

Identification and charactering of APX genes provide new insights in abiotic stresses response in *Brassica napus*

Jiao Pan^{1,2}, Lei Zhang^{1,2}, Min Chen^{1,2}, Yuxuan Ruan^{1,2}, Peifang Li^{1,2}, Zhihui Guo^{1,2}, Boyu Liu^{1,2}, Ying Ruan^{1,2}, Mu Xiao^{1,2}, Yong Huang^{Corresp. 1,2}

¹ College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China

² Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China

Corresponding Author: Yong Huang
Email address: yonghuang@hunau.edu.cn

Ascorbate peroxidase (APX) plays an important role in scavenging H₂O₂ and balancing ROS content in plant cells, which is of great significance for the growth and development of life and resistance to external stress. However, up to now, APXs in *Brassica napus* (*B. napus*) have not been systematically characterized. In this study, a total of 26 *BnaAPX* genes were identified, which were distributed on 13 chromosomes and divided into five phylogenetic branches. Gene structure analysis showed that they had a wide varied number of exons while *BnaAPX*s proteins contained more similar motifs in the same phylogenetic branches. qRT-PCR analysis of 26 *BnaAPX* gene expression patterns showed that three putative cytosol *BnaAPX* genes *BnaAPX1*, *BnaAPX2*, *BnaAPX9*, two putative microsomal genes *BnaAPX18* and *BnaAPX25* were up-regulated rapidly and robustly under high salt, water shortage and high temperature stresses. In addition, the above three abiotic stresses led to a significant increase in APX activity. The results provide basic and comprehensive information for further functional characterization of APX gene family in *B. napus*.

1 **Identification and Charactering of APX Genes Provide New Insights in**
2 **Abiotic Stresses Response in *Brassica napus***

3

4

5 Jiao Pan^{1,2}, Lei Zhang^{1,2}, Min Chen^{1,2}, Yuxuan Ruan^{1,2}, Peifang Li^{1,2}, Zhihui Guo^{1,2}, Boyu Liu^{1,2},

6 Ying Ruan^{1,2}, Mu Xiao^{1,2}, Yong Huang^{1,2,*}

7 ¹ College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.

8 ² Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha,
9 Hunan, China.

10 * Corresponding author, Yong Huang, yonghuang@hunau.edu.cn

11

12

13 **Abstract**

14 Ascorbate peroxidase (APX) plays an important role in scavenging H₂O₂ and balancing ROS
15 content in plant cells, which is of great significance for the growth and development of life and
16 resistance to external stress. However, up to now, APXs in *Brassica napus* (*B. napus*) have not
17 been systematically characterized. In this study, a total of 26 *BnaAPX* genes were identified, which
18 were distributed on 13 chromosomes and divided into five phylogenetic branches. Gene structure
19 analysis showed that they had a wide varied number of exons while *BnaAPX*s proteins contained
20 more similar motifs in the same phylogenetic branches. qRT-PCR analysis of 26 *BnaAPX* gene
21 expression patterns showed that three putative cytosol *BnaAPX* genes *BnaAPX1*, *BnaAPX2*,
22 *BnaAPX9*, two putatice microsomal genes *BnaAPX18* and *BnaAPX25* were up-regulated rapidly
23 and robustly under high salt, water shortage and high temperature stresses. In addition, the above
24 three abiotic stresses led to a significant increase in APX activity. The results provide basic and
25 comprehensive information for further functional characterization of APX gene family in *B. napus*.

26 **Keywords:** Ascorbate Peroxidase, Expression Pattern, Abiotic Stress, *Brassica napus*

27 **Introduction**

28 Reactive Oxygen Species (ROS), which includes superoxide anion radicals (O_2^-), hydrogen
29 peroxide (H_2O_2), hydroxyl radicals (OH^-), and singlet oxygen (1O_2) are the ineluctable products
30 of indispensable metabolic processes in aerobic organisms (Schieber & Chandel, 2014). In plants,
31 ROS are generally from metabolic reactions including electron transport chains in chloroplasts and
32 mitochondria, lipid catabolism in glyoxylic acid and peroxisomes, and photorespiration (Asada,
33 2006; Dietz, Turkan & Krieger-Liszakay, 2016). Current studies have been focusing on the toxicity
34 of ROS for a long time as it can cause oxidative damage on DNA, RNA, protein and biomembranes
35 (lipids) (Hossain *et al.*, 2015). However, as a common molecule that exists in almost all aerobic
36 organisms, ROS also carries great significance to support a cell function, it plays significant roles
37 in various major life activities such as development, proliferation, cell death and signaling
38 (Baniulis *et al.*, 2013). Among them, the study of signaling function of ROS is the most thorough
39 and detailed. ROS usually works as a signal required for the cascade set off through the stress
40 sensor, and they can be produced by NADPH oxidase (also known as respiratory burst oxidase
41 homologs, RBOHs), superoxide enzymes, and peroxidases from apoplasts (Suzuki *et al.*, 2011).

42 To maintain the normal operation of plant function, the ROS content of each compartment in
43 the plant needs to be kept accurate, which requires the balance between ROS production and
44 clearance (Choudhury *et al.*, 2017). Enzymatic antioxidant system plays an important role in ROS
45 scavenging, but each subcellular compartment has its own ROS production and scavenging
46 pathway, so the ROS homeostasis in each subcellular compartment is different, further hinting the
47 unique characteristics of ROS (Choudhury *et al.*, 2017). The major antioxidant system Ascorbate
48 peroxidase (APX), Superoxide dismutase (SOD), Catalase (CAT) and Peroxidase (POD) and
49 secondary metabolites Carotenoids involve in the ROS elimination (Choudhury *et al.*, 2017;
50 Havaux, 2014; Wang, Lin & Al-Babili, 2021).

51 Previously, The APXs, a group of important enzymes to balance ROS in cells have been
52 identified and characterized in Arabidopsis. They are distributed in different subcellular
53 compartments and serve distinct functions (Heidari, 2010; Panchuk, Zentgraf & Volkov, 2005).

54 The APX in *Arabidopsis* chloroplasts includes sAPX (stromal APX) and tAPX (thylakoid APX)
55 (*Jespersen et al.*, 1997). The APX in chloroplasts have canonical ROS scavenging roles and is
56 likely to simultaneously act as a ROS signaling regulator (*Maruta et al.*, 2016). Microsomal APXs
57 in *Arabidopsis* are APX3, APX4 and APX5, their functions are also mainly about ROS (especially
58 H₂O₂) detoxification (*Panchuk et al.*, 2005). As mentioned earlier, the source of ROS in the cytosol
59 is the most diverse, and the signaling pathways are **also the most complex**. Cytosol is also the main
60 site of ROS-mediated stress response in plants, which makes function of cytosolic APX
61 particularly important. Cytosolic APXs, APX1, APX2 and APX6 carry diverse functions (*Fryer*
62 *et al.*, 2003; *Karpinski et al.*, 1997; *Kubo et al.*, 1995; *Panchuk, Volkov & Schöffl*, 2002).

63 In the process that ascorbate peroxidase purges ROS, it has a higher affinity to H₂O₂ than
64 its affinity to any other ROS, **which means its mainly responsible roles** for H₂O₂ clearance
65 (*Panchuk et al.*, 2005). APX plays an essential role in ascorbate-glutathione cycle, the major
66 hydrogen peroxide scavenging process in plants under stress (*Sofo et al.*, 2015). Ascorbic acid
67 (AsA) works as an electron donor when ascorbate peroxidase reduces hydrogen peroxide to H₂O,
68 and is further oxidized to form monodehydroascorbate (MDHA). Part of MDHA will be reduced
69 to AsA by monodehydroascorbate reductase (MDHAR) to be recycled **and** refunction; and another
70 part of MDHA can be further oxidized to form dehydroascorbic acid (DHA). In addition to
71 participating in the deoxidation of H₂O₂, APX is also involved in resistance to a variety of abiotic
72 stresses. Overexpression of *Solanum melongena SmAPX* and *LcAPX* in *Arabidopsis* show greater
73 flood resistance and less oxidative damage under **wild water** (*Chiang et al.*, 2017). Overexpression
74 of *OsAPX* in *Medicago sativa L.* shows better salt tolerance (*Zhang et al.*, 2014). Similarly, the
75 survival rate of *Thellungiella salsuginea TsApx6* overexpressing *Arabidopsis* was increased and
76 the leaf water loss rate was reduced under drought stress (*Li et al.*, 2016).

77 With global climate change, plants often encounter relatively severe abiotic stresses,
78 including drought stress, salt stress, low temperature stress, high temperature stress and toxic
79 metals of aluminum, arsenic and cadmium in soil, which affect their growth and development, and
80 even cause crop yield reduction and crop quality drop (*Zhu*, 2016). *Brassica napus* is an important

81 economic crop and oil crop in China. The *B. napus* cultivar Xiang-you 15 (XY15) used in this
82 experiment is bred by Hunan Agricultural University. It has the characteristics of low erucic acid
83 and low glucosinolates and is cultured in the middle and lower reaches of Yangtze River of China
84 mainly. In the resistance of plants to abiotic stress, APX plays a very important role, whereas the
85 function of APXs in *B. napus* remains still unclear.

86

87

88 **Materials and methods**

89 **Plant growth conditions and abiotic stress treatment**

90 *Brassica napus* XY15 were grown under the condition of 22°C, 16 hours light and 8 hours
91 dark photoperiod, 70% relative humidity. The 30-day seedlings (with 6 leaves) were treated with
92 300 mmol/L NaCl, 20% polyethylene glycol 6000 (PEG6000) and 40 °C heat for 3 hours, 6 hours,
93 9 hours and 12 hours, respectively. The leaf of three plants under each treatment, along with
94 samples of no-treatment control group, were collected respectively. The samples were frozen in
95 liquid nitrogen immediately and stored in -80°C refrigerator to retain activity of RNA and other
96 molecular.

97 **Screening and identification of *BnaAPX* genes**

98 The amino acid sequences of *AtAPXs* in *Arabidopsis thaliana* were downloaded from the NCBI
99 (<http://www.ncbi.nlm.nih.gov/>). The *AtAPXs* were used as queries to search for *BnaAPX* genes in
100 *B. napus* Genome Browser of Genoscope (<http://www.genoscope.cns.fr/brassicanapus/>). The
101 Expect Value was set at 1×10^{-10} to the APX domain (IPR002016) by submitting them in
102 InterProScan (<http://www.ebi.ac.uk/interpro/>) (Tao *et al.*, 2018).

103 **Multiple alignment and evolutionary analysis of *BnaAPXs***

104 Multiple alignments of *BnaAPX* and *AtAPX* protein sequences were performed by ClustalX
105 (2.0) (Larkin *et al.*, 2007). Then, the file was subjected to MEGA7 software to construct
106 phylogenetic tree with Neighbor-joining method. The tree construction setting was dependent on
107 full length protein sequences of *BnaAPXs* and *AtAPXs*. Neighbor-joining method was set as

108 follows: sites as pairwise deletion included; substitution model consisting of poisson model; and
109 Bootstrap test of 1000 replicates for internal branch reliability (*Kumar, Stecher & Tamura*, 2016).
110 26 genes were identified as *BnaAPX* genes according to their homology with *AtAPX* genes. The
111 final evolutionary tree was constructed with the multiple alignments of 26 *BnaAPX* genes, 8 *AtAPX*
112 genes and 8 *OsAPX* genes. TBtools software (Chen *et al.* 2020) was used to exhibit the synteny
113 relationships of *APX* genes in the *B. napus*, between *B. napus* and *B. rapa* or *B. oleracea*.

114 **Gene structure, Chromosomal location and domain organization analysis of *BnaAPX* family**

115 The cDNA and DNA sequences of *BnaAPX* family genes were obtained in *B. napus* Genome
116 Browser of Genoscope. And the analysis of their exon-intron structures was accomplished by
117 submitting them in the Gene Structure Display Server 2.0 (GSDS) website
118 (<http://gsds.cbi.pku.edu.cn/>) (*Hu et al.*, 2015).

119 The chromosomal location information of all the *BnaAPX* genes were obtained from *B. napus*
120 Genome Browser and analyzed by MapChart (version 2.23) software (*Voorrips*, 2002).

121 The protein sequences of BnaAPXs were submitted to the Simple Modular Architecture
122 Research Tool (SMART version 8, <http://smart.embl.de/>) for identification and annotation of the
123 conserved domains (*Letunic & Bork*, 2018). PFAM database was chosen in SMART version 8 to
124 obtain the protein sequence of domains.

125 **Responses of *BnaAPX* genes to abiotic stress**

126 *B. napus* sample RNA was extracted by Trizol reagent (MagZol™ Reagent, Magen), and then
127 DNA was cleaned by RNase-Free DNase I in RevertAid RT Kit (Thermo Scientific). RNA samples
128 were reversed into cDNA by RiboLock RNase Inhibitor and RevertAid RT in RevertAid RT Kit.
129 These cDNA worked as templates for quantitative real-time PCR (qPCR) to detect the expression
130 of relative genes, the qPCR primers were designed by primer premier 5 (Supplement file 1). The
131 qPCR reaction is performed with UltraSYBR Mixture (High ROX) (Cwbio), which contains
132 GoldStar Taq DNA Polymerase, PCR Buffer, dNTPs, SYBR Green I fluorescent dyes, etc. Three-
133 step quantitative real-time PCR program was the reaction procedure used: 95°C for 10 minutes,
134 following 40 cycles of 95°C for 10 seconds, 56-64°C for 30 seconds and 72 °C for 32 seconds.

135 Along with the melting curve procedure to detect the specificity of primer: 95°C for 15 seconds,
136 60°C for 1 minute, 95 °C for 15 seconds and 60°C for 15 seconds. Expression data acquired were
137 normalized with the actin gene of *B. napus* and calculated with the $2^{-\Delta\Delta CT}$ method to analyze the
138 relative changes in gene expression (Livak & Schmittgen, 2001).

139 **Measurement of the enzyme activity of APX**

140 The activities of APX were determined according to the protocol of ascorbate peroxidase
141 activity assay kit (Solarbio, Beijing, China). And the content of H₂O₂ were assayed using
142 commercial kits provided by Beyotime (Beyotime, Shanghai, China). In brief, all the 30-day
143 seedlings were divided into three groups: high salt group (300 mmol / L NaCl), water deficient
144 group (20% polyethylene glycol) and high temperature group (40 °C heat). Three replicates were
145 set in each group, and the leaves were collected every 3 hours. The leaves (1.0 g) of three plants
146 under each treatment were collected as samples, and were ground in liquid nitrogen with reagent
147 I (1.0 ml) in ice bath. Subsequently, the extraction was centrifuged at 13,000 g at 4°C for 20 min,
148 and the supernatant was used for the enzyme activity measurement. The products were determined
149 by BioTek's Synergy ek's Synergy HT Reader (BioTek Instruments, Inc., Highland Park, PO Box
150 998, Winooski, VT 05404-0998). Each activity unit was defined according to the instruction of
151 the antioxidant enzyme assays kit. The enzyme activity of APX and content of H₂O₂ would
152 replicate three times, and the data would be analyzed by Excel (Caverzan *et al.*, 2012; Shigeoka,
153 Nakano & Kitaoka, 1980).

154

155 **Results**

156 **Identification and chromosomal location of *BnaAPX* genes in *B. napus***

157 26 *BnaAPX* genes were identified on the basis of their homology with *AtAPX* genes and
158 nominated as from *BnaAPX1* to *BnaAPX26* based on their gene accession number (Supplement
159 file 2). *BnaAPX* gene is widely distributed in 13 out of 19 chromosomes in *B. napus* (Figure 1). 11
160 *BnaAPX*s located in 5 chromosomes of A sub-genomes (come from *B. pekinensis*) and 12
161 *BnaAPX*s located in 8 chromosomes of C sub-genomes (come from *B. oleracea*). Among them,

162 ChrA03 carried 4 *BnaAPX*s, ChrA01 carried 3 *BnaAPX*s, and five chromosomes (chrA07, C01,
163 C03, C07 and C08) carried two *BnaAPX*s each. In addition, six chromosomes (chrA06, A09, C02,
164 C05, C06 and C09) carried one *BnaAPX*. No *BnaAPX*s were distributed on chromosomes A02,
165 A04, A05, A08, A10 and C04.

166 The length of *BnaAPX* protein sequences ranged from 197 (*BnaAPX1*) to 439 (*BnaAPX22* and
167 *BnaAPX23*) amino acids, molecular weight (Mw) varied from 21.76 kDa (*BnaAPX1*) to 47.47
168 kDa (*BnaAPX22*), and isoelectric point (pI) ranged from 4.72 (*BnaAPX1*) to 8.73 (*BnaAPX18*),
169 respectively (Supplement file 2). The intron-exon structure of the *BnaAPX* genes in each clade was
170 described separately. It was obvious that not only the homologous genes in *B. napus* had a similar
171 gene structure, but also the *AtAPX* genes (Figure 2; Supplement file 3).

172 Phylogenetic relationship of *BnaAPX* genes

173 A neighbor-joining evolutionary tree of *BnaAPX* gene family was constructed with 26 amino
174 acid sequences of *BnaAPX*s, 8 amino acid sequences of *AtAPX*s and 8 amino acid sequences of
175 *OsAPX*s. The results showed that all *APX*s was grouped into 5 clades (Figure 3), among which
176 *BnaAPX1-5, 8, 9, 15, 20, 26* and *AtAPX1, AtAPX2, OsAPX1, OsAPX2* were clustered into clade I,
177 *BnaAPX11* and *BnaAPX13* were clustered into clade IV with *AtAPX6*, clade I and clade IV were
178 located in cytoplasm coping with stress from sulfur dioxide, ozone, heat and high light (*Fryer et al., 2003; Karpinski et al., 1997; Kubo et al., 1995; Panchuk et al., 2002*). *BnaAPX7, 14, 16, 19, 21, 24* and *AtAPX3, AtAPX5, OsAPX3, OsAPX4* were clustered into clade II, *BnaAPX25* and
180 *BnaAPX18* were clustered into clade V with *AtAPX4*, clade II and clade V were located in
181 microsomes, role in ROS (especially H₂O₂) detoxification (*Panchuk et al., 2005*). *BnaAPX6, 17, 10, 22, 23* were clustered into clade III with *AtSAPX, AtTAPX, OsAPX5, OsAPX6*, and *OsAPX7, OsAPX8* were located in chloroplast as ROS signaling regulators and detoxidotes (*Maruta et al., 2016*).

186 Conserved motif analysis of *BnaAPX* protein family

187 *BnaAPX* protein sequences are subject to MEME to identify the conserved motifs. 10 motifs
188 have been found in *BnaAPX*s (Figure 4). They are respectively named as motif 1-10. Among them,

189 motif 1, 3-6, 9, 10 belong to plant_peroxidase_like superfamily, while motif 2 belongs to
190 PLN02608 superfamily. Apparently, motif composition of BnaAPX protein in the same clade
191 resembles each other. Clade I has almost motifs 1-9. Most members of clade II have the same
192 composition and order of motifs with clade I, similarly, Clade III has almost all of 10 motifs
193 except for motif 9, apart from that, motif 1, 4, 5, 7, 8, 10 are encoded in most members of clade
194 IV, and motif 2, 6, 8 are shared in genes of clade V. All microsomal APX proteins contained the
195 same composition and sequence of motif 2, motif 6 and motif 8. All chloroplast APX proteins
196 contained the same composition and sequence of motif 1, 3, 5-8,10. Almost all cytoplasmic APX
197 proteins contained motif 1, 4, 5, 7, 8, except BnaAPX12 which contained only motif 7 and motif
198 1. Motif 2, 4, 6 , 8 exist in a majority of BnaAPX proteins, which indicates that they are conserved
199 motifs of BnaAPXs. In addition, motif 2 contains a typical APX active site (APLMLPLAWHSA),
200 and motif 7 contains a peroxidase proximal heme ligand domain (DIVALSGGHTL). Meanwhile,
201 motif 2 and motif 4 have relatively conserved structures.

202 **Gene expression of *BnaAPX* genes under abiotic stress**

203 In order to study the expression pattern of *APX* gene in the leaves of *B. napus* seedlings under
204 salt, high temperature and PEG treatment (to mimic osmotic stress), the expression profile of
205 *BnaAPX*s in the samples was analyzed by qPCR (Figure 5a). Microsomal *APX*s and chloroplast
206 *APX*s in *B. napus* leaves were almost not expressed under PEG treatment, except that *BnaAPX25*
207 was highly expressed in every group; Cytosolic *APX*s were barely expressed under PEG treatment
208 except for *BnaAPX20* and *BnaAPX26* genes. In the NaCl-treated group, most of the microsomal
209 *APX*s were expressed at a low level, except for the expression of Clade V and *BnaAPX19*, and the
210 expression of chloroplast *APX*s was also rare, except for *BnaAPX22*, which was highly expressed;
211 however, there were almost no expression of cytosolic *APX*s has been found in group. On the
212 contrary, the case of the 40 °C high temperature treatment stress group was completely different.
213 The expression of cytosolic *APX*s in *B. napus* leaves were in a high level in high temperature
214 environment, except the genes of clade IV and *BnaAPX15*. Similarly, The expression level of

215 microsomal *APX*s and chloroplast *APX*s were also generally low under high temperature, except
216 that the gene expression level of clade V was relatively higher.

217 In this experiment, microsomal *APX*s were mainly involved in the response to salt stress,
218 among which *BnaAPX18*, *BnaAPX 19* and *BnaAPX 25* were the most important. Cytosolic *APX*s
219 was mainly involved in the response to high temperature stress, especially *BnaAPX 1-5*, 9, 20. In
220 addition, only *BnaAPX 22* in chloroplast *APX* showed high expression under salt stress. And only
221 *BnaAPX 25* in microsomal *APX* was highly expressed under PEG stress.

222 **Activity of APX under abiotic stress treatment**

223 The activity of APX in *B. napus* increased first and then decreased under salt, PEG and high
224 temperature treatment (Figure 5b). The activity reached the maximum value after 3 h of salt
225 treatment, but dropped to less than half of the initial value at 12 h. Under PEG treatment, the
226 activity reached the maximum after 6 h, and the activity was still higher than the initial value at 12
227 h. Under high temperature stress, the activity reached the maximum at 6 h, and then slightly lower
228 than the initial value at 12 h. In addition, the content of H₂O₂ decreased first and then increased
229 which was basically opposite to APX activity (Figure 5c).

230

231 **Discussion**

232 **The evolution and conservation of BnaAPXs**

233 APX plays an important role in scavenging H₂O₂ and maintaining the balance of ROS content
234 in plants, which is of great significance for the growth and development of life and resistance to
235 external **stress**. Previously, 8 *APX* genes have been identified in *A. thaliana*, which serve different
236 functions at different subcellular locations (Panchuk *et al.*, 2005). Based on *AtAPX* gene reference,
237 26 *APX* homologous genes were found in *B. napus*. These genes are much richer than 8 in *A.*
238 *thaliana*, 8 in *Oryza sativa* (Teixeira *et al.*, 2006), 9 in *Sorghum bicolor L* (Akbulak *et al.*, 2018)
239 and 7 in *Solanum lycopersicum* (Najami *et al.*, 2008). **They have the same number as *Gossypium***
240 ***hirsutum*** (Tao *et al.*, 2018). Studies have shown that the genomes of *B. pekinensis* and *B. oleracea*

241 are triploidized from *A. thaliana*, and harbor three homologous genes of *A. thaliana* (Wang *et al.*,
242 2011). *B. napus* ($4n = 38$) is crossed by *B. rapa* ($2n = 20$) and *B. oleracea* ($2n = 18$) (Morinaga,
243 1929, 1934). In fact, *B. napus* carries much more *APXs* than its partents *B. rapa* (9 *APXs*) and *B.*
244 *oleracea* (10 *APXs*), but it is still less than the theoretical number of 38. *B. napus* inherited most
245 of the parents *APX* genes. Some *APXs* lost during the formation of *B. napus*, while some *APXs*
246 duplicated (Udalll & Wendel, 2006) (Figure 6; Supplement file 4). For example, an *APX* gene on
247 C07 chromosome of *B. oleracea* corresponded to only one gene on A07 chromosome of *B. napus*,
248 and the homologous gene on C07 chromosome was missing. While a gene on chromosome A05
249 of *B. rapa* not only corresponded to a gene on chromosome A06 of *B. napus*, but also corresponded
250 to genes on A09, C05 and C08.

251 26 *BnaAPX* genes formed five branches with homologous genes in *A. thaliana* and *O. sativa*
252 (Figure 3). By analyzing the structure of intron and exon, it is found that *BnaAPX* have similar
253 gene structure with *AtAPX* in each subfamilies (Figure 2; Supplement file 3). Domain analysis
254 showed that subgroup IV and subgroup V had similar structure in domain (Figure 4), indicating
255 that these sequences might have common ancestors. The difference between the two subfamilies
256 indicates that the two subfamilies have relatively independent evolutionary history.

257 **The roles of BnaAPXs in abiotic stresses**

258 The expansion of APX family in *B. napus* may be a result in adaptation to environment.
259 Arabidopsis APXs vary in subcellulcalization, including chloroplast, microsome and cytosol
260 (Kubo *et al.*, 1995; Maruta *et al.*, 2016; Panchuk *et al.*, 2002). Based on the phylogenetic tree, it
261 was inferred that clade I and clade IV function as cytosolic APX. clade function as chloroplasts
262 APX; and Clade II and clade V function as Microsomal APXs (Figure 3).

263

264 APX genes involved abiotic stresses by ROS scavenging or in ROS signal regulation (Maruta
265 *et al.*, 2016). Under high salt, water deficiency and high temperature stress, APX activity and H_2O_2
266 content show the opposite levels (Figure 5b, 5c). At an early stage, APX was activated and enable
267 to clear H_2O_2 , but its antioxidant capacity gradually decreases in the later. At the same stage, qRT-

268 PCR also showed that five *BnaAPX* genes were up-regulated rapidly and violently. Among them,
269 *BnaAPX1*, *BnaAPX2* and *BnaAPX9*, homologs of *AtAPX1* and *AtAPX2*, maintains a high
270 expression level under high temperature stress (Figure 5a). It was speculated that these three genes
271 could effectively remove oxides and improve the heat resistance of plants under high temperature
272 stress. *BnaAPX18* and *BnaAPX25*, homologous to *AtAPX4* located in microsomes (Panchuk *et al.*,
273 2005), showed high expression levels under high salt stress, suggesting that the genes had a certain
274 role in scavenging peroxides such as hydrogen peroxide and improving salt tolerance of plants.
275 *BnaAPX25* was significantly up-regulated under three abiotic stresses. It was predicted that
276 *BnaAPX25* can regulate chloroplast photosynthetic system and scavenge reactive oxygen species
277 under abiotic stress, and it was speculated that *BnaAPX25* can quickly respond to abiotic stress
278 (Panchuk *et al.*, 2005).

279 However, the expression levels of some genes showed a downward trend under stress. For
280 example, the expression of *AtAPX2* was down-regulated under drought stress simulated by
281 mannitol (Li *et al.*, 2019). Similarly, the expression levels of most *BnaAPXs* changed little or even
282 decreased under drought stress. It was speculated that the expression of these genes was inhibited
283 after drought stress, and ROS was eliminated by other genes or other ways. In addition, the
284 expression patterns of some genes were different under different stresses. For example, the
285 expression levels of *BnaAPX2* *et al.* were significantly up-regulated under high temperature stress
286 and down-regulated under high salt stress. APX genes expression level little matched the APX
287 activity or H₂O₂ content at the stress treatment process (Figure 5b, 5c), which suggested the APX
288 activity might be governed by post-translational regulation and the exact role of APX genes
289 should be explored in depth.

290 **Conclusions**

291 In conclusion, 26 *APX* genes were identified in *B. napus*, and their different biochemical
292 characteristics were analyzed. The similar gene structure and motif arrangement of BnaAPX
293 protein in these subfamilies further supported the classification predicted by phylogenetic tree.
294 qRT-PCR analysis showed that *BnaAPX* gene could respond to a variety of abiotic stresses such

295 as high salt, water shortage and high temperature stress at transcriptional level. The results can
296 provide basic and comprehensive information for further functional analysis of *APX* gene family
297 in *B. napus*.

298

299 **Acknowledgments**

300 This work was funded by National Nature Science Foundation of China (31971834),
301 Natural Science Foundation of Hunan Province (2019JJ40116). The funding sources had no
302 influence on the design of the study and collection, analysis, and interpretation of data and in
303 writing the manuscript.

304

305 **Competing Interests**

306 The authors declare that they have no conflict of interest.

307

308 **Author Contributions**

- 309 • Jiao Pan conceived and designed the experiments, performed the experiments, analyzed the
310 data, prepared figures, authored or reviewed drafts of the paper, and approved the final draft.
- 311 • Lei Zhang, Min Chen, Yuxuan Ruan, Peifang Li, Zhihui Guo, Boyu Liu, Ying Ruan, Mu
312 Xiao performed the experiments, authored or reviewed drafts of the paper, and approved the
313 final draft.
- 314 • Yong Huang conceived and designed the experiments, authored or reviewed drafts of the
315 paper, and approved the final draft.

316

317 **References**

318 **Akbudak M A, Filiz E, Vatansever R, Kontbay K. 2018.** Genome-wide identification and expression profiling of
319 Ascorbate Peroxidase (APX) and Glutathione Peroxidase (GPX) genes under drought stress in Sorghum
320 (Sorghum bicolor L.). *Journal of Plant Growth Regulation*, **37**(3), 925-936 DOI:10.1007/s00344-018-9788-
321 9.

322 **Asada K. 2006.** Production and scavenging of reactive oxygen species in chloroplasts and their functions. *Plant*

323 *Physiology*, **141**(2), 391-396 DOI:10.1104/pp.106.082040.

324 **Baniulis D, Hasan S S, Stofleth J T, Cramer W A. 2013.** Mechanism of enhanced superoxide production in the
325 cytochrome b(6)f complex of oxygenic photosynthesis. *Biochemistry*, **52**(50), 8975-8983
326 DOI:10.1021/bi4013534.

327 **Caverzan A, Passaia G, Rosa S B, Ribeiro C W, Lazzarotto F, Margis-Pinheiro M. 2012.** Plant responses to
328 stresses: Role of ascorbate peroxidase in the antioxidant protection. *Genetics and Molecular Biology*, **35**(4),
329 1011-1019 DOI:10.1590/S1415-47572012000600016.

330 **Chiang C M, Chen C C, Chen S P, Lin K H, Chen L R, Su Y H, Yen H C. 2017.** Overexpression of the ascorbate
331 peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic *Arabidopsis*. *J Plant*
332 *Res*, **130**(2), 373-386 DOI:10.1007/s10265-016-0902-4.

333 **Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017.** Reactive oxygen species, abiotic stress and stress
334 combination. *The Plant Journal*, **90**(5), 856-867 DOI:10.1111/tpj.13299.

335 **Dietz K J, Turkan I, Krieger-Liszakay A. 2016.** Redox- and reactive oxygen species-dependent signaling into and
336 out of the photosynthesizing chloroplast. *Plant Physiology*, **171**(3), 1541-1550 DOI:10.1104/pp.16.00375.

337 **Fryer M J, Ball L, Oxborough K, Karpinski S, Mullineaux P M, Baker N R. 2003.** Control of Ascorbate
338 Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a
339 functional organisation of *Arabidopsis* leaves. *The Plant Journal*, **33**(4), 691-705 DOI:10.1046/j.1365-
340 313x.2003.01656.x.

341 **Heidari M. 2010.** Nucleic Acid metabolism, proline concentration and antioxidants enzyme activity in canola
342 (*Brassica napus* L.) under salinity stress. *Agricultural Sciences in China*, **9**(4), 504-511 DOI:10.1016/S1671-
343 2927(09)60123-1.

344 **Hossain M A, Bhattacharjee S, Armin S M, Qian P, Xin W, Li H Y, Burritt D J, Fujita M, Tran L S. 2015.**
345 Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification
346 and scavenging. *Frontiers in Plant Science*, **6**, 420 DOI:10.3389/fpls.2015.00420.

347 **Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015.** GSDS 2.0: an upgraded gene feature visualization server.
348 *Bioinformatics*, **31**(8), 1296-1297 DOI:10.1093/bioinformatics/btu817.

349 **Jespersen H M, Kjaersgaard I V, Ostergaard L, Welinder K G. 1997.** From sequence analysis of three novel
350 ascorbate peroxidases from *Arabidopsis thaliana* to structure, function and evolution of seven types of
351 ascorbate peroxidase. *Biochemical Journal*, **326** (Pt 2), 305-310 DOI:10.1042/bj3260305.

352 **Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux P M. 1997.** Photosynthetic electron transport
353 regulates the expression of cytosolic ascorbate peroxidase genes in *Arabidopsis* during excess light stress.
354 *Plant Cell*, **9**(4), 627-640 DOI:10.1105/tpc.9.4.627.

355 **Kubo A, Saji H, Tanaka K, Kondo N. 1995.** Expression of *Arabidopsis* cytosolic ascorbate peroxidase gene in
356 response to ozone or sulfur dioxide. *Plant Molecular Biology*, **29**(3), 479-489 DOI:10.1007/BF00020979.

357 **Kumar S, Stecher G, Tamura K. 2016.** MEGA7: Molecular evolutionary genetics analysis Version 7.0 for Bigger
358 Datasets. *Molecular Biology and Evolution*, **33**(7), 1870-1874 DOI:10.1093/molbev/msw054.

359 **Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M,**

360 **Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. 2007.** Clustal W and Clustal X version 2.0.
361 *Bioinformatics*, **23**(21), 2947-2948 DOI:10.1093/bioinformatics/btm404.

362 **Letunic I, Bork P. 2018.** 20 years of the SMART protein domain annotation resource. *Nucleic Acids Res*, **46**(D1),
363 D493-d496 DOI:10.1093/nar/gkx922.

364 **Li Z, Zhang J, Li J, Li H, Zhang G. 2016.** The functional and regulatory mechanisms of the *thellungiella salsuginea*
365 ascorbate peroxidase 6 (TsAPX6) in response to salinity and water deficit stresses. *PLoS One*, **11**(4),
366 e0154042 DOI:10.1371/journal.pone.0154042.

367 **Li Z Q, Li J T, Bing J, Zhang G F. 2019.** [The role analysis of APX gene family in the growth and developmental
368 processes and in response to abiotic stresses in *Arabidopsis thaliana*]. *Yi Chuan*, **41**(6), 534-547
369 DOI:10.16288/j.yczz.19-026.

370 **Livak K J, Schmittgen T D. 2001.** Analysis of relative gene expression data using real-time quantitative PCR and
371 the 2(-Delta Delta C(T)) Method. *Methods*, **25**(4), 402-408 DOI:10.1006/meth.2001.1262.

372 **Maruta T, Sawa Y, Shigeoka S, Ishikawa T. 2016.** Diversity and evolution of Ascorbate Peroxidase functions in
373 chloroplasts: more than just a classical antioxidant enzyme? *Plant and Cell Physiology*, **57**(7), 1377-1386
374 DOI:10.1093/pcp/pcv203.

375 **Morinaga T. 1929.** Interspecific hybridization in *Brassica*. I. The cytology of F1 hybrids of *B.napella* and various
376 other species with 10 chromosomes. *Cytologia*, **1**, 16-27

377 **Morinaga T. 1934.** Interspecific hybridization in *Brassica*. *Cytologia*, **6**, 62-67 DOI:10.1508/cytologia.1.16.

378 **Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M. 2008.** Ascorbate peroxidase gene family
379 in tomato: its identification and characterization. *Molecular Genetics and Genomics*, **279**(2), 171-182
380 DOI:10.1007/s00438-007-0305-2.

381 **Panchuk, II, Volkov R A, Schoffl F. 2002.** Heat stress- and heat shock transcription factor-dependent expression and
382 activity of ascorbate peroxidase in *Arabidopsis*. *Plant Physiology*, **129**(2), 838-853 DOI:10.1104/pp.001362.

383 **Panchuk, II, Zentgraf U, Volkov R A. 2005.** Expression of the Apx gene family during leaf senescence of
384 *Arabidopsis thaliana*. *Planta*, **222**(5), 926-932 DOI:10.1007/s00425-005-0028-8.

385 **Schieber M, Chandel N S. 2014.** ROS function in redox signaling and oxidative stress. *Current Biology*, **24**(10),
386 R453-462 DOI:10.1016/j.cub.2014.03.034.

387 **Shigeoka S, Nakano Y, Kitaoka S. 1980.** Metabolism of hydrogen peroxide in *Euglena gracilis* Z by L-ascorbic acid
388 peroxidase. *Biochemical Journal*, **186**(1), 377-380 DOI:10.1042/bj1860377.

389 **Sofo A, Scopa A, Nuzzaci M, Vitti A. 2015.** Ascorbate Peroxidase and Catalase activities and their genetic regulation
390 in plants subjected to drought and salinity stresses. *Int J Mol Sci*, **16**(6), 13561-13578
391 DOI:10.3390/ijms160613561.

392 **Suzuki N, Miller G, Morales J, Shulaev V, Torres M A, Mittler R. 2011.** Respiratory burst oxidases: the engines
393 of ROS signaling. *Current Opinion in Plant Biology*, **14**(6), 691-699 DOI:10.1016/j.pbi.2011.07.014.

394 **Tao C, Jin X, Zhu L, Xie Q, Wang X, Li H. 2018.** Genome-wide investigation and expression profiling of APX
395 gene family in *Gossypium hirsutum* provide new insights in redox homeostasis maintenance during different
396 fiber development stages. *Molecular Genetics and Genomics*, **293**(3), 685-697 DOI:10.1007/s00438-017-
397 1413-2.

398 **Teixeira F K, Menezes-Benavente L, Galvao V C, Margis R, Margis-Pinheiro M. 2006.** Rice ascorbate peroxidase
399 gene family encodes functionally diverse isoforms localized in different subcellular compartments. *Planta*,
400 **224**(2), 300-314 DOI:10.1007/s00425-005-0214-8.

401 **Udall J, A., Wendel J, F. 2006.** polyploidy and crop improvement. *Crop Science*, **46**, S3-S14
402 DOI:10.2135/cropsd2006.07.0489fpg.

403 **Voorrips R E. 2002.** MapChart: software for the graphical presentation of linkage maps and QTLs. *Journal of
404 Heredity*, **93**(1), 77-78 DOI:10.1093/jhered/93.1.77.

405 **Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft I, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B H, Li B, Liu B, Tong C B, Song C, Duran C, Peng C F, Geng C Y, Koh C S, Lin C Y, Edwards D, Mu D S, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H B, Wang H P, Belcram H, Zhou H L, Hirakawa H, Abe H, Guo H, Wang H, Jin H Z, Parkin I A P, Batley J, Kim J S, Just J, Li J W, Xu J H, Deng J, Kim J A, Li J P, Yu J Y, Meng J L, Wang J P, Min J M, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M X, Jin M N, Ramchiary N, Drou N, Berkman P J, Cai Q L, Huang Q F, Li R Q, Tabata S, Cheng S F, Zhang S, Zhang S J, Huang S M, Sato S, Sun S L, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y R, Du Y C, Liao Y C, Lim Y, Narusaka Y, Wang Y P, Wang Z Y, Li Z Y, Wang Z W, Xiong Z Y, Zhang Z H.** 2011. The genome of the mesopolyploid crop species *Brassica rapa*. *Nature Genetics*, **43**(10), 1035-U1157 DOI:10.1038/ng.919.

418 **Zhang Q, Ma C, Xue X, Xu M, Li J, Wu J X.** 2014. Overexpression of a cytosolic Ascorbate Peroxidase gene, 419 OsAPX2, increases salt tolerance in transgenic Alfalfa. *Journal of Integrative Agriculture*, **13**(11), 2500- 420 2507 DOI:10.1016/S2095-3119(13)60691-7.

421 **Zhu J K.** 2016. Abiotic stress signaling and responses in plants. *Cell*, **167**(2), 313-324 422 DOI:10.1016/j.cell.2016.08.029.

423

424

425 **Figure legends**

426

427 Fig. 1 Chromosomal location of *APX* genes in *B. napus*. 23 of the 26 *APX* genes have been mapped on
428 chromosomes A01-A09 and C01-C09. The chromosome map was constructed using the MapChart (2.23)
429 software. Blue lines indicate duplicated *BnAPX* gene pairs. The scale on the chromosome represents megabases
430 (Mb) and the chromosome number is indicated at the top of each chromosome.

431

432 Fig. 2 Gene structure of *APX* genes in *B. napus*. The gene structure of 26 *APX* genes was constructed by Gene
433 Structure Display Server 2.0 (<http://gsds.cbi.pku.edu.cn/>). Yellow boxes represented exons and black lines
434 represented introns. The sizes of exons can be estimated by the scale at bottom.

435

436 Fig. 3 Phylogenetic tree of APX proteins in *B. napus*, *A. thaliana* and *O. sativa*. This tree includes 8 APX
437 proteins from *A. thaliana* (AtAPX), 8 APX proteins from *O. sativa* (OsAPX) and 26 from *B. napus* (BnaAPX).
438 The tree was constructed using MEGA 7.0, and the bootstrap test replicate was set as 1000. Five clades were
439 named as sub-family I - V, marked with different colours.

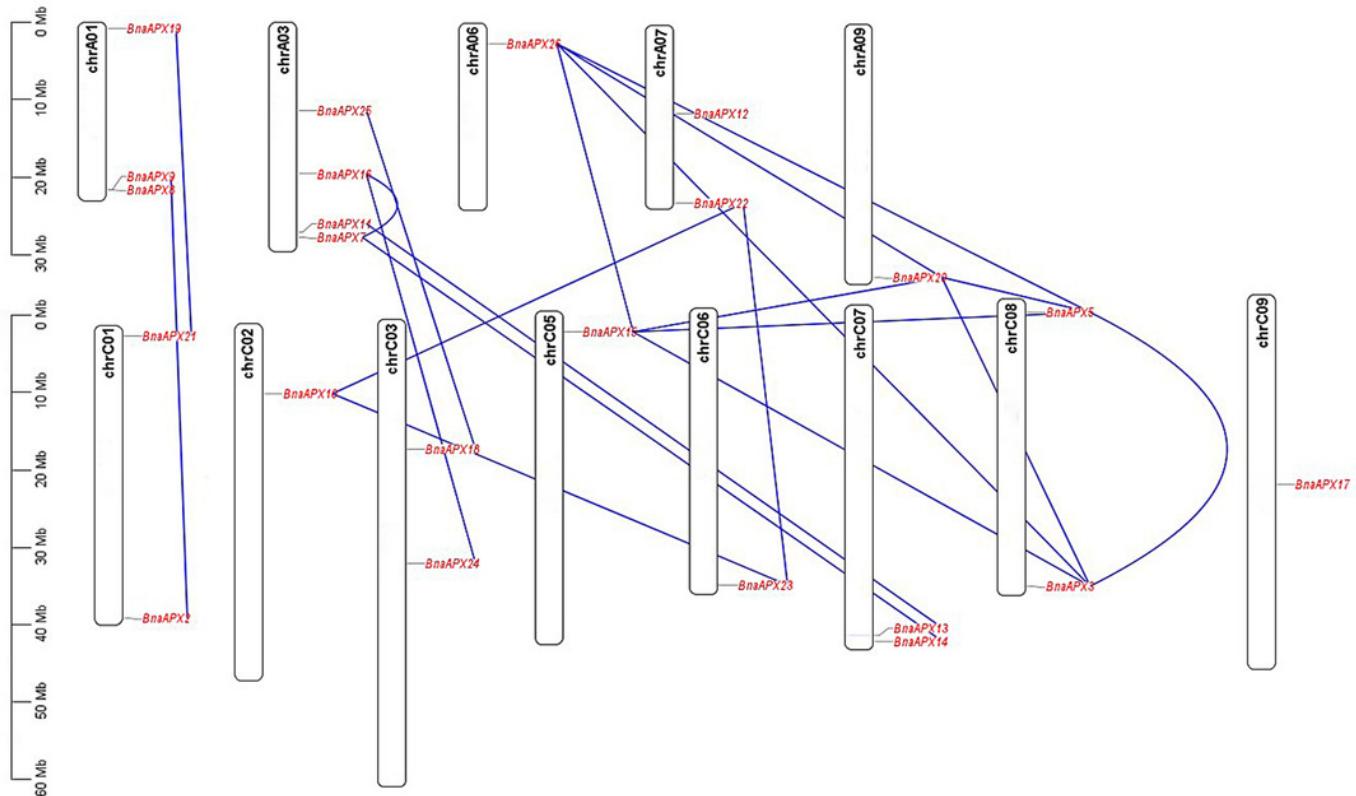
440

441 Fig. 4 Conserved motifs of APX proteins in *B. napus*. Ten predicted motifs were represented by different
442 coloured boxes. Gray lines indicate protein sequence without special motif. The sequence information for each
443 motif is provided in the bottom.

444

445 Fig. 5 The relative expression of *APX* genes, the activities of APX and the content of H₂O₂ under various
446 treatments in *B. napus*. (a) The relative expression of *APX* genes, the actin gene of *B. napus* was used as an
447 internal reference; (b) The activities of APX; (c) The content of H₂O₂. All data were representative of three
448 independent experiments, N = 3 for each group. Data are presented as the mean \pm standard deviation (SD). An
449 asterisk represent corresponding gene significantly up- or down-regulated by Student's t-test between the
450 treatment and the control. *P < 0.05, **P < 0.01. ***P < 0.001.

451


452 Fig. 6 The synteny analysis of APX family in *B. napus*. Gray lines indicate all synteny blocks in the *B. napus*.
453 genome, and the red lines indicate duplicated *BnAPX* gene pairs. The chromosome number is indicated at the
454 bottom of each chromosome.

455

Figure 1

Chromosomal location of APX genes in *B. napus*

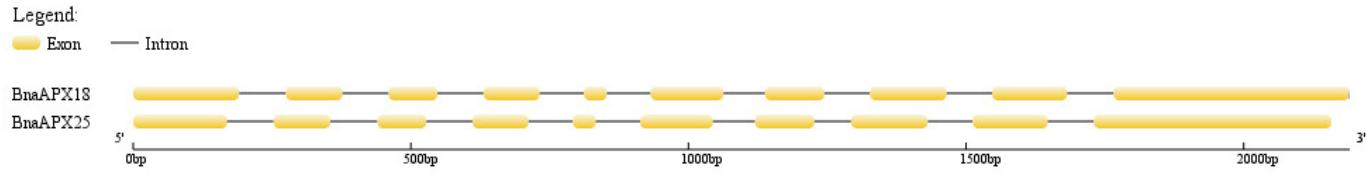
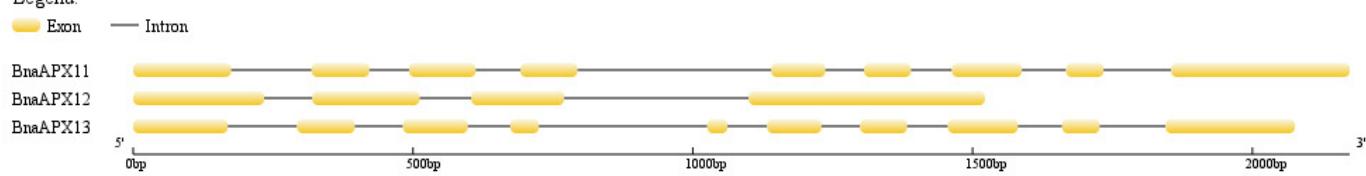
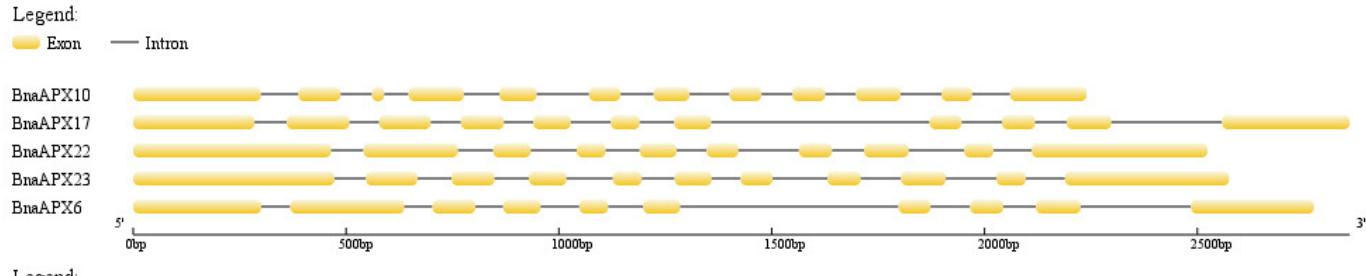
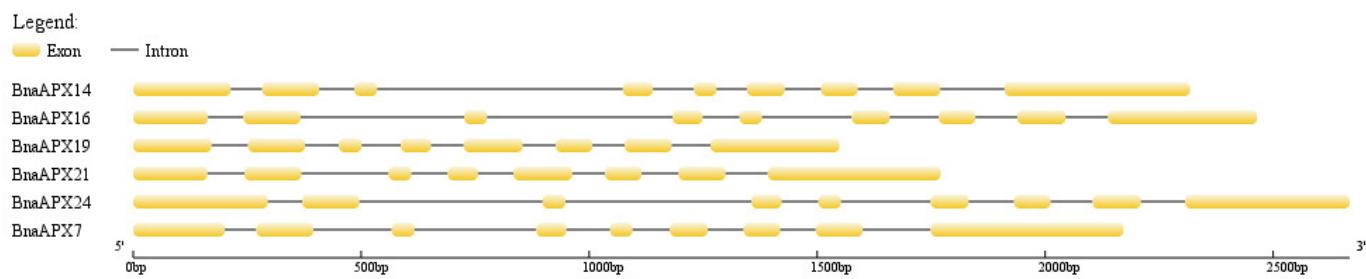
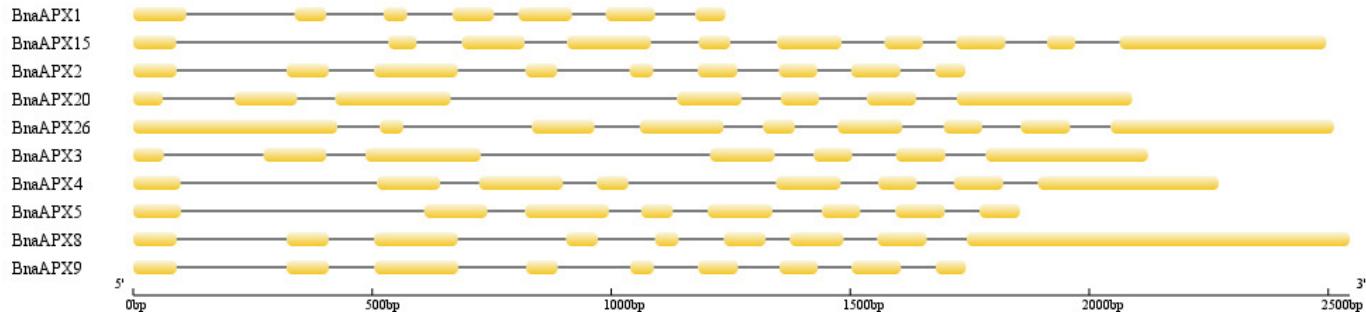





Chromosomal location of APX genes in *B. napus*. 23 of the 26 APX genes have been mapped on chromosomes A01-A09 and C01-C09. The chromosome map was constructed using the MapChart (2.23) software. Blue lines indicate duplicated *BnAPX* gene pairs. The scale on the chromosome represents megabases (Mb) and the chromosome number is indicated at the top of each chromosome.

Figure 2

Gene structure of APX genes in *B. napus*

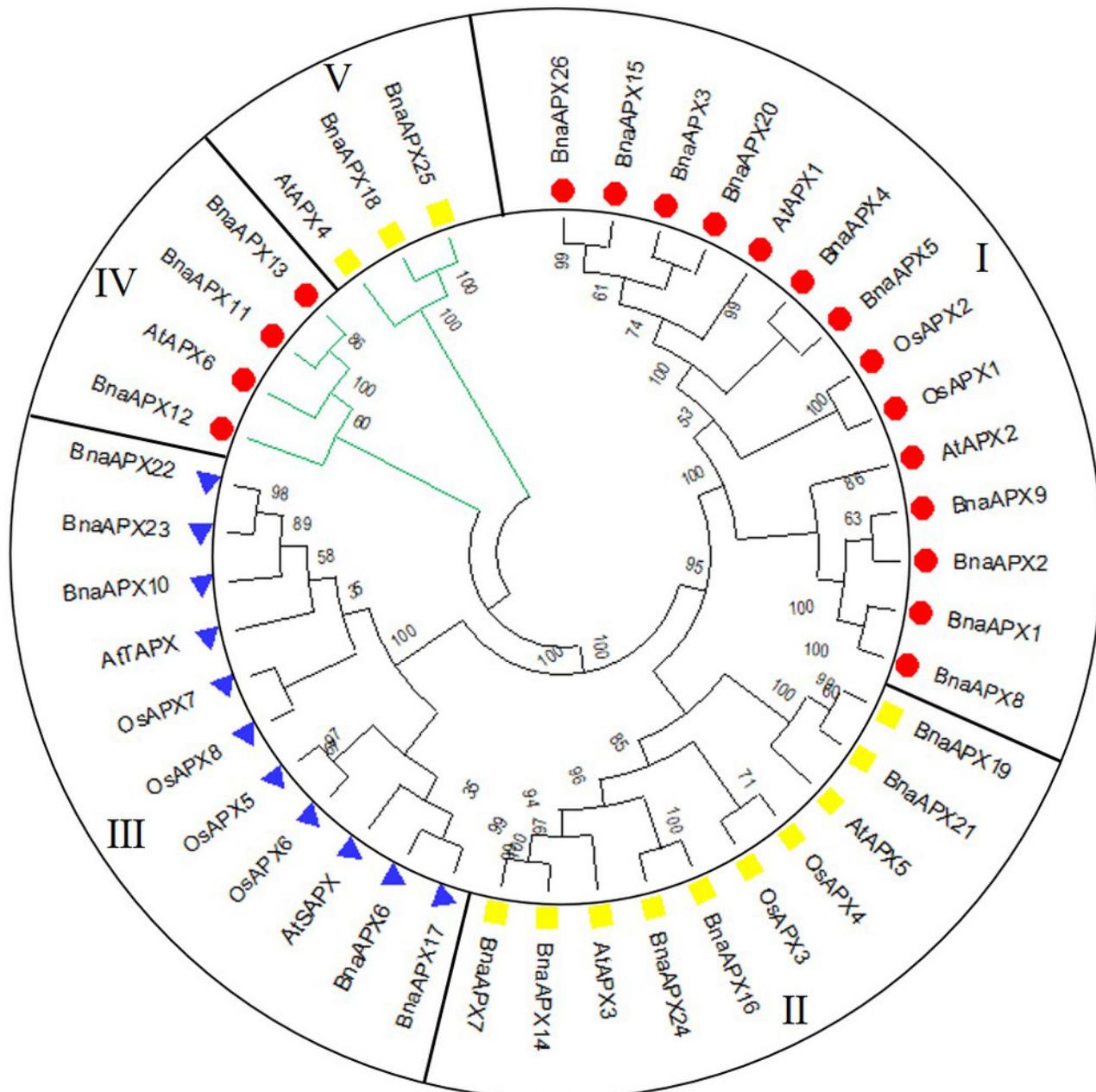

Gene structure of *APX* genes in *B. napus*. The gene structure of 26 *APX* genes was constructed by Gene Structure Display Server 2.0 (<http://gsds.cbi.pku.edu.cn/>). Yellow boxes represented exons and black lines of the same length represented introns. The sizes of exons can be estimated by the scale at bottom.

Figure 3

Phylogenetic tree of APX proteins in *B. napus*, *A. thaliana* and *O. sativa*

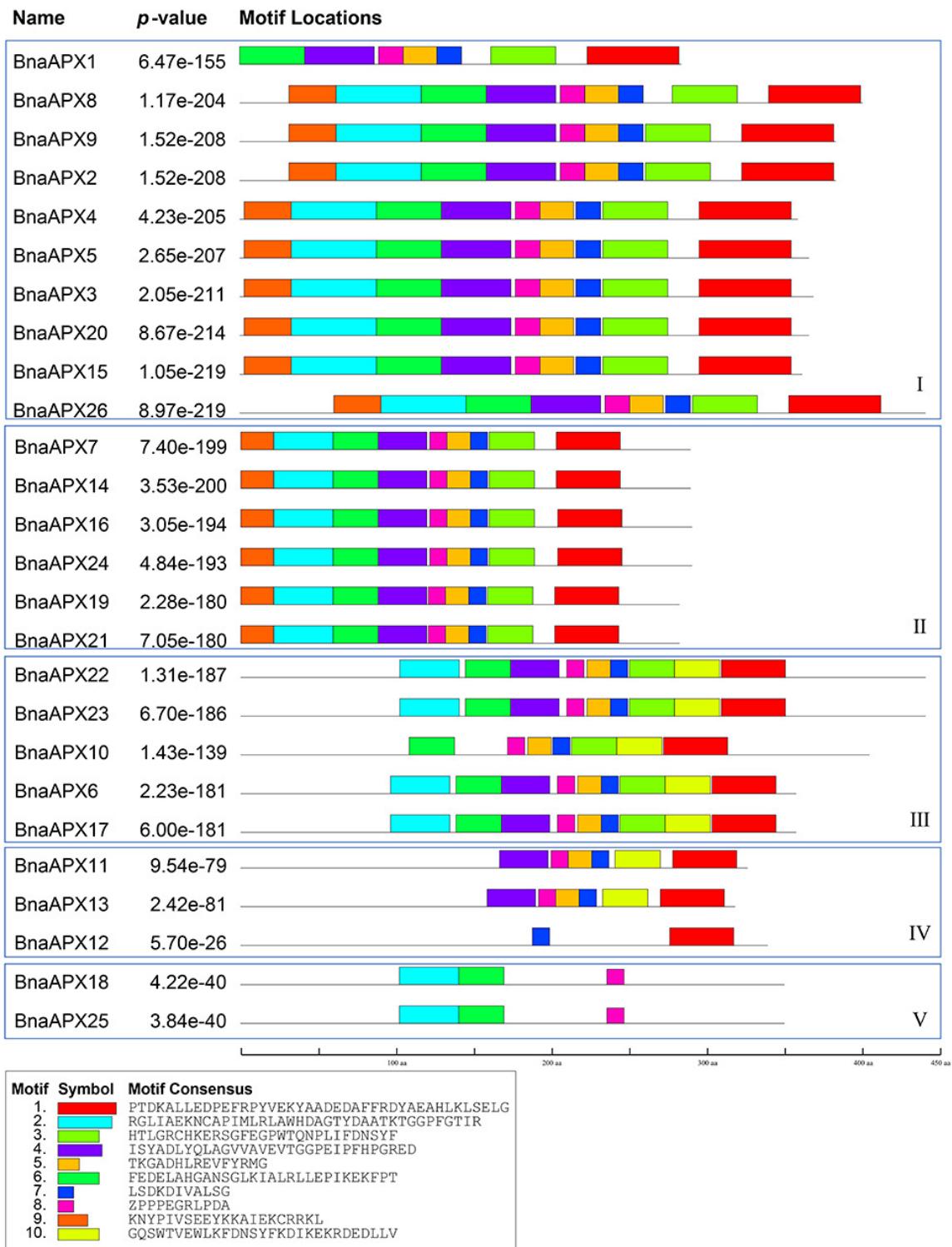

Phylogenetic tree of APX proteins in *B. napus*, *A. thaliana* and *O. sativa*. This tree includes 8 APX proteins from *A. thaliana* (AtAPX), 8 APX proteins from *O. sativa* (OsAPX) and 26 from *B. napus* (BnaAPX). The tree was constructed using MEGA 7.0, and the bootstrap test replicate was set as 1000. Five clades were named as sub-family I-V marked with different colours.

Figure 4

Conserved motifs of APX proteins in *B. napus*

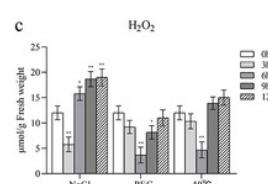
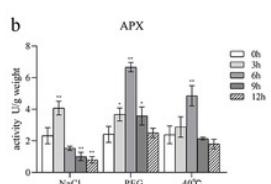
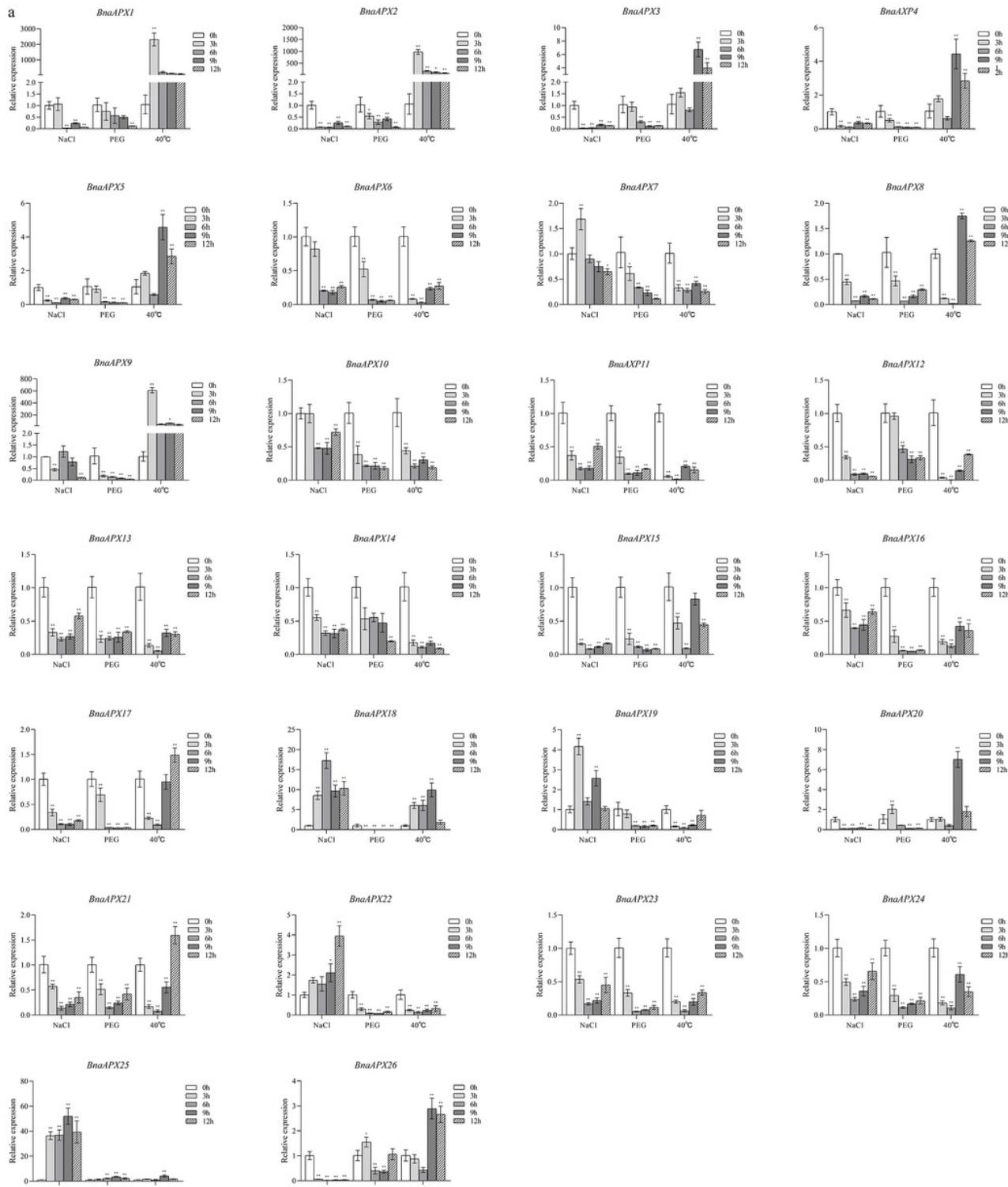



Conserved motifs of APX proteins in *B. napus*. Ten predicted motifs were represented by different coloured boxes. The sequence information for each motif is provided in the bottom.

Figure 5

The relative expression of APX genes, the activities of APX and the content of H₂O₂ under three treatments in *B. napus*

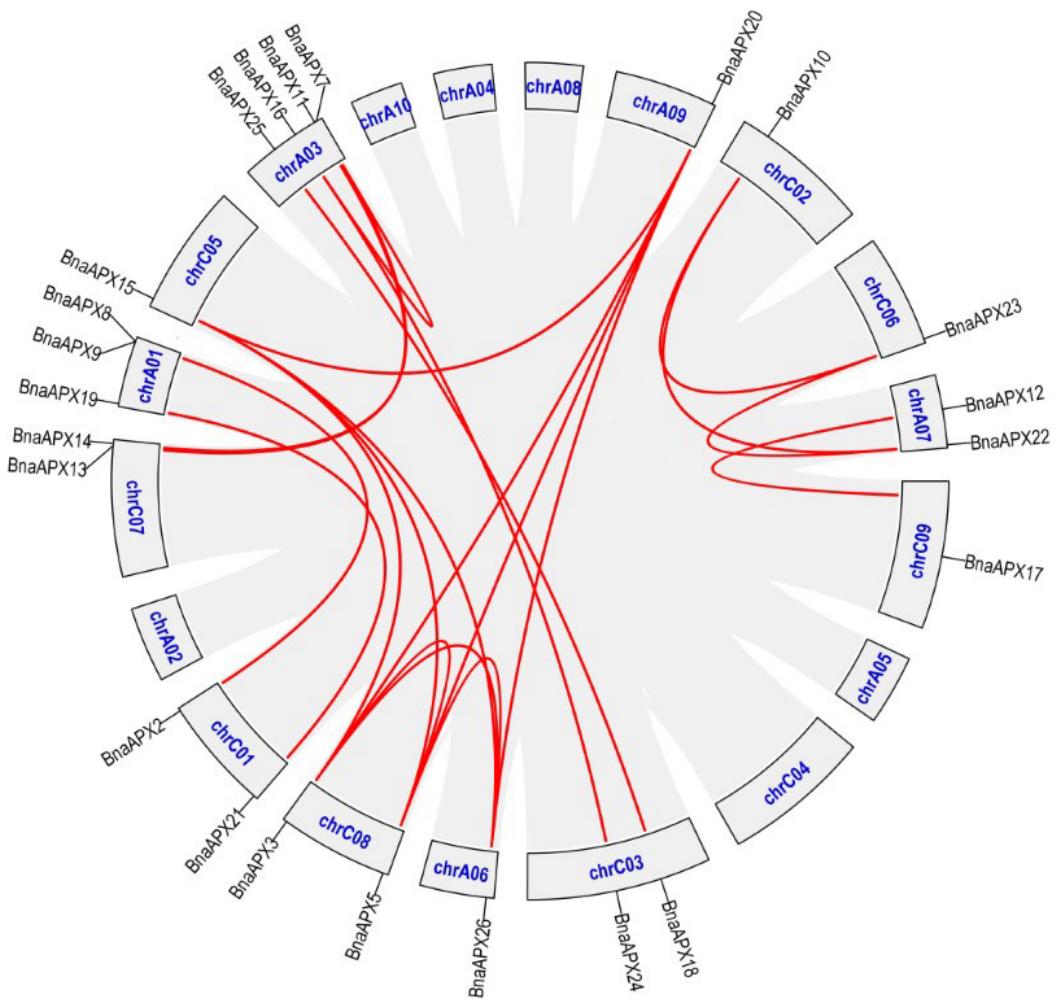

The relative expression of APX genes, the activities of APX and the content of H₂O₂ under various treatments in *B. napus*. (a) The relative expression of APX genes, the actin gene of *B. napus* was used as an internal reference; (b) The activities of APX; (c) The content of H₂O₂. All data were representative of three independent experiments, N=3 for each group. Data are presented as the mean \pm standard deviation (SD). An asterisk represent corresponding gene significantly up- or down-regulated by Student's t-test between the treatment and the control. * $P< 0.05$, ** $P< 0.01$. *** $P< 0.001$.

Figure 6

The synteny analysis of APX family in *B. napus*

The synteny analysis of APX family in *B. napus*. Gray lines indicate all synteny blocks in the *B. napus* genome, and the red lines indicate duplicated *BnAPX* gene pairs. The chromosome number is indicated at the bottom of each chromosome

