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ABSTRACT
Molecular networks are built up from genetic elements that exhibit feedback interac-
tions. Here, we studied the problem of measuring the similarity of directed networks
by proposing a novel alignment-free approach: the network subgraph-based approach.
Our approach does not make use of randomized networks to determine modular
patterns embedded in a network, and this method differs from the network motif and
graphlet methods. Network similarity was quantified by gauging the difference between
the subgraph frequency distributions of two networks using Jensen–Shannon entropy.
We applied the subgraph approach to study three types of molecular networks, i.e.,
cancer networks, signal transduction networks, and cellular process networks, which
exhibit diverse molecular functions. We compared the performance of our subgraph
detection algorithm with other algorithms, and the results were consistent, but other
algorithms could not address the issue of subgraphs/motifs embedded within a sub-
graph/motif. To evaluate the effectiveness of the subgraph-based method, we applied
the method along with the Jensen–Shannon entropy to classify six network models,
and it achieves a 100% accuracy of classification. The proposed information-theoretic
approach allows us to determine the structural similarity of two networks regardless of
node identity and network size. We demonstrated the effectiveness of the subgraph
approach to cluster molecular networks that exhibit similar regulatory interaction
topologies. As an illustration, our method can identify (i) common subgraph-mediated
signal transduction and/or cellular processes in AML and pancreatic cancer, and (ii)
scaffold proteins in gastric cancer and hepatocellular carcinoma; thus, the results
suggested that there are common regulation modules for cancer formation. We also
found that the underlying substructures of the molecular networks are dominated by
irreducible subgraphs; this feature is valid for the three classes of molecular networks
we studied. The subgraph-based approach provides a systematic scenario for analyzing,
compare and classifying molecular networks with diverse functionalities.
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INTRODUCTION
Network comparison is an important and well-studied subject in bioinformatics. Many
molecular biology networks are directed networks (digraphs), such as gene regulatory
networks, signal transduction networks, cellular processes, metabolic networks etc. In the
area of computational molecular biology, it is useful to compare networks with each other,
because if the properties of a given network are known, one can transfer this information
to the other network; such as, structural study of metabolic networks for single cell
organism (Zhu & Qin, 2005), inferring phylogenetic tree for metabolic networks (Heymans
& Singh, 2003), grouping different types networks; such as, cell signaling, metabolic and
transcriptional regulatory networks (Aparìcio, Ribeiro & Silva, 2015).

Alignment-based methods and alignment-free methods
Alignment-based methods are mainly used to compare whether the nodes and edges of
two networks are similar, and to identify conserved modules. Alignment-free methods do
not need to consider the node identity and network size, so they may not find conserved
regions (Yaveroğlu, Milenković & Pržulj, 2015); instead, the methods can extract conserved
topological similar regions.

There are a few methods that can be used to analyze digraphs (Tantardini et al., 2019);
including (i) global statistics (Pržulj, 2007), (ii) portrait divergence (PD) (Bagrow &
Bollt, 2019), (iii) graphlet (Sarajlić et al., 2016) and (iv) algorithmic complexity of network
motifs (Zenil, Kiani & Tegnér, 2013). Methods (i) to (iii) use graph theory metrics, whereas
(iv) uses information contents of the motifs to compare networks. Each method has its
advantages and limitations.

Networks with similar global statistics do not necessary mean similar network
architecture (Pržulj, 2007). The PD method defines three probability distributions to
characterize a graph: (i) the probability that two points in the network are connected, (ii)
the probability that the distance between the two nodes is L, and (iii) the probability that
one of the nodes is connected to a k-1 nodes at a distance of L. Then, the graph invariant (the
network portrait) is defined by taking the normalized product of these three probability
distributions. Level of network similarity is given by the Jensen–Shannon entropy (HJS)
of the two network portraits. The authors demonstrated that their method was able to
distinguish the protein interaction, neuroscience, and social science networks, but only a
few networks are considered.

The use of graphlets was introduced by Przulj to perform network comparisons (Przulj,
2007; Yaveroglu et al., 2014). Graphlets are connected small graphs. Each node in the
graphlet can be divided into different categories depending on its connection to other
nodes in the network. Nodes in the same category belong to the same orbit. To study
directed networks, the concept of the graphlet was extended to directed graphlets by
considering the in- and out-degree. Directed graphlets were demonstrated to be superior
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for comparing directed networks (Sarajlić et al., 2016) and effective in studying brain
networks (Trpevski et al., 2016). The graphlet method compares two directed networks
by decompose the network into three-node and four-node graphlets, and calculate the
Euclidean distance between their Directed Graphlet Correlation Matrix (Sarajlić et al.,
2016). Sarajlić et al. (2016) applied the directed graphlet degree concept to predict the
biological function of enzymes according to the similarity of their connection patterns
in a metabolic network. Trpevski et al. (2016) analyzed the brain network by using the (i)
signature vector of the vertex (brain region) and (ii) graphlet correlation matrix of the
network to infer the excitatory/inhibitory and causal patterns, respectively, in the effective
brain networks.

Newmethods have been developed to perform directed network comparisons, including
expanding the definition of graphlets (Martin et al., 2016) and using graphlet-based
metrics (GBM) (Martin et al., 2017). Martin et al. (2016) introduced the rate of graphlet
reconstruction and REC graphlet degree (RGD) to compare gene regulatory networks
(from Escherichia coli) under a specific condition. In another study, Martin et al. (2017)
applied GBM to assess the topological similarity between networks (from E. coli) under
different biological conditions. Previous research on network analyses focused on graphlets
composed of three nodes only; however, the extension of graphlets with four nodes is still
limited (Trpevski et al., 2016;Martin et al., 2016; Martin et al., 2017).

Furthermore, Zenil, Kiani & Tegnér (2013) applied the Block Decomposition Method
to estimate algorithmic probability of the four-node motifs of a network, the authors
demonstrated that their method correctly distinguish the developmental genetic network
and the signal transduction network, the performance is better than the compression
algorithm, BZIP2.

Many tools (Tran et al., 2015; Meira et al., 2018; Meira et al., 2014; Wernicke & Rasche,
2006; Omidi, Schreiber & Masoudi-Nejad, 2009; Meira et al., 2014) have been developed
to detect ‘statistically significant’ network motifs. The acc-Motif algorithm can identify
network motifs with a size of up to five nodes. Later, the algorithm was improved to find
motifs for up to six nodes (Meira et al., 2018). We noted that the tool LoTo identifies motifs
for up to three nodes but not for four nodes. But these tools may not be able to detect the
complete set of motifs, because the predicted patterns are not statistically significant. This
suggests that motif-finding tools have limitations in our earlier work (Huang et al., 2020),
as they cannot enumerate all the network motifs embedded in a network due to the use
of an arbitrary threshold; i.e., p-value is larger than 0.05. Also, it is known that the time
complexity of identifying N -node motifs in a large network is an NP-complete problem
(Kim et al., 2013).

The network subgraph-based approach and network comparison
Mowshowitz (1968), who developed a method to address the problem of gauging the
relative complexity of graphs. Drawing on that, in our previous work (Huang et al., 2020)
we propose the network subgraph-based approach, treat the network subgraphs’ pattern
exactly the same as the network motifs. but not make use of the randomization definition
to extract the subgraphs embedded in a network.
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Network similarity can be quantified by using the information-theoretic quantity
Kullback–Leibler entropy (HKL). In 2011, Kugler et al. (2011) introduced the use of graph
prototyping for network comparison. They showed that in three out of the five graph
distance measures used, the group of prostate cancer networks differed significantly from
the group of benign networks. HKL is an asymmetric quantity, one can define a symmetric
quantity, HJS, to gauge network similarity.

Our method is an alignment-free approach. It is different from some earlier
studies (Sarajlić et al., 2016; Trpevski et al., 2016; Martin et al., 2016; Martin et al., 2017)
in that we employed a subgraph instead of a graphlet to dissect network topologies.

In the ‘Methods’ section, we present our approach, introduce network comparison
method and describe setting up simulation experiments to test our method. In the
‘Results’ section, we present the effectiveness of our approach on simulated data, and
its use to evaluate similarities amongst three categories of molecular biology networks.
We also address the biological meanings of topological similar molecular networks. In the
‘Conclusion’ section, we elaborate the key findings in this work, and suggest biological
applications of our method in future study.

METHODS
Network subgraph-based approach
Mowshowitz (1968) proposed that a finite graph (N nodes and E edges) can be decomposed
into equivalence classes (C classes); each class contains ni nodes, and a probability is
assigned to each class, i.e., pj = nj /N. There are many ways of partitioning the set of nodes
of a graph, one way to obtain a decomposition is to identify the orbits of a graph. The
orbits of a graph can be identified by calculating the degree of the nodes, point-deleted
neighborhood degree vector and betweenness centrality (Mowshowitz & Mitsou, 2009).
The subgraph-based approach we developed does not rely on determining the orbits of a
graph; hence, it is a different one.

Adjacency matrix
Given a network subgraph, one can construct an adjacency matrix A, with matrix elements
‘‘0’’ and ‘‘1’’ to represent the absence and presence of connections among the nodes,
respectively. Each subgraph can be represented by a decimal. This can be achieved by
arranging all the entries in the adjacency matrix by row major order into one binary string
and then convert it to decimal, each subgraph can be denoted by an unique decimal value,
called graph ID.

Subgraph identification, network comparison and simulation
experiments
Previously, we developed a subgraph detection algorithm, PatternFinder (Huang et al.,
2020), to identify three-node subgraphs and four-node subgraphs embedded in cancer
networks, STN, and cellular processes. A brief description of the algorithm, PatternFinder,
was provided in the Appendix section. Also, we point out that PatternFinder is an exhaustive
search algorithm, which allowed us to detect the complete set of subgraphs and subgraphs
within a subgraph, it is not intend for large-scale network analysis.
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In information theory, a number of quantities can be used to characterize the distance
between two probability distributions. For instance, one can use the Kullback–Leibler
entropy, HKL, also known as cross-entropy (Capra & Singh, 2007) to quantify the distance.
Given two discrete probability distributions, X and Y, the Kullback–Leibler entropy of X
with respect to Y is defined by

HKL(X ||Y )=−
∑

i
Xilog

Xi

Yi
. (1)

HKL is asymmetric under the interchange of X and Y. In 2011, Kugler et al. (2011)
introduced the use of HKL for network comparison. They showed that in three out of
the five graph distance measures used, the group of prostate cancer networks differed
significantly from the group of benign networks.

One can symmetrize HKL by adding the term HKL(Y||X). We applied a similar quantity,
HJS, to gauge network similarity. HJS is a symmetric function and is used to measure the
distance between the two subgraph probability distributions X and Y for networksNX and
NY , respectively. HJS is defined as follows:

HJS=
1
2
[HKL(X ||Z )+HKL(Y ||Z )]. (2)

where Z = 1
2(X+Y ).

Let X (n) and Y (n) be the n-node subgraph probability distributions obtained by using
PatternFinder for networks NX and NY , respectively, where n= 3 or 4. If n equals to 3,
X (3) and Y (3) are compose of thirteen components; obviously, X (4) and Y (4) are compose
of 199 components. Then, the three-node subgraph Jensen–Shannon entropy measure for
networks NX and NY , H (3)

JS is given by

H (3)
JS =

1
2
[
HKL

(
X (3)||Z (3)

)
+HKL

(
Y (3)||Z (3)

)]
(3)

where Z (n)
=

1
2(X

(n)
+Y (n)), with n= 3. A similar expression for the four-node subgraph

Jensen–Shannon entropy measure, H (4)
JS , can be obtained simply by substituting X (4) , Y (4)

and Z (4) into Eq. (3).
The unique feature of HJS is that it measures the similarity between two networks in

terms of the underlying architecture of the networks rather than the identities of the nodes.
In other words, network similarity is measured without referring to the genetic identities of
a subgraph. The square root of HJS is a metric called the Jensen–Shannon distance (Endres
& Schindelin, 2003).

HJS has been used in many applications, such as (i) predicting functionally important
amino acids from sequence conservation, (ii) pattern recognition in bioinformatics (Loog et
al., 2011), (iii) predicting important non-conserved residues in protein sequences (Gültas
et al., 2014), (iv) analyzing DNA sequences (Grosse et al., 2002), and (v) measuring the
distance between random graphs (Wong & You, 1985). Wong & You (1985) proposed a
distance metric between two random graphs based on the smallest change in Shannon
entropy before and after merging the two random graphs.

In order to verify the effectiveness of the subgraph-based approach along with the
HJS metric, we used the ‘igraph’ package (Csardi & Nepusz, 2006) (https://igraph.org/) to
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Table 1 Description of the six network models, ‘igraph’ parameter settings andmeaning of the parameters.

Network type Description of the network (igraph) parameters used in ‘igraph’

Random graph This model is very simple, every possible edge is created
with the same constant probability

Prob= 0.0188,
directed= TRUE

Scale-free network The BA-model is a very simple stochastic algorithm for
building a graph

Power= 2,
m = 3,
zero.appeal= 1,
directed=TRUE,
algorithm=psumtree

Small world Generate a graph according to the Watts–Strogatz network
model

Dim= 1,
Nei= 25,
p = 0.6,
directed= TRUE

Geometric random graph Generate a random graph based on the distance of random
point on a unit square

radius= 0.15,
torus= TRUE,
coords= TRUE,
directed= TRUE

Aging random graph This function creates a random graph by simulating its
evolution. Each time a new vertex is added it creates a
number of links to old vertices and the probability that an
old vertex is cited depends on its in-degree (preferential
attachment) and age

pa.exp= 1,
aging.exp=−1, aging.bin= 1,000, directed= TRUE

Citation random graph creates a graph, where vertices age, and gain new
connections based on how long ago their last citation
happened

edges= 1, age_bins=nodes/100
agebins,pref= (1:(agebins+ 1)) 3̂,
directed= TRUE

generate six different network models (Random graph, Scale-free network, Small world,
Geometric random graph, Aging random graph, Citation random graph, using three
different number of nodes: 300, 400 and 500, and two types of edge density: 2% and
6%, each network repeated three times, i.e., a total of 6*3*2*3 = 108 networks) and then
used MST-kNN (Arefin et al., 2014) to perform clustering classification. MST-kNN is an
unsupervised graph-based clustering classifier based on Jensen–Shannon divergence and
graph partition algorithm, it was utilized to classify the authorship of drama and poems.
Table 1 described these six models, ‘igraph’ parameter settings (Csardi & Nepusz, 2006),
and meaning of the parameters.

Input datasets—cancer networks, signal transduction networks (STN)
and cellular processes
Network information was retrieved from the KEGG database (Nakaya et al., 2013). After
manual inspection, we removed networks composed of separate components, such as
‘‘chemical carcinogenesis’’, ‘‘microRNAs in cancer’’, ‘‘two-component system’’, and ‘‘viral
carcinogenesis’’. In addition, we collected the networks labelled with ‘‘signaling pathway’’,
grouped them together, and called them ‘‘signal transduction networks (STN)’’. We
note that STN range across different families of molecular networks recorded by KEGG,
including ‘‘endocrine system’’, ‘‘immune system’’, and ‘‘signal transduction’’. We compiled
three major types of molecular networks, i.e., 17 cancer networks, 45 STN, and nine cellular
processes. Names of these three types of molecular networks are listed in File S1.
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Table 2 Summary of the parameters of three simulation experiments, including six network models, network sizes, edge densities, total num-
ber of networks, and classification accuracy.

simulation Network type Network sizes Edge density Total number
of networks

Accuracy

I Random graph, Scale-free network, Small world, Geometric
random graph, Aging random graph, Citation random
graph

300, 400, 500 2% 54 100%

II Random graph, Scale-free network, Small world, Geometric
random graph, Aging random graph, Citation random
graph

300, 400, 500 6% 54 100%

III Small world, Aging random graph, Citation random graph 300, 400, 500 2% & 6% 54 100%

We downloaded the KGML files of the 71 networks from the KEGG database and used
the Cytoscape plug-in tools KEGGScape (Nishida et al., 2014) and KEGGparser (Arakelyan
& Nersisyan, 2013) to obtain node and edge information for those networks. Real-world
molecular networks are composed of thousands of genes, which are larger than the
networks we analyzed; however, the regulatory and feedback interaction information
among thousands of genes are not available in KEGG, yet it can be analyzed once the data
are available.

RESULTS
Comparison of tools—PatternFinder, acc-Motif and LoTo
To evaluate the performance of PatternFinder in enumerating all the three-node subgraphs,
we have demonstrated the usefulness of tool in Table 2 of our previous study (Huang et al.,
2020).

Essentailly speaking, PatternFinder is able to identify the complete set of subgraphs,
whereas acc-Motif identifies relatively few network motifs. Furthermore, acc-Motif is
unable to identify some of the four-node subgraphs for a given network due to the fact
that those subgraphs are not statistically significant. Also, we noted that the tool LoTo
identifies motifs for up to three nodes but not for four nodes. The above results suggest
that motif-finding tools may have certain limitations as they cannot enumerate all possible
substructures of a network. We provided Files S2 and S3 to help the reader relate (i) the
subgraphs’ decimals and their graphical representation, and (ii) the acc-Motif IDs and
their graphical representation.

Given the three-node subgraphs and four-node subgraphs identified by PatternFinder,
the normalized frequency distributions of the thirteen three-node subgraphs and 199
four-node subgraphs were determined; hence, network similarity was quantified by using
the information-theoretic quantity HJS.

Classification of network models using subgraph-based approach
To examine the effectiveness of the subgraph-based approach, we applied themethod along
withHJS to classify six network models. We considered three types of simulations (Table 2).
Simulations I and II consider six network models, each model with three different node
numbers, but with the same edge density, i.e., 2% and 6% respectively; and repeat the
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simulation for three trials, therefore, each simulation composes of 6×3×3= 54 networks
need to classify. The third simulation considered three network models; with different
numbers of nodes and edge densities, again there are 54 networks (3∗3∗2∗3= 54) to
classify.

Given the 54 networks, we performed the following: (i) applied PatterFinder to extract
the three-node subgraph probability distribution for each network, (ii) computed the
pairwiseHJS distance matrix (a matrix with dimension 54× 54, File S4 summarizes theHJS

values for the three simulations), and (iii) used theMST-kNNpackage to do cluster analysis.
The results of classification achieve 100% accuracy for the three simulations (Table 2 last
column & Figs. 1A–1C). For example, Fig. 1A shown that the 54 networks are correctly
classified into six network models. Orange color circles in Fig. 1A denote ‘‘Geometric
Random Graph’’, the numbers listed inside the circles start from 1 to 9, which are the
first nine networks in the pairwise HJS distance matrix. Similarly, the blue colored circles
included numbers run from 10 to 18, which represent ‘‘Random Graph’’. We checked
the numbers listed in the other four different colored circles, which correctly denote the
other four types of network models. The result of Fig. 1C shows that given theHJS distance
matrix, theMST-kNN classifier correctly classify the six possibilities (three network models
along with two different edge densities). Compared with the results presented in Sarajlić
et al. (2016), our classification accuracy is better; but the network we analyzed is relatively
small, the number of nodes is not more than 500.

File S5 provided the codes for (i) generating the six models, (ii) calculating the HJS, and
(iii) performing cluster analysis using MST-kNN.

To address the concern why our method can distinguish networks with similar global
topology, we provide a detail discussion in File S6. In essence, we plot the cumulative
probability functions (‘cpfs’) of the three-node subgraphs for the first trial; so there are
18 ‘cpfs’. As shown in the Fig. S6.1, the small-world and scale-free networks ‘cpfs’ can
be clearly distinguished from the rest. Among the other four random networks, the ‘cpfs’
of aging random network and citation random network are quite close but with minor
difference, as shown in Fig. S6.2; thus, indicates the effectiveness of our method.

Cancer networks
We performed a pairwise network comparison between the 17 cancer networks, computed
theHJS distances, and ranked theHJS distances from the smallest to the largest. Table 3 lists
the results for the top three most similar pairs of cancer networks based on theHJS distance.
It is noted that the HJS distance is non-zero, and the value may be as small as 0.0214. In
other words, no two networks have exactly the same subgraph frequency distributions. The
complete list of the HJS distances of the cancer networks is given in File S7.

The degree of similarity between two networks is characterized by subgraph frequency
distributions. Given a pair of highly similar networks, we calculated the absolute values of
the difference of the normalized frequency distributions of the network subgraphs. The
magnitude of the difference (both three-node and four-node subgraphs) can be seen in the
right-hand side of Table 3. The range of difference of the three-node subgraph distributions
for the ‘‘acute myeloid leukemia (AML)’’ network and the ‘‘pancreatic cancer’’ network is
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Figure 1 Visualization of the results of classification for (A) simulation I, (B) simulation II and (C)
simulation III, usingMST-kNN.

Full-size DOI: 10.7717/peerj.13137/fig-1

Table 3 The top three most similar pairs of cancer networks based on theHJS distance of the three-node subgraphs and four-node subgraphs
normalized frequency distributions.

Network A Network B HJS distance Absolute value of the difference of the subgraph
normalized frequency distributions

3-node subgraph ID (ID 6, ID 12, ID 36, ID 38)
Acute myeloid leukaemia (AML) Pancreatic cancer 0.0214 (0.013, 0.007, 0.021, 0.002)
Chronic myeloid leukaemia (CML) Gastric cancer 0.0309 (0.038, 0.020, 0.018, null)
Gastric cancer Small cell lung cancer 0.0339 (0.024, 0.042, null, 0.018)

4-node subgraph ID (ID 14, ID 28, ID 74, ID 76, ID 78, ID 280, ID 328, ID 392,
ID 2184)

Gastric cancer Hepatocellular carcinoma 0.0998 (0.001, 0.027, 0.063, 0.011, null, 0.001, 0.045, 0.046, 0.006)
Chronic myeloid leukaemia (CML) Melanoma 0.138 (0.009, 0.049, 0.114, 0.017, null, 0.028, 0.016, 0.016, null)
Hepatocellular carcinoma Small cell lung cancer 0.138 (0.115, 0.006, 0.025, 0.015, null, 0.004, 0.004, 0.065, 0.002)
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0.002–0.021, which is smaller than the ranges for the other two pairs of cancer networks.
Both the ‘‘AML’’ and ‘‘pancreatic cancer’’ networks are characterized by the frequency
distributions of four subgraphs: SIM (id_6), cascade (id_12), MIM (id_36), and FFL
(id_38). The word ‘‘null’’ denotes that the subgraph normalized frequency distribution is
zero. In our previous study (Huang et al., 2020), we have shown that subgraphs ‘‘id_6’’,
‘‘id_12’’, and ‘‘id_36’’ are not composed of any three-node subgraphs. We considered that
these three subgraphs exhibit the property of irreducibility (a N-node subgraph does not
embed any other N-node subgraph) (Huang et al., 2020).

The range of difference of the four-node subgraph distributions for ‘‘gastric cancer’’ and
‘‘hepatocellular carcinoma’’ is 0.001–0.0046, which is lower than those of the other two
pairs of cancer networks.

We formally define the irreducibility property of a graph as follows: for the set ofN -node
directed graph, graphG is said to be irreducible if graphG has exactlyN -1 links. It is easy to
see that the graphwith irreducibility property is the basic block for constructing theN -node
structure motifs. For the four-node subgraphs: ‘‘id_14’’ (SIM), ‘‘id_28’’, ‘‘id_74’’, ‘‘id_76’’
(MIM), ‘‘id_280’’, ‘‘id_328’’ (cascade), ‘‘id_392’’, and ‘‘id_2184’’, we considered these eight
subgraphs also exhibit the property of irreducibility (Huang et al., 2020). In fact, we found
that the underlying substructures of molecular networks are dominated by irreducible
subgraphs, and accordingly, this behavior also holds true for the STN and cellular process
networks. According to our previous work (Huang et al., 2020), the ‘reciprocity’ of these
’irreducible building blocks’ are all negative. Reciprocity is a parameter that quantifies
the degree of bidirectional connection of a network subgraph. Molecular networks are
mostly composed of these types of subgraphs, a possible reason is that the signal can be
quickly transmitted from the cell membrane to the nucleus, there is no feedback signal.
Furthermore, since the irreducible subgraphs are the dominate subgraphs of molecular
networks, one can apply the dimension reduction technique to reduce the complexity of
large networks, while preserving the algorithmic information content the networks very
well (Zenil, Kiani & Tegnér, 2015; Kiani et al., 2016).

Given the three-node subgraph normalized frequency distributions of the 17 cancer
networks, the AML and pancreatic cancer networks (hsa05221 and hsa05212) exhibited the
smallestHJS distance.We used the ‘‘User data mapping’’ application provided by the KEGG
resource, and accordingly, the regulatory relations among the genes embedded in the three-
node subgraphmodule (blue color) are depicted in Figs. 2A and 2B. According to the KEGG
annotation, both networks involve six common biological processes. These six processes
are located in three different regions in Figs. 2A and 2B. The upper part of Figs. 2A and
2B refers to the PI3K-Akt, MAPK, and Jak-STAT signaling processes; the right-hand part
consists of the apoptosis and proliferation process; and the lower part includes the cell cycle
process. Thus, our findings suggest that the underlying signaling mechanisms and cellular
processes associated with the two networks are highly similar. These results are unexpected
because the identities of the genetic elements are not considered in our calculations, and
the results are inferred only from the subgraph frequency distributions. This study takes an
important step in the direction of defining the relationship between subgraph distributions
and subgraph-associated signal transduction and/or cellular processes. For instance, for
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Figure 2 (A) Three-node subgraphmodule of the AML network. (B) Three-node subgraphmodule of
the pancreatic cancer network. Blue color boxes denote genes embedded in a subgraph module. Other
colored objects denote genes which are not belong to a subgraph module, red color fonts mean genetic al-
ternation (oncogene or tumor suppressor gene).

Full-size DOI: 10.7717/peerj.13137/fig-2
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both AML and pancreatic cancer, the Ras-PI3K-PKB/Akt subgraph and Ras-Raf-MEK
subgraph are associated with the PI3K-Akt and MAPK signal transduction pathways,
respectively.

Furthermore, similar observations were found when considering four-node subgraph
frequency distributions. Genes embedded in the four-node subgraph modules of the
gastric cancer and hepatocellular carcinoma networks are depicted in Figs. 3A and 3B,
respectively. Genes embedded in the four-node subgraph modules are shown in blue. It is
clear that both cancer networks are mainly composed of the ‘‘SIM’’ pattern (id_14) and
the ‘‘id_280’’ pattern (id_280). As shown in Table 3, the HJS distance of id_6 is as small as
0.001. According to the annotation provided by KEGG, both cancer networks involve six
common processes. The left-hand part consists of the Wnt, PI3K-Akt, TGF-β, and MAPK
signaling processes, and the right-hand part consists of the cell cycle and proliferation
processes.

For four-node subgraphs, the above figures shown that we have identified the scaffold
(the annotation provided by KEGG), it is a set of physically bound proteins which maintain
the specificity of the signal transduction pathway and catalyze the activation of the pathway
components (Burack & Shaw, 2000). In a review article, Koch reported out that the forkhead
box family transcription factors may affect the Wnt signaling activity that leads to various
types of cancer (Koch, 2021), andWnt pathway is a drug therapeutic target (Krishnamurthy
& Kurzrock, 2018; Jung & Park, 2020). The above findings provide an example of biological
application of our approach.

In Fig. 4A, we plotted the normalized frequency of the three-node subgraphs for the
three pairs of cancer networks. The AML network and the ‘‘pancreatic cancer’’ network
were found to be highly similar because the HJS distance is the smallest among all possible
pairwise comparisons. Figure 4A depicts that the red and green dots are located close to
each other for the following four subgraphs: SIM (id_6), cascade (id_12), MIM (id_36),
and FFL (id_38); hence, theHJS distance between the AML and pancreatic cancer networks
is minimal.

‘‘Chronic myeloid leukemia (CML)’’ and ‘‘gastric cancer’’ are associated with the
second smallest HJS distance. These two networks are characterized by similar frequency
distributions of the following subgraphs: SIM, cascade, and MIM (Fig. 4A, purple and blue
dots).

Biological interpretation—cancer networks
Regarding the practicality of our approach, we show that our method is able to cluster
cancer networks with similar underlying regulatory topology. It was found that the AML
and pancreatic cancer networks exhibited the smallest HJS distance. AML and pancreatic
disease have been reported to be observed simultaneously in some patients during clinical
diagnosis (Cascetta et al., 2014). Pancreatic masses develop during or after AML (Messager
et al., 2012). AML can rarely mimic the clinical picture of pancreatic cancer (Schafer et al.,
2008), while pancreatitis is a characteristic in the appearance of AML (De Castro, Vencer &
Espinosa, 2017). According to the KEGG annotation, both cancer networks involve three
common signaling pathways; that is. PI3K-Akt, MAPK and Jak-SAT. For instance, given

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.13137 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.13137


Figure 3 (A) Four-node subgraphmodule of the gastric cancer network. (B) Four-node subgraph
module of the hepatocellular carcinoma network. Blue color boxes denote genes embedded in a sub-
graph module. Other colored objects denote genes which are not belong to a subgraph module, red color
labels mean genetic alternation (oncogene or tumor suppressor gene), and grey colored rectangle in the
middle of Figs. 3A and 3B denote scaffold (KEGG annotation).

Full-size DOI: 10.7717/peerj.13137/fig-3
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Figure 4 (A) The plot of the normalized frequency of the three-node subgraphs for the three pairs of
cancer networks with the smallestHJS distance. Color labelling of the cancer types: AML (orange), pan-
creatic cancer (yellow), CML (blue), gastric cancer (purple) and small cell lung cancer (black). (B) The
plot of the normalized frequency of the four-node subgraphs for the three pairs of cancer networks
with the smallestHJS distance. Color labelling of the cancer types: Gastric cancer (orange), Hepatocel-
lular carcinoma (yellow), Chronic myeloid leukaemia (blue), Melanoma (purple) and Small cell lung
cancer (black).

Full-size DOI: 10.7717/peerj.13137/fig-4

the common PI3K-Akt pathway found in both diseases, we found the following two sets
of common activation relationships: (i) Ras→ PI3K→ PKB/Akt→ IKK→ NFkB, and
(ii) Ras→ raf→ MEK→ ERK. Thus, the results suggest that the underlying signaling
mechanisms associated with the two cancer diseases are highly similar. Even though some
of the genes are different in the two diseases, the same signaling mechanisms are involved;
hence, the subgraph-based approach take us from the subgraph level to the mechanism
level interpretation.

For the second pair of networks, previous studies have shown that (i) both CML and
gastric cancermight co-exist in a single patient (Butala, Kalra & Rosner, 1989), whichmight
be due to decreased immunity (Mangal et al., 2018), and (ii) clinicians are recommended
to pay attention to the association of CML and gastric cancer (Mokhtarifard et al., 2016)
and expression ofMMP1 may contribute to gastric cancer formation (Yang et al., 2017).

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.13137 14/31

https://peerj.com
https://doi.org/10.7717/peerj.13137/fig-4
http://dx.doi.org/10.7717/peerj.13137


For the third pair of networks, it has been reported that (i) gastrointestinal metastases
from lung cancer are diagnosed at a late stage and are thus life-threatening (Li et al., 2018);
(ii) gastric cancer metastasis may result from lung cancer (Gao et al., 2015); (iii) gastric
cancer is associated with lung cancer (Park, 1998; Snyder et al., 2013; Nitipir et al., 2018;
Koh & Lee, 2014) ; (iv) both diseases can be successfully treated with carboplatin (Sano
et al., 1986). The use of natural products along with chemotherapy drugs are effective in
treating lung cancer (Huang et al., 2017).

Figure 4B depicts the plot of the normalized frequency distributions of the four-
node subgraphs for cancer networks. The normalized frequency counts of most of the
four-node subgraph patterns are zero; therefore, only the IDs of the first 30 subgraphs
(sorted according to the decimal representation) are shown. The difference between
the distributions in gastric cancer (red) and hepatocellular carcinoma (HCC) (green) is
minimal among the following subgraphs: id_14, id_28, id_76, id_204, and id_280, whereas
the difference between CML (blue) and melanoma (purple) is minimal among a different
set of subgraphs: id_14, id_76, id_204, and id_328.

According to many studies, (i) both gastric cancer and HCC can co-exist in the same
patient (Sakumura, Tajiri & Sugiyama, 2018;Hu et al., 2014); (ii) optimal surgical strategies
have been developed for treating synchronous gastric cancer and HCC (Tawada et al.,
2014; Uenishi et al., 2003); and (iii) it is necessary to closely follow up patients with gastric
cancer or HCC for an early diagnosis (Chen et al., 2017). Next, we used the R package to
perform cluster analysis of the cancer networks based on the HJS distance measure. In
Figs. 5A and 5B, we show the heatmap of the cancer networks using the HJS distance of
the three-node subgraphs and the four-subgraph nodes, respectively. For the three-node
subgraphs, we identified the following three pairs of highly similar networks: (i) ‘‘acute
myeloid leukemia’’ and ‘‘pancreatic cancer’’, (ii) ‘‘gastric cancer’’ and ‘‘small cell lung
cancer’’, and (iii) ‘‘chronic myeloid leukemia’’ and ‘‘hepatocellular carcinoma’’. For the
four-node subgraph clustering results, the following highly similar pairs are detected: (i)
‘‘gastric cancer’’ and ‘‘hepatocellular carcinoma’’, (ii) ‘‘chronic myeloid leukemia’’ and
‘‘melanoma’’, and (iii) ‘‘basal cell carcinoma’’ and ‘‘small cell lung cancer’’. In the majority,
the results of the identified pairs of networks are consistent with the findings listed in
Table 3.

From Fig. 5A, we noted two regions associated with a similar color, i.e., the upper
left-hand and lower right-hand corners. Similar patterns can be found for the four-node
subgraphs, i.e., Fig. 5B. The result suggests a group of cancer networks possess similar
subgraph topology.

Signal transduction network (STN)
A list of the top three most similar STN is given in Table 4. The range of difference for the
three-node subgraph distributions of the first pair of highly similar networks, ‘‘sphingolipid
signaling pathway’’ and ‘‘TGF-beta signaling pathway’’, is 0.001–0.029, which is relatively
small when compared to the other two pairs of pathways. The range of difference for the
four-node subgraph distributions of the first pair of highly similar networks is 0.001–0.034,
which is lower than that of the other two pairs of the STN. Again, it was found that the

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.13137 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.13137


Figure 5 The heatmap ofHjs distance computed for cancer networks: (A) three-node subgraphs and
(B) four-node subgraphs, with light yellow and darker red denote the small and large value ofHjs re-
spectively. The number of each row denotes the network name (File S1).

Full-size DOI: 10.7717/peerj.13137/fig-5

Table 4 The top three most similar pairs of STN based on theHJS distance of the three-node subgraphs and four-node subgraphs normalized
frequency distributions.

Network A Network B HJS

distance
Absolute value of the difference of the subgraph
normalized frequency distributions

3-node subgraph ID (ID 6, ID 12, ID 36, ID 38)
Sphingolipid signaling pathway TGF-beta signaling pathway 0.0263 (0.001, 0.029, 0.026, 0.005)
ErbB signaling pathway Hippo signaling pathway 0.0312 (0.015, 0.017, 0.037, 0.005)
PI3K-Akt signaling pathway Ras signaling pathway 0.0330 (0.010, 0.010, 0.007, 0.007)

4-node subgraph ID (ID 14, ID 28, ID 74, ID 76, ID 78, ID 280, ID 328, ID 392,
ID 2184)

Neurotrophin signaling pathway Ras signaling pathway 0.115 (0.034, 0.030, 0.033, 0.026, 0.018, 0.024, 0.019, 0.008, 0.001)

Adipocytokine signaling pathway B-cell receptor signaling pathway 0.119 (0.017, 0.054, 0.035, 0.034, 0.001, 0.013, 0.012, 0.031, 0.007)

Apelin signaling pathway Chemokine signaling pathway 0.131 (0.045, 0.037, 0.011, 0.016, 0.005, 0.029, 0.010, 0.016, 0.007)

underlying substructure of the molecular networks is dominated by irreducible subgraphs.
The complete list of the HJS distances of the STN is given in File S7.

Figure 6A depicts the normalized frequency distributions of the three-node subgraphs
for STN. Figure clearly shows that the red and green dots are located close to each other
for the following four subgraphs: id_6, id_12, id_36, and id_38. This indicates that the HJS

distance between the ‘‘sphingolipid signaling pathway’’ and ‘‘TGF-beta signaling pathway’’
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Figure 6 (A) The plot of the normalized frequency of the three-node subgraphs for three pairs of STN
with the smallestHJS distance. Color labelling of the STN is: Sphingolipid signaling pathway (orange),
TGF-beta signaling pathway (yellow), ErbB signaling pathway (blue), Hippo signaling pathway (purple),
PI3K-Akt signaling pathway (black) and Ras signaling pathway (pink). (B) The plot of the normalized
frequency of the four-node subgraphs for the three pairs of STN with the smallest HJS distance. Color la-
belling of the STN are: Sphingolipid signaling pathway (orange), Ras signaling pathway (yellow), Adipocy-
tokine signaling pathway (blue), B-cell receptor signaling pathway (purple), Apelin signaling pathway
black) and Chemokine signaling pathway (pink).

Full-size DOI: 10.7717/peerj.13137/fig-6

is minimal. The blue and purple dots are located close to each other for the same set of
subgraphs, suggesting that the HJS distance between the ‘‘ErbB signaling pathway’’ and the
‘‘Hippo signaling pathway’’ is minimal. Similarly, the black and pink dots are located close
to each other, implying a lowHJS distance between the ‘‘Apelin signaling pathway’’ and the
‘‘chemokine signaling pathway’’.

Biological interpretation—STN
For the STN three-node subgraph case, the most similar pair of networks is the
‘‘sphingolipid signaling pathway’’ and the ‘‘TGF-beta signaling pathway’’. Dennler,
Goumans & Ten Dijke (2002) demonstrated that endogenous sphingolipid mediators
are involved in regulating the TGF-beta signaling pathway. This is further supported
by two other studies, which demonstrated cooperation between TGF-beta and S1P

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.13137 17/31

https://peerj.com
https://doi.org/10.7717/peerj.13137/fig-6
http://dx.doi.org/10.7717/peerj.13137


Figure 7 The heatmap ofHJS distance computed for STN: (A) three-node subgraphs and (B) four-node
subgraphs, with blue and red denote the small and large value ofHJS, respectively. The number of each
row denotes the network name (File S1).

Full-size DOI: 10.7717/peerj.13137/fig-7

signaling (Yamanaka et al., 2004; Xin et al., 2004). In addition, owing to the cross-talk
of these two pathways, novel, non-invasive therapies can be developed (Nicholas et al.,
2017).

For the second pair of networks, both ErbB and Hippo signaling pathways are regulated
by circular RNA andmicroRNA in hypopharyngeal cancer (Feng et al., 2019). For the third
pair of networks, it was demonstrated that the testis-specific protein Y-linked 1 (TSPY1)
activates the PI3K/AKT and RAS signaling pathways by suppressing IGFBP3 expression
in lung adenocarcinoma and liver hepatocellular carcinoma progression (Tu et al., 2019).
By inhibiting the EGFR/AKT pathway in oral cancer, quercetin appears to be an effective
anti-tumor agent (Chan et al., 2016).

Figure 6B depicts the plot of the normalized frequency distributions of the 4-node
subgraphs. Again, only the first 30 patterns are shown. The difference between the
‘‘neurotrophin signaling pathway’’ and the ‘‘Ras signaling pathway’’ (green) distribution
is minimal among the following subgraphs: id_78 and id_204, whereas the difference
between the ‘‘adipocytokine signaling pathway’’ (blue) and ‘‘B-cell receptor signaling
pathway’’ (purple) is minimal among the following subgraphs: id_78, id_204, id_328,
id_330, and id_2184 (not shown in Fig. 6B).

The results of cluster analysis for STN are given in Figs. 7A and 7B.
From Figs. 7A and 7B, we noted that certain areas are associated with similar colors. The

result suggests a group of STN possess similar subgraph topology.
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Table 5 The top three most similar pairs of cellular processes based on theHJS distance of the three-node subgraphs and four-node subgraphs.

Network A Network B HJS distance Absolute value of the difference of the subgraph
normalized frequency distributions

3-node subgraph ID (ID 6, ID 12, ID 36, ID 38)
Cell-cycle Cellular senescence 0.0697 (0.015, 0.078, 0.090, 0.004)
Apoptosis Focal adhesion 0.0839 (0.095, 0.037, 0.041, 0.015)
Cellular senescence Focal adhesion 0.106 (0.059, 0.098, 0.002, 0.034)

4-node subgraph ID (ID 14, ID 28, ID 74, ID 76, ID 78, ID 280, ID 328, ID 392,
ID 2184)

Cell-cycle Cellular senescence 0.125 (0.003, 0.0002, 0.001, 0.027, 0.001, 0.004, 0.057, 0.035,
0.039)

Apoptosis Focal adhesion 0.143 (0.048, 0.013, 0.005, 0.041, 0.004, 0.023, 0.032, 0.016, 0.047)

Cell-cycle Focal adhesion 0.205 (0.034, 0.047, 0.035, 0.008, 0.010, 0.083, 0.028, 0.054, 0.024)

Cellular processes
A list of the top three most similar HJS distances for cellular processes is given in Table 5.
The range of difference of the three-node subgraph distributions for the ‘‘cell cycle’’ and
‘‘cellular senescence’’ networks is 0.004–0.090, which is lower than that of the other two
pairs of networks. The range of difference of the four-node subgraph distributions for the
‘‘cell cycle’’ and ‘‘cellular senescence’’ networks is 0.0002–0.0057, which is smaller than that
of the other two pairs of networks. Once again, the results suggested that the underlying
modular structure of molecular networks is dominated by irreducible subgraphs. The
complete list of the HJS distances of the cellular processes is given in File S7.

It is obvious that in Fig. 8A, the red and green dots are located close to each other
for id_6 and id_38; this indicated that the HJS distance between the ‘‘cell cycle’’ and the
‘‘cellular senescence’’ processes is minimal. The blue and purple dots are located close to
each other for FFL (id_38), which suggests that the HJS distance between the ‘‘apoptosis’’
and ‘‘focal adhesion’’ processes is small.

Biological interpretation—cellular processes
For the three-node case, the cellular senescence phenomenon (Sun, Coppe & Lam, 2018) is
highly relevant to the cell-cycle process. Most of the drugs with anti-cancer potential are
inducing cell-cycle arrest (Hsu & Chung, 2012; Czarnomysy et al., 2018) and apoptosis (Lee
et al., 2017; Liu et al., 2019). Cellular senescence is a phenomenon that is characterized by
irreversible cell-cycle arrest (Sun, Coppe & Lam, 2018), and it results from the coordination
of cell-cycle arrest and cell expansion (Ogrodnik et al., 2019).

For the second pair of networks, numerous studies have shown the regulatory
relationship between focal adhesion and apoptosis. Luo et al. (2018) studied the effect of a
green tea compound on the proliferation and apoptosis of breast cancer cells by inhibiting
the focal adhesion kinase (FAK) signaling pathway. FAK is an important component
in regulating endothelial cell apoptosis (Suhr & Bloch, 2012). Cance and Golubovskaya
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Figure 8 (A) The plot of the normalized frequency of the three-node subgraphs for three pairs of cellu-
lar processes with the smallestHJS distance. Color labelling of the cellular processes: cell cycle (orange),
cellular senescence (yellow), apoptosis (blue), and focal adhesion (purple). (B) The plot of the normal-
ized frequency distributions of the four-node subgraphs for three pairs of cellular processes with the
smallestHJS distance. Color labelling of the cellular processes are: cell cycle (orange), cellular senes-
cence (yellow), apoptosis (blue) and focal adhesion (purple).

Full-size DOI: 10.7717/peerj.13137/fig-8

reported that the interaction of FAK and p53 may promote cell survival or induce cell
apoptosis (Cance & Golubovskaya, 2008).

For the third pair of networks, it was found that caveolin-1 suppresses FAK activity
and triggers morphological alterations of the cell, changes enzyme activities and gene
expression (Park, 2017; Cho et al., 2004), and that the inhibition of FAK expression can
activate the cellular senescence program (Chuang et al., 2019).

Figure 8B depicts the plot of the normalized frequency distributions of the four-node
subgraphs for cellular processes. Again, only the first 30 patterns are shown. The difference
between the ‘‘cell cycle’’ (red) and ‘‘cellular senescence’’ (green) distributions is minimal
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Figure 9 The heatmap ofHJS distance computed for cellular processes: (a) three-node subgraphs and
(b) four-node subgraphs, with light yellow and darker red denote a small and large value ofHJS respec-
tively. The number of each row denotes the network name (File S1).

Full-size DOI: 10.7717/peerj.13137/fig-9

among the following subgraphs: id_14, id_28, id_74, id_78, id_204 (0.001, not shown
in Table 5), and id_280, whereas the difference between ‘‘apoptosis’’ (blue) and ‘‘focal
adhesion’’ (purple) is minimal among the following subgraphs: id_74, id_78, id_92,
id_206, id_330, and id_344 (the last four IDs are not shown in Table 5, and the normalized
frequency magnitudes associated with them are small). For the third pair, the difference
between ‘‘cell cycle’’ (red) and ‘‘focal adhesion’’ (purple) is minimal among the following
subgraphs: id_76, id_78, id_204, id_206, id_330, and id_344 (the last four IDs are not
shown in Table 5, and the normalized frequency magnitudes associated with them are
small).

The results of cluster analysis for the cellular processes are given in Figs. 9A and 9B.
FromFig. 9A, the three-node subgraph clustering results, we identified the following pairs

of highly similar networks: (i) ‘‘cell cycle’’ and ‘‘cellular senescence’’ and (ii) ‘‘apoptosis’’
and ‘‘focal adhesion’’. The results for the identified pairs of networks are consistent with
the findings in Table 5.

For the four-node subgraphs, i.e., Fig. 9B, the following highly similar pairs are detected:
(i) ‘‘cell cycle’’ and ‘‘cellular senescence’’ and (ii) ‘‘apoptosis’’ and ‘‘focal adhesion’’.
Moreover, the results of the identified pairs of networks are consistent with the findings
listed in Table 5.

We also studied the inter-quartile range and median value of the HJS distances of the
cancer networks, STN and cellular processes; the results are given in File S8.
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CONCLUSIONS
Westudied the problemof determining the similarity of twodirected networks by proposing
an effective approach, the subgraph-based approach. First, the normalized frequency
distributions of the three-node subgraphs and four-node subgraphs for three major types
of molecular networks were calculated by using our algorithm, PatternFinder. Compared
to other algorithms, i.e. LoTo and acc-Motif ; our subgraph detection algorithm obtained
similar results but had certain advantages.

Second, we conducted three simulation experiments, which confirmed the superiority
of our method. The simulation experiments considered six network models along with
three different network sizes and two edge densities. The accuracy of classification based
on subgraph-based approach with information-theoretic entropy (HJS) is 100%, which is
better than the current status of other works.

Third, we used HJS to infer pairs of networks that exhibit similar/different regulatory
interaction topologies. In particular, our results suggested that there are common regulation
modules for AML and pancreatic cancer formation. To the best of our knowledge, the
present study is the first to combine the network subgraph concept and HJS to address the
molecular network similarity problem.

Fourth, we found that the underlying substructures of the molecular networks are
dominated by irreducible subgraphs. This behavior holds true for the three classes of
molecular networks we studied.

This study provides a systematic approach to dissect the underlying structures of
molecular networks. We hypothesize that network structures can be understood in terms
of the network subgraphs.

In future, the next step is to test our hypothesis by conducting five-node subgraphs
analysis. As a first step towards five-node subgraph analysis, we have published papers on
how to generate all the five-node subgraphs (Efendi Zaenudin et al., 2019). Regarding the
applications of the five-node subgraph study, we plan to examine the association of the five-
node subgraphmodules and driver genes for cancer networks. Cancer driver genes are genes
that give selective advantage for cancer progression. The level of association/enrichment is
given by using odds ratio (OR). An OR >1 indicates that driver genes are enriched in the
subgraph module. In our previous work (Huang et al., 2020), we examined the association
of both the three-node and four-node subgraph modules and driver genes, and have found
that many cancer networks, STN, cellular processes have an OR > 1. Similarity, we also have
investigated the association of the subgraph module and essential genes (Efendi, Huang &
Ng, 2021), but there are only a few networks enriched with essential genes. In conclusion,
we have proposed a novel and effective approach, subgraph-based method, to compare
and classify molecular networks with diverse functionalities.
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Figure A1 A comparison of two identification algorithms:mfinder and PatternFinder.
Full-size DOI: 10.7717/peerj.13137/fig-10

APPENDIX
Subgraph identification tool—the PatternFinder algorithm
Many network motif detection tools have been developed to detect network motifs;
including: FANMOD, MAVISTO, MFINDER, NetMatch, and SNAVI. We have reported
(Hsieh et al., 2015) that those tools have at least two limitations: (i) motifs identified in
one round may not be recoverable in another round because of the use of randomized
algorithm, and (ii) nodes identities are missing.

We developed an algorithm named PatternFinder (Huang et al., 2020; Lee, 2016) to
identify: (i) both three-node and four-node subgraphs in a network, and (ii) functional
subgraphs embedded in the three-node subgraphs and four-node subgraphs not identified
by MFINDER. We refer the reader to reference Lee (2016) for a more detail description of
PatternFinder. Below we briefly summarized the PatternFinder algorithm.
Given the ’’Input network’’, PatternFinder is able to identify two four-node subgraphs, i.e.,
the subgraph ‘id_904’ and subgraph ‘id_906’, whereasMFINDER can identify the subgraph
‘id_906’ only (Fig. A1). MFINDER considers motif ‘id_904’ is an independent subgraph.
PatternFinder is able to identify subgraphs embedded in a subgraph.

In the following, a four-node subgraph is used as an example to illustrate the basic
concept behind the PatternFinder algorithm. Given a network called ‘net ’ composes of 20
nodes, an adjacency matrix can be constructed. Let n denotes the total number of nodes.
Assuming that we want to identify a subgraph, denoted by ‘id_2204’, PatternFinder read
in the ‘2204’ pattern. This subgraph composes of four nodes and five edges, where the
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Figure A2 (A) An input network named ‘net ’ and (B) the four-node subgraph ‘id_2204’.
Full-size DOI: 10.7717/peerj.13137/fig-11

edges are denoted by t0, t1, t2, tr0 and tr1. Starting from node A, PatternFinder begins to
examine the following patterns: (i) is node A and node B connects with an edge t0, (ii) is
node B and node C connects with an edge t1, (iii) is node C and node D connects with an
edge t2, and (iv) is node D and node A connects with an edge t0, and node D and node B
connects with an edge tr1.

Starting from the network named ‘net ’, the algorithm begins the search from node 1
and labels it as node A. Node 1 and node 2 or node B are linked, the edge is denoted by
edge (1, 2). The algorithm continues to search if there is a node links to node B, if not, the
algorithm will relabel node B to node 3 and repeat the search. From Fig. A2, it was found
that A= 19, B= 9, C = 10, and D= 20 are connected by three edges, i.e., edge (19,9) = t0,
edge (9,10) = t1, edge (10,20) = t2, hence, four nodes are identified. However, according
to the subgraph ‘id_2204’, there are two more edges which need to be determined, i.e., edge
(20,9) = tr1 and edge (20,19) = tr2. The computation time complexity of the algorithm
PatternFinder is O(n4).
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