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The niche comprises the set of abiotic and biotic environmental conditions in which a
species can live. Consequently, those species that present broader niches are expected to
be more tolerant to changes in climatic variations than those species that present reduced
niches. In this study, we estimate the amplitude of the climatic niche of fourteen species of
rattlesnakes in the genus Crotalus to evaluate whether those species that present broader
niches are less susceptible to the loss of climatically suitable zones due to the projected
climate change for the time period 2021–2040. Our results suggest that for the species
under study, the breadth of the niche is not a factor that determines their vulnerability to
climatic variations. However, 71.4% of the species will experience increasingly inadequate
habitat conditions, mainly due to the increase in temperature and the contribution that
this variable has in the creation of climatically suitable zones for most of these species.
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47 Abstract
48 The niche comprises the set of abiotic and biotic environmental conditions in which a species 

49 can live. Consequently, those species that present broader niches are expected to be more tolerant 

50 to changes in climatic variations than those species that present reduced niches. In this study, we 

51 estimate the amplitude of the climatic niche of fourteen species of rattlesnakes in the genus 

52 Crotalus to evaluate whether those species that present broader niches are less susceptible to the 

53 loss of climatically suitable zones due to the projected climate change for the time period 2021–

54 2040. Our results suggest that for the species under study, the breadth of the niche is not a factor 

55 that determines their vulnerability to climatic variations. However, 71.4% of the species will 

56 experience increasingly inadequate habitat conditions, mainly due to the increase in temperature 

57 and the contribution that this variable has in the creation of climatically suitable zones for most 

58 of these species.
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69 Introduction
70 Global climate change is one of the main factors that impact biodiversity and the distribution of 

71 species (Barnosky et al. 2011). Each species has a tolerance to various environmental factors, 

72 and when this tolerance is exceeded, the species cannot optimally carry out their life cycle 

73 (Peters 1990; Walther et al. 2002; Hardy 2003; Dawson and Spannagle 2009). When this occurs, 

74 the distribution and abundance of the species is altered (Hughes 2000; Peterson et al. 2005; Root 

75 et al. 2005; Parmesan 2006), and in some cases, it can result in the direct disappearance of some 

76 species and populations (Walther et al. 2002; Thomas et al. 2004). This in turn creates conditions 

77 that could modify the structure in the composition of species in the ecosystem and, consequently, 

78 disturb the ecological balance of a landscape (Gray 2005; Walther et al. 2005). 

79 Niche modeling provides a predictive measure about how the climatic suitability of a 

80 species may change under different climate change scenarios (Morin and Lechowicz 2008; 

81 Thuiller et al. 2005b; Lawler et al. 2009). Currently, most niche models have been developed 

82 from a correlative approach, particularly when more than one species is involved (Hijmans and 

83 Graham 2006). In this approach, the environmental variables that characterize the places where a 

84 species occurs (or is absent) are used to develop correlative models that can then be extrapolated 

85 to project future occurrences in places where the correlated environmental characteristics are 

86 projected to be present (Wiens et al. 2009).

87 Rattlesnakes in the genus Crotalus are widely distributed across the New World from 

88 southern Canada to Argentina (Campbell and Lamar 2004). There are 53 species, with the 

89 greatest number found in Mexico (Sánchez et al. 2020). Various authors point out that 

90 temperature and precipitation are important factors in the ecology of the species of this genus 

91 (Paredes-García et al. 2011; Sunny et al. 2019; Yañez-Arenas et al. 2020). As such, Crotalus 

92 represent a good model to predict the response of snake species to climate change. However, 
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93 there are few studies that evaluate the effects that these environmental variations will have on the 

94 future distributions of species of this genus (Greene and Campbell 1993; Gibbons et al. 2000). In 

95 this regard, and under the criterion that the niche comprises a set of environmental conditions in 

96 which a species may exist (Gaston et al. 1997), it has been suggested that those species with 

97 broader niches could be less vulnerable to abrupt environmental variation under anthropogenic 

98 climate change. By contrast, those species with narrow niches would be particularly threatened 

99 by climatic disturbances (Brown 1984; Johnson 1998; Boyles and Storm 2007; Botts et al. 2013; 

100 Ozinga et al. 2013).

101 From this perspective, the question arises: can the breadth of niche, by itself, be 

102 considered as a determining factor that helps to predict the vulnerability of Crotalus species to 

103 climate change? Few studies have provided sufficient evidence to answer this question and thus 

104 the effects that climate change will have on each of the species of this genus remain unknown 

105 (Greene and Campbell 1993; Gibbons et al. 2000). The present study aims to analyze whether 

106 there is a relationship between niche width and vulnerability to climate change, projected for the 

107 period 2021–2040, in a sample of fourteen species of the genus Crotalus distributed in North 

108 America. This information is of great relevance for the establishment and development of 

109 conservation strategies for species of the genus Crotalus.

110 Material and methods
111

112 Presence data. We obtained geographical data of occurrences of 14 species of Crotalus, including 

113 C. atrox, C. basiliscus, C. cerastes, C. enyo, C. intermedius, C. lepidus, C. molossus, C. pricei, C. 

114 ravus, C. ruber, C. scutulatus, C. tigris, C. viridis, and C. willardi (following the taxonomy of 

115 Campbell and Lamar 2004). We obtained geographical data from published scientific information 
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116 (scientific articles, scientific notes, books), scientific collections from Mexico and other countries 

117 (Table S1), information generated by the National Commission of Protected Natural Areas 

118 (CONANP), as well as from the database of the Global Biodiversity Information Facility (GBIF; 

119 http://www.data.gbif.org). We selected these 14 species of the genus Crotalus because, after the 

120 geographic data purification process, they were the species that had the most complete base of 

121 geographic records with the best distributed geographic records in the known range of these 

122 species, reflecting with greater precision the total range of the species under study (Campbell and 

123 Lamar 2004). As has been previously demonstrated, the clarity of geographic records is of great 

124 relevance in the performance of species distribution models (Hefley et al. 2014; Fei and Yu, 2015; 

125 Velásquez-Tibatá et al. 2015). Data 'cleanliness' is particularly important for data coming from 

126 species distribution data warehouses such as GBIF (Hijmans and Elith 2013). Using the "dismo" 

127 library (Hijmans et al. 2017) in the statistical software R 3.5.1, we checked the geographic 

128 projections of each record and eliminated duplicate records. We futher cross-checked coordinates 

129 though visual inspection (Hijmans et al. 1999) and assessed sampling bias (Hijmans and Spooner 

130 2001; Phillips et al. 2009). Records with unreliable coordinates (according to the known 

131 distribution of the species; Campbell and Lamar 2004) were removed from the database. In total, 

132 we generated a data set with 4,813 presence points (C. atrox = 1,241, C. basiliscus = 125, C. 

133 cerastes = 676, C. enyo = 135, C. intermedius = 41, C. lepidus = 239, C. molossus = 516, C. pricei 

134 = 76, C. ravus = 52, C. ruber = 568, C. scutulatus = 610, C. tigris = 72, C. viridis = 429 and C. 

135 willardi = 33; Fig 1). The 14 species are distributed in arid, tropical, and mountain ecosystems.

136 Climatic variables. Current weather data for North America was recorded with a resolution of 2.5 

137 minutes (~ 5 km) from the WorldClim database (version 2). This is an online database with 19 

138 bioclimatic variables derived from monthly averages (1970–2000) of temperature and 
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139 precipitation (Fick and Hijmans 2017). We carried out a reduction in the number of variables under 

140 the criterion that the most robust sets of variables were those that had a direct interaction with the 

141 species. These variables were chosen on the basis of ecological theory, and subsequently reduced, 

142 when necessary, by statistical analysis (Austin 2007). In the preselection of the variables related 

143 to temperature, we considered those proposed by Rodder and Lotters (2009), who suggested that 

144 this set of variables were of great ecological relevance, particularly for those taxa limited by 

145 thermoregulation, such as squamates. The variables related to precipitation included descriptors 

146 that have been mentioned as key factors for the species of the genus Crotalus, which may become 

147 more relevant when thermal conditions are not optimal, for example in periods of time with 

148 extreme temperatures (Glaudas 2009; Phadnis et al. 2019). Subsequently, to eliminate variables 

149 that provide similar information, we developed a Pearson correlation matrix (r <0.7) to reduce the 

150 collinearity error.  

151 After this process, the retained variables were Annual Mean Temperature (bio1), Mean Diurnal 

152 Range (bio2), Mean Temperature of Wettest Quarter (bio8), Annual Precipitation (bio12), 

153 Precipitation of Wettest Month (bio13), Precipitation of Driest Month (bio14), Precipitation 

154 Seasonality (bio15), Precipitation of Warmest Quarter (bio18) and Precipitation of Coldest Quarter 

155 (bio19). In general, the bivariate correlation analysis was carried out by providing information on 

156 the 19 climatic variables to the presence records of the species under study. In our case, the climatic 

157 information was provided to 10,000 randomly distributed geographic points in the distribution area 

158 of the species under study to avoid discarding areas with relevant climate information (non-

159 repetitive) (Becerra-López et al. 2016).

160
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161 Climate Profile and Niche Range. With the selected variables of the current climate, a principal 

162 component analysis (PCA) was carried out in R (version 3.1.3, R Core Team 2015) using the 

163 ecospat library (Broennimann et al. 2014) to identify the climatic profile within the distribution 

164 area of the species under study. We also evaluated the climate profile for the climate change 

165 models BCC-CSM2-MR, CNRM-CM6-1 and IPSL-CM6A-LR, considering the shared socio-

166 economic pathway 5 8.5 W/m2 (SSP5 8.5) proposed for the period 2021–2040. These climate 

167 models were randomly selected from a total of eight models. 

168 For each selected variable, we then performed an Analysis of Variance and tukey's post hoc tests 

169 to evaluate if there were statistical differences between the current climate data and the climate 

170 change scenarios. Subsequently, in the statistical software R 3.5.1, the distribution of the species 

171 under study in the climatic space (niche range) were identified through a Principal Component 

172 Analysis using the nine current climate variables used in this study, following the methodology 

173 proposed by Becerra-López et al. (2020). This representation of the records of the species in a 

174 climatic context is based on the Hutchinson duality that indicates that there are two spaces, the 

175 geographic one and the multidimensional abstract space, denoted by climatic variables that 

176 establish the conditions in which a species can simply exist (Colwell and Rangel, 2009).

177 For the selection of SSP5 8.5 W /m2, we took into account that the narrative of this route considers 

178 a socioeconomic development driven by fossil fuels, which implies a scenario with increasing CO2 

179 emissions (Riahi et al. 2016; Kriegler et al. 2017). Considering that fossil fuels meet current energy 

180 demand, and it is estimated that they will supply at least 80% of the energy demand required in 

181 2040 (Beltrán-Telles et al. 2017), we decided to use only SSP5 8.5 W /m2 to model the availability 

182 of suitable climatic environments for the presence of the species under study. Likewise, we 
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183 considered that SSP5 8.5 W /m2 is the climatic environment that will allow us to test our hypothesis 

184 in a better way.

185 Vulnerability of climatic suitability in the face of environmental variations. The Maximum 

186 Entropy (Maxent) approach was used to model the climatic suitability of the 14 species of 

187 Crotalus. Maxent uses the principle of maximum entropy on presence-only data to estimate a set 

188 of functions that relate environmental variables and climatic suitability to approximate the 

189 species’ niche and potential geographic distribution (Phillips et al. 2017). Therefore, the species 

190 distribution model considered in this study represents a correlative species distribution model 

191 (Phillips et al. 2006), subject to the challenge of balancing goodness of fit with model 

192 complexity, as models that are inappropriately complex or inappropriately simple have been 

193 shown to show reduced ability to infer habitat quality, reduced ability to infer relative 

194 importance of the variables in the restriction of the distribution of the species and a reduced 

195 transferability to other time periods (Warren and Seifert, 2011).  In our case study, using the 

196 "ENMeval" library (Muscarella et al. 2014) in the statistical software R 3.5.1, the calibration of 

197 the model for each species considered the choice of a) accessible area (background or M area), b) 

198 the type of variables that Maxent constructs (features), c) regularization multiplier, and d) the 

199 type of model output (raw, cumulative, logistic), as these considerations affect the inferences to 

200 be made (Fourcade et al. 2014).

201 Using the Maxent software, the information obtained from the calibrated models was 

202 projected within the known distribution area of the species under study. We used the layers of 

203 the current climate mentioned above and those of the future climate (BCC-CSM2-MR, CNRM-

204 CM6-1 and IPSL-CM6A-LR; considering ssp585 proposed for the time period 2021–2040). All 

205 climatic layers were obtained from the WorldClim database v2.1 (https://www.worldclim.org/). 

PeerJ reviewing PDF | (2021:10:66799:1:1:NEW 18 Jan 2022)

Manuscript to be reviewed



206 The models were generated with a climatic suitability gradient from 0 (low suitability) to 1 (high 

207 suitability), which were then converted to binary models (presence/absence). For each species, 

208 the threshold Maximum training sensitivity plus specificity (MaxSS) provided by MaxEnt in 

209 each model was chosen. The threshold MaxSS has been reported to show good performance for 

210 models that work only with presence data Liu et al. (2013). The importance of each bioclimatic 

211 variable in the observed distribution of the species under study was evaluated according to the 

212 relative importance of each variable, which was obtained by adding the percentage of 

213 contribution (PC) and the importance of permutation (IP), evaluated by MaxEnt, and the result 

214 was divided by two  (Anadón et al. 2015).[
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑃𝐶 + 𝐼𝑃)

2 ]

215 As a last step, the climatic suitability of the realized niche of each species was measured 

216 under current and future climate conditions. The vulnerability of the climatic suitability of each 

217 species to climate change was also identified, using the following change rate analysis: 

218 , where S0 is the total surface of the study area, according to the % 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 = [(𝑆1 ‒ 𝑆0)𝑆0 ] ∗ 100
219 base scenario, and S1 is the total surface occupied in the study area under change conditions.

220 Results
221

222 Climate profile. The principal component analysis suggested that, for our study area, the climate 

223 profile could be explained by considering the first two components. In all cases between 

224 components one and two, they explained at least 95% of the variation in the data. Under current 

225 weather conditions, for example, component one explained 96.2% of this variation, while 

226 component two only explained 2.8%. Considering the climate change scenarios, the scenario that 

227 presented the value with the lowest percentage in the sum of the two components was the BCC-
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228 CSM2-RM scenario with a value of 95.1%. The highest value was presented in the CNRM-

229 CM6-1 and IPSL-CM6A-LR scenarios with 96%.

230 Regarding the contribution of the variables for each component, for both the current 

231 climate conditions and the climate change scenarios, the variable Annual Precipitation was the 

232 one that presented the greatest contribution in component one. For component two, considering 

233 the current climate conditions and the climate change scenarios, the variables Precipitation of 

234 Warmest Quarter and Precipitation of Coldest Quarter were the ones that presented the greatest 

235 contribution (Table 1); however, the Analysis of Variance and Post Hoc tests suggested that only 

236 the climatic variables Annual Mean Temperature and Mean Temperature of Wettest Quarter 

237 presented significant statistical differences in their means with respect to the three climate 

238 change scenarios used in this study. While the variable Mean Diurnal Range only presented 

239 significant differences in its means when contrasted with the climatic information proposed for 

240 the scenarios BCC-CSM1-1 and CNRM-CM6-1, the rest of the variables did not present 

241 significant differences (Table 2).

242 Regarding the size of the niches, our results showed that these amplitudes varied among 

243 components. For example, C. ravus presented the greatest niche width considering the principal 

244 component one, with a range from -67.96149 to 1318.77525. In component two, this species 

245 occupied the third position in descending order, with a range from -176.6954 to 109.6385. 

246 Crotalus basiliscus, on the other hand, was in the second position in niche width in component 

247 one, with a range from 30.20758 to 1216.04195; in component two, this species was in the first 

248 position with a range ranging from -616.705 to -101.3538. For species that presented the lowest 

249 niche amplitudes, C. cerastes showed in component one a range from -490.6939 to -197.8326, 
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250 placing it in position 14. In component two, this species was in the position number 12 with a 

251 niche width range from -22.74158 to 118.81858 (see Table 3).

252

253 Vulnerability of climatic suitability in the face of environmental variations. The models 

254 obtained for the species under study showed an area under the curve ranging from 0.80 to 0.95, 

255 indicating low levels of commission (predicts the presence of the species where it does not exist, 

256 false positive) and omission (predicts the non-presence of the species where it really exists, false 

257 negative) (Table 4). The relative importance of each variable in the generation of climatically 

258 suitable zones for the presence of the species under study indicated that variable Annual Mean 

259 Temperature presented a greater contribution for 42.8% of these species. The variables Annual 

260 Precipitation, Mean Temperature of Wettest Quarter, and Precipitation of Coldest Quarter 

261 presented a higher contribution for the 28.5%, 14.2% and 7.14% of species under study, 

262 respectively. The rest of the variables did not present a marked influence on the generation of 

263 climatically suitable zones for the species under study (Table 4).

264 The models allowed the identification of three groups of species according to the 

265 percentage of loss of climatic suitability between current climatic conditions and the three 

266 climate change scenarios considered in this work (Fig. S1). In the first group (high vulnerability), 

267 the species C. viridis, C. scutulatus, C. molossus, and C. ravus showed a loss of climatic 

268 suitability of between 40 and 66% in at least two climate change scenarios used in this study. In 

269 the second group (medium vulnerability), C. pricei, C. ruber, C. lepidus, C. basiliscus, C. tigris, 

270 and C. cerastes showed a loss of climatic suitability of between 1 and 34%. In group three (low 

271 vulnerability), the species C. willardi, C. intermedius, C. enyo, and C. atrox showed an increase 

272 in climatic suitability for the climate change scenarios considered in this study (Table 5).
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273 Discussion
274 Hutchinson (1957) defines the niche of a species as an n-dimensional space, where each 

275 dimension represents the response of a species to the variation of a certain variable. In this way, 

276 each site on earth is characterized by a set of environmental conditions that define a specific 

277 habitat inhabited or uninhabited by a community of species (Kearney 2006). In this sense, our 

278 results indicate that for current climate conditions, according to the principal component 

279 analysis, the climatic profile of the distribution area of the species under study can be viewed 

280 from two approaches. The first is approach one (PC1), where the climate profile is determined to 

281 a greater extent by the Annual Precipitation. With approach two (PC2), the greatest contribution 

282 is provided by the variables Precipitation of Warmest Quarter and Precipitation of Coldest 

283 Quarter. For the climate change scenarios used in this study, the variables Annual Precipitation, 

284 Precipitation of Warmest Quarter and Precipitation of Coldest Quarter will continue to make the 

285 greatest contribution to the climate profile. 

286 Climate change in the last 30 years has produced numerous changes in the distribution 

287 and abundance of species (Parmesan and Yohe, 2003; Root et al. 2003) and has been implicated 

288 in the extinction of several species (Pounds et al. 1999). For the period 2021–2040, our results of 

289 climatic suitability loss identify three levels of vulnerability (high, medium, and low) for the 

290 species under study. For the group with high vulnerability, we identified C. viridis, C. scutulatus, 

291 C. molossus, and C. ravus, which represents 28.5% of the species under study. In the group with 

292 medium vulnerability, we identified the species C. pricei, C. ruber, C. lepidus, C. basiliscus, C. 

293 tigris, and C. cerastes, which represent 42.8% of our studied species. The species with low 

294 vulnerability includes C. willardi, C. intermedius, C. enyo, and C. atrox, representing 28.6% of 

295 our studied species. Various authors have pointed out that the breadth of the niche can have an 

296 important effect on the risk of extinction of a species because species with broader niches could 
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297 be less vulnerable to abrupt environmental variation under anthropogenic climate change. At the 

298 opposite extreme, species with narrow niches would be particularly threatened by climatic 

299 changes (Brown 1984; Johnson 1998; Kotiaho et al. 2005; Pearson et al. 2014; Saupe et al. 

300 2015).

301 There is substantial evidence from a variety of taxa that supports the theory that narrowed 

302 niches drive the risk of extinction of species in the face of climate change variations (e.g., fish 

303 (Munday 2004), bats (Boyles and Storm 2007), birds (Seoane and Carrascal 2008), frogs (Botts 

304 et al. 2013), and plants (Ozinga et al. 2013)). In relation to this, for the period 2021–2040, within 

305 the high-vulnerability and medium-vulnerability groups, C. viridis, C. molossus, C. tigris, C. 

306 scutulatus, C. ruber, and C. cerastes showed reduced niches for the variables related to 

307 temperature. This coincides with the aforementioned predictions since it would be expected that 

308 the species under study with reduced niches related to temperature present a greater disturbance 

309 in their habitat with respect to the increase in temperature projected for the period 2021–2040. 

310 However, other species in these same two groups (C. ravus, C. basiliscus, and C. lepidus) show a 

311 greater niche width compared to several species classified in the low-vulnerabilty group (C. 

312 atrox, C. pricei, and C. intermedius). This finding contrasts what is proposed above. In this 

313 context, Carrillo-Angeles et al. (2016) suggest that although various studies reinforce the 

314 hypothesis that species with narrow niches are more susceptible to climate change, there is no 

315 single trend in the fate of species with narrow niches and their vulnerability to environmental 

316 variations. For example, projections for an increase in greenhouse gases and, consequently, in 

317 temperature, for the year 2050 in Europe suggest that some of the most affected species will be 

318 those that inhabit colder northern regions, species with low densities, and species with less 

319 tolerance to aridity (Huntley et al. 1995; Thuiller et al. 2005a).
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320 Related to this last point, evidence suggests an increase in temperature and low rainfall 

321 for the period 2021–2040. For example, the comparison of means indicates that the variables 

322 Annual Precipitation, Precipitation of Warmest Quarter, and Precipitation of Coldest Quarter will 

323 present a relative stability for the period 2021–2040, with respect to what is shown in the climate 

324 current. However, for the variables Annual Mean Temperature, Mean Diurnal Range, Mean 

325 Temperature of Wettest Quarter, an increase in the averages of between 1.74 °C and 1.99 °C is 

326 expected; 0.11 °C and 0.49 °C, and 1.1 °C and 1.8 °C, respectively. In this regard, various 

327 studies have mentioned that the significant increase in temperature and the low availability of 

328 water will lead to a reduction in humidity of the air and substrate (Seager et al. 2007; Ye and 

329 Grimm 2013; Kunkel et al. 2013). This is a condition that may have significant detrimental 

330 effects on reptiles that are less tolerant to aridity (Inman et al. 2014; Hatten et al. 2016).

331 Our results show that for C. ravus, C. basiliscus, and C. lepidus, despite presenting wide 

332 climatic niches for the variables related to precipitation and temperature, their ideal habitat is 

333 influenced to a greater extent by the Annual Mean Temperature and Mean Temperature of 

334 Wettest Quarter, respectively. Like the rest of the species classified as high and medium 

335 vulnerability, they are also influenced to a greater extent by the variables Annual Mean 

336 Temperature and Mean Temperature of Wettest Quarter. In contrast, for C. atrox, C. enyo, C. 

337 willardi, and C. intermedius, four species identified with low vulnerability to climate change, the 

338 variables related to temperature show little contribution to the generation of suitable climatic 

339 environments for their distribution. In this way, the evidence suggests that for our species 

340 identified with high vulnerability to climate change, they can be considered as less tolerant to the 

341 increase in aridity projected for the period 2021–2040.

342   
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343 In conclusion, the increase in the variables Annual Mean Temperature and Mean 

344 Temperature of Wettest Quarter may compromise the climatic suitability of at least 71.4% of the 

345 species considered in our study. In this sense, for the species under study, the niche width, by 

346 itself, cannot be considered as a determining factor that helps to predict the vulnerability of their 

347 climatic suitability under rapid environmental change. However, evidence from our study shows 

348 how the relative importance of climatic variables in the construction of niche modeling can help 

349 us understand the vulnerability of the climatic suitability of the species under study to global 

350 climate change. 

351 In this study, we used correlative methods to model the climatic suitability of the species 

352 under study and estimate niche width. Soberón (2007) pointed out that the realized niche is 

353 determined by biotic restrictions in the fundamental ecophysiological niche, population 

354 dynamics (e.g., source-sink dynamics) and dispersion limitations (that is, accessibility). 

355 Therefore, in our study we are not considering the physiological limits of the species and, 

356 although Cuervo-Robayo et al. (2017) comment that correlative ecological niche models are a 

357 good technique to capture exposure to climate change, we cannot rule out that we could be 

358 underestimating or overestimating our results. However, mechanistic (physiological) methods 

359 can also be subject to overestimation or underestimation of the niche (Peterson and Holt 2003; 

360 Strubbe et al. 2015).
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Figure 1
Geographic records of 14 Crotalus species used in this study.

Species are (A) C. atrox, (B) C. basiliscus, (C) C. cerastes, (D) C. enyo, (E) C. intermedius, (F)
C. lepidus, (G) C. molossus, (H) C. pricei, (I) C. ravus, (J) C. ruber, (K) C. scutulatus, (L) C.
tigris, (M) C. viridis, and (N) C. willardi. Taxonomy follows Campbell and Lamar (2004). Red
dots denoted each geographic record for each species analyzed in this study.
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Table 1(on next page)

Contribution values of the climate variables for each component of the three climate
change scenarios projected for the period 2021–2040 (Socio-economic Pathways (SSPs):
585).

The magnitude is used to choose the variables that best explained most of the variation,
which is ≥ 0.50. Climate change scenarios correspond to BCC-CSM1-1, CNRM-CM6-1, IPSL-
CM6A-LR. Variables are bio1 = Annual Mean Temperature, bio2 = Mean Diurnal Range, bio8
= Mean Temperature of Wettest Quarter, bio12 = Annual Precipitation, bio13 = Precipitation
of Wettest Month, bio14 = Precipitation of Driest Month, bio15 = Precipitation Seasonality,
bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest Quarter.
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1 Table 1. Contribution values of the climate variables for each component of the three 

2 climate change scenarios projected for the period 2021–2040 (Socio-economic Pathways 

3 (SSPs): 585). The magnitude is used to choose the variables that best explained most of the 

4 variation, which is ≥ 0.50. Climate change scenarios correspond to BCC-CSM1-1, CNRM-CM6-

5 1, IPSL-CM6A-LR. Variables are bio1 = Annual Mean Temperature, bio2 = Mean Diurnal 

6 Range, bio8 = Mean Temperature of Wettest Quarter, bio12 = Annual Precipitation, bio13 = 

7 Precipitation of Wettest Month, bio14 = Precipitation of Driest Month, bio15 = Precipitation 

8 Seasonality, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest Quarter.   

Current weather BCC-CSM1-1 CNRM-CM6-1 IPSL-CM6A-LR

Variables

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

bio1 0.013 -0.02 0.006 -0.013 0.005 -0.014 0.006 -0.015

bio2 0.0004 0 -0.002 -0.005 -0.002 -0.004 -0.002 -0.005

bio8 0.004 -0.04 0.004 -0.046 0.003 -0.049 0.004 -0.047

bio12 0.94 -0.03 0.93 0.22 0.93 0.206 0.941 0.197

bio13 0.12 -0.07 0.17 -0.24 0.177 -0.237 0.169 -0.223

bio14 0.038 0.015 0.02 0.09 0.024 0.097 0.022 0.095

bio15 -0.017 -0.03 0.01 -0.22 0.013 -0.215 0.01 -0.214

bio18 0.18 -0.69 0.3 -0.72 0.275 -0.74 0.272 -0.741

bio19 0.24 0.70 0.09 0.55 0.096 0.542 0.097 0.55

9

10

11

PeerJ reviewing PDF | (2021:10:66799:1:1:NEW 18 Jan 2022)

Manuscript to be reviewed



Table 2(on next page)

The significance values of the Analysis of Variance (ANOVA) for each climatic variable
identifying if at least one of the three climate scenarios projected for the 2021–2040
period differs from the current climate.

Likewise, the significance value of the Tukey Post-Hoc Test is shown, identifying which
climatic scenario is the one that presents these variations. Climate change scenarios are
BCC-CSM-MR (A), CNRM-CM6-1 (B) and IPSL-CM6A-LR (C). Variables are bio1 = Annual Mean
Temperature, bio2 = Mean Diurnal Range, bio8 = Mean Temperature of Wettest Quarter,
bio12 = Annual Precipitation, bio13 = Precipitation of Wettest Month, bio14 = Precipitation of
Driest Month, bio15 = Precipitation Seasonality, bio18 = Precipitation of Warmest Quarter,
bio19 = Precipitation of Coldest Quarter.
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1 Table 2. The significance values of the Analysis of Variance (ANOVA) for each climatic 

2 variable identifying if at least one of the three climate scenarios projected for the 2021–

3 2040 period differs from the current climate. Likewise, the significance value of the Tukey 

4 Post-Hoc Test is shown, identifying which climatic scenario is the one that presents these 

5 variations. Climate change scenarios are BCC-CSM-MR (A), CNRM-CM6-1 (B) and IPSL-

6 CM6A-LR (C). Variables are bio1 = Annual Mean Temperature, bio2 = Mean Diurnal Range, 

7 bio8 = Mean Temperature of Wettest Quarter, bio12 = Annual Precipitation, bio13 = 

8 Precipitation of Wettest Month, bio14 = Precipitation of Driest Month, bio15 = Precipitation 

9 Seasonality, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest Quarter. 

ANOVA Tukey Post Hoc

Variables

Current weather vs. future (A) (B) (C)

bio1 F = 17.234, g.l. = 3, 3704; P < 0.001 0 0 0

bio2 F = 11.024, g.l.=3, 3704; P < 0.001 0 0 0.706

bio8 F = 9.164 , g.l.=3, 3704; P < 0.001 0.009 0 0

bio12 F = 0.646, g.l.=3, 3704; P = 0.585 0.659 1 0.929

bio13 F = 2.246, g.l.=3, 3704; P = 0.081 0.071 0.935 0.94

bio14 F = 0.056, g.l.=3, 3704; P < 0.921 0.995 0.993 0.978

bio15 F = 1.847, g.l.=3, 3704; P = 0.133 0.146 0.997 0.931

bio18 F =2.205, g.l.=3, 3704; P=0.085 0.527 0.619 0.999

bio19 F =0.065, g.l.=3, 3704; P=0.978 0.984 0.98 0.997
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Table 3(on next page)

The niche amplitude ranges of the Crotalus species under study for each component.

Amplitude level is assigned with the numbering from 1 to 14, considering the value 1 as the
greatest amplitude and the value 14 as the least amplitude.
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1 Table 3. The niche amplitude ranges of the Crotalus species under study for each 

2 component. Amplitude level is assigned with the numbering from 1 to 14, considering the value 

3 1 as the greatest amplitude and the value 14 as the least amplitude. 

4

Amplitude 

level Species Principal component 1 Species Principal component 2

1 Crotalus ravus -67.96149 1318.77525 C. basiliscus -616.705 -101.3538

2 C. basiliscus 30.20758 1216.04195 C. ruber -163.621 178.7878

3 C. lepidus -287.7632 861.3883 C. ravus -176.6954 109.6385

4 C. atrox -465.0134 526.5947 C. enyo -178.12807 82.67381

5 C. pricei -109.8672 848.9207 C. lepidus -250.781818 9.362773

6 C. intermedius -24.45662 857.09356 C. scutulatus -108.6258 132.9914

7 C. molosus -292.5419 492.205 C. molosus -164.95542 49.20508

8 C. willardi -90.90045 565.84212 C. tigris -146.12779 60.16305

9 C. scutulatus -461.1022 91.95143 C. atrox -110.62657 84.72098

10 C. tigris -340.6544 164.7327 C. pricei -201.97193 -15.33427

11 C. viridis -316.2345 130.2748 C. willardi -186.64149 -21.56087

12 C. enyo -476.14736 -34.06174 C. cerastes -22.74158 118.81858

13 C. ruber -464.42653 -43.88676 C. intermedius -74.70301 52.86688

14 C. cerastes -490.6939 -197.8326 C. viridis -60.4701 55.13558

5

6

PeerJ reviewing PDF | (2021:10:66799:1:1:NEW 18 Jan 2022)

Manuscript to be reviewed



Table 4(on next page)

The relative importance values of each variable in the generation of habitat suitability
models for the Crotalus species under study.

Area under the curve (AUC) values also provided that allow the evaluation of habitat
suitability models. Variables are bio1 = Annual Mean Temperature, bio2 = Mean Diurnal
Range, bio8 = Mean Temperature of Wettest Quarter, bio12 = Annual Precipitation, bio13 =
Precipitation of Wettest Month, bio14 = Precipitation of Driest Month, bio15 = Precipitation
Seasonality, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest
Quarter.

PeerJ reviewing PDF | (2021:10:66799:1:1:NEW 18 Jan 2022)

Manuscript to be reviewed



1 Table 4. The relative importance values of each variable in the generation of habitat 

2 suitability models for the Crotalus species under study. Area under the curve (AUC) values 

3 also provided that allow the evaluation of habitat suitability models. Variables are bio1 = Annual 

4 Mean Temperature, bio2 = Mean Diurnal Range, bio8 = Mean Temperature of Wettest Quarter, 

5 bio12 = Annual Precipitation, bio13 = Precipitation of Wettest Month, bio14 = Precipitation of 

6 Driest Month, bio15 = Precipitation Seasonality, bio18 = Precipitation of Warmest Quarter, 

7 bio19 = Precipitation of Coldest Quarter.

Species bio1 bio2 bio8 bio12 bio13 bio14 bio15 bio18 bio19 AUC

Crotalus atrox 8.65 1.7 4.6 45.2 12 4.4 14.8 2.7 5.6 0.8

C. basiliscus 22.2 8.8 27.4 6.4 4.7 11.4 7.3 2.2 9.4 0.8

C. cerastes 39.1 5.2 6.8 4.7 10.6 10.7 5.15 13.1 4.2 0.8

C. enyo 12.4 1.25 0 28.4 15.6 6.6 14.7 11 9.9 0.8

C. intermedius 0 13.6 0 55.4 9.3 0 7.9 11.3 2.3 0.8

C. lepidus 22.7 14.5 6.9 7.8 4.7 6.5 16.3 6.6 13.8 0.8

C. molossus 35.5 11.3 5.4 1.4 3.7 6.4 21.4 4.2 10.5 0.8

C. pricei 39.5 0.9 3.1 0.2 3.5 7.7 12.9 11 20.5 0.9

C. ravus 55.3 1 7.5 13.2 2.3 10 3.1 0 7.3 0.9

C. ruber 11.1 0.5 29.3 6.7 3.9 17.9 11.4 14.1 4.7 0.8

C. scutulatus 3.3 12.2 36.2 6.4 7.2 7.7 12.1 7.95 6.75 0.88

C. tigris 28.7 18 0.4 1.7 16.5 4.4 7.2 2.75 20.2 0.91

C. viridis 49.6 16.7 2.4 4.1 1.3 4 7.7 11.45 2.55 0.95

C. willardi 0 1 0 0 31 29.35 12.8 0.05 25.65 0.93

8
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Table 5(on next page)

Three levels of habitat vulnerability for rattlesnakes of the genus Crotalus in North
America.

Habitat measured in square kilometers (km2), and percentage of change shown to future
scenarios). Climate change scenarios correspond to BCC-CSM1-1, CNRM-CM6-1, IPSL-CM6A-
LR.
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1 Table 5. Three levels of habitat vulnerability for rattlesnakes of the genus Crotalus in North 

2 America. Habitat measured in square kilometers (km2), and percentage of change shown to 

3 future scenarios). Climate change scenarios correspond to BCC-CSM1-1, CNRM-CM6-1, IPSL-

4 CM6A-LR.   

Groups Species Current weather
BCC-

CSM1-1

CNRM-

CM6-1

IPSL-

CM6A-LR

High 

vulnerability
1820437 639564 620547 646873

Crotalus viridis

Change rate (%) -64.87 -65.91 -64.47

809924 382908 420207 362717
C. scutulatus

Change rate (%) -52.72 -48.12 -55.22

959356 489167 458906 467002
C. molossus

Change rate (%) -49.01 -52.17 -51.32

44437 25707 23208 25647
C. ravus

Change rate (%) -42.15 -47.77 -42.28

Medium 

vulnerability
146648 102440 107256 96710

C. pricei

Change rate (%) -30.15 -26.86 -34.05

91162 65837 72058 71887
C. ruber

Change rate (%) -27.78 -20.96 -21.14

577117 440588 439025 443955
C. lepidus

Change rate (%) -23.66 -23.93 -23.07

78814 61888 64637 63889
C. basiliscus

Change rate (%) -21.48 -17.99 -18.94

107274 93535 92460 92400
C. tigris

Change rate (%) -12.81 -13.81 -13.87

262133 405465 252009 258217
C. cerastes

Change rate (%) 54.68 -3.86 -1.49

Low 

vulnerability
46803 58109 67865 74058

C. willardi

Change rate (%) 24.16 45 58.23

40922 56759 57932 59345
C. intermedius

Change rate (%) 38.7 41.57 45.02

C. enyo 42845 68720 66650 63527
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Change rate (%) 60.39 55.56 48.27

649052 1340144 1255603 1242055

 
C. atrox

Change rate (%) 106.48 93.45 91.36

5
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