randomly sampling up to five nucleotide positions 

419 from each split. This analysis reported 418 positions for E. faecalis, 865 positions for S. 

420 epidermidis, and 158 positions for S. aureus. The Staphylococcus bins exhibited 

421 transition/transversion ratios of 2.21-2.67 consistent with expectations that transitions 

422 (mutations that occur from A to G, or T to C, and vice versa) usually occur more commonly 

423 than transversions (Lawrence & Ochman 1997). In contrast, the E. faecalis bin displayed a 

424 transition/transversion ratio of 0.14. Our analysis also revealed very different nucleotide 

425 substitution patterns among the three groups. Increased variation density within contigs 

426 from the E. faecalis bins on even days alternates with lower variation density on odd 

427 numbered days (Figure 3). The variation pattern, which includes conservation of 

428 nucleotide substitution patterns on alternate days at the same sites for E. faecalis bins 

429 suggests an underlying mechanism that does not affect other metrics such as coverage, and 

430 variation density. Initial inspection of this pattern suggests the possibility of 24-hour clonal 

431 sweeps that succumb to the re-establishment of a mixed population of a few different 

432 strains 24 hours later. More likely, differences in methodology account for these patterns 

433 as Sharon et al. used two different size selections during the library preparation for these 

434 data: while they constructed libraries from odd-day samples with an insert size of 900 bp, 
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435 they used an insert size of 400 bp for libraries from even-day samples. Variation in error 

436 frequencies between different Illumina sequencing runs or possibly differences in insert 

437 length that will affect cluster density might explain these patterns. Yet their non-random 

438 occurrence including clear patterns for each of the different major bins remains 

439 unexplained. In contrast, S. epidermidis and S. aureus bins did not show a bi-daily trend, and 

440 changes in their variability patterns did not follow the variability patterns anvi’o reported 

441 for E. faecalis. In their detailed analysis, Sharon et al. detected multiple strains in the S. 

442 epidermidis bin, members of which shifted throughout the sampling period. In our analysis, 

443 we detected a high variation density for the S. epidermidis bin, resonating with the highly 

444 mixed nature of this population. Variation density decreased in the S. epidermidis bin in 

445 time, and while the coverage of this bin did not change dramatically, the nucleotide 

446 variation nearly disappeared in samples from the last day (Figure 3).  This suggests a shift 

447 in the population with dominance by a relatively small number of S. epidermidis genomes. 

448 The absence of variability for S. aureus during the initial five-day sampling period reflects 

449 the mapping of very few metagenomic reads to these genomes, but by the 22nd day, S. 

450 aureus flourished with a very high variation density, which steadily decreased independent 

451 of the stable coverage.

452 Other investigators have utilized single bp changes to compare different variants of the 

453 same species based on reference genomes (Zhang et al. 2006; Morelli et al. 2010). While 

454 less frequent, identification of single bp changes has also been used to characterize 

455 heterogeneity in naturally occurring microbial populations through metagenomics 

456 (Simmons et al. 2008; Morowitz et al. 2011; Tyson et al. 2004). However, recovering 

457 detailed reports of single bp change patterns has not been straightforward due to the lack 
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458 of adequate algorithms that can automatically identify and report nucleotide positions of 

459 high-variability inferred from multiple samples using contigs constructed de novo as 

460 reference for metagenomic short reads. The default metagenomic workflow of anvi’o now 

461 makes the under-exploited variability patterns accessible for every level of analysis. 

462 Application of our approach to draft genomes may lead to novel observations as well as 

463 more targeted investigations to describe underlying mechanisms that drive ecological 

464 processes. For instance, why does the E. faecalis population show bi-daily patterns in 

465 Sharon et al.’s dataset when S. epidermidis and S. aureus populations do not? Although 

466 exploring this question further falls outside the scope of our study, the observation of the 

467 single bp substitution patterns demonstrates the utility of anvi’o at providing deeper 

468 insights into metagenomic data.

469 Holistic analysis of the microbial response to the Deep Water Horizon

470 In contrast to the infant gut dataset, the datasets related to the Deep Water Horizon oil spill 

471 represent a more challenging case given their size and complex nature. Following the DWH 

472 oil spill on April 20, 2010, investigators launched numerous molecular surveys to uncover 

473 bioindicators of oil pollution and to investigate the bioremediation capacity of indigenous 

474 bacteria. Multiple studies described the strong influence of oil on the bacterial community 

475 composition in the water plume, ocean sediments, and the shoreline, as well as enrichment 

476 of oil degradation genes in affected environments (Hazen et al. 2010; Mason et al. 2012; 

477 Kimes et al. 2013; Mason et al. 2014; Kostka et al. 2011; Overholt et al. 2013; Rodriguez-R 

478 et al. 2015). Our DWH collection included a metagenomic dataset generated by Rodriguez-

479 R et al. (Rodriguez-R et al. 2015) from 16 sand samples collected from Pensacola Beach 
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480 (Florida) during the three periods of beach oiling following the April 2010 DWH explosion: 

481 ‘before’ the oil had reached the shore, ‘during’ the oil contamination, and ‘after’ the oil was 

482 removed (Supplementary Table 1). The dataset includes (1) four May 2010 samples 

483 collected before oil began to wash ashore the first week of June 2010, (2) four July 2010 

484 and four October 2010 samples collected during the oiling event (the July and October 

485 samples each included one weathered sample with lower oil concentrations), and (3) four 

486 June 2011 samples collected after removal of oil from the beach. The original investigation 

487 of this dataset relied on taxonomic assignments of contigs from individually assembled 

488 samples without binning, and the authors observed a functional transition from generalist 

489 taxa during the oil pollution to specialists after the event. Our DWH collection also included 

490 genomes of 10 proteobacterial strains isolated from Pensacola Beach and Elmer’s Island 

491 Beach (Louisiana) by Overholt et al. (Overholt et al. 2013) using samples collected in June 

492 and July 2010. In the original study, the authors suggested that these isolates represented 

493 the dominant oil degrading microbial populations by comparing their taxonomy to an 

494 independent 16S rRNA gene-based survey of the same environment (Kostka et al. 2011). 

495 The final dataset in our DWH collection included metagenome, metatranscriptome, and 

496 single-cell genome (SAG) data generated by Mason et al. (Mason et al. 2012, 2014) and 

497 Yergeau et al. (Yergeau et al. 2015) from the oil spill water plume samples (Supplementary 

498 Table 1). Mason et al. reported a rapid response of members of the Oceanospirillales to 

499 aliphatic hydrocarbons (Mason et al. 2012). Yergeau et al. (Yergeau et al. 2015) 

500 investigated the same location one year after the event and detected Oceanospirillales in 

501 relatively low abundance. Our reanalysis of these data using anvi’o tests some of the 
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502 previous assertions by providing contextual information and determining key genomic 

503 structures that were previously overlooked.

504 Linking culture genomics to metagenomics

505 To estimate the abundance of Overholt isolates in the Pensacola Beach before, during, and 

506 after the oil contamination, we mapped the short reads from Rodriguez-R metagenomes to 

507 these 10 cultivar genomes. Overholt isolates recruited on average 0.00097% of the May 

508 2010, 1.16% of the July 2010, 0.088% of the October 2010, and 0.0024% of the June 2011 

509 metagenomic reads (Figure 4 and Supplementary Table 1). Anvi’o indicates high 

510 completion with little redundancy for these genomes (Supplementary Table 1). Among the 

511 ten cultivars, Alcanivorax sp. P2S70 was the most frequently detected genome 

512 (Supplementary Table 2). On average, the July 2010 metagenomes covered 96% of the 

513 Alcanivorax sp. P2S70 genome to ~8X depth while the October 2010 metagenomes covered 

514 only 35% of the Alcanivorax sp. P2S70 genome with an average depth of ~0.6X. Reads from 

515 the metagenome dataset of 452 million sequences mapped at very low levels to five of the 

516 isolates. Nonetheless, we observed a clear increase in the abundance of the ten genomes 

517 from ‘before’ to ‘during’ phases of the oil contamination, with a striking four thousand-fold 

518 increase of Alcanivorax sp. P2S70 between May and July 2010. The recovery of these 

519 genomes diminished in the two ‘weathered’ samples. Finally, the absence of short reads 

520 matching any of these ten genomes in samples from the ‘after’ phase, suggests that these 

521 isolates might depend on oil for their primary carbon source or that their growth might 

522 require syntrophic partnerships with other oil degrading microbes. The metagenomic data 

523 in our combined analyses support the hypothesis that increased oil concentration created a 
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524 niche for the cultivars from Pensacola Beach. However, as these cultivars recruited only 

525 0.0098% to 1.84% of the metagenomic reads from the same environment, our results also 

526 show that they were not the most abundant oil degraders (Figure 4, panel A) and 

527 contradict Overholt et al.’s 16S rRNA gene-based estimations (Overholt et al. 2013).

528 To access genomes of dominant oil degraders in the Gulf of Mexico shoreline without 

529 relying on cultivation, we co-assembled the Rodriguez-R dataset of 452 million reads. The 

530 de novo assembly yielded 56,804 contigs with a minimal length of 2.5 kbp and a total 

531 assembly size of 325.2 Mbp. The assembled bins recruited on average 20.4% of each sand 

532 metagenome during mapping (Supplementary Table 1). Only 0.31% of the metagenomic 

533 reads were recruited to the cultivar genomes. The large size and fragmentation of the 

534 metagenomic assembly prevented us from a direct hierarchical clustering and visualization 

535 of all contigs for human-guided binning. Anvi’o offers a workflow for large datasets that 

536 combines the automated and human-guided binning steps. CONCOCT’s automated binning 

537 during anvi’o's merging step generated 81 bins with an average redundancy of 31.7%.  We 

538 then visualized and manually partitioned these bins using anvi’o, creating 162 refined bins 

539 with an average redundancy of 1.96% (Supplementary Table 2). In a more focused analysis, 

540 we used genome bins larger than 2 Mbp and/or more than 80% complete. The 56 draft 

541 genomes that fit these criteria had an average length of 3.11 Mbp (std: 1.31 Mbp) and their 

542 GC-content varied from 32.2% to 71.0%. We compared these draft genomes, along with the 

543 Overholt cultivars, to the closest matching reference genomes using the best-hit function 

544 implemented in RAST (Supplementary Table 1). The RAST taxonomic inference supported 

545 Overholt et al.’s assignments for 9 out of the 10 genomes derived from cultivation (our 

546 RAST analysis suggested the taxon name Chromohalobacter for Overholt et al.’s Halomonas 
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547 PBN3 genome), and detected a total of 33 genera within the 56 draft genomes, which 

548 included a fungus (10.3 Mbp in length), and a Cyanobacterium affiliated with Cyanothece 

549 that harbors 60 genes encoding the photosynthesis aparatus. These taxonomic inferences 

550 largely agree with analysis of sample-centric contigs by Rodriguez-R et al. (Rodriguez-R et 

551 al. 2015). The only organism present in both the Overholt cultivars and the draft genomes 

552 we identified in the Rodriguez-R metagenomes was Alcanivorax sp. P2S70. The 

553 metagenomic binning process recovered 86% of its genome (‘bin 24’ in Figure 4). 95.9% of 

554 all proteins identified in this draft genome shared 99.2% protein identity with 

555 corresponding proteins identified in Alcanivorax sp. P2S70 genome (Supplementary Table 

556 2), and a total of 1,858 of them were identical between the two.

557 Seven of the 66 cultivar and draft genomes occurred primarily in a single sample. In 

558 addition, one draft genome was not characteristic of any phase (bin 28), and one draft 

559 genome represented a fungal organism (bin 10). The remaining 57 bacterial genomes 

560 exhibited one of seven distinct ecological patterns (Figure 4 and Supplementary Table 2): 

561 (1) mostly present before the oil contamination (n=11), (2) characteristic of all samples 

562 from the oil phase (n=14, includes 4 cultivars), (3) characteristic of oil contaminated 

563 samples from July 2010 (n=12, includes the 6 remaining cultivars), (4) characteristic of oil 

564 contaminated samples from October 2010 (n=10), (5) characteristic of the weathered 

565 samples (n=5), (6) enriched during the oil phase and persisted after the event (n=2), and 

566 finally (7) characteristic of the “recovered” phase (n=3) (Figure 4). Interestingly, the most 

567 frequently represented genus (Thioalkalivibrio, n=8) occurred in four of the seven 

568 ecological patterns, emphasizing the importance of sensitive microbial population 

569 partitioning and the limitations of taxonomy-based binning. We grouped functions that 
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570 occurred in our collection of bacterial draft genomes based on these seven ecological 

571 patterns. 2,621 of 12,982 functions occurred differentially across different ecological 

572 phases (ANOVA, Tukey-Kramer post-hoc test, p < 0.05; Supplementary Table 2).

573 Genes involved in oil degradation and described by Rodriguez-R et al. (Rodriguez-R et al. 

574 2015) likely drive shifts in the beach microbial community during oil spills. Oil-degrading 

575 microbes detected in beach sand might be members of the rare biosphere and/or originate 

576 from the ocean. Here we examined the functional annotation of genes in our bins for insight 

577 into the environmental origin of oil-degrading bacteria. Among the functions characteristic 

578 of genomes enriched during the oil phase were the acquisition and metabolism of urea 

579 (Supplementary Table 2). Urea is a dissolved organic nitrogen compound that can occur at 

580 highly abundant levels in coastal oceanic systems and serves as a main source of nitrogen 

581 for marine bacteria (Solomon et al. 2010). The apparent lack of urea metabolism in 

582 genomes characteristic of the uncontaminated beach samples in this dataset suggest this 

583 compound does not serve as a primary source of nitrogen in the innate microbial 

584 populations. On the other hand, the acquisition of carbon sources through oil degradation 

585 processes likely triggers an increased need for micronutrients such as nitrogen, and urea 

586 might represent an important source of nitrogen to support the bioremediation process. 

587 Urea-related functional traits suggest a lifestyle adapted to the marine environment, 

588 lending support to the hypothesis of an oceanic origin for microbes involved in the 

589 bioremediation process at the oil-contaminated Pensacola Beach.

590 Co-assembly of the metagenomic data, and the identification of draft genomes through 

591 anvi’o, revealed a more comprehensive perspective on community changes in response to 
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592 the oil spill relative to the cultivars alone, which depicted only two ecological patterns and 

593 represented relatively low abundance populations. The most significant functional 

594 difference between the 10 cultivars and the 59 draft genomes involved the arsenic 

595 resistance protein ArsH (p: 4.01e-21), which occurred in all culture genomes, but in only 

596 one bacterial draft genome. While multiple factors likely affect the cultivability of microbes 

597 when using oil as a sole source of carbon, arsenic, a toxic consequence of most oil spills 

598 (Cozzarelli et al. 2015), might differentially impact the fitness of oil degraders and prevent 

599 the isolation of some of the most promising populations for bioremediation processes.

600 Linking single-cell genomes, metatranscriptomes, and metagenomes

601 The Mason data (Mason et al. 2012, 2014) contained metagenomes of ocean water samples 

602 collected five weeks after the oil spill at three locations: 1.5 km from the wellhead 

603 (‘proximal’ sample), 11 km from the wellhead (‘distal’ sample), and 40 km from the 

604 wellhead (‘uncontaminated’ sample). In addition to the metagenomes, the authors 

605 generated metatranscriptomic data from the proximal and distal samples, and isolated 

606 three single-cell genomes (SAGs) from the proximal sample (Supplementary Table 1). The 

607 Yergeau data (Yergeau et al., 2015) contained metagenomes of ocean water samples 

608 collected one year after the oil spill at multiple depths at two locations: 3.87 km (BM57) 

609 and 37.8 km (A6, control station outside the plume) from the wellhead (Supplementary 

610 Table 1). Consistent with previous studies (Hazen et al. 2010; Redmond & Valentine 2012), 

611 Mason et al.’s analysis suggested that the taxonomic group DWH Oceanospirillales 

612 dominated the bacterial community composition and activity within the oil plume. 

613 Furthermore, Mason et al. suggested, through their standalone analysis of SAGs, 
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614 metagenomic, and metatranscriptomic datasets, that the dominant and active 

615 Oceanospirillales possessed genes encoding a near-complete cyclohexane degradation 

616 pathway. The multifaceted datasets from Mason et al.’s samples taken shortly after the 

617 event and Yergeau et al.'s later samples provide an opportunity to investigate the microbial 

618 response to the DWH oil spill in a comprehensive manner. Anvi’o facilitated a holistic 

619 analysis of this composite dataset by linking separate sources of data into one unified 

620 perspective that led to a high-resolution genomic analysis of the dominant DWH 

621 Oceanospirillales population in time and space.

622 The co-assembly of 46.8 million reads representing 3 SAGs yielded 941 contigs with a 

623 minimal length of 1 kbp, a total assembly size of 2.88 Mbp and an N50 score of 3.88 kbp. 

624 Clustering of contigs based on their sequence composition (k=4) formed two distinct 

625 groups that represent genetic structures originating from Colwellia and Oceanospirillales, in 

626 agreement with Mason et al.’s findings (Figure 5 panel A). When combined, the two 

627 Oceanospirillales SAGs provided a draft genome of 1.91 Mbp that included ~1.3 Mbp of 

628 shared contigs with a sequence identity over 99%. However, only 0.16-0.64% of the 

629 metagenomic and metatranscriptomic reads mapped to the Oceanospirillales SAGs which 

630 indicates low levels of relative abundance (Supplementary Table 1). Moreover, a majority 

631 of mapped reads represented non-specific regions of ribosomal RNA operons (Figure 5 

632 panel A). These results disagree with previous findings, and suggest that the recovered 

633 SAGs do not represent the dominant or active members of the microbial community at the 

634 time of sampling. Why did none of the three single-cell captured organisms represent an 

635 abundant member of the microbial community? This incongruence may reflect a 
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636 methodological bias, where the population structure of captured single cells diverges from 

637 the rank abundance curve of the organisms that occur in the sampled environment.

638 To recover the draft genome of DWH Oceanospirillales population, we co-assembled the 

639 metagenomic dataset of Mason et al. (397.9 million reads), which yielded 19,954 contigs 

640 longer than 1 kbp (N50: 1.88 kbp), with a total length of 37.9 Mbp. These contigs recruited 

641 reads corresponding to 5.83% to 23.6% of the Mason metagenomes, 1.52% to 3.58% of the 

642 Yergeau metagenomes and 1.58% to 6.12% of the Mason metatranscriptomes during the 

643 mapping (Supplementary Table 1). Clustering of contigs by sequence composition and 

644 coverage patterns across the three Mason metagenomes revealed a distinct bin that 

645 contained 1.07 Mbp with a completion score of 62.8%. Here we temporarily name this bin 

646 as “DWH Oceanospirillales desum” to avoid confusion with the DWH Oceanospirillales 

647 previously identified through SAGs. DWH O. desum recruited 77.8% and 79.5% of all 

648 mapped metagenomic reads in the proximal and distal samples, respectively. In contrast, 

649 DWH O. desum recruited only 3.55% of mapped reads in the uncontaminated sample, 

650 emphasizing the dramatic shift in its abundance between uncontaminated and 

651 contaminated samples five weeks after the oil spill (Figure 5, panel B). Furthermore, only 

652 0.08% to 0.98% of mapped reads from the Yergeau metagenomes were recruited by DWH 

653 O. desum, indicating that the abundance of this microbial population was not only limited in 

654 space, but also in time. The result also suggests that the so-called “uncontaminated station” 

655 from Mason et al. might have been already tainted with oil at the time of sampling, as the 

656 relative abundance of DWH O. desum was >20 fold higher in the corresponding 

657 metagenome compared to its average in the six Yergeau metagenomes.
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658 DWH O. desum recruited 97% and 99% of the mapped metatranscriptomic reads from the 

659 distal and proximal samples from Mason et al., respectively. Since we had not used the 

660 metatranscriptomic data for clustering, the extensive mapping of the transcriptome reads 

661 to DWH O. desum confirms the link between its abundance in this dataset and its activity in 

662 the environment. The 1,375 nt 16S rRNA gene from DWH O. desum matched the uncultured 

663 Oceanospirillales bacterium clones from proximal and distal stations published by Hazen et 

664 al. (Hazen et al. 2010) with over 99% sequence identity. The first cultured organism 

665 matched to O. desum 16s rRNA by BLAST against the NCBI’s refseq_genomic database was 

666 Oleispira antarctica strain RB-8 (Oceanospirillales; Oceanospirillaceae) at  92% identity, 

667 and the O. desum 23S rRNA gene matched that of Oleispira antarctica at 93% identity. 

668 These results indicate that DWH O. desum represents the abundant and active 

669 Oceanospirillales population in the environment at the time of sampling. We also analyzed 

670 the variable positions that occurred in DWH O. desum population in proximal, distal, and 

671 uncontaminated samples. Despite the high variation density across samples, frequencies of 

672 the competing bases at positions of high nucleotide variation for DWH O. desum were 

673 nearly identical in proximal, and distal samples, indicating a similar population structure 

674 for DWH O. desum at both sampling stations (Figure 5 panel C). Our analysis of the 

675 metatranscriptomic data that mapped to the DWH O. desum bin revealed the expression of 

676 genes regulating the synthesis and export of lipids (lipid-A-disaccharide synthase, lipid A 

677 export), lipoproteins (protein LolC) and capsular polysaccharides (proteins LptB, KpsD, 

678 KpsE, KpsM and KpsT), known to act as bio-surfactants in oil degrading bacterial models by 

679 increasing the solubility of hydrocarbons (Ron & Rosenberg 2002). Aside from the 

680 ribosomal machinery, one of the most highly expressed genes coded for a cold-shock 
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681 protein, which might aid the metabolism of this psychrophilic population in a temperature 

682 suboptimal for their growth. Overall, the functional activity of DWH O. desum exhibits 

683 activity consistent with known oil degradation mechanisms coupled with a state of cellular 

684 stress.

685 We identified two bins adjacent to DWH O. desum that were strongly enriched in proximal 

686 and distal samples compared to the uncontaminated station and samples collected one 

687 year after the event. These clusters showed remarkable activity and coverage that were 

688 distinct from DWH O. desum and from each other (Supplementary Table 3). One of these 

689 two clusters is the size of a small bacterial genome (~1.6 Mbp).  However, we found no 

690 single-copy gene markers; hence, a puzzling completion level of 0%. We refer to this cluster 

691 as “DWH Unknown”. The second bin had a total length of only 0.35 Mbp, and we refer to it 

692 as “DWH Cryptic”. We performed an analysis of polymorphism on these bins to compare 

693 the populations they represent in distal and proximal samples. Our examination indicated 

694 that the frequencies of bases at variable positions showed much less agreement compared 

695 to DWH O. desum between proximal and distal samples. This observation may indicate a 

696 subtle change in the population structure between the two stations. Alternatively, it may 

697 merely reflect technical limitations, since the coverage of both bins by data from distal 

698 station samples was much lower than that of DWH O. desum. Figure S2 demonstrates the 

699 change in coverage of the reported variable nucleotide positions in three contigs that 

700 represent each genome bin. The overall functional profiles of these two clusters did not 

701 resemble a typical bacterial genome: while the genes encoding for the ribosomal machinery 

702 were largely missing, pathways for phage machinery and protection against phages 

703 (CRISPRs and the type I restriction-modification system) were dramatically enriched 
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704 (Supplementary Table 3). In the case of DWH Unknown, most expressed genes encoded 

705 proteins involved in the synthesis, transport, and export of capsular polysaccharides. The 

706 most highly expressed gene in DWH Cryptic encoded cytochrome P450 hydroxylase, an 

707 enzyme involved in the metabolism of hydrocarbon (Ortiz de Montellano 2010). Other 

708 highly expressed genes were associated with the transport and export of capsular 

709 polysaccharides, as well as CRISPR-associated proteins. These bins likely represent phages 

710 or plasmids. We did not detect any genes related to ribosomal machinery in these bins 

711 despite their rather large size, therefore their presence in the environment would be 

712 missed by 16S rRNA gene-based surveys, as well as metagenomic analyses that do not 

713 perform genome binning. Their enrichment in the polluted stations and metabolic activity 

714 centered on polysaccharide synthesis and export suggests a role in hydrocarbon 

715 degradation, yet the origin of these two genetic structures remains unclear. The anvi’o 

716 summary of the three bins is available at address http://merenlab.org/data/

717 Anvi’o as a community platform

718 The ability to interact with metagenomic and metatranscriptomic data, identify and refine 

719 draft genome bins with real-time feedback, and report final results in a comprehensive and 

720 reproducible manner are essential needs for the rapidly growing field of metagenomics. 

721 Anvi’o introduces a high-level, dynamic visualization framework to better guide ‘omics 

722 analyses and to communicate results, while it empowers its users with easy-to-use 

723 interfaces that require minimal bioinformatics skills to operate. Because of its modular 

724 structure, anvi’o can mix information the profiling step generates from the raw input files 

725 with additional user-provided information in a seamless manner (i.e., external human-
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726 guided or automated binning results, experimental organization of contigs, views, or simply 

727 additional data or metadata layers). Through this flexibility, anvi’o does not impose specific 

728 analysis practices, and encourages question-driven exploration of data.

729 Anvi’o is an open source project, and it welcomes developers. By abstracting the 

730 monotonous steps of characterizing and profiling metagenomic data, the platform gives its 

731 users with programming skills the ability to access internal data structures and implement 

732 novel ideas quickly. For example, anvi’o profiler computes several standard properties for 

733 each contig (i.e., mean coverage, and variation density), however, it can accommodate new 

734 attributes produced by any algorithm that yields a numerical value for a given contig. The 

735 addition of a new experimental property by an experienced user would automatically 

736 integrate into the workflow, resulting in a new view in the interactive interface and 

737 becoming accessible to clustering configurations for enhanced human-guided binning and 

738 visualization immediately. We developed anvi’o using modern programming languages and 

739 paradigms, relied on easy-to-query and self-contained database files for data storage, and 

740 used open technologies for visualization tasks. These properties leverage anvi’o as a 

741 community platform that can support the development, testing, and dissemination of new 

742 approaches. 

743 Conclusions

744 Anvi’o is an open-source, extensible software platform built upon open technologies and 

745 standard file formats to study ‘omics data. In this study we used anvi’o to combine 

746 environmentally linked datasets of different types from multiple investigators, to identify 
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747 draft genomes in both human-guided and automated manners, to infer population 

748 dynamics within draft genome bins through de novo characterization of nucleotide 

749 variation, to visualize layered data and generate publication-ready figures, and to 

750 summarize our findings. Through anvi’o we identified systematic emergence of nucleotide 

751 variation in an abundant draft genome bin in an infant’s gut, and extended our 

752 understanding of the microbial response to the 2010 Deepwater Horizon Oil Spill. Anvi’o’s 

753 ability to integrate, analyze, and display data of diverse origins empowers its users to fully 

754 explore their sequencing datasets in order to address a wide variety of questions.
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1
Overview of the anvi’o metagenomic workflow.

Anvi’o can perform comprehensive analysis of BAM files following the initial steps of co-

assembly and mapping. Initial processing of contigs and profiling each BAM file individually

generate all the essential databases anvi’o uses throughout the downstream processing.

Anvi’o can merge single profile databases, during which the unsupervised binning module

would exploit the differential distribution patterns of contigs across samples to identify

genome bins automatically, and store binning results as a collection. The optional

visualization step gives the user the opportunity to interactively work with the data, and

perform supervised binning with real-time completion and redundancy estimates based on

the presence or absence of bacterial single-copy genes. The user can screen and refine

genome bins, and split a single mixed genome bin into multiple bins with low redundancy

estimates. Finally, the user can summarize collections that describe genome bins, which

would create a static web site that would contain necessary information to review each

genome bin, and to analyze their occurrence across samples.
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2
Static images from the anvi’o interactive display for the infant gut dataset with genome
bins.

The clustering dendrogram in the center of Panel A displays the hierarchical clustering of

contigs based on their sequence composition, and their distribution across samples. Each tip

on this dendrogram represents a split (anvi’o divides a contig into multiple splits if it is longer

than a certain amount of nucleotides, which is 20,000 bps in this example). Each auxiliary

layer represents essential information for each split that is independent of their distribution

among samples. In this example auxiliary layers from the inside out include (1) the parent

layer that marks splits originate from the same contigs with gray bars, (2) the RAST

taxonomy layer that shows the consensus taxonomy for each open reading frame found in a

given split, (3) the number of genes layer that shows the number of open reading frames

identified in a given split, (4) the ratio with taxonomy layer that shows the proportion of the

number of open reading frames with a taxonomical hit in a given split, (5) the length layer

that shows the actual length of a given split, and finally (6) the GC-content layer. The view

layers layers for samples follow the auxiliary layers section. In the view layers section each

layer represents a sample, and each bar represents a datum computed for a given split in a

given sample. Panel A demonstrates the “mean coverage”, where the datum for each bar is

the average coverage of a given split in a given sample. Panel B exemplifies three other

views for the same display: “relative abundance”, “portion covered”, and “variability” of

splits among samples.
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3
Variable nucleotide positions in contigs for three draft genome bins.

The figure displays for each genome bin in each sample (from top to bottom), (1) average

coverage values for all splits, (2) variation density (number of variable positions reported

during the profiling step per kilo base pairs), (3) heatmap of variable nucleotide positions, (4)

ratio of variable nucleotide identities, and finally (5) the ratio of transitions (mutations that

occur from A to G, or T to C, and vice versa) versus transversions. In the heatmap, each row

represents a unique variable nucleotide position, where the color of each tile represents the

nucleotide identity, and the shade of each tile represents the square root-normalized ratio of

the most frequent two bases at that position (i.e., the more variation in a nucleotide position,

the less pale the tile is).
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4
Overholt culture isolates linked to the Rodriguez-R metagenomes of the beach sand
microbial community.

The tree on the left displays the hierarchical clustering of 10 culture genomes based on

sequence composition. Each view layer represents the “percent coverage” of each split in

the Pensacola beach metagenomic dataset. The tree on the right displays the coverage-

based hierarchical clustering of 56 environmental draft genomes we determined from the co-

assembly of Pensacola Beach metagenomic dataset. The view layers display the “mean

coverage” of each split in samples from the Pensacola beach metagenomic dataset. The

most outer layer in both trees show the ecological pattern of a given genome bin during the

period of sampling. Letters A to J identify culture genomes, and numbers 1 to 56 identify

each metagenomic bin. The letter F, and the number 24, identifies two bins that represent

the only genome that was present in both collections (Alcanivorax sp. P2S70). All genus- and

higher-level taxonomy assignments are based on the best-hit function in RAST.
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5
Mapping of samples to SAGs and metagenomic assembly, and nucleotide frequencies
and identities of variable positions in three bins.

Panel A shows the mapping of Mason et al. (2012, 2014) samples, as well as the three

Yergeau et al. (2015) depth profiles collected from a location close to Mason et al.’s proximal

station, to the co-assembly of the three SAGs. The dendrogram shows the sequence

composition-based hierarchical clustering of the community contigs with the “portion

covered” view, where each bar in the sample layers represents the percentage of coverage

of a given contig by at least one short read in a given sample (i.e., if each nucleotide position

in a contig is covered by at least one read, the bar is full). Panel B shows the mapping of the

same samples to the co-assembly of the three Mason et al. metagenomes. The dendrogram

shows the sequence composition- and coverage-based hierarchical clustering of the

community contigs with the “mean coverage” view, where each bar in the sample layers

represents the average coverage of a given contig in a given sample. Bar charts on the left-

side of dendrograms both in Panel A and Panel B show the percent mapped reads from each

sample to the assembly. Panel C compares the identity and frequency of the competing

nucleotides at the co-occurring variable positions in three bins identified in the Panel B: DWH

O. desum, DWH Cryptic, and DWH Unknown. X- and Y-axes in each of the three plots

represent the ratio of the second most frequent base (n2) in a variable position to the most

frequent base (n1) in distal, and proximal samples, respectively. Each dot on a plot

represents a variable nucleotide position. The color of a given dot represents the identity of

competing nucleotides. The size of a given dot increases if the coverage of it is similar in

both samples, where size equals to ‘1 - std(coverage in proximal, coverage in distal)’. Linear

regression lines show the correlation between the base frequencies at variable nucleotide

positions. Each plot also displays the R2 values for linear regressions, and the ratio of

transition versus transversion rates (k).
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6
Co-assembly, mapping, and anvi’o profiling steps for the analysis of single-cell,
metagenomic, and metatranscriptomic data from Mason et al. and metagenomic data
from Yergeau et al.
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7
Three contigs from the Mason data (shown in Figure 5) to demonstrate anvi’o’s
representation of coverage, variable nucleotide positions, and base frequencies.

In each panel, plots on the left show the summary of all variable positions (see Figure 5 and

its caption for details) in a given genome bin, while each coverage/variability plot on the right

demonstrates an example contig from a given genome bin. Red triangles underneath the

variable nucleotide positions identify the positions that contribute to the generation of the

plots on the left side.
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