## Acute kidney injury- attributable mortality in critically ill patients with sepsis (#69669)

First submission

### Guidance from your Editor

Please submit by 3 Feb 2022 for the benefit of the authors (and your \$200 publishing discount).



### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



### **Custom checks**

Make sure you include the custom checks shown below, in your review.



### Raw data check

Review the raw data.



### **Image check**

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

### **Files**

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 1 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

### Custom checks

### Human participant/human tissue checks

- Have you checked the authors ethical approval statement?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

## Structure and Criteria



### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.

# Standout reviewing tips



The best reviewers use these techniques

|  | n |
|--|---|
|  | N |

# Support criticisms with evidence from the text or from other sources

## Give specific suggestions on how to improve the manuscript

## Comment on language and grammar issues

## Organize by importance of the issues, and number your points

# Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



# Acute kidney injury- attributable mortality in critically ill patients with sepsis

Zhiyi Wang  $^{\text{Corresp., 1, 2}}$ , Jie Weng  $^{1}$ , Jinwen Yang  $^{3}$ , Xiaoming Zhou  $^{1}$ , Zhe Xu  $^{4}$ , Ruonan Hou  $^{1}$ , Zhiliang Zhou  $^{1}$ , Liang Wang  $^{5}$ , Chan Chen  $^{3}$ , Shengwei Jin  $^{6}$ 

Corresponding Author: Zhiyi Wang Email address: wzy1063@126.com

Background. To assess whether acute kidney injury (AKI) is independently associated with hospital mortality in ICU patients with sepsis, and estimate the excess AKI-related mortality attributable to AKI. Methods. We analyzed adult patients from two distinct retrospective critically ill cohorts: (1) Medical Information Mart for Intensive Care IV (MIMIC IV; n=15,610) cohort and (2) Wenzhou (n=1,341) cohort. AKI was defined by Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We applied multivariate logistic and linear regression models to assess the hospital and ICU mortality, hospital length-of-stay (LOS), and ICU LOS. The excess attributable mortality for AKI in ICU patients with sepsis was further evaluated. **Results**. AKI occurred in 5,225 subjects in the MIMIC IV cohort (33.5%) and 494 in the Wenzhou cohort (36.8%). Each stage of AKI was an independent risk factor for hospital mortality in multivariate logistic regression after adjusting for baseline illness severity. The excess attributable mortality for AKI was 58.6% (95%CI, 46.8%-70.3%) in MIMIC IV and 44.6% (95% CI, 12.7%-76.4%) in Wenzhou. Additionally, AKI was independently associated with increased ICU mortality, hospital LOS, and ICU LOS. **Conclusion.** Acute kidney injury is an independent risk factor for hospital and ICU mortality, as well as hospital and ICU LOS in critically ill patients with sepsis. Thus, AKI is associated with excess attributable mortality.

<sup>1</sup> Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China, China

<sup>&</sup>lt;sup>2</sup> Center for Health Assessment,, Wenzhou Medical University, Wenzhou, Zhejiang, China

Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China, China

<sup>&</sup>lt;sup>4</sup> Department of Emergency Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China, China

<sup>&</sup>lt;sup>5</sup> Department of Public Health, Robbins College of health and Human Sciences, Baylor University, Waco, Texas, United States

<sup>6</sup> Department of Anesthesia and Critical Care, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, China



### 1 Acute kidney injury-attributable mortality in critically ill patients with sepsis

- 2 Zhiyi Wang<sup>1,2\*</sup>, Jie Weng<sup>1\*</sup>, Jinwen Yang<sup>3</sup>, Xiaoming Zhou<sup>1</sup>, Zhe Xu<sup>4</sup>, Ruonan Hou<sup>1</sup>, Zhiliang Zhou<sup>1</sup>,
- 3 Liang Wang<sup>5</sup>, Chan Chen<sup>3</sup>, Shengwei Jin<sup>6#</sup>
- <sup>4</sup> Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital
- 5 of Wenzhou Medical University, Wenzhou 325027, China
- 6 <sup>2</sup>Center for Health Assessment, Wenzhou Medical University
- <sup>3</sup>Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University,
- 8 Wenzhou 325000, China
- 9 <sup>4</sup>Department of Emergency Intensive Care Unit, The Second Affiliated Hospital and Yuying
- 10 Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- 11 <sup>5</sup>Department of Public Health, Robbins College of health and Human Sciences, Baylor
- 12 University, Waco, TX, USA
- 13 <sup>6</sup>Department of Anesthesia and Critical Care, the Second Affiliated Hospital of Wenzhou Medical
- 14 University, Wenzhou 325027, Zhejiang Province, China
- 15 \*Equal contributors
- 16 #Correspondence to: jinshengwei69@163.com

18 Abstract

17

- 19 **Background.** To assess whether acute kidney injury (AKI) is independently associated with
- 20 hospital mortality in ICU patients with sepsis, and estimate the excess AKI-related mortality
- 21 attributable to AKI.
- 22 **Methods**. We analyzed adult patients from two distinct retrospective critically ill cohorts: (1)
- 23 Medical Information Mart for Intensive Care IV (MIMIC IV; n=15,610) cohort and (2) Wenzhou
- 24 (n=1,341) cohort. AKI was defined by Kidney Disease: Improving Global Outcomes (KDIGO)
- 25 criteria. We applied multivariate logistic and linear regression models to assess the hospital and
- 26 ICU mortality, hospital length-of-stay (LOS), and ICU LOS. The excess attributable mortality for
- 27 AKI in ICU patients with sepsis was further evaluated.



- 28 **Results**. AKI occurred in 5,225 subjects in the MIMIC IV cohort (33.5%) and 494 in the Wenzhou
- 29 cohort (36.8%). Each stage of AKI was an independent risk factor for hospital mortality in
- 30 multivariate logistic regression after adjusting for baseline illness severity. The excess
- 31 attributable mortality for AKI was 58.6% (95%CI, 46.8%–70.3%) in MIMIC IV and 44.6% (95% CI,
- 32 12.7%–76.4%) in Wenzhou. Additionally, AKI was independently associated with increased ICU
- 33 mortality, hospital LOS, and ICU LOS.
- 34 Conclusion. Acute kidney injury is an independent risk factor for hospital and ICU mortality, as
- well as hospital and ICU LOS in critically ill patients with sepsis. Thus, AKI is associated with excess
- 36 attributable mortality.
- 37 **Keywords**: Acute kidney injury, Attributable mortality, Sepsis, Mortality
  - Introduction

53

54

- 39 Acute kidney injury (AKI) is a prevalent clinical complication among patients in Intensive Care Units (ICUs), and an independent risk factor for those in critical conditions (Barrantes et al. 2008; 40 41 Nisula et al. 2013). Currently, there are no effective drugs available for AKI management (Peerapornratana et al. 2019). Studies have explored the database for critically ill patients and 42 43 found that each stage of AKI is associated with high mortality (Joannidis et al. 2009; Khadzhynov et al. 2019; Li et al. 2016). Among ICU patients with liver cirrhosis, an analysis of matched 44 population-based cohort revealed excess mortality attributable to severe AKI and mild AKI at 51% 45 and 25%, respectively (du Cheyron et al. 2005). The excess mortality among patients with AKI, 46 47 that is, the AKI-related death bull be avoided without the development of AKI. Sepsis is the 48 leading cause of AKI in critically ill patients (Peerapornratana et al. 2019). It is approximated that 49 one-third of sepsis patients develop AKI (Murugan et al. 2010). Sepsis-associated AKI is a frequent 50 complication in critically ill patients and contributes to high mortality (Peerapornratana et al. 51 2019; Poston & Koyner 2019). However, the attributable mortality for AKI in ICU patients with 52 sepsis is unknown. Assessment of the AKI attributable mortality would guide in designing clinical
  - This study aims to assess whether the development of AKI is an independent risk factor for

trials for the prevention or treatment of AKI.



55 mortality in ICU patients with sepsis and to adequately evaluate the excess mortality attributable

56 to AKI.

57

### Materials & Methods

58 **Participants** 

of the study.

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Critically ill adult patients were enrolled from two distinct retrospective ICU cohorts: (1) Medical 59 60 Information Mart for Intensive Care IV (MIMIC IV) cohort and (2) Wenzhou cohort study (Zhou et 61 al. 2021). The MIMIC IV cohort was enrolled from a relational database containing comprehensive information on over 250,000 patients hospitalized between 2008 and 2019 at 62 Beth Israel Deaconess Medical Center in Boston, MA, USA. The Wenzhou cohort included 63 critically ill adult patients from ICUs at the Second Affiliated Hospital of Wenzhou Medical 64 65 University in Wenzhou, Zhejiang, China. The MIMIC IV public database was approved by the institutional review board (IRB). Wenzhou cohort was approved by the Second Affiliated Hospital 66 of Wenzhou Medical University IRB. Informed consent was waived due to retrospective nature 67

### **Primary outcome and additional variables**

Inclusion criteria for adult patients followed the definition of sepsis-3 i.e., a known or suspected infection plus acute increase Sequential Organ Failure Assessment (SOFA) ≥ 2 points for organ dysfunction (Levy et al. 2003; Shankar-Hari et al. 2016) from the MIMIC IV and Wenzhou cohorts. We excluded patients with a history of chronic kidney disease (glomerulonephritis, diabetic nephropathy, hypertensive nephropathy, hereditary nephritis, and chronic kidney failure caused by a variety of other diseases), multiple hospitalizations, and ICU length of stay (LOS) less than 24 hours. Patients were defined as having AKI if they met the Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine diagnostic criteria for AKI (Supplementary materials) (Kellum & Lameire 2013). We defined shock as the need for vasopressor within the first 48 h of hospital admission, while respiratory failure was defined as the need for invasive mechanical ventilation.

In both cohorts, the SOFA score (Vincent et al. 1996), Acute Physiology Score (APS) III (Knaus et al. 1991), Logistic Organ Dysfunction Score (LODS)(Le Gall et al. 1996), and Oxford Acute



83

84

85

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Severity of Illness Score (OASIS) (Johnson et al. 2013) were employed to evaluate the severity of illness. Calculations for the modified SOFA score modified APS III and modified LODS were obtained through the exclusion of points associated with renal function. The primary outcome was hospital mortality. The secondary outcomes included ICU mortality, hospital LOS and ICU LOS. According to KDIGO guidelines, we stratified the severity of AKI according to serum 87 creatinine levels (Kellum & Lameire 2013).

### Statistical methods

Wilcoxon rank-sum test, Student's t-test, and Chi-squared test were employed to compare the baseline characteristic variables. Before data analysis, the potential confounders and mediating variables between AKI and death were depicted in the directed acyclic graph (DAG) (Supplementary Fig S1)(Lederer et al. 2019). To assess primary and secondary outcomes, we applied the multivariate logistic and linear regression models. A more detailed process is described in the Supplementary materials.

Sensitivity analyses in MIMIC IV were restricted to a given subset of patients presented with pulmonary sepsis and shock and excluded those who died within the first 1 week of hospitalization. We also performed a sensitivity analysis of hospital and ICU LOS for all patients (both survivors and non-survivors). Sepsis-associated AKI was re-defined according to the urine output diagnostic criteria of KDIGO for AKI (Supplementary materials). Furthermore, sensitivity analyses of hospital and ICU mortality were conducted based on the urine output diagnostic criteria.

The attributable fraction (AF) of mortality from AKI (AF<sub>AKI</sub>) and the population AF of mortality from AKI (population AFAKI) were calculated as reported previously (detail for this calculation is provided in Supplementary materials)(Auriemma et al. 2020; van Vught et al. 2016). The AFAKI denoted the proportion of deaths attributable to AKI in septic patients with AKI. Population AF<sub>AKI</sub> denoted the proportion of all deaths in the sepsis population attributable to AKI. Estimated value was generated by indirect standardization, performed within strata (additional details for this calculation are provided in Supplementary materials). All statistical analyses were conducted in



109 R (version 3.6.1) used in our previous study(Weng et al. 2021; Xu et al. 2021); *p*-value < 0.05 110 denoted statistical significance.

111 Results

112

122

123

124

125

126

128

129

130

131

132

133

134

135

### **Baseline characteristics and outcomes**

Fig 1 illustrates patient selection flow chart, whereas Table 1 outlines the baseline patient 113 characteristics. The Wenzhou cohort tended to be older with higher vasopressor use probability 114 115 compared to those of the MIMIC IV cohort. The baseline modified SOFA score, modified APS III, 116 modified LODS and OASIS were similar between the two cohorts. The proportion of patients 117 requiring continuous renal replacement therapy (CRRT) were similar, however, more patients acquired AKI in the Wenzhou cohort compared to the MIMIC IV cohort. We reported more cases 118 119 of stage 1 AKI in the Wenzhou population compared to the MIMIC IV population. While hospital 120 and ICU LOS were longer in the Wenzhou cohort, hospital and ICU mortalities were higher in the 121 MIMIC IV cohort.

Table 1 shows participant characteristics stratified by KAI status. in both cohorts, patients with AKI demonstrated a greater need for mechanical ventilation, vasopressor use, CRRT, and higher illness severity scores than patients without AKI; they also were characterized by higher mortality and longer LOS.

### Comparison of clinical outcomes adjusted for severity of illness

### 127 **MIMIC IV**

We reported overall hospital mortality of 13.5%; briefly, 2,118 of 15,610 patients died before discharge (Table 2). Compared to non-survivors, patients who survived were significantly younger, the majority were male and of the white race; they exhibited lower modified SOFA score, modified APS III, modified LODS, and OASIS. Patients who died had a higher tendency to require mechanical ventilation, vasopressors, and CRRT, and a higher probability of AKI. Nearly 66% of non-survivors developed AKI, whereas 28% of survivors developed AKI (p < 0.001).

The unadjusted hospital mortality of sepsis with AKI was 27%, while that for sepsis without AKI was 7% (Table 3; OR = 4.82; 95% CI 4.37, 5.31; p < 0.001). In constructing the adjusted model,



no other variables except the prespecified variables (illness severity score, age, gender, race, and shock) met the set criteria (variables inclusion criteria are described in Supplementary materials). In the multivariable regression model, the OR values for hospital mortality of patients with AKI were attenuated but remained statistically significant after adjustment for illness severity score (modified APS III, SOFA score, modified LODS, and OASIS), age, gender, race, and shock. In unadjusted and adjusted models, AKI was significantly associated with an increased risk of hospital mortality (Table 3). Sensitivity analyses based on the urine output diagnostic criteria of KDIGO for AKI yielded similar results (Supplementary Table S2). In other sensitivity analyses, in which we included patients with pulmonary sepsis and shock and excluded patients who died within 1 week after hospitalization, the results did not change (data not shown). Septic patients who developed AKI, experienced longer hospital and ICU LOS than patients without AKI, whether among survivors or across all patients (Supplementary Table S3 and S4).

Furthermore, we conducted stratified analyses based on the severity of AKI. And found that stages 1, 2, and 3 AKI were all independently associated with hospital and ICU mortality in adjusted and unadjusted models (Fig 2, Supplementary Table S5). In four adjusted models, stage 3 AKI exhibited the most significant association with increased risk of hospital and ICU mortality. In the MIMIC IV cohort, the AF<sub>AKI</sub> was 58.6% (CI, 46.8%–70.3%), whereas the population AF<sub>AKI</sub> was 30.2% (95% CI, 22.7%–37.8%).

### Wenzhou

Among 1,341 patients, 155 patients died before discharge, with overall hospital mortality of 10.3% (Table 2). Compared to non-survivors, patients who survived were younger, exhibited lower modified SOFA scores, modified APS III, modified LODS, and OASIS. Besides, patients who died showed a higher tendency to require mechanical ventilation, vasopressors, and CRRT, a higher probability of AKI. Nearly 67% of non-survivors developed AKI, whereas 33% of survivors developed AKI (p < 0.001).

The unadjusted hospital mortality of sepsis with AKI was 21% while that for sepsis without AKI was 6% (Table 3; OR = 4.16; 95% CI 2.93, 5.98; p < 0.001). Similar to findings in the MIMIC IV



cohort, development of AKI in the Wenzhou population was significantly associated with increased risk of hospital and ICU mortality in multivariate logistic regression after we adjusted for illness severity score (modified APS III, SOFA score, modified LODS and OASIS), age and shock. Similarly, in the sensitivity analyses, AKI was associated with ICU mortality, when we applied the urine output diagnostic criteria of KDIGO for AKI (Supplementary Table S2).

As in the MIMIC IV cohort, patients with AKI had prolonged hospital and ICU (Supplementary Table S3 and S4). Moreover, the correlation of AKI with mortality was stratified according to the severity of AKI. In the Wenzhou cohort, stages 1, 2, and 3 AKI were independently associated with hospital and ICU mortality (Fig 2, Supplementary Table S5). In the Wenzhou cohort, the AF<sub>AKI</sub> was 44.6% (95% CI, 12.7%–76.4%), whereas the population AF<sub>AKI</sub> was 26.0% (95% CI, 0%–56.8%).

### Discussion

We have revealed the association of AKI with mortality in two critically ill cohorts. Stages 1, 2, and 3 AKI were associated with a longer hospital and ICU LOS, as well as greater hospital and ICU mortality. It is not surprising that patients with stage 3 AKI are characterized by a worse prognosis than those with stages 1- and 2 AKI. Our results provide implicate AKI as an independent risk factor for mortality in patients with sepsis.

Lopes et al. (Lopes et al. 2010) demonstrated that AKI had a negative impact on long-term mortality of patients with sepsis. Uhel et al. (Uhel et al. 2020) reported persistent AKI is independently associated with sepsis mortality compared with transient AKI. Our study yielded similar results to previous studies. However, to our knowledge, this is the first study to explore the excess mortality attributable to AKI in septic patients with severe illness. We applied the KDIGO serum creatinine and urine output diagnostic criteria for AKI. whereas, the potential confounders and mediating variables between AKI and death were depicted in DAG. With this approach, we elucidated the relationship between variables and reduce the selection bias.

Previous reports show that increased severity of AKI is correlated with a stepwise increase in mortality among critically ill patients (Panitchote et al. 2019; Uchino et al. 2006; Uchino et al.



2005), which concurred with our findings. Elsewhere. Vaara et al. reported that stage 1 AKI was not a substantial risk factor for 90-day mortality in critically ill patients (Vaara et al. 2014). Through matched risk-adjusted mortality, Cheyron et al. found that only severe ARF was significantly associated with excess attributable mortality in ICU patients with liver cirrhosis (du Cheyron et al. 2005). Herein, we have reported different results for hospital and ICU mortality compared to the results of Vaara et al. and Cheyron et al., which may be attributed to differences in severity of the disease and that we focused on critically ill patients with sepsis. Additionally, the development of AKI had been associated with long-term risk of mortality and other adverse outcomes, including chronic kidney disease (CKD) and end-stage renal disease (ESRD)(Coca et al. 2009; Fortrie et al. 2019). AKI occurrence was mostly in association with sepsis in critically ill patients. Currently, no effective cure or effective treatment is available yet and clinical interventions are limited (Al-Jaghbeer et al. 2018; Skube et al. 2018). Therefore, the prevention of sepsis-induced AKI is critical in reducing the case fatality rate.

Of note, we estimated the AF<sub>AKI</sub> and population AF<sub>AKI</sub> in two cohorts and yielded similar results. The AF<sub>AKI</sub> is the proportion of deaths attributable to AKI in patients with AKI, whereas the population AF<sub>AKI</sub> is the proportion of all deaths in the sepsis population attributable to AKI. We found that the AF<sub>AKI</sub> was 58.6% in MIMIC IV and 44.6% in Wenzhou; the population AF<sub>AKI</sub> was 32% in MIMIC IV and 26.0% in Wenzhou. Few studies have assessed the attributable mortality of AKI. In one study, the attributable fraction of mortality from critically ill patients with liver cirrhosis was 25% in mild ARF and 51% in severe ARF(du Cheyron et al. 2005), whereas the 90-day mortality attributable to AKI in ICU patients was 8.6%, and population attributable mortality was nearly 20% (Vaara et al. 2014) in another study. It is imperative to apply our results to estimate the attributable mortality of other critically ill patients. The AF of mortality from sepsis was 15% compared to ICU-non-sepsis (Shankar-Hari et al. 2018). The AF of ARDS in patients with sepsis was 27% and 37% in EARLI and VALID cohorts, respectively (Auriemma et al. 2020). Notably, we found that the AF of AKI in patients with sepsis was higher than in other ICU disease states.

There are several highlights in the present study. First, we included two independent large



cohorts of critically ill adult patients hospitalized with sepsis from two countries. The similarity of the association between AKI and mortality in two cohorts strengthens the validity and generalizability of our findings. Second, we reported consistent results we adjusted for four different severity of illness scores in two cohorts. Third, in constructing the adjusted model, the DAG was applied to explore the potential confounders and mediating variables between AKI and death, and we carefully accounted for every possible confounder. Finally, the inclusion criteria for patients strictly followed the latest definitions of sepsis and AKI.

Despite these strengths, this study had some drawbacks. First, being a retrospective cohort study, the residual confounders may remain despite having adjusted for many potential confounders. We hypothesize the acute organ failures were mediators between AKI and death as depicted in the DAG, and not included in the models. However, if the failure of organs such as lung, hepatic, or heart play a predominant role in the association between AKI and mortality, or the organ failures were confounders, our results may not evaluate the precise correlation of AKI with mortality. Second, we enrolled critically ill patients from ICUs, as such, our findings may not apply to the general patients. Finally, because we focused on sepsis, a common cause of AKI, our results may not be generalizable to patients with AKI attributable to other causes.

This study provides the AF<sub>AKI</sub> and population AF<sub>AKI</sub> in patients with sepsis. In two retrospective cohorts of ICU patients with sepsis, all stage AKI were independently associated with hospital and ICU mortality, and longer hospital and ICU LOS. Our findings would guide the evaluation of the plausible effect size for future clinical trials regarding the prevention or treatment of AKI.

#### Conclusions

In two retrospective cohorts of critically ill patients with sepsis, all stage AKI conferred increased risk for hospital mortality, independent of overall severity of illness. Development of AKI was also associated with ICU mortality, hospital and ICU LOS.

### Acknowledgements

We wish to thank the intensivists, data managers, and other staff in the participating MIMIC IV



244 Database.

### Ethical Statement

- 246 The study was based on existing dataset and was approved by the Ethics Committee of the
- 247 Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The
- 248 study was conducted in accordance of the Helsinki Declaration.
- 249 Funding
- 250 This study was supported by National Natural Science Foundation of China, No.81772054. The
- 251 Key R&D Program of Zhejiang Province (2019C03011), Wenzhou Major Science and Technology
- 252 Innovation Project (2018ZY006), Clinical Research Fundation of the 2nd Affiliated Hospital of
- 253 Wenzhou Medical University (SAHoWMU-CR2018-11-134).
- 254 **REFERENCES**
- Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, and Kellum JA. 2018. Clinical Decision Support for In-Hospital AKI. *J Am Soc Nephrol* 29:654-660. 10.1681/asn.2017070765
- Auriemma CL, Zhuo H, Delucchi K, Deiss T, Liu T, Jauregui A, Ke S, Vessel K, Lippi M, Seeley E, Kangelaris KN,
   Gomez A, Hendrickson C, Liu KD, Matthay MA, Ware LB, and Calfee CS. 2020. Acute respiratory distress
- syndrome-attributable mortality in critically ill patients with sepsis. *Intensive Care Med* 46:1222-1231.
- 260 10.1007/s00134-020-06010-9
- Barrantes F, Tian J, Vazquez R, Amoateng-Adjepong Y, and Manthous CA. 2008. Acute kidney injury criteria predict outcomes of critically ill patients. *Crit Care Med* 36:1397-1403. 10.1097/CCM.0b013e318168fbe0
- Coca SG, Yusuf B, Shlipak MG, Garg AX, and Parikh CR. 2009. Long-term risk of mortality and other adverse
   outcomes after acute kidney injury: a systematic review and meta-analysis. *Am J Kidney Dis* 53:961-973.
   10.1053/j.ajkd.2008.11.034
- du Cheyron D, Bouchet B, Parienti JJ, Ramakers M, and Charbonneau P. 2005. The attributable mortality of acute
   renal failure in critically ill patients with liver cirrhosis. *Intensive Care Med* 31:1693-1699. 10.1007/s00134 005-2842-7
- Fortrie G, de Geus HRH, and Betjes MGH. 2019. The aftermath of acute kidney injury: a narrative review of longterm mortality and renal function. *Critical Care* 23. 10.1186/s13054-019-2314-z
- Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, and Metnitz PG. 2009. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. *Intensive Care Med* 35:1692-1702. 10.1007/s00134-009-1530-4
- Johnson AE, Kramer AA, and Clifford GD. 2013. A new severity of illness scale using a subset of Acute Physiology
  And Chronic Health Evaluation data elements shows comparable predictive accuracy. *Crit Care Med*41:1711-1718. 10.1097/CCM.0b013e31828a24fe
- Kellum JA, and Lameire N. 2013. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). *Crit Care* 17:204. 10.1186/cc11454
- 279 Khadzhynov D, Schmidt D, Hardt J, Rauch G, Gocke P, Eckardt KU, and Schmidt-Ott KM. 2019. The Incidence of

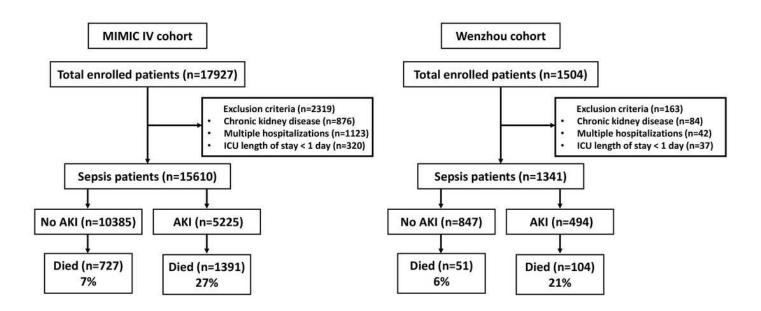


- Acute Kidney Injury and Associated Hospital Mortality. *Dtsch Arztebl Int* 116:397-404. 10.3238/arztebl.2019.0397
- 282 Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T,
  283 Damiano A, and et al. 1991. The APACHE III prognostic system. Risk prediction of hospital mortality for
  284 critically ill hospitalized adults. *Chest* 100:1619-1636. 10.1378/chest.100.6.1619
- Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, and Teres D. 1996. The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. *Jama* 276:802-810. 10.1001/jama.276.10.802
- 288 Lederer DJ, Bell SC, Branson RD, Chalmers JD, Marshall R, Maslove DM, Ost DE, Punjabi NM, Schatz M, Smyth 289 AR, Stewart PW, Suissa S, Adjei AA, Akdis CA, Azoulay É, Bakker J, Ballas ZK, Bardin PG, Barreiro E, 290 Bellomo R, Bernstein JA, Brusasco V, Buchman TG, Chokroverty S, Collop NA, Crapo JD, Fitzgerald DA, 291 Hale L, Hart N, Herth FJ, Iwashyna TJ, Jenkins G, Kolb M, Marks GB, Mazzone P, Moorman JR, Murphy 292 TM, Noah TL, Reynolds P, Riemann D, Russell RE, Sheikh A, Sotgiu G, Swenson ER, Szczesniak R, 293 Szymusiak R, Teboul JL, and Vincent JL. 2019. Control of Confounding and Reporting of Results in Causal 294 Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann 295 Am Thorac Soc 16:22-28. 10.1513/AnnalsATS.201808-564PS
- Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, and Ramsay G.
   2003. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. *Crit Care Med* 31:1250-1256. 10.1097/01.Ccm.0000050454.01978.3b
- Li M, Zou H, and Xu G. 2016. The prevention of statins against AKI and mortality following cardiac surgery: A metaanalysis. *Int J Cardiol* 222:260-266. 10.1016/j.ijcard.2016.07.173
- Lopes JA, Fernandes P, Jorge S, Resina C, Santos C, Pereira A, Neves J, Antunes F, and Gomes da Costa A. 2010.
   Long-term risk of mortality after acute kidney injury in patients with sepsis: a contemporary analysis. *BMC* Nephrol 11:9. 10.1186/1471-2369-11-9
- Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, Angus DC, and Kellum JA. 2010. Acute
   kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival.
   *Kidney Int* 77:527-535. 10.1038/ki.2009.502
- Nisula S, Kaukonen KM, Vaara ST, Korhonen AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I, Suojaranta-Ylinen R, Laurila JJ, Tenhunen J, Reinikainen M, Ala-Kokko T, Ruokonen E, Kuitunen A, and Pettilä V. 2013. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. *Intensive Care Med* 39:420-428. 10.1007/s00134-012-2796-5
- Panitchote A, Mehkri O, Hastings A, Hanane T, Demirjian S, Torbic H, Mireles-Cabodevila E, Krishnan S, and Duggal A. 2019. Factors associated with acute kidney injury in acute respiratory distress syndrome. *Ann Intensive Care* 9:74. 10.1186/s13613-019-0552-5
- Peerapornratana S, Manrique-Caballero CL, Gómez H, and Kellum JA. 2019. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. *Kidney International* 96:1083-1099. 10.1016/j.kint.2019.05.026
- Poston JT, and Koyner JL. 2019. Sepsis associated acute kidney injury. BMJ 364:k4891. 10.1136/bmj.k4891
- Shankar-Hari M, Harrison DA, Rowan KM, and Rubenfeld GD. 2018. Estimating attributable fraction of mortality from sepsis to inform clinical trials. *J Crit Care* 45:33-39. 10.1016/j.jcrc.2018.01.018
- 320 Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, and



358

| 321 | Singer M. 2016. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For                |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 322 | the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 315:775-787.              |
| 323 | 10.1001/jama.2016.0289                                                                                               |
| 324 | Skube SJ, Katz SA, Chipman JG, and Tignanelli CJ. 2018. Acute Kidney Injury and Sepsis. Surg Infect (Larchmt)        |
| 325 | 19:216-224. 10.1089/sur.2017.261                                                                                     |
| 326 | Uchino S, Bellomo R, Goldsmith D, Bates S, and Ronco C. 2006. An assessment of the RIFLE criteria for acute renal    |
| 327 | failure in hospitalized patients. Crit Care Med 34:1913-1917. 10.1097/01.Ccm.0000224227.70642.4f                     |
| 328 | Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney         |
| 329 | N, Tolwani A, and Ronco C. 2005. Acute renal failure in critically ill patients: a multinational, multicenter        |
| 330 | study. Jama 294:813-818. 10.1001/jama.294.7.813                                                                      |
| 331 | Uhel F, Peters-Sengers H, Falahi F, Scicluna BP, van Vught LA, Bonten MJ, Cremer OL, Schultz MJ, and van der         |
| 332 | Poll T. 2020. Mortality and host response aberrations associated with transient and persistent acute kidney          |
| 333 | injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med 46:1576-1589.          |
| 334 | 10.1007/s00134-020-06119-x                                                                                           |
| 335 | Vaara ST, Pettila V, Kaukonen KM, Bendel S, Korhonen AM, Bellomo R, Reinikainen M, and Finnish Acute Kidney          |
| 336 | Injury Study G. 2014. The attributable mortality of acute kidney injury: a sequentially matched analysis*.           |
| 337 | Crit Care Med 42:878-885. 10.1097/CCM.0000000000000045                                                               |
| 338 | van Vught LA, Klein Klouwenberg PM, Spitoni C, Scicluna BP, Wiewel MA, Horn J, Schultz MJ, Nürnberg P, Bonten        |
| 339 | MJ, Cremer OL, and van der Poll T. 2016. Incidence, Risk Factors, and Attributable Mortality of Secondary            |
| 340 | Infections in the Intensive Care Unit After Admission for Sepsis. Jama 315:1469-1479.                                |
| 341 | 10.1001/jama.2016.2691                                                                                               |
| 342 | Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, and Thijs LG.          |
| 343 | 1996. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On             |
| 344 | behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care                     |
| 345 | Medicine. Intensive Care Med 22:707-710. 10.1007/bf01709751                                                          |
| 346 | Weng J, Hou R, Zhou X, Xu Z, Zhou Z, Wang P, Wang L, Chen C, Wu J, and Wang Z. 2021. Development and                 |
| 347 | validation of a score to predict mortality in ICU patients with sepsis: a multicenter retrospective study. $J$       |
| 348 | <i>Transl Med</i> 19:322. 10.1186/s12967-021-03005-y                                                                 |
| 349 | Xu J, Weng J, Yang J, Shi X, Hou R, Zhou X, Zhou Z, Wang Z, and Chen C. 2021. Development and validation of a        |
| 350 | nomogram to predict the mortality risk in elderly patients with ARF. PeerJ 9:e11016. 10.7717/peerj.11016             |
| 351 | Zhou S, Zeng Z, Wei H, Sha T, and An S. 2021. Early combination of albumin with crystalloids administration might    |
| 352 | be beneficial for the survival of septic patients: a retrospective analysis from MIMIC-IV database. Ann              |
| 353 | Intensive Care 11:42. 10.1186/s13613-021-00830-8                                                                     |
| 354 | Figure legend                                                                                                        |
| 355 | Fig 1 Study flowcharts for the MIMICIV and Wenzhou cohorts                                                           |
| 356 | Fig 2 Odds ratios with 95% confidence intervals for in-hospital mortality stratified by severity of AKI. In addition |


to severity of illness variables listed in the Figure, adjusted models for MIMIC IV include age, gender, race, and

shock. Adjusted models for Wenzhou include age, and shock



### Figure 1

Fig 1
Study flowcharts for the MIMICIV and Wenzhou cohorts





### Figure 2

Fig 2

Odds ratios with 95% confidence intervals for in-hospital mortality stratified by severity of AKI. In addition to severity of illness variables listed in the Figure, adjusted models for MIMIC IV include age, gender, race, and shock. Adjusted models for Wenzhou include age, and shock



| MIMIC IV hospital             | mortality     |                  |       |                    |         |
|-------------------------------|---------------|------------------|-------|--------------------|---------|
| Unadjusted model for hospit   | al mortality  |                  |       | OR (95% CI)        | P-value |
| Stage 1 A                     | AKI (n=3187)  | Hert             |       | 3.42 (3.05, 3.83)  | <0.001  |
| Stage 2 A                     | AKI (n=1117)  |                  |       | 6.01 (5.19, 6.96)  | < 0.001 |
| Stage 3                       | AKI (n=921)   |                  |       | 9.8 (8.43, 11.40)  | < 0.001 |
| Adjusted for modified APS III | Stage 1 AKI   | =                |       | 2.14 (1.88, 2.43)  | <0.001  |
|                               | Stage 2 AKI   | H <del>=1</del>  |       | 2.95 (2.50, 3.49)  | <0.001  |
|                               | Stage 3 AKI   | +■-1             |       | 3.94 (3.30, 4.71)  | < 0.001 |
| Adjusted for modified SOFA    | Stage 1 AKI   | <del>le l</del>  |       | 2.30 (2.03, 2.60)  | < 0.001 |
|                               | Stage 2 AKI   | +•-1             |       | 3.58 (3.04, 4.20)  | < 0.001 |
|                               | Stage 3 AKI   | <b>⊢</b>         |       | 4.76 (4.01, 5.66)  | < 0.001 |
| Adjusted for modified LODS    | Stage 1 AKI   | i=i              |       | 2.21 (1.95, 2.50)  | < 0.001 |
|                               | Stage 2 AKI   | H <del>a I</del> |       | 3.11 (2.64, 3.66)  | < 0.001 |
|                               | Stage 3 AKI   | <b>⊢</b> ■-1     |       | 4.54 (3.82, 5.39)  | <0.001  |
| Adjusted for OASIS            | Stage 1 AKI   | Heri             |       | 2.30 (2.03, 2.60)  | < 0.001 |
|                               | Stage 2 AKI   | H <del>≡</del> H |       | 3.46 (2.94, 4.07)  | < 0.001 |
|                               | Stage 3 AKI   | <del></del>      |       | 4.73 (3.98, 5.61)  | < 0.001 |
| Wenzhou hospital              | mortality     |                  |       |                    |         |
| Unadjusted model for hospit   | al mortality  |                  |       |                    |         |
| Stage 1                       | AKI (n=323)   | <b>⊢</b> ■ 1     |       | 3.56 (2.39, 5.32)  | < 0.001 |
| Stage 2                       | AKI (n=104)   | <b>—</b>         | -1    | 4.94 (2.87, 8.34)  | < 0.001 |
|                               | 3 AKI (n=67)  | <del></del>      |       | 6.18 (3.33, 11.16) | <0.001  |
| Adjusted for modified APS III | I Stage 1 AKI | H=               |       | 2.26 (1.45, 3.49)  | <0.001  |
|                               | Stage 2 AKI   | <b>⊢</b> •       |       | 2.92 (1.62, 5.16)  | <0.001  |
|                               | Stage 3 AKI   | <b>⊢</b> •──     |       | 2.60 (1.28, 5.15)  | 0.007   |
| Adjusted for modified SOFA    | Stage 1 AKI   | <b>⊢•</b> →      |       | 2.52 (1.65, 3.86)  | < 0.001 |
|                               | Stage 2 AKI   | H                |       | 2.87 (1.58, 5.08)  | < 0.001 |
|                               | Stage 3 AKI   | r                |       | 2.86 (1.41, 5.64)  | 0.002   |
| Adjusted for modified LODS    | Stage 1 AKI   | <b>⊢</b> •→      |       | 2.27 (1.48, 3.49)  | < 0.001 |
|                               | Stage 2 AKI   | <b>⊢</b> ■       |       | 2.75 (1.52, 4.89)  | < 0.001 |
|                               | Stage 3 AKI   |                  |       | 3.21 (1.61, 6.28)  | <0.001  |
| Adjusted for OASIS            | Stage 1 AKI   | <b>⊢</b> •1      |       | 2.48 (1.63, 3.81)  | < 0.001 |
|                               | Stage 2 AKI   | <b>⊢</b>         |       | 3.23 (1.80, 5.65)  | < 0.001 |
|                               | Stage 3 AKI   | -                |       | 3.58 (1.79, 6.93)  | <0.001  |
|                               |               | 01234567         | 8 910 |                    |         |
|                               |               |                  |       |                    |         |

Odds Ratio and 95% CI



### Table 1(on next page)

all

Table 1 Baseline characteristics of MIMIC IV and Wenzhou cohorts, together and stratified by AKI

Table 2 Patient characteristics stratified by in-hospital mortality, MIMIC IV and Wenzhou cohorts

Table 3 Association of AKI with mortality in unadjusted and adjusted models, MIMIC IV and Wenzhou cohorts

Table 1 Baseline characteristics of MIMIC IV and Wenzhou cohorts, together and stratified by AKI

| Clinical variable*                     | All patients (n=16951)  |                       | MIMIC I                 | IIC IV (n=15610) |            | Wenzhou (n=1341)    |                  |            |
|----------------------------------------|-------------------------|-----------------------|-------------------------|------------------|------------|---------------------|------------------|------------|
| variable                               | MIMIC IV<br>(n = 15610) | Wenzhou<br>(n = 1341) | No AKI<br>(n=103<br>85) | AKI<br>(n=5225)  | P<br>value | No AKI<br>(n = 847) | AKI<br>(n = 494) | P<br>value |
| Age, years                             | 64±17                   | 69±10                 | 63±17                   | 64±16            | 0.27       | 70 (63, 76)         | 70 (62, 75)      | 0.617      |
| Male gender, %                         | 8889 (57)               | 778 (58)              | 5863<br>(56)            | 3026<br>(58)     | 0.086      | 489 (58)            | 289 (59)         | 0.828      |
| White race, %                          | 10537 (68)              | -                     | 7143<br>(69)            | 3394<br>(65)     | <<br>0.001 | -                   | -                | -          |
| APS III                                | 46 (33, 66)             | 45 (33, 65)           | 40 (31,<br>54)          | 63 (44,<br>87)   | <<br>0.001 | 40 (31, 53)         | 60 (42, 81)      | <<br>0.001 |
| Modified APS                           | 36 (27, 53)             | 35 (27, 51)           | 33 (25,<br>44)          | 49 (33,<br>71)   | <<br>0.001 | 32 (25, 43)         | 44.5 (32, 66)    | <<br>0.001 |
| SOFA score                             | 5 (4, 8)                | 5 (4, 8)              | 5 (3, 7)                | 8 (5, 11)        | <<br>0.001 | 4 (3, 6)            | 7 (5, 11)        | <<br>0.001 |
| Modified SOFA score†                   | 5 (3, 7)                | 5 (3, 7)              | 4 (3, 6)                | 7 (4, 10)        | <<br>0.001 | 4 (3, 6)            | 6 (4, 9)         | <<br>0.001 |
| LODS                                   | 5 (3, 7)                | 5 (3, 7)              | 4 (2, 6)                | 7 (5, 10)        | <<br>0.001 | 4 (2, 6)            | 7 (4, 9)         | <<br>0.001 |
| Modified<br>LODS†                      | 3 (1, 5)                | 3 (1, 5)              | 2 (1, 4)                | 5 (2, 7)         | <<br>0.001 | 2 (1, 4)            | 4 (2, 6.75)      | <<br>0.001 |
| OASIS                                  | 34 (28, 40)             | 34 (28, 40)           | 32 (26,<br>37)          | 38 (32,<br>45)   | < 0.001    | 32 (27, 38)         | 38 (31, 45)      | <<br>0.001 |
| Vasopressor<br>use in first 48 h,<br>% | 7529 (48)               | 708(53)               | 4262<br>(41)            | 3267<br>(63)     | < 0.001    | 387 (46)            | 321 (65)         | <<br>0.001 |
| Mechanical ventilation, %              | 11334 (73)              | 986 (74)              | 6840<br>(66)            | 4494<br>(86)     | <<br>0.001 | 561 (66)            | 425 (86)         | <<br>0.001 |
| CRRT, %                                | 561 (4)                 | 45 (3)                | 26 (0)                  | 535 (10)         | <<br>0.001 | 1 (0)               | 44 (9)           | <<br>0.001 |
| AKI, %                                 | 5225 (33)               | 494 (37)              | -                       | -                | -          | -                   | -                | -          |
| Stage 1 AKI, %                         | 3187 (20)               | 323 (24)              | -                       | -                | -          | -                   | -                | -          |
| Stage 2 AKI, %                         | 1117 (7)                | 104 (8)               | -                       | -                | -          | -                   | -                | -          |
| Stage 3 AKI, %                         | 921 (6)                 | 67 (5)                | -                       | -                | -          | -                   | -                | -          |
| Hospital LOS                           | 8 (5, 13)               | 9 (6, 14)             | 7 (4,                   | 11 (6,           | <          | 8 (6, 12)           | 12 (7, 19)       | <          |



|                |           |           | 11)      | 20)       | 0.001 |           |            | 0.001 |
|----------------|-----------|-----------|----------|-----------|-------|-----------|------------|-------|
| Hospital LOS‡  | 8 (5, 13) | 8 (5, 13) | 7 (4,    | 12 (7,    | <     | 8 (6, 12) | 12 (7, 20) | <     |
|                |           |           | 11)      | 22)       | 0.001 |           |            | 0.001 |
| ICU LOS        | 2 (1, 5)  | 4 (2, 6)  | 2 (1 2)  | F (2, 0)  | <     | 2 (2 5)   | E (2, 10)  | <     |
|                |           |           | 2 (1, 3) | 5 (2, 9)  | 0.001 | 3 (2, 5)  | 5 (3, 10)  | 0.001 |
| ICU LOS‡       | 2 (1, 5)  | 3 (1, 5)  | 2 (1, 3) | 5 (2, 10) | <     | 3 (2, 5)  | 5 (3, 10)  | <     |
|                |           |           |          |           | 0.001 |           |            | 0.001 |
| Hospital       | 2118 (14) | 155 (12)  | 727 (7)  | 1391      | <     | E1 (6)    | 104 (21)   | <     |
| mortality, %   |           |           | 727 (7)  | (27)      | 0.001 | 51 (6)    | 104 (21)   | 0.001 |
| ICU mortality, | 1478 (9)  | 111 (8)   | 412 (4)  | 1065      | <     | 26 (2)    | OF (17)    | <     |
| %              |           |           | 413 (4)  | (20)      | 0.001 | 26 (3)    | 85 (17)    | 0.001 |

- 5 APS: Acute Physiology Score, SOFA: Sequential Organ Failure Assessment, LODS: Logistic Organ Dysfunction
- 6 Score, OASIS: Oxford Acute Severity of Illness Score, CRRT: Continuous Renal Replacement Therapy, AKI:
- 7 Acute Kidney Injury, LOS: length of stay
- 8 \*Data shown as mean ± standard deviation, median (interquartile range) or number (percent) as appropriate
- 9 † Modified scores exclude points related to renal function
- 10 ‡ Restricted to survivor

13

Table 2 Patient characteristics stratified by in-hospital mortality, MIMIC IV and Wenzhou cohorts

| Clinical variable*               | Survived (n = 13492) | Died (n = 2118) | p value |
|----------------------------------|----------------------|-----------------|---------|
| MIMIC IV patient characteristics |                      |                 |         |
| Age, years                       | 64 (53, 76.25)       | 68 (57, 81)     | < 0.001 |
| Male gender, %                   | 7772 (58)            | 1117 (53)       | < 0.001 |
| White race, %                    | 9295 (69)            | 1242 (59)       | < 0.001 |
| APS III                          | 43 (32, 59)          | 81 (60, 103)    | < 0.001 |
| Modified APS III†                | 34 (26, 48)          | 64 (46, 83)     | < 0.001 |
| SOFA score                       | 5 (3, 7)             | 9 (6, 13)       | < 0.001 |
| Modified SOFA score†             | 4 (3, 7)             | 8 (5, 11)       | < 0.001 |
| LODS                             | 4 (3, 6)             | 9 (6, 12)       | < 0.001 |
| Modified LODS†                   | 2 (1, 4)             | 6 (4, 8)        | < 0.001 |
| OASIS                            | 32 (27, 38)          | 43 (36, 49)     | < 0.001 |
| Vasopressor use in first 48 h, % | 6179 (46)            | 1350 (64)       | < 0.001 |
| Mechanical ventilation, %        | 9483 (70)            | 1851 (87)       | < 0.001 |
| CRRT, %                          | 235 (2)              | 326 (15)        | < 0.001 |
| AKI, %                           | 3834 (28)            | 1391 (66)       | < 0.001 |
| Hospital LOS                     | 8 (5, 13)            | 6 (3, 13)       | < 0.001 |
| ICU LOS                          | 2 (1, 5)             | 4 (2, 8)        | < 0.001 |
| Clinical variable*               | Survived (n = 1186)  | Died (n = 155)  | p value |
| Wenzhou patient characteristics  |                      |                 |         |



| Age, years                       | 70 (62, 76) | 72 (66, 76)     | 0.029   |
|----------------------------------|-------------|-----------------|---------|
| Male gender, %                   | 692 (58)    | 86 (55)         | 0.553   |
| APS III                          | 43 (32, 59) | 77 (55, 97.5)   | < 0.001 |
| Modified APS III†                | 34 (26, 48) | 59 (42, 80.5)   | < 0.001 |
| SOFA score                       | 5 (3, 7)    | 9 (6, 13)       | < 0.001 |
| Modified SOFA score†             | 5 (3, 7)    | 8 (5, 11)       | < 0.001 |
| LODS                             | 4 (3, 6)    | 9 (6, 11)       | < 0.001 |
| Modified LODS†                   | 2 (1, 4)    | 6 (4, 8)        | < 0.001 |
| OASIS                            | 33 (27, 39) | 42 (34.5, 47.5) | < 0.001 |
| Vasopressor use in first 48 h, % | 611 (52)    | 97 (63)         | 0.012   |
| Mechanical ventilation, %        | 856 (72)    | 130 (84)        | 0.003   |
| CRRT, %                          | 27 (2)      | 18 (12)         | < 0.001 |
| AKI, %                           | 390 (33)    | 104 (67)        | < 0.001 |
| Hospital LOS                     | 9 (6, 14)   | 8 (4.5, 15.5)   | 0.074   |
| ICU LOS                          | 4 (2, 6)    | 5 (3, 8.5)      | < 0.001 |

<sup>\*</sup>Data shown as mean ± standard deviation, median (interquartile range) or number (percent) as appropriate

19

14

15

Table 3 Association of AKI with mortality in unadjusted and adjusted models, MIMIC IV and Wenzhou cohorts

| MIMIC IV logistic regression models (n = 15610)   | OR (95% CI)        | p value |
|---------------------------------------------------|--------------------|---------|
| Unadjusted model of AKI for in-hospital mortality | 4.82 (4.37, 5.31)  | <0.001  |
| Adjusted for modified APS III*                    | 2.57 (2.30, 2.87)  | <0.001  |
| Adjusted for modified SOFA score*                 | 2.89 (2.59, 3.21)  | <0.001  |
| Adjusted for modified LODS*                       | 2.72 (2.44, 3.03)  | <0.001  |
| Adjusted for OASIS                                | 2.88 (2.58, 3.20)  | <0.001  |
| Unadjusted model of AKI for ICU mortality         | 6.18 (5.49, 6.97)  | <0.001  |
| Adjusted for modified APS III†                    | 2.86 (2.51, 3.27)  | <0.001  |
| Adjusted for modified SOFA score†                 | 3.30 (2.90, 3.76)  | <0.001  |
| Adjusted for modified LODS†                       | 2.98 (2.61, 3.30)  | <0.001  |
| Adjusted for OASIS                                | 3.15 (2.77, 3.59)  | <0.001  |
| Wenzhou logistic regression models (n = 1341)     | OR (95% CI)        | p value |
| Unadjusted model of AKI for in-hospital mortality | 4.16 (2.93, 5.98)  | <0.001  |
| Adjusted for modified APS III*                    | 2.44 (1.65, 3.64)  | <0.001  |
| Adjusted for modified SOFA score*                 | 2.64 (1.79, 3.91)  | <0.001  |
| Adjusted for modified LODS*                       | 2.48 (1.68, 3.68)  | <0.001  |
| Adjusted for OASIS                                | 2.75 (1.88, 4.07)  | <0.001  |
| Unadjusted model of AKI for ICU mortality         | 6.56 (4.22, 10.53) | <0.001  |
| Adjusted for modified APS III†                    | 3.45 (2.12, 5.75)  | <0.001  |

<sup>†</sup> Modified APACHE scores exclude points related to renal function





| Adjusted for modified SOFA score† | 3.85 (2.39, 6.37) | <0.001 |
|-----------------------------------|-------------------|--------|
| Adjusted for modified LODS†       | 3.38 (2.09, 5.62) | <0.001 |
| Adjusted for OASIS                | 3.96 (2.46, 6.53) | <0.001 |

| $^{\mathbf{a}}$ | Λ |
|-----------------|---|
| Z               | v |
|                 |   |

21 Modified scores exclude points related to renal function

\*In addition to severity of illness variable listed in the table, adjusted models include age, gender, race, and shock

† In addition to severity of illness variable listed in the table, adjusted models include age, and shock

2425

26