Depth effect on the prokaryotic community assemblage associated with sponges from different rocky reefs

Bárbara González-Acosta¹^C, Aarón Barraza²^C, César Guadarrama-Analco¹, Claudia Judith Hernández-Guerrero¹, Sergio F. Martínez-Díaz¹, César Salvador Cardona-Félix³, Ruth Noemí Aguila-Ramírez¹*

¹ Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas. La Paz, Baja California Sur 23060, México.

² CONACYT-Centro de Investigaciones Biológicas del Noroeste. La Paz, Baja California Sur, México.

³ CONACYT-Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas. La Paz, Baja California Sur, México.

^{C.} These authors contributed equally to this work.

*Corresponding Author: Ruth Noemí Aguila-Ramírez¹ Av. Instituto Politécnico Nacional S/N. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23069, México Email address: raguilar@ipn.mx

1 Abstract

- Background. Sponge microbiomes are essential for the function and survival of their host, they
 and produce biologically active metabolites, therefore, they are ideal candidates for ecological,
- 4 pharmacological and clinical research. Implementing nNext-generation sequencing (NGS) has
- 5 revealed that many factors, including the environment and host properties, determine the
- 6 composition and structure of these symbiotic communities across time and space. The but the
- 7 controls of this variation are not well described. This study assessed the microbial communities
- 8 associated with two marine sponges of the genera Aplysina (Nardo, 1834) and Ircinia (Nardo,
- 9 1833) in rocky reefs from Punta Arena de la Ventana (Gulf of California) and Pichilingue (La
- 10 Paz Bay) in the coast of Baja California Sur, Mexico to determine the relative importance of
- 11 environment and host in structuring the microbiome of sponges.
- 12 Methods. Specimens of *Aplysina* sp were collected by scuba diving at two different depths, 10 m
- 13 and 2 m; while Ircinia sp samples were collected at 2 m. The-DNA of sponge-associated
- 14 prokaryotes was extracted from 1 cm³ of tissue, purified and sent for 16S amplicon sequencing.
- 15 Primer trimmed pair-ended microbial 16S rDNA gene sequences were merged using Ribosomal
- 16 Database Project (RDP) Paired-end Reads Assembler. Chao1, Shannon and Simpson (alpha)
- 17 biodiversity indices were estimated, as well permutational analysis of variance (PERMANOVA),
- 18 and Bray-Curtis distances.
- 19 Results. The most abundant phyla differed between hosts. Those phyla were: Proteobacteria,
- 20 Acidobacteria, Cyanobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes.
- 21 In Ircinia sp the dominant phylum was Acidobacteria. We found that Depth was the main factor
- 22 influencing the microbial community, as- analysis of similarities (ANOSIM) showed a
- 23 significant difference between the microbial communities from different depths. Cluster analysis
- 24 suggested that depth was more important than host in structuring the sponge microbiome.
- 25 <u>Conclusion: (add something)</u>

26

27 Introduction

- 28 Marine sponges (MS) inhabit shallow to mesophotic ecosystems and harbor on diverse
- 29 symbionts (Taylor et al., 2007; Simister et al., 2012) that reach up to 50% of their total weight
- 30 (Hentschel et al., 2003; Usher et al., 2004). The Frequent and abundant presence of bacteria
- 31 especially within the sponge mesohyl led authors to address these bacteria as symbionts (Vacelet,

32	1975; De Vos et al., 1995; Burja et al., 1999; Imhoff & Stöhr, 2003). Sponge microbiomes are
33	essential for their host's function (metabolic), health and survival (Lurgi et al., 2019).
34	Furthermore, there is evidence of the production of biologically active metabolites by sponges-
35	associated bacteria, being is an important function in this association (Imhoff & Stöhr, 2003).
36	Therefore, they are ideal candidates for ecological, pharmacological and clinical research.
37	Sponge tissues host many symbionts, including heterotrophic bacteria, facultative anaerobes,
38	dinoflagellates, cyanobacteria, archaea, fungi, and even-viruses (Webster & Hill, 2001; Schippers
39	et al., 2012). These microbial communities included Support between 15 to several tenthsdozens
40	of phyla_ <u>but the source of this vV</u> ariation in diversity of these microbiomes is not well
41	described (Taylor et al., 2007; Webster & Thomas, 2016; Villegas-Plazas et al., 2019).
42	
43	Implementing nNext-generation sequencing (NGS) approaches to characterize marine sponge
44	microbial communities has notoriously dramatically increased precision and quantity of surveys
45	of the taxonomic complexity associated toof these marine organisms microbiomes (Schmitt et al.,
46	2011; Webster & Taylor, 2012; Reveillaud et al., 2014). Moreover, the complex microbial
47	communities of MS have been unveiled through NGS coupled with microbial diversity analyses
48	to highlight that and revealed that sponge microbiomes are largely host-specific and often-stable
49	across temporal scales under specific environmental conditions (Morrow et al., 2015; Weigel &
50	Erwin, 2015; Morrow, Fiore & Lesser, 2016; Cleary et al., 2019). Recent research suggests that
51	depth are the main-drives of the structure of ocean microbiome (Sunagawa et al., 2015).
52	However, for symbioses, one would expect a strong microbial community differentiation to
53	emerge across host species (Lurgi et al., 2019). Sponges can inhabit from shallow to mesophotic
54	ecosystems, in deep water they are apparently less influenced by abiotic factors (Kahng, Copus
55	& Wagner, 2014; Olson & Kellogg, 2010). Otherwise, In shallow ecosystems-water these abiotic
56	factors could influence the sponges, thus, also on and their associated microbial communities.
57	Some studies have determined sponge associated microbial community changes at different
58	water depths from shallow (0-30 m) to mesophotic areas (30-150 m) (Olson & Kellogg, 2010;
59	Lesser, Slattery & Leichter, 2009; Kahng, Copus & Wagner, 2014). Though the specificity of the
60	sponge microbiota appears more related with host phylogeny, differences in depth can be
61	showing variance between microbial communities in shallow and deep reefs vary (Steinert et al.,
62	2016)

63	However, to our knowledge no studies are available that evaluate whether among the same
64	shallow water sponges (0-30 m) the community varies according to its range of distribution.
65	Although changes in abiotic factors are not as evident, as it could occur in mesophotic zones (30-
66	150 m), the depth gradient could influence the composition of the microbial community
67	associated with these sponges (Olson & Gao, 2013; Steiner et al., 2016).
68	
69	Aplysina species are often associated with shallow rocky reefs. This species belongs to the
70	Verongiida order and are distributed along the East Pacific from Mexico to Panama (Caballero-
71	George et al., 2010; Cruz-Barraza et al., 2012). Ircinia, they are conspicuous and abundant in
72	areas exposed to light in rocky-coral biotopes (Parra-Velandia & Zea, 2003) and more abundant
73	in localities near sources of continental discharge with greater turbidity and load of organic
74	material in suspension (Zea, 1994). In previous studies with sponges of these genera (Aplysina sp
75	and Ircinia sp) from the Gulf of California, differences were observed in the biological activity
76	of sponges and their associated bacteria, between sponges of the same genus and between genera
77	(Gándara-Zamudio, 2011; Aguila-Ramírez, 2012; Ortíz-Aguirre, 2012). It was considered that
78	These differences were probably appear related to the site and the depth at which they were
79	collected. For this reason, this study assessed the microbial communities associated with two
80	marine sponges of the genera Aplysina (Nardo, 1834) and Ircinia (Nardo, 1833) in rocky reefs
81	from Punta Arena de la Ventana (Gulf of California) and Pichilingue (La Paz Bay) in the coast of
82	Baja California Sur, Mexico to determine the relative importance of environment and host in
83	structuring the microbiome of sponges.
84	
85	
86	Materials & Methods
87	Specimens of <i>Aplysina</i> sp and <i>Ircinia</i> sp sponges previously collected to evaluate their biological
88	activity (Gándara-Zamudio, 2011; Aguila-Ramírez, 2012; Ortíz-Aguirre, 2012) were used for

 this study.

- *Aplysina* sp specimens (n = 8) were collected in triplicate by scuba diving in Punta Arena, Baja
- 92 California Sur, Mexico (24 ° 03 '40 "N and 109 ° 49 '52" W) at different water depths (2 m 10

m). For this study, the depth of 2 m was considered shallow and 10 m as deep (Apl-S: 2m; Apl-D10 m).

9	5
~	•

96	Three specimens in triplicate of Ircinia sp were collected in the Pichilingue locality inside La
97	Paz Bay in Baja California Sur (24 $^\circ$ 16 '08" N and 110 $^\circ$ 19 '39" W) at 2 m depth (Fig. 1)
98	(Permit SEMARNAT-08-049b Positive Ficta). The sSponge samples were placed in sterile
99	plastic bags and transferred to ice. In the laboratory, the epibiont organisms were removed and
100	washed three times with sterile natural sea water, the outermost layer or pinacoderm was
101	separated with a scalpel and pieces were cut from different areas of the sponges according to the
102	suggestion by Friedrich et al. (2001), placed in tubes and frozen at -20 °C. The identification of
103	the sponges was carried out by-Dr. Cristina Vega Juárez from the Bentos Laboratory of the
104	Institute of Marine Sciences and Linmology of the Universidad Autónoma de México (UNAM),
105	identified the sponges using dichotomous keys and published bibliography for the East Pacific
106	on sponge taxonomy (Gómez et al, 2002; Cruz-Barraza & Carballo-Cenizo, 2008; Carballo-
107	Cenizo & Cruz-Barraza, 2010).
108	
109	Total DNA extraction
110	Pieces of approximately 1 cm ³ of sponge mesohyl were taken from each of the samples and their
111	replicates to form a composite sample; they composites were then finely fragmented with a
112	scalpel; 500 µL of TE buffer (10 mM Tris-HC1 <u>. 1 mM containing-disodium</u>
113	ethylenediaminetetraacetic acid (EDTA) 1 mM Na2, Thermo Fisher Scientific, Waltham, MA,
114	USA) were added and sonicated for 10 min to detach the bacteria (Bransonic 3510). Then, the
115	mixture was centrifuged at 8,000x g for 10 min, and the supernatant was placed in another 2 ml
116	tube for DNA extraction. After that, the method of with phenol: chloroform: isoamyl was
117	used following (Sambrook & Russell, (2002) and - Caamal-Chan et al., (2019). The Recovered

DNA was resuspended in 50 μl of TE buffer (pH 8.0) and DNA was treated with RNase A (10

119 mg mL⁻¹, Promega, Madison, WI, USA) at 37 °C for 30 min. The integrity of the DNA was

120 analyzed by agarose gel electrophoresis. Purity (λ 260 nm / 280 nm ratio) and quantity were

121 evaluated with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

122 USA). DNA samples were stored at -20 °C.

123

124 16S V4 rDNA sequencing

- 125 Purified DNA was sent to the Next Generation Sequencing Core at Argonne National
- 126 Laboratory, Argonne, IL, USA for amplicon sequencing.
- 127 Briefly, the microbial 16S rRNA gene V4 regions were amplified using primer set 515F (5'-

128 GTGC CAGCMGCCGCGGTAA-3') and 806R (5'-GGAC TACHVGGG TWTCTAAT-3')

- 129 following the method described by Kozich et al. (2013). Amplicons of 16S rRNA gene V4
- regions were generated using Illumina MiSeq 500-cycle kit with Illumina MiSeq sequencingplatform (San Diego, CA, USA).
- 132

133 Sequence processing and microbial diversity analysis

- 134 Primer trimmed pair-end bacterial 16S rDNA gene sequences were merged using Ribosomal
- 135 Database Project (RDP) Pair-end Reads Assembler. The assembled sequences with an expected
- 136 maximum error adjusted Q score less than 25 over the entire sequence were eliminated.
- 137 VSEARCH (v2.4.3, 64 bit) was used to remove chimeras de novo, followed by removing
- 138 chimeras by reference using RDP 16S rDNA gene (Rognes et al., 2016). High quality and
- 139 chimera-free sequences were then clustered at 97% sequence similarity by CD-HIT (4.6.1) and
- 140 RPD Classifier with a confidence cutoff at 50% (Cole et al., 2014). These sequences resulted in
- 141 the identification of unique operational taxonomic units (OTUs) and their abundance in each
- sample (Wang et al., 2007; Fu et al., 2012; Bonder et al., 2012; Chen et al., 2013). The resulting
- 143 operational taxonomic unit (OTU) table was then processed to be analyzed with R programming
- 144 language, using various packages and custom scripts (www.r-project.org). Chao1 and Shannon
- 145 and Simpson (alpha) biodiversity indices were estimated with the package 'iNEXT' (Hsieh, Ma
- 146 & Chao, 2016). For data normalization, the frequency of best hits to each individual taxon for
- 147 each metagenome was divided by the total number of hits per sample. PERMANOVA and
- 148 ANOSIM statistical analysis were performed with the 'adonis' and 'anosim' functions,
- 149 respectively, with the package 'vegan'. Bray-Curtis distance estimations were calculated using
- the 'vegdist' function, as well as principal coordinate analysis using the 'pcoa' function with the
- 151 package 'vegan' (Oksanen et al., 2014).
- 152

153 **Results**

154 Sequencing run metrics

155	From all the samples sequenced, <u>379</u> ,392 reads were generated; after processing, <u>85</u> ,818 low-
156	quality reads and chimeras were removed to keep high-quality pair-end-assembled reads, of
157	which <u>146.</u> 787 reads could be assigned to prokaryotic taxa. The sequencing effort was assessed
158	by Good's coverage analysis with a mean value for all sample reads of $\frac{70.6471}{70.6471}\% \pm \frac{0.0550.1}{9}\%$
159	and a completeness analysis (full coverage reached below 5000 reads) (Fig. S1). A total of 4
160	1.102 OTUs were obtained by similarity clustering at 99% nucleotide identity and 786 OTUs
161	after singleton removal within each sample. The Raw sequence reads are deposited in NCBI
162	BioProject Database Accession number: PRJNA760541.
163	(https://dataview.ncbi.nlm.nih.gov/object/PRJNA760541?reviewer=ht1lj2o5cn5tkk782fcjqloktp)
164	
165	Microbial communities associated with sponges
166	The resulting OTUs for this study showed that seven phyla were the most abundant among all
167	mesohyl samples from Aplysina sp (10 m depth), Aplysina sp and Ircinia sp (2 m depth) with a
168	minimal presence of Archaea (0.56% - 1.65% of the total classified reads). Proteobacteria
169	represented the most abundant phylum (85.8486%) for Aplysina sp (10 m) and was among the
170	most abundant for <i>Aplysina</i> sp and <i>Ircinia</i> sp (2 m) samples (31.42% and 31.35%,
171	respectively for both) (Fig. 2a).
172	
173	Acidobacteria represented the most abundant (47-11-%) phylum for Ircinia sp samples and also
174	the most abundant (9.23%) for <i>Aplysina</i> sp (2 m) sample (Fig. 2a). Cyanobacteria was among the
175	most abundant (4.695% - 22%) phylum for all samples, which was the second most abundant
176	(21.7322%) for <i>Aplysina</i> sp (2 m) sample (Fig. 2a). Chloroflexi was among the most abundant
177	(15.9616%) phylum for <i>Aplysina</i> sp at shallow water depth (Fig. 2a). Actinobacteria showed a
178	higher abundance of 2- and 3-fold than Aplysina sp (10 m) for Aplysina sp and Ircinia sp
179	samples at shallow depth (Fig. 2a). Bacteroidetes was among the most abundant phylum for
180	Aplysina sp (4.565%) and Ircinia sp samples (Fig. 2a). Planctomycetes was among the most
181	abundant phylum for shallow Aplysina sp (4.44%) samples (Fig. 2a). Interestingly, 30.1% of the
182	total OTUs were shared among all samples analyzed (Fig. 2b). Aplysina sp (2 m) samples
183	showed the highest amount of specific OTUs (24.525%), followed by <i>Ircinia</i> sp 13.2% and
184	Aplysina sp (10 m) 11.712% samples (Fig. 2b). Both Aplysina sp samples (2 and 10 m) showed

the highest ratio of exclusively shared OTUs (10.4%) (Fig. 2b).

186 187 Microbial community diversity and depth effect on sponge species 188 To determine bacterial taxonomic diversity, richness, and evenness of the microbial communities 189 associated to sponges -both 2 and 10 m samples -alpha diversity indices were estimated by the 190 OTUs rarefaction sampling curves (Fig. 3a) and through rarefaction (interpolation) and 191 extrapolation (R/E). Sampling curve analysis for Chao1 (order q = 0) (Fig. 3b), Shannon (order q 192 = 1) (Fig. 3c), and Simpson (order q = 2) (Fig. 3d) indices showed differences due to curve 193 clustering of the samples analyzed (Fig. 3). Furthermore, the principal coordinates analysis 194 (PCoA) and constrained correspondence analysis (CCA) were performed to determine the 195 elustering of the Aplysina sp (10 m), Aplysina sp (2 m), and Ircinia sp samples of microbial communities. The clustering either for PCoA and CCA (Fig. 4a-b, respectively) showed two 196 197 well-defined and discrete groups based on sample depth regardless of the species (Aplysina sp or 198 Ircinia sp). 199 200 To estimate depth and species effect on the bacterial community structures for deep and shallow 201 Aphysina sp and Ircinia sp samples, a permutational analysis of variance (PERMANOVA) was 202 applied. The PERMANOVA analysis showed that depth was the main factor influencing the 203 microbial community structures in the sponge samples ($R_2 = 0.507$, P = 0.008), and. Sponge species did not have a significant effect ($R_2 = 0.184$, P = 0.122). Moreover, the PERMANOVA 204 205 analysis for depth interaction species showed that depth ($R_2 = 0.507$, P = 0.004) was the main 206 factor influencing microbial community structures regardless of sponge species ($R_2 = 0.110$, P =207 0.110). Furthermore, an analysis of similarities (ANOSIM) was performed to determine 208 differences among the microbial communities. The ANOSIM analysis also showed a significant 209 difference between depths in the microbial communities (Fig. 5). Finally, an and unsupervised 210 bi-clustering analysis, was performed based on sample correlation to estimate the degree of

relationship among samples, and supported the this beta diversity analyzed analysis (PCoA and CCA) (*Fig. S2, Fig. S3*).

213

214 Discussion

This study characterized for the first time the associated prokaryotic communities associated
with *Aplysina* sp and *Ircinia* sp mesohyl sponges from the Gulf of California. These sponges

217 were initially collected to evaluate their potential production of bioactive compounds and to 218 isolate the bacteria associated with them. Differences were observed in the biological activity of 219 these sponges and cultivable bacteria isolated between the sponges of the same genera and 220 between genera (Gándara-Zamudio, 2011; Aguila-Ramírez, 2012; Ortíz-Aguirre, 2012)-221 It was considered that these differences were probably appeared related to the site and the depth 222 223 at which they were collected, for this reason it was considered that the characterization of the 224 prokaryotic communities from both sponges was characterized by high-throughput sequencing 225 the 16S rRNA gene fragments, would allow us to know the diversity of bacteria and archaea 226 associated with the sponges and thus be able to explain the differences found in the antimicrobial 227 activity tests. 228 229 Ircinia sp is only found in shallow areas without a depth slope, unlike; Aplysina sp, which is 230 distributed in a rocky reef that ranges from 2 to 10 m deep. However, when Preliminary 231 analyzing analysis the results of the sequencing, showed a similarity was found between the 232 diversity of bacterial community communities of the sponges collected in the shallowest areas, 233 therefore, the analysis was carried out focusing on the effect of depth on the bacterial diversity of 234 these two genera of sponges. 235 236 AVariation was found in relative abundance of the bacterial phyla associated with *Aplysina* sp at 237 different depths. Archaea were present in a low abundance percentage. This low abundance 238 could have been since specific primers for archaea were not used. For example, other authors 239 (Chaib De Mares et al., (2017) have mentioned reported that when bacterial-specific primers 240 were used, only 6% of the readings were classified as Archaea. On the other hand, when 241 Archaea-specific primers were used, this proportion was 89%. The phylum Thaumarchaeota was 242 the most abundant within archaea and was found in all samples. However, and was most 243 abundant in the 2-meter Aplysina sp samples were more abundant collected at 2 meters. This 244 phylum - Thaumarchaeota - is known to comprises 245 nitrifying archaea, which was and is highly abundant in 14 investigated sponge species 246 microbiomes (Dat et al., 2018).

247

248 The most abundant phylum at both depths were Proteobacteria, which was evidenced that it was 249 the predominant (85%) phylum for the deeper water samples (Fig. 2a). Proteobacteria have also 250 been previously reported asare a prominent group of sponge-associated microbial communities 251 and highly abundant in the marine environment whether as in planktonic or as symbiotic 252 organisms (Li et al., 2006; Jasmin et al., 2015; Dat et al., 2018). This phylum has a direct role 253 contributing contributes to biogeochemical cycles through extracellular enzyme production 254 besides and performing performs some symbiotic functions in sponges, such as nitrogen fixation 255 and secondary metabolite production for the chemical defense of the host (Stabili et al., 2014). 256 Furthermore, the Cyanobacteria and Chloroflexi phyla showed a high proportional abundance in 257 the Aplysina samples from the shallow zone. Those These phyla have also been characterized with a remarkable transcriptional activity of genes directly involved inmediate photosynthesis 258 259 and carbon fixation and also responsible for converting ammonia into nitrate in marine sponges 260 (Han, Li & Zhang, 2013; Bibi & Azhar, 2021). The high proportion of these bacteria in the 261 shallowest sponges could be explained because the light intensity required for photosynthesis is 262 greater in this area (Erwin et al., 2012; Souza et al., 2017; Glasl et al., 2019; Fiore et al., 2020). 263 264 As reported by Hardoim et al. (2021), the prokaryotic communities associated with A. caissara 265 and A. fulva were very similar among these two species and dominated by Chloroflexi, 266 Proteobacteria, Crenarchaeota, and Acidobacteria. In contrast, in this study, Chloroflexi was only 267 represented with a high relative abundance in 2-m Aplysina sp samples and Crenarchaeota did 268 not represent an important component in any of the samples. However, these same authors 269 (Hardoim et al., 2021) mentioned that community composition was largely different for Aplysina 270 species. For instance, the most abundant phyla encountered in A. fulva, A. cauliformis, A. 271 archeri, A. cavenicola, and A. aerophoba sampled in seven distinct sites were assigned to 272 Proteobacteria, Chloroflexi, unclassified bacteria, Acidobacteria, and Actinobacteria (Thomas et 273 al., 2016), or A. fulva collected in Brazil with the community dominated by Cyanobacteria, 274 Proteobacteria, and Chloroflexi (Hardoim et al., 2009), which coincides with the phyla with the 275 highest relative abundance in the 2-m Aplysina sp samples collected at Punta Arena BCS. 276

- 277 Global bacterial community structure for shallow samples has a similar proportion of
- 278 Proteobacteria phylum (Fig. 2a). For *Ircinia* sp samples Acidobacteria and Proteobacteria were

279 the most abundant phyla, which is consistent with the results of different several studies 280 (Mohamed, 2007, Schmitt et al., 2007; Schmitt et al., 2008; Lee et al., 2011; Yang et al., 2011; 281 Hardoim et al., 2012; Pita, López-Legentil & Erwin, 2013; Pita, 2014; Engelberts et al., 2020) 282 where they report that the core bacterial community associated with this genus is made up of 283 seven phyla Proteobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, 284 Firmicutes and Nitrospira. Despite being a very abundant and diverse group, the Acidobacteria 285 phylum is not as well studied as Proteobacteria, so very little information is available on the 286 species belonging to this phylum in marine environments. Engelberts et al. (2020) analyzed 287 specific genes involved in metabolic pathways and biogeochemical cycles and found that some 288 species of Acidobacteria participate in denitrification, nitrification, ammonification, metabolism 289 of the taurine, exopolysaccharide production and synthesis of B complex vitamins. This phylum 290 has also been found in a high percentage in sponge species, such as Xestospongia testudinaria 291 and Luffariella variabilis, but these bacteria had not been reported as predominant in sponges of 292 the genus Ircinia (Webster et al., 2013). in-In most studies of the community associated with 293 different species of Ircinia, Proteobacteria and Cyanobacteria are mentioned as the main 294 componentsdominate of the community associated with different species of Ircinia (Hardoim & 295 Costa, 2014). It should be noted that this study would be the first report where the abundance of 296 Acidobacteria is greater than that of Proteobacteria for the genus Ircinia. For the shallow 297 Aplysina sp samples, the most abundant were Proteobacteria, Cyanobacteria, Chloroflexi and 298 Acidobacteria; deep *Aplysina* sp samples were dominated only by the Proteobacteria phylum. 299 These prokaryotic taxa with a high relative abundance in this study are also abundant in other 300 marine sponges (Moitinho-Silva et al., 2017; Dat et al., 2018). 301 302 In coral ecosystems host identity controls the sponge-associated microbial community was 303 observed to be more influenced by host identity (Steinert et al., 2016). This study found that 304 sponges of different species (Aplysina sp and Ircinia sp) collected at different depths (2 m and 10 305 m) share a high proportion of OTUs (Fig. 2b). Albeit the Aplysina sp samples at 10 m and those 306 at 2 m showed characteristic and discrete OTUs distributions (Fig. SF3). Environmental 307 variability is an important factor in the sponge microbial community. AStable isotopic analysis

308 in giant barrel sponge *Xestospongia muta* showed changes in the relationship $_{15}N / _{13}C$ in

309 sponges as depth increased (transition from dependency on photoautotrophy to heterotrophy), 310 leading to a more stable microbial community along the depth gradient (Morrow et al., 2016). 311 312 A high proportion (\sim 30%) of shared OTUs for *Aplysina* sp and *Ircinia* sp might be due to the 313 ecophysiological similitudes among those species, since they are inhabiting similar reef areas, 314 high diversity of organisms and undergoing the same face similar selective pressures (Souza et 315 al., 2017; Pearman et al., 2019; Turon et al., 2019). However, a higher proportion of exclusively 316 shared OTUs for Aplysina sp samples was expected for both depths (10.4%) since those samples 317 belong to the same species, and because other studies have found that host-specific prokaryotic 318 communities are stable despite geographical and temporal differences (Erwin et al., 2015; 319 Hardoim & Costa, 2014; Dat et al., 2018), to a greater extent in this case which is the same 320 location and at the same time. Also is worth noting that approximately the same proportion of 321 exclusively shared OTUs are shared between Aplysina sp at shallow and deep depths, 322 respectively. Several phyla are stable in Aplysina sp samples collected at different depths, but 323 their relative abundance percentage differs markedly. In the deepest samples a clear 324 predominance of Proteobacteria is observed predominated, while in those at 2 mthe shallowest, 325 the highest abundance percentage is divided mainly into three phyla, which include 326 Proteobacteria, Cyanobacteria and Chloroflexi-, predominated. Although this study does not 327 have data on environmental parameters, other studies have found that the temperature difference 328 between shallow areas of the reef and deep sites averaged 4° C (from 3 m to 91 m deep), which 329 was unlikely to affect sponge-microbial communities. Studies examining the effect of elevated 330 temperatures found no change (at sub-lethal temperatures) in sponge bacterial communities 331 during short term experiments (Webster et al., 2008; Simister et al., 2012; Steinert et al., 2016). 332 Therefore, and due to the presence of bacteria of the phylum Cyanobacteria and Chloroflexi in 333 greater abundance at 2 m, might imply that light intensity plays an important role in community 334 changes, as other authors have suggested (Lesser et al., 2010). 335 336 Alpha diversity indices for richness and evenness estimated with rarefaction (interpolation) and

- 337 extrapolation (R/E) sampling curves showed the clustering for *Aplysina* sp deep samples and
- 338 overlapping both Aplysina sp and Ircinia sp shallow samples (Fig. 3). The beta diversity PCoA
- and CCA analyses showed a clustering directly related with depth instead of a relationship

340	among sponge species supported with PERMANOVA and ANOSIM analyses (Fig. 3-4). The
341	clustering analyses (PCoA and CCA) showed two well-defined groups, one corresponding to
342	Aplysina sp bacteria collected in deeper areas and the other one that includes corresponding to
343	Aplysina sp and Ircinia sp bacteria from the shallow area. Interestingly, tThese findings are in
344	accordance with the variation in the bacterial community structure assemblage, which is
345	influenced directly by environmental factors, such as depth, temperature, and light intensity and
346	not by the host sponge species (Maldonado & Young, 1998; Thoms et al., 2003; Olson & Gao,
347	2013; Morrow, Fiore & Lesser, 2016; Thomas et al., 2016; Pearman et al., 2019; Souza et al.,
348	2017). These results differ from those reported in other studies, For example, such as the
349	reported by Gantt et al. (2019) found-reported that bacterial communities exhibited a high degree
350	of host specificity with greater intraspecific than interspecific similarity between locations and
351	detected a significant effect of location on microbial diversity and composition within each host
352	sponge species.
353	
354	Despite the sample size differences among <i>Aphysina</i> sp for 2 m and 10 m depth, we were able to
355	determine significant differences due to the characteristic prokaryotic structure assemblage for
356	every depth analyzed (Fig. 2a, Fig. 5, and SF3).
357	
358	Conclusions
359	The environment plays a fundamental role to provide the appropriate conditions to sustain and
360	preserve life that inhabits it. Marine ecosystems are not the exception, and it is even more
361	relevant that the environmental conditions play an essential role to influence directly into the
362	biological diversity, especially for those organisms that are attached to the marine ground, such
363	as corals, sponges, algae.
364	Therefore, the performed mMicrobial diversity analysis showed that depth was more important
365	than host in structuring the Aplysina sp and Ircinia sp microbiome
366	
367	Acknowledgments
368	The authors thank José Borges Souza for his help in taking samples, Cristina Vega Juárez by

369 identifying the sponges, COFAA (Comisión de Operación y Fomento de Actividades

370	Académicas del Instituto Politécnico Nacional) IPN and EDI (Estímulo al Desempeño	
371	Académico) fellows and Diana Fischer for English edition.	
372		
373	References	
374		
375	Aguila-Ramírez RN. 2012. Caracterización y bioactividad de bacterias asociadas a la esponja	
376	Aplysina gerardogreeni del Golfo de California. Doctoral Thesis. Centro Interdisciplinario de	
377	Ciencias Marinas. Instituto Politécnico Nacional, México.	
378		
379	Bibi F, Azhar EI. 2021. Analysis of bacterial communities in sponges and coral inhabiting Red	
380	Sea, using barcoded 454 pyrosequencing. Saudi Journal of Biological Sciences 28: 847-854.	
381	https://doi.org/10.1016/j.sjbs.2020.11.021	
382		
383	Bonder MJ, Abeln S, Zaura E, Brandt BW. 2012. Comparing clustering and pre-processing in	
384	taxonomy analysis. Bioinformatics 28: 2891-2897. https://doi.org/10.1093/bioinformatics/bts552	
385		
386	Burja AM, Webster NS, Murphy PT, Hill RT. 1999. Microbial symbionts of Great Barrier Reef	
387	sponges. Memories of the Queensland Museum 44:63-75	
388		
389	Caamal-Chan MG, Loera-Muro A, Castellanos T, Aguilar-Martínez CJ, Marfil-Santana MD,	
390	Barraza A. 2019. Analysis of the bacterial communities and endosymbionts of natural	
391	populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. Annals of	
392	Microbiology. https://doi.org/10.1007/s13213-019-01483-6.	
393		
394	Caballero-George CJ, Bolaños EO, Carballo JL, Cruz-Barraza JA, Arnold E. 2010. Protocol to	
395	isolate sponge-associated fungi from tropical waters and an examination of their cardioprotective	
396	potential. Current Trends in Biotechnology and Pharmacy 4:881-889.	
397		
398	Carballo-Cenizo JL, Cruz-Barraza JA. 2010. <u>"A revision Of the genus <i>Mycale</i> (Poecilosclerida:</u>	Formatted: Highligh
399	Mycalidae) from the Mexican Pacific Ocean". Contributions to Zoology 79:165-191.	Formatted: Highligh
400	https://doi:10.1163/18759866-07904003	Formatted: Highligh
1		

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

401	
402	Chaib De Mares M, Sipkema D, Huang S, Bunk B, Overmann J, van Elsas JD. 2017. Host
403	specificity for bacterial, archaeal and fungal communities determined for high- and low-
404	microbial abundance sponge species in two genera. Frontiers in Microbiology. 8:1-13.
405	https://doi.org/10.3389/fmicb.2017.02560
406	
407	Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. 2013. A comparison of methods for clustering
408	16S rRNA sequences into OTUs. PLoS ONE 8: e70837.
409	https://doi.org/10.1371/journal.pone.0070837
410	
411	Cleary DFR, Swierts T, Coelho FJRC, Polonia ARM, Huang YM, Ferreira MRS, Putchakarn S,
412	Carvalheiro L, van der Ent E, Ueng JP, Gomes NCM, de Voogd NJ. 2019. The sponge
413	microbiome within the greater coral reef microbial metacommunity. Nature Communications 10:
414	1644. https://doi.org/10.1038/s41467-019-09537-8.
415	
416	Cole JR, Wang Q, Fish J, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske
417	CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput rRNA
418	analysis. Nucleic Acids Res 42: D633-42. https://doi.org/10.1093/nar/gkt1244.
419	
420	Cruz-Barraza, J. A., & Carballo, J. L. (2008). Taxonomy of sponges (Porifera) associated with
421	corals from the Mexican Pacific Ocean. Zoological Studies 47(6): 741-758.
422	
423	Cruz-Barraza JA, Carballo JL, Rocha-Olivares A, Ehrlich H, Hog M. 2012. Integrative
424	taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from
425	Mexican Pacific. PLOS ONE 7:e42049. https://doi.org/ 10.1371/journal.pone.0042049.
426	
427	Dat TTH, Steinert G, Thi KCN, Smidt H, Sipkema D. 2018. Archaeal and bacterial diversity and
428	community composition from 18 phylogenetically divergent sponge species in Vietnam. PeerJ
429	6:e4970. https://doi.org/10.7717/peerj.4970.
430	

431	De Vos L, Riitzler K, Boury-Esnault N, Donadey C, Vacelet J. 1995. Atlas of sponge
432	morphology. Smithsonian Institution Press, Washington
433	
434	Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. 2020.
435	Characterization of a sponge microbiome using an integrative genome-centric approach. The
436 437	ISME Journal 14(5); 1100-1110. https://doi.org/10.1038/s41396-020-0591-9
438	Erwin PM, Pita L, López-Legentil S, Turon X. 2012. Stability of sponge-bacteria over large
439	seasonal shifts in temperature and irradiance. Applied and Environmental Microbiology 78:
440	7358-7368. https://doi.org/10.1128/AEM.02035-12.
441	
442	Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M. 2015. Stable symbionts across the
443	HMA-LMA dichotomy: low seasonal and inter-annual variation in sponge-associated bacteria
444	from taxonomically diverse hosts. FEMS Microbiology 91:1-11.
445	https://doi.org/10.1093/femsec/fiv115
446	
447	Fiore CL, Jarett JK, Steinert G, Lesser MP. 2020. Trait-based comparison of coral and sponge
448	microbiomes. Scientific Reports 10: 2340. https://doi.org/10.1038/s41598-020-59320-9.
449	
450	Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U. 2001. Temporal variation of the
451	microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS
452	Microbiology Ecology 38:105-113
453	
454	Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: Accelerated for clustering the next-generation
455	sequencing data. Bioinformatics 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565.
456	
457	Gantt SE, McMurray SE, Stubler AD, Finelli CM, Pawlik JR, Erwin PM. 2019. Testing the
458	relationship between microbiome composition and flux of carbon and nutrients in caribbean
459	coral reef sponges. Microbiome 7: 124. <u>https://doi.org/10.1186/s40168-019-0739-x</u> .
460	

461	Gándara-Zamudio A. 2011. Actividad antibacteriana y citotóxica de diferentes morfologías de la
462	esponja Aplysina gerardogreeni de Punta Arena de la Ventana, BCS, México. Tesis de
463	Licenciatura. Universidad Autónoma de Baja California Sur, México.
464	
465	Glasl B, Bourne DG, Frade PR, Thomas T, Schaffelke B, Webster NS. 2019. Microbial
466	indicators of environmental perturbations in coral reef ecosystems. Microbiome 7: 94.
467	https://doi.org/10.1186/s40168-019-0705-7.
468	
469	Gómez P, Carballo JL, Vázquez LE, Cruz JA. 2002. New records for the sponge fauna (Porifera,
470	Demospongiae) of the Pacific Coast of Mexico (East Pacific Ocean). Proceedings of the
471	Biological Society of Washington 115(1): 223-237.
472	
473	Han M, Li Z, Zhang F. 2013. The ammonia oxidizing and denitrifying prokaryotes associated
474	with sponges from different sea areas. Microbial Ecology 66: 427-436.
475	https://doi.org/10.1007/s00248-013-0197-0.
476	
477	Hardoim CCP, Costa R, Araujo FV, Hajdu E, Peixoto R, Lins U, Rosado AS, Van Elsas, JD.
478	2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal
479	waters. Applied and Environmental Microbiology 75(10): 3331-3343.
480	https://doi.org/10.1128/AEM.02101-08
481	
482	Hardoim CC, Esteves AI, Pires FR, Gonçalves JM, Cox CJ, Xavier JR, Costa R. 2012.
483	Phylogenetically and spatially close marine sponges harbour divergent bacterial
484	communities. PLoS One, 7(12); e53029. https://doi.org/10.1371/journal.pone.0053029
485	
486	Hardoim CC, Costa R. 2014. Microbial communities and bioactive compounds in marine
487	sponges of the family Irciniidae—a review. Marine Drugs 12(10): 5089-5122.
488	https://doi.org/10.3390/md12105089
489	
490	Hardoim CCP, Lôbo-Hajdu G, Custódio MR, Hardoim PR. 2021. Prokaryotic, Fungal, and
491	Unicellular Eukaryotic Core Communities across Three Sympatric Marine Sponges from the

492	Southwestern Atlantic Coast are Dominated largely by Deterministic Assemblage
493	Processes. Frontiers in Microbiology 12:1162. https://doi.org/10.3389/fmicb.2021.674004
494	
495	Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M. 2003. Microbial
496	diversity of marine sponges. Progress in Molecular and Subcellular Biology 37: 59-88.
497	https://doi.org/10.1007/978-3-642-55519-0_3.
498	
499	Hsieh TC, Ma KH, Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of
500	species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456.
501	https://doi.org/10.1111/2041-210X.12613.
502	
503	
504	Imhoff JF, Stöhr R. 2003. Sponge-Associated Bacteria: General Overview and Special Aspects
505	of Bacteria Associated with Halichondria panicea. Progress in Molecular and Subcellular
506	Biology, 35-57. https://doi:10.1007/978-3-642-55519-0_2
507	
508	Jasmin C, Anas A, Nair S, Hong Y. 2015. Bacterial diversity associated with Cinachyra
509	cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of gulf of
510	Mannar, Southeast Coast of India. PLOS ONE 10:e0123222.
511	https://doi.org/10.1371/journal.pone.0123222.
512	
513	Kahng SE, Copus JM, Wagner D. 2014. Recent advances in the ecology of mesophotic coral
514	ecosystems (MCEs). Current Opinion in Environmental Sustainability 7: 72-81.
515	https://doi.org/10.1016/j.cosust.2013.11.019.
516	
517	Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-
518	index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the
519	MiSeq Illumina sequencing platform. Applied and Environmental Microbiology 79: 5112-5120.
520	https://doi.org/10.1128/AEM.01043-13.

522	Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A. Pei-Yuan, 2011. Pyrosequencing reveals
523	highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J.
524	5: 650–664. https://doi.org/10.1038/ismej.2010.165
525	
526	Lesser MP, Slattery M, Leichter JJ. 2009. Ecology of mesophotic coral reefs. Journal of
527	Experimental Marine Biology and Ecology 375: 1-8.
528	https://doi.org/10.1016/j.jembe.2009.05.009.
529	
530	Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A. 2010 Photoacclimatization by
531	the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology
532	91:990-1003 https://doi.org/10.1890/09-0313.1
533	
534	Lurgi M, Thomas T, Wemheuer B, Webster N, Montoya JM. 2019. Modularity and predicted
535	functions of the global sponge-microbiome network. Nature Communications 10: 992
536	https://doi.org/10.1038/s41467-019-08925-4
537	
538	Maldonado M, Young CM. 1998. Limits on the bathymetric distribution of keratose sponges: a
539	field test in deep water. Marine Ecology Progress Series 74: 123-139.
540	www.jstor.org/stable/24831760.
541	
542	Mohamed NM. 2007. Ecophysiology of microbial communities associated with marine sponges
543	Ircinia strobilina and Mycale laxissima. University of Maryland, College Park.
544	
545	Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE,
546	Webster NS. 2015. Natural volcanic CO2 seeps reveal future trajectories for host-microbial
547	associations in corals and sponges. The ISME Journal 9: 894-908.
548	https://doi.org/10.1038/ismej.2014.188.
549	
550	Morrow KM, Fiore CL, Lesser MP. 2016. Environmental drivers of microbial community shifts
551	in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient.

552 Environmental Microbiology 18: 2025-2038. https://doi.org/10.1111/1462-2920.13226.

553	
554	Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'hara RB, Simpson GL, Solymos
555	P, Stevens MHH, Wagner H. 2014. Vegan: community ecology package. R package version 2.2-
556	0. Available at http://CRAN.Rproject.org/package=vegan.
557	
558	Olson JB, Kellogg CA. 2010. Microbiology of corals, sponges, and algae in mesophotic coral
559	environments. FEMS Microbiology Ecology 73: 17-30. https://doi.org/10.1111/j.1574-
560	6941.2010.00862.x
561	
562	Olson JB, Gao X. 2013. Characterizing the bacterial associates of three Caribbean sponges along
563	a gradient from shallow to mesophotic depths. FEMS Microbiology Ecology 85: 74-84.
564	https://doi.org/10.1111/1574-6941.12099.
565	
566	Ortíz-Aguirre I. 2012. Actividad biológica de esponjas y su relación con la complejidad de la
567	comunidad bentónica en la Bahía de La Paz, B.C.S., México. Master Thesis. Centro
568	Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, México.
569	
570	Parra-Velandia FJ, Zea S. 2003. Comparación de la abundancia y distribución de algunas
571	características de las esponjas del género Ircinia (Porifera: Demospongiae) en dos localidades
572	contrastantes del área de Santa Marta, Caribe colombiano. Boletín de Investigaciones Marinas y
573	Costeras 32: 75-91.
574	
575	Pearman JK, Aylagas E, Voolstra CR, Anlauf H, Villalobos R, Carvalho S. 2019. Disentangling
576	the complex microbial community of coral reefs using standardized autonomous reef monitoring
577	structures (ARMS). Molecular Ecology 28: 3496-3507. https://doi.org/10.1111/mec.15167.
578	
579	Pita L, López-Legentil S, Erwin PM. 2013. Biogeography and host fidelity of bacterial
580	communities in Ircinia spp. from the Bahamas. Microbial ecology, 66(2): 437-447.
581	https://doi.org/10.1007/s00248-013-0215-2
582	

583	Pita Galán, L. 2014. Biogeography of sponge-associated bacterial communities and resilence to
584	anthropogenic perturbations= Biogeografía de las comunidades bacterianas asociadas a esponjas
585	y su resiliencia frente a perturbaciones antropogénicas. PhD Thesis. Universidad de Barcelona,
586	España.
587	
588	Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, Vanreusel A. 2014. Host-
589	specificity among abundant and rare taxa in the sponge microbiome. The ISME Journal 8, 1198-
590	1209 doi: 10.1038/ismej.2013.227
591	
592	Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile tool for
593	metagenomics. PeerJ 4: e2584. https://doi.org/10.7717/peerj.2584.
594	
595	Sambrook J, Russell DW. 2002. Molecular Cloning A Laboratory Manual. 3rd Edition, Science
596	Press, Beijing, 461-471.
597	
598	Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH. 2012.
599	Cultivation of sponges, sponge cells and symbionts: achievements and future prospects.
600	Advances in Marine Biology 62: 273-337. https://doi.org/10.1016/B978-0-12-394283-8.00006-0.
601	
602	Schmitt S, Weisz JB, Lindquist N, Hentschel U. 2007.Vertical transmission of a phylogenetically
603	complex microbial consortium in the viviparous sponge Ircinia felix. Applied and Environmental
604	Microbiology 73: 2067-2078. https://doi.org/10.1128/AEM.01944-06
605	
606	Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U. 2008. Molecular microbial
607	diversity survey of sponge reproductive stages and mechanistic insights into vertical
608	transmission of microbial symbionts. Applied and Environmental Microbiology 74: 7694-7708.
609	https://doi.org/10.1128/AEM.00878-08.
610	
611	Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ,

612 Vacelet J, Webster N, Hentschel U, Taylor MW. 2011. Assessing the complex sponge

613	microbiota: core, variable and species-specific bacterial communities in marine sponges. The
614	ISME Journal 6: 564-576. https://doi.org/10.1038/ismej.2011.116.
615	
616	Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. 2012. Sponge-specific clusters
617	revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environmental
618	Microbiology 14: 517-524. doi: 10.1111/j.1462-2920.2011.02664.x
619	
620	Souza DT, Genuário DB, Silva FSP, Pansa CC, Kavamura VN, Moraes FC, Taketani RG, Melo
621	IS. 2017. Analysis of bacterial composition in marine sponges reveals the influence of host
622	phylogeny and environment. FEMS Microbiology Ecology 93: fiw204.
623	https://doi.org/10.1093/femsec/fiw204.
624	
625	Stabili L, Giangrande A, Pizzolante G, Caruso G, Alifano P. 2014. Characterization of Vibrio
626	diversity in the mucus of the polychaete Myxicola infundibulum (Annelida, Polichaeta).
627	Microbial Ecology 67: 186–194. https://doi.org/10.1007/s00248-013-0312-2.
628	
629	Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, Schupp PJ. 2016. In
630	four shallow and mesophotic tropical reef sponges from Guam the microbial community largely
631	depends on host identity. PeerJ 4:e1936. https://doi.org/10.7717/peerj.1936.
632	
633	Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Velayoudon D. 2015.
634	Structure and function of the global ocean microbiome. Science, 348(6237): 1261359.
635	https://doi.org/10.1126/science.1261359
636	
637	Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms:
638	evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology
639	Reviews 71:295–347. https://doi.org//10.1128/MMBR.00040-06.
640	
641	Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB,
642	Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L,

643 Erpenbeck D, Gilbert J, Knight R, Ackermann G, Lopez, JV, Taylor MW, Thacker RW,

644	Montoya JM, Hentschel U, Webster NS. 2016. Diversity structure and convergent evolution of
645	the global sponge microbiome. Nature Communications 7: 11870.
646	https://doi.org/10.1038/ncomms11870.
647	
648	Thoms C, Horn M, Wagner M, Hentschel U, Proksch P. 2003. Monitoring microbial diversity
649	and natural product profiles of the sponge Aplysina cavernicola following transplantation.
650	Marine Biology 142: 685-692. https://doi.org/10.1007/s00227-002-1000-9.
651	
652	Turon M, Cáliz J, Triado-Margarit X, Casamayor EO, Uriz MJ. 2019. Sponges and their
653	microbiomes show similar community metrics across impacted and well-preserved reefs.
654	Frontiers in Microbiology 10: 1961. https://doi.org/10.3389/fmicb.2019.01961.
655	
656	Usher KM, Fromont J, Sutton DC, Toze S. 2004. The biogeography and phylogeny of unicellular
657	cyanobacterial symbionts in selected sponges from Australia and the Mediterranean. Microbial
658	Ecology 48,:167-177. https://doi.org/ 10.1007/s00248-003-1062-3.
659	
660	Vacelet J. 1975. Etude en mircrosopie electronique de l'association entre bacteries et spongiaires
661	du genre Verongia (Dictyoceratida). Journal of Microscopic Biology Cellular 23:271-288
662	
663	Villegas-Plazas M, Wos-Oxley ML, Sanchez JA. Pieper DH, Thomas OP, Junca H. 2019.
664	Variations in Microbial nicrobial Diversity diversity and Metabolite metabolite Profiles profiles
665	of the Tropical tropical Marine marine Sponge sponge Xestospongia muta with Season season
666	and Depthdepth. Microbial Ecology 78,:243-256. https://doi.org/10.1007/s00248-018-1285-y.
667	
668	Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive bayesian classifier for rapid assignment
669	of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology
670	73: 5261-5267. https://doi.org/10.1128/AEM.00062-07.
671	
672	Webster NS, Hill RT. 2001. The culturable microbial community of the Great Barrier Reef
673	sponge <i>Rhopaloeides odorabile</i> is dominated by an α-Proteobacterium. Marine Biology 138:
674	843-851. https://doi.org/10.1007/s002270000503.

675	
676	Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R. 2008. Shifts in microbial and
677	chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.
678 679	Environmental microbiology, 10 (12); <u>:</u>3366-3376 .
680	Webster NS, Taylor MW. 2012. Marine sponges and their microbial symbionts: love and other
681	relationships. Environmental Microbiology 14: 335–346. https://doi.org/10.1111/j.1462-
682	2920.2011.02460.x
683	
684	Webster NS, Luter HM, Soo RM, Botté ES, Simister RL, Abdo D, Whalan S. 2013. Same, same
685	but different: symbiotic bacterial associations in GBR sponges. Frontiers in Microbiology 3:444.
686	https://doi.org/10.3389/fmicb.2012.00444.
687	
688	Webster NS, Thomas T. 2016. The sponge hologenome. MBio 7: e00135-16.
689	https://doi.org/10.1128/mBio.00135-16
690	
691	Weigel BL, Erwin PM. 2015. Intraspecific variation in microbial symbiont communities of the
692	sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Applied and
693	Environmental Microbiology 82: 650-658. https://doi.org/10.1128/AEM.02980-15.
694	
695	Yang J, Sun J, Lee OO, Wong YH, Qian PY. 2011. Phylogenetic diversity and community
696	structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquatic Microbial
697 698	Ecology, 62(3): 231-240. https://doi.org/10.3354/ame01473
699	Zea S. 1994. Patterns of coral and sponge abundance in stressed coral reefs at Santa Marta,
700	Colombian Caribbean: 257-264. In Soest, RWM. van, TMG. van Kempen y JC Braekman

701 (Eds.): Sponges in Time and Space. Balkema, Rotterdam.