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Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is an important virus
responsible for die-off of farmed tilapia globally. Detection and quantification of the virus
from environmental DNA/RNA (eDNA/eRNA) using pond water represents a potential,
noninvasive routine approach for pathogen monitoring and early disease forecasting in
aquaculture systems. Here, we report a simple iron flocculation method for viral
concentration from water combined with a newly developed hydrolysis probe quantitative
RT-gPCR method for detection and quantification of TiLV. The RT-gPCR method targeting a
conserved region of TiLV genome segment 9 has a detection limit of 10 viral copies per pL
of template. The method had a 100% analytical specificity and sensitivity for TiLV. The
optimized iron flocculation method was able to recover 16.11 + 3.3% of virus from water
samples spiked with viral cultures. During disease outbreak cases from an open-caged
system and a closed hatchery system, both tilapia and water samples were collected for
detection and quantification of TiLV. The results revealed that TiLV was detected from both
clinically sick fish and asymptomatic fish. Most importantly, the virus was successfully
detected from water samples collected from different locations in the affected farms e.g.

river water samples from affected cages (8.50 x 10”to 2.79 x 10* copies/L) and fish-

rearing water samples, sewage, and reservoir (4.29 x 10° to 3.53 x 10’ copies/L) from
affected and unaffected ponds of the hatchery. In summary, this study suggests that the
eRNA detection system using iron flocculation coupled with probe based-RT-qPCR is
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feasible for concentration and quantification of TiLV from water. This approach might be
useful for noninvasive monitoring of TiLV in tilapia aquaculture systems and facilitating
appropriate decisions on biosecurity interventions needed.
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Abstract

Background. Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is an important virus
responsible for die-off of farmed tilapia globally. Detection and quantification of the virus from
environmental DNA/R VA (eDNA/eRNA) using pond water represents a potential, noninvasive
routine approach for pathogen monitoring and early disease forecasting in aquaculture systems.

Methods. Here, we report a simple iron flocculation method for viral concentration from water
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combined with a newly developed hydrolysis probe quantitative RT-qPCR method for detection
and quantification of TiLV.

Results. The RT-qPCR method targeting a conserved region of TiLV genome segment 9 has a
detection limit of 10 viral copies per uL of template. The method had a 100% analytical
specificity and sensitivity for TiLV. The optimized iron flocculation method was able to recover
16.11 + 3.3% of virus from water samples spiked with viral cultures. During disease outbreak
cases from an open-caged system and a closed hatchery system, both tilapia and water samples
were collected for detection and quantification of TiLV. The results revealed that TiLV was
detected from both clinically sick fish and asymptomatic fish. Most importantly, the virus was
successfully detected from water samples collected from different locations in the affected farms
e.g. river water samples from affected cages (8.50 x 10% to 2.79 x 10* copies/L) and fish-rearing
water samples, sewage, and reservoir (4.29 x 10? to 3.53 x 103 copies/L) from affected and
unaffected ponds of the hatchery. In summary, this study suggests that the eRNA detection
system using iron flocculation coupled with probe based-RT-qPCR is feasible for concentration
and quantification of TiLV from water. This approach might be useful for noninvasive
monitoring of TiLV in tilapia aquaculture systems and facilitating appropriate decisions on

biosecurity interventions needed.

Introduction
Tilapia tilapinevirus (commonly called tilapia lake virus, TiLV) is a novel and only virus in a

new genus Tilapinevirus under the family Amnoonviridae (International Committee on
Taxonomy of Viruses. 2019). Since its first discovery in 2014, the virus had significant impacts
on tilapia aquaculture worldwide (Eyngor et al. 2014; Ferguson et al. 2014; Jansen et al. 2019).
TiLV is an RNA virus with a 10 segmented negative sense single stranded genome of
approximately 10.323 kb in size (Bacharach et al. 2016). Disease caused by TiLV usually results
in cumulative mortality from 20 to 90% (Behera et al. 2018; Dong et al. 2017a; Eyngor et al.
2014; Ferguson et al. 2014; Surachetpong et al. 2017). So far, there are 16 countries that
reportedly confirmed detection of TiLV (Jansen et al. 2019; Surachetpong et al. 2020), but a
wider geographical spread has been hypothesized due to active movements of live tilapia with
other countries (Dong et al. 2017b). Waterborne spread of TiLV might also contribute to

pathogen dissemination to new areas as well as transmission to other fish species
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(Chiamkunakorn et al. 2019; Eyngor et al. 2014; Jaemwimol et al. 2018; Piamsomboon &
Wongtavatchai 2021). Experimental evidences have already demonstrated that TiLV is both
horizontally and vertically transmitted (Dong et al. 2020; Eyngor et al. 2014; Jaemwimol et al.
2018; Yamkasem et al. 2019).

With respect to waterborne transmission of fish pathogens, several studies employed various
viral concentration methods from water for pathogen detection (For example, Haramoto et al.
(2007); Kawato et al. (2016); Minamoto et al. (2009); Nishi et al. (2016)). The concept is one of
the applications of environmental DNA (eDNA) which is nucleic acids extracted from
environmental samples such as water, soil, and feces (Bass et al. 2015; Gomes et al. 2017). The
eDNA gives advantages in disease monitoring, control measure design, risk factor analysis and
studies of viral survival nature (example review in Oidtmann et al. (2018)). The work described
by Kawato et al. (2016) used an iron flocculation method to concentrate red sea bream iridovirus
(RSIV) in a challenge model with Japanese amberjack (Seriola quinqueradiata). Results from
that study showed that detection by qPCR of RSIV from fish-rearing water samples peaked more
than five days before fish mortality occurred, suggesting potential benefit of using iron
flocculation method for disease forecast. Others studies used a cation-coated filter method to
detect DNAs of cyprinid herpesvirus 3 (CyHV-3) (also known as koi herpesvirus, KHV) from
concentrated river water samples three to four months before mass mortalities events occurred in
wild carp in Japan (Haramoto et al. 2007; Minamoto et al. 2009). Additionally, the virus was still
detectable in river water for at least three months after the outbreaks (Minamoto et al. 2009).
These findings helped local authorities and farmers to make rapid decisions for emergency
harvest, biosecurity implementation, follow appropriate disinfection procedures and fallowing
periods.

Several molecular methods have been developed for detection of TiLV including RT-PCR
(Eyngor et al. 2014), nested and semi-nested PCR (Dong et al. 2017a; Kembou Tsofack et al.
2017; Taengphu et al. 2020), RT-qPCR (Tattiyapong et al. 2018; Waiyamitra et al. 2018), loop-
mediated isothermal amplification (LAMP) (Kampeera et al. 2021; Phusantisampan et al. 2019;
Yin et al. 2019) and Nanopore-based PCR amplicon approach (Delamare-Deboutteville et al.
2021). However, all of these methods target fish tissue specimens for diagnosis, none of which
reported any application for TiLV detection from environmental water samples. Previous probe-

based RT-qPCR methods developed to detect TiLV from tilapia clinical samples with detection
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limits of 2.7x10% or ~70,000 copies (Kembou Tsofack et al. 2017; Waiyamitra et al. 2018) might
not be sensitive enough to detect low viral loads of TiLV in environmental water samples. Based
on publicly available TiLV genomic sequence data (Ahasan et al. 2020; Chaput et al. 2020;
Debnath et al. 2020; Pulido et al. 2019; Subramaniam et al. 2019; Thawornwattana et al. 2021),
we developed a new probe-based RT-qPCR assay targeting TiLV genomic segment 9 and
applied to detect TiLV not only from fish tissues but also from environmental RNA (eRNA)
concentrated from water samples. A simple iron flocculation method for concentration of TiLV
from fish-rearing water samples coupled with our new RT-qPCR assay to detect and quantify

TiLV eRNA was described in the present study.

Materials & Methods
Development of a new probe-based quantitative RT-qPCR method for TiLV

Primer & probe design and establishment of PCR conditions

A new hydrolysis probe-based RT-qPCR method was developed and optimized for detection and
quantification of TiLV. Out of the 10 segments of the TiLV genome, segment 9 was reported to
have relatively high identity (97.44 - 99.15%) among various TiLV isolates (Pulido et al. 2019).
Primers and probe were thus designed based on conserved regions of TiLV genome segment 9
following multiple sequence alignments of all available sequences (n=25 or 27) retrieved from
the GenBank database at NCBI as of June 2021 (Fig. S1). Primer Seg9-TagMan-F (5’-CTA
GAC AAT GTT TTC GAT CCA G-3’) had a 100% perfect match with all retrieved 27
sequences while primer Seg9-TaqMan-R (5’-TTC TGT GTC AGT AAT CTT GAC AG-3’) and
probe (5’-6-FAM-TGC CGC CGC AGC ACA AGC TCC A-BHQ-1-3) had one mismatch
nucleotide from 25 and 27 available sequences, respectively (Fig. S1). The final composition of
the optimized TiLV RT-qPCR 20 pL reaction consists of 1X master mix (qScript XLT 1-Step
RT-qPCR ToughMix Low ROX buffer) (Quanta Bio), 1.5-2 pul (£300 ng) of RNA template, 450
nM of each forward and reverse primers, and 150 nM of Seg9-TagMan-Probe. Size of the
amplified product is expected at 137 bp. Cycling conditions include a reverse transcription step
at 50 °C for 10 min, then an initial denaturation step at 95 °C for 1 min followed by 40 cycles of
95 °C for 10 s and 58 °C for 30 s. RT-qPCR amplification was carried out using Bio-Rad CFX

Connect Real-Time PCR machine. Positive control plasmid (pSeg9-351) was previously
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constructed by inserting a 351 bp-TiLV segment 9 open reading frame (ORF) into pGEM T-easy
vector (Promega) as reported earlier (Thawornwattana et al. 2021).
Analytical specificity and sensitivity tests
Specificity of the Seg9-targeted RT-qPCR was tested with RNA extracted (150 ng/reaction) from
clinically healthy tilapia, 15 common fish bacterial pathogens, and fish tissues infected with
nervous necrosis virus (NNV), infectious spleen and kidney necrosis virus (ISKNV), or scale
drop disease virus (SDDV) (Table S1). Detection limit of the method was investigated using 10-
fold serial dilutions of pSeg9-351 plasmid template from 10° to 1 copies/uL template. The assays
were performed in duplicate. Calculation of viral copy numbers was performed using standard
curves prepared by plotting the log; of serial plasmid dilutions versus quantification cycle (Cq)
values.
Diagnostic specificity and sensitivity of the assay
We assessed the Seg9 RT-qPCR assay against RNA extracted from 65 samples held in our
laboratory. Forty-four samples originated from known TiLV outbreaks and 21 from known non-
diseased samples (healthy tilapia). Diagnostic test results were obtained using semi-nested RT-
PCR methods as described before (Dong et al. 2017a; Taengphu et al. 2020). Analytical
specificity and sensitivity of the assay were calculated according to formulas described by
Martin (1984) as:

e Sensitivity % = [number of true positive samples / (number of true positive samples +

number of false negative samples)] x 100
e Specificity % = [number of true negative samples / (number of true negative samples +

number of false positive samples)] x 100

Optimization for viral concentration protocol

Virus preparation

Viral stock used in this study was isolated from TiLV-infected Nile tilapia using E-11 cell line, 5
a clone of the cell line SSN-1 derived from whole fry tissue of snakehead fish (Sigma-Aldrich
catno. 01110916-1VL). The virus was propagated as described in Dong et al. (2020). Briefly,
200 pL of TiLV stock (~10% copies/mL) was added into a 75 mL cell culture flask containing a
monolayer of E-11 cell and 5 mL of L15 medium (Leibovitz), incubated at 25 °C for 5 days. The
culture supernatant containing viral particles was collected after centrifugation at 15,000 x g for

10 min at 4 °C. The viral stock was kept in aliquots of 1 mL at -80 °C until used.
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Iron flocculation

Viral concentration using iron flocculation method was performed using the protocol previously
described by Kawato et al. (2016) with some modifications. Workflow of this method is
illustrated in Fig. 1. Briefly, 100 uL (~107-108 copies) of TiLV viral stock was added into 500
mL of sterile water that contained 1% marine salt and 36 uM ferric chloride. The suspension was
stirred at room temperature for 1 h before being mechanically filtered through a 0.4-pum pore size
polycarbonate filter (Advantec) with a vacuum pump connected to a filter holder KG-47
(Advantec) under < 15 psi pressure. The flocculate-trapped filters were either directly subjected
to nucleic acid extraction or resuspended with oxalate-EDTA buffer (John et al. 2011) prior to
nucleic acid extraction using Patho Gene-spin DNA/RNA extraction kit (iNtRON). Experiments
were carried out in two to four replicates. Viral concentration, percentage (%) recovery and fold
reduction of the virus copies were calculated from Cq values after flocculation compared to that
of the starting viral stock.

Detection of TiLV from fish and pond water sources during disease outbreaks

During 2020-2021, two disease outbreaks were reported to our laboratory. One occurred in an
open-caged system (juvenile hybrid red tilapia, Oreochromis sp.) and the other in a closed
hatchery system (earthen ponds, Nile tilapia, O. niloticus). The fish experienced abnormal
mortalities with clinical symptoms of disease resembling those caused by TiLV, e.g. darkened
body (Nile tilapia), pale color and reddish opercula (red hybrid tilapia), abdominal distension,
and exophthalmia. In the first outbreak, we received fish specimens and water samples collected
from four cages namely A, B, C and D with two-three fish and two bottles of 500 mL water
samples from each cage. The samples were kept on ice during transportation and shipped to our
laboratory within 24 h. In the latter outbreak, internal organs from both sick and healthy looking
tilapia from different ponds as well as snails and sludge were collected and preserved in Trizol
reagent (Invitrogen) by a hatchery veterinarian and sent to our laboratory. Water (500 mL/bottle)
from fish ponds, reservoir, and sewage (outgoing waste water from ponds) was also collected
from this hatchery.

Fish specimens were subjected to RNA extraction while water samples were centrifuged (5,000 x
g for 5 min) to remove suspended matters before subjected to iron flocculation and subsequent
nucleic acid extraction by Patho Gen-spin column kit. Viral detection and quantification were

then performed to investigate the presence of TiLV by the established Seg 9 RT-qPCR assay
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described above. Plasmid template pSeg9-351 was used in a positive control reaction while

nuclease-free water was used for negative control.

Results
A new probe-based RT-qPCR method for detection and quantification of TiLV

The Seg9 RT-qPCR method developed in this study had a detection limit (sensitivity) of 10
copies/uL template with mean Cq + SD values of the detection limit at 38.24 + 0.09 (Fig. 2a).
Hence, samples with a Cq value > 38.24 were considered TiLV negative or under the limit of
this detection method. Amplification efficiency (E) of the established RT-qPCR was 94.0% with
R? 0f 0.998 (Fig. 2b). Analytical specificity test revealed that the method was highly specific to
TiLV only since no amplifications were found when the method was assayed with RNA
templates extracted from three other viruses, 15 bacterial species, and healthy tilapia (Fig. 2c,
Table S1). The method had 100% diagnostic specificity and 100% diagnostic sensitivity when
assayed with previously diagnosed TiLV infected and non-infected fish samples (n =65 with Cq
value ranges 13.02 — 34.85) (Table 1).

Conditions for viral concentration and percentage recovery

Percentage recovery of TiLV after iron flocculation but without suspension of the membrane
filter in oxalate-EDTA buffer was only 2.04 + 0.5% (n=2), which corresponded to a 50.55 +
12.2-fold reduction in the viral concentration compared to the original viral stock (Table 2). This
was significantly improved with an additional suspension step of the flocculate-trapped filters
into oxalate-EDTA buffer prior to RNA extraction. The percentage recovery of TiLV increased
to 16.11 + 3.3% (n=4), which is equivalent to a 6.38 £ 1.1-fold reduction in viral concentration
after iron flocculation (Table 2). Figure 2d showed representative results of viral quantification
using Seg 9 RT-qPCR assays of TiLV from water after iron flocculation with the resuspension
step.

Virus quantification from tilapia and different water sources during disease outbreaks
The results of TiLV detection and quantification from fish tissues and water samples are shown
in Tables 3 and 4. In the first disease outbreak (open-cages), TiLV was detected from both fish
and water samples from all four cages (A-D) (Table 3). Fish samples had Cq values ranging from
12.40 to 36.22, equivalent to 3.98 x 10% to 5.6 x 10! viral copies/150 ng RNA template,

respectively (Table 3, Fig. 2e). Interestingly, eight water samples collected from four cages had a
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similar viral load ranging from 8.50 x 10? to 3.40 x 10* copies/L (Cq 31.19 - 36.76) (Table 3,
Fig. 21).

In the second disease event (earthen ponds), samples were collected from eight ponds; one had
unusually mortality, five showed no sign of disease, one was a sewage pond and one a reservoir
pond (Table 4). In the affected fingerling pond C1, TiLV was detected from five diseased fish
(9.53 x 107 to 1.17 x 10° copies/150 ng RNA template), one asymptomatic fish (3.80 x 10°
copies/150 ng RNA template), and water sample from one location (8.41 x 103 copies/L) (Table
4). TiLV was undetectable from snail and sludge samples originating from pond C1. TiLV
investigation from the remaining 7 other ponds revealed that TiLV was also detectable— but in
relatively low viral loads from some asymptomatic fish (both fingerling and brood fish) and
water from culture ponds as well as water from the reservoir and sewage ponds that were

collected during the disease event (Table 4).

Discussion

Methods to concentrate and recover viral particles from environmental water samples have been
long applied in human health studies especially with waterborne diseases caused by enteric
viruses (example review in Cashdollar & Wymer (2013); Haramoto et al. (2018)). It has later
become an essential process for aquatic environment research (Jacquet et al. 2010). Several
techniques have been used for viral concentration from aquatic environment, including
coagulation/flocculation, filtration/ultrafiltration, and centrifugation/ultracentrifugation
(Cashdollar & Wymer 2013; Ikner et al. 2012). Our present study employed an iron flocculation
method which was initially described for virus removal from freshwater (Chang et al. 1958) and
virus concentration from marine water (John et al. 2011). It was later adapted to detect and
quantify two fish viruses: nervous necrosis virus (NNV) (an RNA virus) and red sea bream
iridovirus (RSIV) (a DNA virus) that were experimentally spiked in fish-rearing water (Kawato
et al. 2016; Nishi et al. 2016). The recovery rate was estimated by qPCR and yielded >50 and
>80% for NNV and RSIV, respectively. In this study, while the recovery rate of TiLV (an RNA
virus) from spiked-water was considerably lower (16.11 + 3.3%), it is in a similar range of
practical methods used for concentrating and detecting human viruses from water environments
(Haramoto et al. 2018). For example, murine norovirus-1 (MNV-1) used as a viral model in viral

concentration assay of human enteric viruses was recovered from spiked-water at 5.8-21.9%
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using the electronegative hydroxyapatite (HA)-filtration combined with polyethylene glycol
(PEG) concentration method. The protocol was then used for detection of human noroviruses
(NoV) and hepatitis A virus (HAV) in all water types (De Keuckelaere et al. 2013). More
recently, researchers used porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and
mengovirus (MgV) as model viruses to concentrate severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) from water samples (Randazzo et al. 2020). By using an aluminum
hydroxide adsorption-precipitation concentration method, PEDV and MgV spiked in water were
recovered at 3.3-11.0%. The method can then be applied to detect SARS-CoV-2 RNA in

untreated wastewater samples of ~1054 genomic copies/L (Randazzo et al. 2020).

Despite a low recovery rate from water samples in this study, we confirmed the usefulness of the
iron flocculation and RT-qPCR approach to concentrate and determine the concentration of
TiLV from fish-rearing water and other water sources from two aquaculture production systems
during disease outbreaks. The inherent nature of DNA and RNA viruses and their ability to
survive outside their hosts may also contribute to those differences observed in recovery rates
(Cashdollar & Wymer 2013; Pinon & Vialette 2018). Other viral concentration techniques using
different coagulant/flocculant chemicals as well as more efficient RNA extraction methods

should be tested for further improvement of TiLV recovery from water.

After the viral concentration and recovery process, downstream viral detection methods include
cell culture methods, PCR-based assays, and viral metagenomics analysis (example review in
Haramoto et al. (2018)). Here, we employed RT-qPCR technique for detection and quantification
of TiLV, although the detected amounts did not represent the viral viability. Using all TiLV
genomic sequences publicly available, we designed a new set of conserved primers and probe
targeting the viral genomic segment 9. The newly established RT-qPCR protocol was highly
specific to TiLV and did not cross-amplify RNA extracted from other common bacterial and
viral aquatic pathogens. The method is very sensitive as it can detect as low as 10 viral copies
per uL of template, >2,700 times more sensitive than previous probe-based RT-qPCR methods
(Kembou Tsofack et al. 2017; Waiyamitra et al. 2018), reflecting high specificity of the newly
designed primers and probe. Our RT-qPCR method has 100% diagnostic specificity and

sensitivity in agreement with previous results (n=65) obtained using semi-nested RT-PCR
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protocols (Dong et al. 2017a; Taengphu et al. 2020). Increased number of sample sizes with
diverse geographical sources may be required for further investigation. Most importantly, this
new Seg 9 RT-qPCR assay was able to detect and quantify TiLV load from various types of field
samples, including clinically sick fish, asymptomatic fish, and water samples, as opposed to

other molecular diagnostic methods optimized solely for fish specimens.

The viral loads from water samples collected during the two disease events were approximately
~ 103 viral copies/L (earthen ponds) and ~10* viral copies/L (open-cages), but in reality, these
concentrations might be significantly higher due to substantial losses during the concentration
and recovery process. Higher viral loads observed in some of the water samples collected during
the disease outbreak were probably due to active shedding of the virus from diseased fish into the
environment, and might be an additional evidence of the waterborne transmission nature of TiLV
reported previously (Eyngor et al. 2014; Yamkasem et al. 2019). Potential application for TiLV
outbreak forecasting should be further investigated by experimental infection to monitor viral
loads in water in relation to fish morbidity and mortality as previously described for other fish

pathogens (Haramoto et al. 2007; Kawato et al. 2016; Minamoto et al. 2009; Nishi et al. 2016).

Conclusions

In summary, the viral concentration method by iron flocculation used in concert with a newly
developed probe-based RT-qPCR was not only successful for detection and quantification of
TiLV from water in diseased pond/cages, but also from unaffected ponds, reservoir, and sewage
water. This method, apart from its potential practical use for future monitoring programs of TiLV
viral load in water samples from various culturing units, our approach could become useful to
detect possible TiLV contamination from incoming and outgoing waste water as well as to test
the systems after disinfection treatments. Such application will support health professionals and
farmers to design appropriate biosecurity interventions to reduce the loss caused by TiLV in

tilapia farms and hatcheries.
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Diagnostic specificity and sensitivity of the Seg9 probe-based RT-gPCR method

Peer] reviewing PDF | (2021:07:63188:0:2:NEW 12 Jul 2021)



PeerJ Manuscript to be reviewed

1 Table 1: Diagnostic specificity and sensitivity of the Seg9 probe-based RT-qPCR method

Test results Diseased samples Non-diseased samples
(n=44) (n=21)
Positive (+) True positive False positive
44 0
Negative (-) False negative True negative
0 21

Diagnostic sensitivity (%) 100
Diagnostic specificity (%) 100
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Percentage (%) recovery of viruses from water using different conditions
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1 Table 2: Percentage (%) recovery of viruses from water using different conditions

Sample Before and after Suspension Total viral % recovery  Fold
type flocculation step copy reduction
number
Water Before (viral stock) 3.92 x 10%
spiked After (Rep.1) No 9.34 x 106 2.38 41.93
with TILV  After (Rep.2) No 6.62 x 106 1.69 59.18
culture Mean + SD 2.04+0.5 50.55+ 12.2
Before (viral stock 1) 1.27 x 108
After (Rep.1) Yes 2.67 x 107 21.08 4.74
Before (viral stock 2) 3.21 x 107
After (Rep.2) Yes 4.67 x 10° 14.55 6.87
Before (viral stock 3)* 4.16 x 107
After (Rep.3)* Yes 5.85 % 10° 14.07 7.10
Before (viral stock 4)* 3.07 x 107
After (Rep.4)* Yes 4.52 x 108 14.74 6.78
Mean + SD 16.11 £3.3 6.38+ 1.1

2 Rep, replicate; * denotes experiments where qPCR results were shown in Fig. 2d.

3
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Quantification of TiLV from fish and water during an outbreak in open-cages
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2
3

Table 3: Quantification of TiLV from fish and water during an outbreak in open-cages

Cage Samples Cq TiLV load* Interpretation
Diseased fish A1-1 (liver + spleen) 13.02 2.64 x 103 +
Diseased fish A1-2 (liver + spleen) 30.69 2.18 x 103 +

A Diseased fish A1-3 (liver + spleen) 13.11 2.49 x 108 +
Water sample Al 36.76 8.50 x 102 +
Water sample A2 31.95 2.06 x 10* +
Diseased fish B1-1 (liver + spleen) 14.35 1.10 x 108 +
Diseased fish B1-2 (liver + spleen) 17.49 1.37 x 107 +
B Diseased fish B1-3 (liver + spleen) 13.13 2.46 x 103 +
Water sample B1 32.54 1.39 x 10* +
Water sample B2 31.60 2.59 x 10* +
Diseased fish C1-1 (liver + spleen) 14.76 8.34 x 107 +
C Diseased fish C1-2 (liver + spleen) 13.87 1.50 x 108 +
Water sample C1 32.71 1.24 x 10* +
Water sample C2 31.49 2.79 x 10* +
Diseased fish D1-1 (liver + spleen) 36.22 5.6 x 10! +
Diseased fish D1-2 (liver + spleen) 12.40 3.98 x 108 +
D Diseased fish D1-3 (liver + spleen) 18.67 6.26 x 10° +
Water sample D1 35.90 1.50 x 10* +
Water sample D2 31.19 3.40 x 104 +

Gray highlights water samples; *viral copy (per reaction for 150 ng fish extracted RNA & per L
of water sample); +, detected.
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Table 4(on next page)

Quantification of TiLV from fish and pond water during an outbreak in earthen closed-
ponds
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1 Table 4: Quantification of TiLV from fish and pond water during an outbreak in earthen closed-

2 ponds
Pond Samples Cq TiLV load* Interpretation
Diseased F1 (liver + spleen) 12.42 3.93 x 108 +
Diseased F2 (liver + spleen) 14.56 9.53 x 107 +
Fish Diseased F3 (liver + spleen) 12.11 4.83 x 108 +
. . Diseased F4 (liver + spleen) 10.77 1.17 x 10° +
Fmgderhlng Diseased F5 (liver) 1346  4.17 x 108 +
l(f’;f‘;ectce q Normal looking (whole fish) 29.85  3.80 x 10° +
pond) Water Location 1 39.73 - -
Location 2 33.30 8.41 x 10°
Snail Pooled sample - - -
Sludge Pooled sample 1 - - -
Pooled sample 2 - - -
Fingerling Fish Normal look%ng F1 (whole fish) - - -
pond C2 Normal looking F2 (whole fish) 32.88 5.11 x 10? +
Water Location 1 34.66 342 x 103 +
Location 2 39.76 - -
Fingerling Fish Normal looking F1 (whole fish) 37.34 2.6 x 10!
3 Normal looking F2 (whole fish) - - -
Water Location 1 - - -
Location 2 - - -
Female brood 1, normal looking?  37.08 3.10 x 10!
Fish Female brood 2, normal looking?  35.42 9.50 x 10!
Broodstock Male brood 1 llooking  38.28 i i
pond B1 ale brood 1, normal looking .
Male brood 2, normal looking® 36.18 5.70 x 10!
Water Location 1 37.79 4.29 x 102 +
Broodstock Water Location 1 - - -
pond B2 Location 2 = = =
Broodstock  Water Location 1 - - -
pond B3 Location 2 - - -
Sewage Water Locat@on 1 34.61 3.53 x 103 +
Location 2 - - -
Reservoir Water Locat%on 1 - - -
Location 2 37.78 4.32 x 102 +
3 Gray highlights water samples; *viral copy (per reaction for 150 ng fish extracted RNA & per L

4  of water sample); #, liver, kidney, spleen, gill, gonad; -, not detected; +, detected; C2, C3, B1-B3
apparently healthy ponds with no signs of disease

(9, ]
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Figure 1

Workflow of TiLV flocculation, concentration and quantification used in this study

An iron flocculation method was used to concentrate viruses from water (a). The water
suspension containing the virus was filtered through a 0.4-um pore size polycarbonate
membrane filter with a vacuum pressure pump (b-c). The flocculate-trapped filter (d) was
then resuspended in oxalate-EDTA buffer (e) prior to nucleic acid extraction (f) and TiLV

quantification (g).
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Figure 2

Performance of the newly established probe-based RT-qPCR detection of TiLV genomic
segment 9

a) Analytical sensitivity assay determined using serial dilutions of plasmid DNA containing a
351-bp TiLV segment 9 insert. Amplification results were from two technical replicate tests.
b) A standard curve was derived from the assays in (a) showing an amplification efficiency
(E) of 94.0%. c) Analytical specificity test of the RT-qPCR protocol against RNAs extracted
from common pathogens of fish and healthy looking tilapia as listed in Table S1. d) TiLV
quantification from template extracted from stock virus (S) and flocculate-trapped filters (F)
with resuspension step using two replicates. e) TiLV quantification from fish samples
collected from an outbreak open cage. f) TiLV quantification from water samples collected
from an outbreak open cage. P, positive control; N, no template control; RFU, relative

fluorescence units.
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