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Rhythms extraction from electroencephalography (EEG) signals can be used to monitor the
physiological and pathological states of the brain and has attracted much attention in
recent studies. A flexible and accurate method for EEG rhythms extraction was proposed
by incorporating a novel circulant singular spectrum analysis (CSSA). The EEG signals are
decomposed into the sum of a set of orthogonal reconstructed components (RCs) at known
frequencies. The frequency bandwidth of each RC is limited to a particular brain rhythm
band, with no frequency mixing between different RCs. The RCs are then grouped flexibly
to extract the desired EEG rhythms based on the known frequencies. The extracted brain
rhythms are accurate and no mixed components of other rhythms or artifacts are included.
Simulated EEG data based on the Markov Process Amplitude EEG model and experimental
EEG data in the eyes-open and eyes-closed states were used to verify the CSSA-based
method. Results showed that the CSSA-based method is flexible in alpha rhythms
extraction and has a higher accuracy in distinguishing between the eyes-open and eyes-
closed states, compared with the basic SSA method, the wavelet decomposition method,
and the infinite impulse response filtering method.
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17 Abstract

18 Rhythms extraction from electroencephalography (EEG) signals can be used to monitor the 

19 physiological and pathological states of the brain and has attracted much attention in recent 

20 studies. A flexible and accurate method for EEG rhythms extraction was proposed by 

21 incorporating a novel circulant singular spectrum analysis (CSSA). The EEG signals are 

22 decomposed into the sum of a set of orthogonal reconstructed components (RCs) at known 

23 frequencies. The frequency bandwidth of each RC is limited to a particular brain rhythm band, 

24 with no frequency mixing between different RCs. The RCs are then grouped flexibly to extract 

25 the desired EEG rhythms based on the known frequencies. The extracted brain rhythms are 

26 accurate and no mixed components of other rhythms or artifacts are included. Simulated EEG 

27 data based on the Markov Process Amplitude EEG model and experimental EEG data in the 

28 eyes-open and eyes-closed states were used to verify the CSSA-based method. Results showed 

29 that the CSSA-based method is flexible in alpha rhythms extraction and has a higher accuracy in 

30 distinguishing between the eyes-open and eyes-closed states, compared with the basic SSA 

31 method, the wavelet decomposition method, and the infinite impulse response filtering method.

32 Introduction

33 Electroencephalograms (EEGs) are the electrical activity of the brain’s neurons recorded at 

34 the scalp surface(Henry 2006). They consist of several rhythm bands: delta (1–4 Hz), theta (4–8 

35 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (>30 Hz). Because the rhythms reflect 

36 different physiological and pathological information, EEG rhythms extraction has been widely 

37 applied in many areas. Examples include portable and wearable EEG devices(Hwang et al. 2018; 

38 Maskeliunas et al. 2016), mental fatigue assessment(Taran & Bajaj 2017), disease 

39 diagnosis(Babiloni et al. 2016; Gupta & Pachori 2019), and brain computer interface 

40 systems(Jeunet et al. 2019; Liu et al. 2020).

41 The accuracy of EEG rhythms extraction determines the physiological and pathological 

42 information it provides. Various methods have been proposed to extract the desired EEG 

43 rhythms. Filtering components have the ability to restrict a signal to a specific frequency band, 

44 and such bandpass filters were first used to extract EEG rhythms(Pfurtscheller et al. 1997). This 

45 method performed well in EEGs of high signal-to-noise ratio (SNR). Then, the wavelet 

46 transform (WT) method was used for EEG rhythms extraction(Duque-Muñoz et al. 2015). By 

47 estimating the rhythms with a customized wavelet, the WT method can extract time-varying 

48 EEG rhythms with changes in brain state. To facilitate the EEG rhythms extraction, the 

49 independent component analysis(ICA) method was then introduced(Kavuri et al. 2018). By 

50 incorporating priori information about the desired rhythms as reference signals, the ICA method 

51 can extract EEG rhythms automatically. However, the extracted rhythms using the bandpass 

52 filter, WT, and ICA methods were contaminated by noise and artifacts overlapping in time–

53 frequency space. In recent years, to improve the accuracy of EEG rhythms extraction, the 

54 singular spectrum analysis (SSA) method has been used(Akar et al. 2015; Mohammadi et al. 

55 2016). This nonparametric method enables the separation of different sources even when they 

56 overlap in time–frequency space(Mohammadi et al. 2015).
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57 In the basic SSA method, the grouping rule is important for SSA reconstruction. However, 

58 because of the lack of the information about the amplitude and frequency of the reconstructed 

59 components (RCs), there is no general grouping rule. Different grouping rules have been 

60 proposed depending on the research target, the types of signals, and noise. The conventional SSA 

61 grouping is performed according to the magnitudes of eigenvalues related to the power of each 

62 RC(Teixeira et al. 2005). Mohammadi et al. proposed a new grouping rule based on eigenvalue 

63 pairs to extract the main rhythms from sleep EEG signals(Mohammadi et al. 2016). Hu et al. 

64 proposed another efficient grouping rule based on the similarity between the eigenvalues and the 

65 peak frequency of RC, which makes SSA adaptive to EEG signals containing different levels of 

66 artifacts and rhythms(Hai et al. 2017). However, these grouping rules can only be applied to 

67 specific types of signals and must be incorporated with other methods (e.g., Fourier transform or 

68 wavelet decomposition) to pre-identify the frequencies of RCs, which is time-consuming and 

69 inflexible. Besides, the observed frequency mixing between different RCs leads to inaccurate 

70 EEG rhythms extraction(Xu et al. 2018).

71 In this paper, we introduce a novel circulant singular spectrum analysis (CSSA) method to 

72 improve the flexibility and accuracy of EEG rhythms extraction. Compared with the basic SSA 

73 method, the CSSA method has the advantage of avoiding the need for pre-identifying the 

74 frequencies of RCs. A set of orthogonal vectors are obtained by decomposing the circulant 

75 matrix, and the EEG signals can be decomposed into the sum of a set of orthogonal RCs of 

76 known frequencies. The RCs can be grouped automatically and flexibly to extract the specific 

77 EEG rhythms based on their frequencies. In addition, because the frequency bandwidth of each 

78 RC is limited to a particular band of the brain rhythm of interest, the extracted brain rhythms are 

79 accurate and no mixed components of other rhythms and artifacts are included.

80 Methods

81 The CSSA method is a nonparametric signal extraction method proposed by Juan 

82 Bógalo(Bógalo et al. 2020). CSSA consists of four steps: embedding, decomposition, diagonal 

83 averaging, and grouping. As in the basic SSA method, in the time-delay embedding step, the 

84 single-channel EEG time series  (superscript T denotes the transpose of a 𝐬= (𝑠1,𝑠2,…,𝑠𝑁)𝑇
85 vector) is mapped onto a multidimensional trajectory matrix X using a sliding window(Takens 

86 1981):

87                                      (1)𝐗= (𝐒1,𝐒2,…,𝐒𝐾) = (
𝑠1 𝑠2𝑠2 𝑠3 ⋯ 𝑠𝐾⋯ 𝑠𝐾+ 1⋮ ⋮𝑠𝐿 𝑠𝐿+ 1 ⋱ ⋮⋯ 𝑠𝑁 )

88 where L denotes the window length (or embedding dimension), K=N−L+1, and  denotes the iS

89 lagged vector. 

90 In the decomposition step, the trajectory matrix is decomposed into elementary matrices of 

91 rank 1 that are associated with different frequencies. To do so, a related circulant matrix  is LC

92 built based on the second order moments of the time series(Bógalo et al. 2020):
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93                                           (2)𝐂𝐿(𝑓)= (
𝑐0 𝑐1 𝑐2𝑐𝐿 ‒ 1 𝑐0 𝑐1 ⋯ 𝑐𝐿 ‒ 1⋯ 𝑐𝐿 ‒ 2⋮ ⋮ ⋮𝑐1 𝑐2 𝑐3 ⋱ ⋮⋯ 𝑐0 )

94 where

95                         (3)
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96 the eigenvalues and eigenvectors of , respectively, are given(Gray & Robert 2006)LC
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98 where  denotes the power spectral density of the signal, and H indicates the conjugate 𝑓( ∙ )
99 transpose of a matrix. The k-th eigenvalue and the corresponding eigenvector are associated with 

100 the given frequencies by

101                                                                  (5)
1

k s

k
f f
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102 where  is the sampling rate of the EEG signals. As a consequence, the diagonalization of  sf LC

103 allows us to write X as the sum of the elementary matrices :kX

104                                                        (6)
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105 The symmetry of the power spectral density leads to . The corresponding L+2-=k k 
106 eigenvectors given by (4) are complex; therefore, they are paired with complex conjugates, 

107  where  indicates the complex conjugate of a vector . Then,  and  
L+2-

*=
kku u *

u u kX 2L k X

108 correspond to the same harmonic period. 

109 To obtain the elementary matrices by frequency, we first form the groups of two elements 

110 , with  and if L is { , 2 }, 2,3,..., , ( 1) / 2kB k L k k M M L        1 {1}B  /2 1 { / 2 1}LB L  

111 even. Second, we compute the real elementary matrix for frequency  as the sum of the two 
kBX

112 elementary matrices  and , which are associated with eigenvalues ,  and kX 2L k X k L+2-k

113 frequency , given by (5)k

114        (7)
2
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115 where  and  denote the real and imaginary parts of , respectively, and the matrices  
k

Ru k
Iu ku

kBX

116 are real.
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117 Then, in the diagonal averaging step(Vautard et al. 1992), several time series are 

118 reconstructed from the corresponding real elementary matrices . The reconstructed time 
kBX

119 series are generally called RCs. Theoretically, the frequencies of the RCs are given by (5). 

120 Finally, the alpha rhythm (8–13 Hz) can be extracted automatically by

121                                                       (8)
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122 The frequency bandwidth of each RC can be roughly expressed by(A et al. 2010; Xu et al. 

123 2018)

124                                                                  (9)/b sf f L

125 As a consequence, the frequency bandwidth of each RC is limited to . Considering the /sf L

126 frequency of each RC given by equation (5), there is no frequency mixing between different 

127 RCs, and the extracted alpha rhythms do not contain mixed components of other rhythms or 

128 artifacts.

129 The pseudo-code of the CSSA method is shown in Algorithm 1. 

130 Simulation Results and Discussion

131 Markov Process Amplitude EEG model

132 Simulated spontaneous EEG signals were used to verify the validity of the CSSA method in 

133 alpha rhythm extraction. Spontaneous EEG signals were generated based on the Markov Process 

134 Amplitude (MPA) EEG model(Bai et al. 2001; Nishida et al. 1986). The MPA EEG model is a 

135 powerful and widely used method to simulate and interpret EEG signals. With a few parameters, 

136 the model can represent the two major characteristics of EEG signals: rhythmic oscillation and 

137 randomness. Rhythmic oscillation is represented by sinusoidal waves, and randomness was 

138 represented by the stochastic process amplitude of the first-order Markov process. In recent 

139 years, the MPA EEG model has been applied in several studies analyzing spontaneous EEG 

140 signals, which have employed such techniques as feature expression, quantitative 

141 analysis(Nakamura et al. 1997), and algorithm verification(Xu et al. 2018). 

142 In the MPA EEG model, EEG signals consist of several rhythmic oscillations expressed by 

143 a sinusoidal wave

144                  (10)     
1

sin 2
K

i i i

i
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145 where n is the number of samples, Δt is the time interval, K is the number of rhythms, f is the 

146 dominant frequency of rhythm, θ is the initial phase (zero), and a is the rhythmic amplitude 

147 obtained from the following first-order Gauss–Markov process:

148                                               (11)     1i i i ia n t a n t n t        
149 where γ is the coefficient of the first-order Markov process, and ξ is a random increment of 

150 Gaussian distribution with mean zero and variance . Therefore, the rhythmic amplitude at the 


PeerJ reviewing PDF | (2021:05:60946:0:0:CHECK 7 May 2021)

Manuscript to be reviewed



151 succeeding time  depends only on the amplitude at time  and is determined only by  1n t  t

152 two parameters: γ and . The parameters of the MPA EEG model are determined in the 


153 frequency domain to achieve the maximum likelihood with respect to the power spectrum of real 

154 EEG. Hi is defined as the amplitude, and Bi is the frequency width at half of Hi of the EEG power 

155 spectrum. Based on the literature(Bai et al. 2001), Hi, Bi can be described as

156                                              (12)
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157 The simulation procedures of spontaneous EEG signals based on the MPA EEG model are 

158 shown in Fig. 1. First, the power spectrum of a real EEG signal with sampling rate fs= 200 Hz is 

159 calculated in Fig. 1A. Then, fi, Hi, and Bi, which represent the peak frequencies, amplitude, and 

160 the frequency width at half of amplitude of the EEG rhythms (delta, theta, alpha, and beta), 

161 respectively, are obtained according to the power spectrum. Based on equation (12), the 

162 parameters of the first-order Gauss–Markov process (γ and ) are obtained. All parameters of 


163 the MPA EEG model are shown in Table 1. Then, the delta, theta, alpha, and beta rhythms are 

164 simulated based on the determined parameters, as shown in Fig. 1B. Finally, the simulated EEG 

165 signal (shown in Fig. 1C) is generated as the sum of the four rhythms. The simulated 

166 spontaneous EEG lasts for 8 s with a 5-ms Δt interval.

167 Circulant singular spectrum analysis of simulated EEG signals

168 The simulated EEG signal is processed by the CSSA method with the embedding dimension 

169 set to L=40 and L=80. Figure 2 shows the power spectrum density (PSD) of the first six 

170 reconstructed components (RCs). When L=40, as shown in Fig. 2A, every RC falls on the 

171 theoretical frequency derived by equation (5). Furthermore, the bandwidth of each RC is limited 

172 to =5 Hz. Similarly, when L=80, as shown in Fig. 2B, all RCs fall on the theoretical /sf L

173 frequencies with the bandwidth limited to 2.5 Hz. However, the simulated EEG signal is 

174 processed by the basic SSA method with the embedding dimension set to L=40. The PSD of the 

175 first six RCs is shown in Fig. 3. The frequency of each RC is unknown. To group the RCs by 

176 frequency, other algorithms like Fourier transform are introduced to calculate the frequency of 

177 RCs. Besides, according to the PSD of RC5 and RC6, some components fall outside of the 

178 bandwidth limit of =5 Hz. This phenomenon is called component mixing./sf L

179 Because the frequencies of the RCs processed by the CSSA method are known, the alpha 

180 rhythm of the EEG signal can be extracted by equation (8). The error parameter for evaluating 

181 the performance of the alpha rhythm extraction is defined as(Xu et al. 2018)

182                                               (13)
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183 where is the average error of the PSD between the simulated alpha rhythm and the extracted 
ave

184 alpha rhythm,  is the PSD of the simulated alpha rhythm,  is the PSD of the extracted ( )P i ( )eP i

185 alpha rhythm, and N is the length of the PSD. 

186 Figure 4A shows the extracted alpha rhythm of the simulated EEG signal by the CSSA 

187 method with the embedding dimension set to L=40. Figure 2A shows that RC3 represents the 

188 alpha rhythm. The PSD of the simulated and extracted alpha rhythm by the CSSA method when 

189 L=40 is shown in Fig. 4B. There was component mixing (slash shadow), and the error of the 

190 extracted alpha rhythm was . Similarly, RC5 and RC6 represent the alpha 20.43 /V Hz 

191 rhythm from Fig. 2B with an embedding dimension of L=80. The alpha rhythm extracted from 

192 the combination of RC5 and RC6 is shown in Fig. 4C. The PSD of the simulated and extracted 

193 alpha rhythm by the CSSA method when L=80 is shown in Fig. 4D. There was less component 

194 mixing (slashed shadow) than that observed when L=40, and the error of the extracted alpha 

195 rhythm was . In the basic SSA method, the alpha rhythm is extracted according 20.27 /V Hz 

196 to the adaptive grouping rule(Hai et al. 2017). The extracted alpha rhythm by the basic SSA 

197 method is the sum of RC3, RC4, RC5, and RC6, as shown in Fig. 4E. The PSD of the simulated 

198 and extracted alpha rhythms by basic SSA, shown in Fig. 4F, illustrates the presence of more 

199 component mixing (slashed shadow) than that found with the CSSA method, and the error of the 

200 extracted alpha rhythm was .20.89 /V Hz 

201 To compare the performance of the alpha rhythm extraction with that of other methods, the 

202 alpha rhythms were extracted by the infinite impulse response (IIR) filtering methods and the 

203 wavelet decomposition (WDec) method. The PSDs of the extracted alpha rhythms by the IIR and 

204 WDec methods are shown in Fig. 5A and 5B, respectively. The PSD of the extracted alpha 

205 rhythm by the IIR method had a higher magnitude, and there was more component mixing than 

206 that by the CSSA method (Fig. 5A). The error of the extracted alpha rhythm by the IIR method 

207 was , which was higher than that obtained by the CSSA method. Figure 5B 20.57 /V Hz 

208 shows that the extracted alpha rhythm by the WDec method consisted almost entirely of mixed 

209 components. The error of the extracted alpha rhythm by the WDec method was 

210 , which was much higher than that obtained by the CSSA method.21.06 /V Hz 

211 We conclude that the RCs of simulated EEG signals processed by the CSSA method fall on 

212 the theoretical frequencies limited to the selected bandwidth ranges. The alpha rhythm can be 

213 extracted automatically based on the frequency feature. The alpha rhythm extraction by the 

214 CSSA method performed better than that of the basic SSA, IIR, and WDec methods. Therefore, 

215 the processing results of the simulated EEG verify the validity of the CSSA method’s 

216 performance in alpha rhythm extraction. Furthermore, the error of the extracted alpha rhythm by 

217 the CSSA method varied with the embedding dimension. The calculated errors of the extracted 

218 alpha rhythm by the CSSA method with different embedding dimensions are shown in Table 2. 

219 The error attained a minimum value at L=80. Therefore, the embedding dimension of the CSSA 

220 method for alpha extraction was set to L=80.
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221 Experimental Results and Discussion

222 Results and discussion of database EEG signals

223 The database EEG signals reported in literature(Trujillo et al. 2017) were used. 22 subjects 

224 (11 female, 11 male, mean age=21.1±0.52 years, age range=18–26 years) underwent 8 min of 

225 resting state EEG recording while sitting quietly in a comfortable padded chair in a darkened 

226 room (4 min eyes open and 4 min eyes closed interleaved in 1-min intervals; the order of eyes 

227 open/closed was balanced across participants). The EEG signals of one subject (subject #6) were 

228 removed because of a technical recording error. 72 channels of continuous EEG signals were 

229 recorded using active Ag/AgCl electrodes mounted in a BioSemi electrode cap with international 

230 10/5 system locations. All channels were amplified by a BioSemi Active II amplifier system in 

231 24-bit DC mode at an initial sampling rate of 2,048 Hz (400-Hz bandwidth) downsampled online 

232 to 256 Hz.

233 Channel Fpz was selected for EEG analysis. The EEG data of the Fpz channel were divided 

234 into 8-s (2048-sample) epochs with 50% overlap, initially producing 91 epochs of eyes-open and 

235 eyes-closed conditions for each subject. This was done because artifacts, including those 

236 resulting from electrooculogram, electromyography, baseline drift, and stochastic noise, interfere 

237 with the rhythm extraction. The adaptive SSA method(Hai et al. 2017) was used to remove the 

238 artifacts, and the results are shown in Fig. 6. Figure 6A and 6B show EEG epochs of the eyes-

239 open and eyes-closed conditions of subject #17, respectively. Figure 6C and 6D show the 

240 corrected EEG signals after artifact removal. The electrooculogram artifacts were removed from 

241 the EEG signals of the eyes-open condition, and the spontaneous EEG signals were preserved in 

242 both conditions.

243 The EEG signals after artifact removal were processed by the CSSA method with the 

244 embedding dimension set to L=80. The first six RCs of the EEG signals in the eyes-open and 

245 eyes-closed conditions are shown in Fig. 7A and 7B, respectively. Each RC falls on the 

246 theoretical frequency derived by equation (5), and the bandwidth of the RCs is limited to /sf L

247 =3.2 Hz, which is agreement with the simulation results. Figure 7A and 7B show that RC4 and 

248 RC5 represent the alpha rhythm in both the eyes-open and eyes-closed conditions, respectively. 

249 Thus, the alpha rhythms of the EEG signals can be extracted automatically as the sum of RC4 

250 and RC5, which is agreement with equation (8). Figure 8A and 8B show the extracted alpha 

251 rhythms of the EEG signals in the eyes-open and eyes-closed conditions, respectively. The 

252 amplitude of the alpha rhythm in the eyes-open condition was lower than that in the eyes-closed 

253 condition. This was consistent with the results of previous studies, in which the alpha rhythm in 

254 the resting state in the eyes-open condition with visual stimulation was much weaker than that in 

255 the eyes-closed condition(Barry et al. 2007). Figure 8C illustrates the spectrogram of alpha 

256 rhythms in the eyes-open and eyes-closed conditions, which is the square of the rhythm’s 

257 amplitude as a function of time and frequency. It illustrates a significant difference between the 

258 eyes-open and eyes-closed states.

259 The performance of alpha rhythm extraction by the CSSA method was compared with that 

260 of three other methods: the basic SSA method, the WDec method, and the IIR method. The alpha 
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261 rhythms under the eyes-open and eyes-closed conditions were extracted using the CSSA, basic 

262 SSA, WDec, and IIR methods. The PSD of the extracted alpha rhythms by the four methods 

263 under the eyes-closed and eyes-open conditions are shown in Fig. 9. Figure 9A and 9D show that 

264 the extracted alpha rhythms using the CSSA method were within the alpha band (8–13 Hz) under 

265 both the eyes-open and eyes-closed conditions. In addition, the power of the extracted alpha 

266 rhythm under the eyes-open condition was lower than that under the eyes-closed condition. 

267 Therefore, the alpha rhythm extracted using the CSSA method could represent the real EEG 

268 alpha rhythm. However, the alpha rhythm extracted by the basic SSA method contained 

269 frequency components outside the alpha band because of component mixing under both the eyes-

270 open and eyes-closed conditions. Especially in the eyes-open condition, most components of the 

271 extracted alpha rhythm fall outside the alpha band, inconsistently with reality. Similarly, the 

272 alpha rhythms extracted using the WDec method contained many components outside the alpha 

273 band (component mixing), as shown in Fig. 9B and 9E. Figure 9C and 9F show that the alpha 

274 rhythms extracted using the IIR method fell into the alpha band, and that the power of the 

275 extracted alpha rhythm was stronger than that extracted using the CSSA method under both the 

276 eyes-open and eyes-closed conditions. This is in agreement with the simulation results shown in 

277 Fig. 5A because the IIR method was unable to remove artifacts and noise from the alpha rhythm 

278 with an overlapping frequency spectrum. Therefore, the CSSA method performed better than the 

279 basic SSA, WDec, and IIR methods at alpha rhythm extraction.

280 To further verify the CSSA method’s performance, the extracted alpha rhythms were used 

281 to distinguish between the eyes-open and eyes-closed states, and the classification results 

282 produced by the CSSA method were compared with those by the basic SSA, IIR, and WDec 

283 methods. In this study, the power ( ) and the mean of the absolute value (
2

1

/
N

i

i

P V N




284 ) were selected as the features of the alpha rhythm(Mohammadi et al. 2015), 
1

| | /
N

i

i

V V N



285 where  represents the amplitude of the extracted alpha rhythm, and N represents the number of 

iV

286 samples. Figure 10A shows the values of the power and the mean of the absolute value of the 

287 extracted alpha rhythm by the CSSA method for subject #17. The power value and the mean of 

288 the absolute value under the eyes-open condition were lower than those under the eyes-closed 

289 condition. Then, the support vector machine method was used to classify the features under the 

290 eyes-open and eyes-closed conditions. The classification accuracy was 92.31%. Figure 10B–10D 

291 show the power values and mean absolute values of the extracted alpha rhythms by the basic 

292 SSA, IIR, and WDec methods, respectively. Similar to the results obtained by the CSSA method, 

293 the power and mean of the absolute value of the extracted alpha signal under the eyes-open 

294 condition were generally lower than those under the eyes-closed condition. The classification 

295 accuracy of feature extraction by the basic SSA, IIR, and WDec methods was 90.11%, 91.21%, 

296 and 91.21%, respectively, and these values were lower than the accuracy obtained by the CSSA 

297 method. 
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298 We calculated the power values and means of the absolute value of the extracted alpha 

299 rhythms of all 21 subjects, and the classification results are shown in Table 3. The classification 

300 accuracy varied greatly between different subjects because of individual differences in EEG 

301 signals. The mean and standard deviation of the classification accuracy was calculated for all 

302 subjects to compare classification performance between the CSSA, basic SSA, IIR, and WDec 

303 methods. The mean value of the classification accuracy for all subjects by the CSSA method was 

304 92.36%, which was higher than those obtained by the basic SSA (88.38%), IIR (91.89%), and 

305 WDec (90.47%) methods. The standard deviation of the classification accuracy across all 

306 subjects by the CSSA method was 7.05%, which was lower than those obtained by the basic SSA 

307 (10.35%), IIR (7.50%), and WDec (10.88%) methods. Therefore, the CSSA method’s 

308 classification performance was better and more robust than that by the basic SSA, IIR, and 

309 WDec methods.

310 Results and discussion of experimental EEG signals

311 Additional experimental EEG signals were recorded and used to further verify the validity of the 

312 CSSA method. The experiments were approved with a protocol (NO. 20170010) by the 

313 Institutional Review Board of Tsinghua University and the written informed consent was 

314 obtained from the subject. One male subject aged 29 years participated in the experiments and 

315 abstained from psychoactive substances for at least 4 h prior to the experiments. The experiments 

316 were carried out with the subject sitting on a comfortable chair in a room with normal lightness. 

317 The experimental EEG signals were recorded using the MP160 data acquisition and analysis 

318 system (BIOPAC Systems, Inc., Goleta, CA, USA). A three-electrode system was used to 

319 improve the common mode rejection ratio of the measurement setup. Ag/AgCl was the material 

320 of the recording electrode, which was flushed with conductive gel and then attached to the 

321 frontal region of the subject’s scalp. The other two electrodes, which served as ground and 

322 reference, were attached to the earlobe and mastoid, respectively, as shown in Fig. 11B. The 

323 experimental procedures were as follows. First, the subject relaxed with eyes closed for 10 min. 

324 Next, the subject opened his eyes and focused on a cross symbol displayed on the computer 

325 screen. Finally, the subject kept his eyes open for 30 s, followed by a period with eyes closed for 

326 30 s, and repeated this procedure 57 times. Throughout the experiment, the real EEG signal was 

327 recorded at a sampling rate of 200 Hz. To obtain the desired segments of the eyes-open and eyes-

328 closed states, segments lasting 8 s were extracted from the middle of each period (Fig. 11B). 

329 Consequently, 57 segments each of the eyes-open and eyes-closed states were obtained. Artifacts 

330 were removed from each EEG segment using the adaptive SSA method(Hai et al. 2017). 

331 The experimental EEG signals were processed by the CSSA method, and the alpha rhythms 

332 recorded under the eyes-open and eyes-closed conditions were extracted. The power and mean 

333 absolute values of the extracted alpha rhythms were calculated as features for classification using 

334 the support vector machine method. The classification accuracy by the CSSA method was 

335 91.23%, which was higher than that obtained by the basic SSA (89.47%), IIR (89.47%), and 

336 WDec (88.60%) methods (Fig. 12). We therefore concluded that the CSSA method’s 

337 classification performance was better than that by the basic SSA, IIR, and WDec methods.

338 Conclusions

339 In this paper, a flexible and accurate method based on CSSA was proposed for alpha rhythm 

340 extraction from EEG signals. By decomposing the EEG signals into a set of orthogonal 
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341 reconstructed components (RCs) at specific bandwidths of frequencies, the alpha rhythm can be 

342 extracted flexibly and accurately from EEG signals. The proposed method performed well on 

343 both simulated EEG data generated from the MPA EEG model and experimental EEG data, as 

344 well as the EEG data obtained from a public database. Features of the alpha rhythms extracted 

345 from experimental EEG signals were calculated to distinguish between the eyes-open and eyes-

346 closed states. The CSSA-based method showed higher classification accuracy and robustness 

347 than that of the basic SSA, IIR and WDec methods.
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Table 1(on next page)

The pseudo-code of the CSSA method for alpha rhythm extraction
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Algorithm 1 CSSA Method for Alpha Rhythm Extraction

input s, L: single-channel EEG time series s and embedding dimension L

output α: extracted alpha rhythm

procedures 

(1) : the trajectory matrix is constructed by Eq. 1X

(2) : the circulant matrix is built by Eqs. 2 and 3
L

C

(3) , : the circulant matrix  is decomposed, and a set of eigenvalues and 
k


k
u

L
C

eigenvectors is derived by Eq. 4

(4) : the real elementary matrices are derived by Eq. 7 
k

B
X

(5) α: the RCs are grouped by Eq. 8 to obtain the alpha rhythm

return α
1
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Table 2(on next page)

The parameters of the MPA EEG model
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1 Table 1. MPA EEG model parameters

Symbol Value Comments

 (Hz)𝑓
1 3.71

 𝜎𝜉
1 3.53𝛾
1 0.98

Delta rhythm

 (Hz)𝑓
2 7.62𝜎𝜉

2 4.35𝛾
2 0.95

Theta rhythm

 (Hz)𝑓
3 10.45𝜎𝜉

3 1.65𝛾
3 0.99

Alpha rhythm

 (Hz)𝑓
4 15.43𝜎𝜉

4 0.24𝛾
4 0.99

Beta rhythm

2
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Table 3(on next page)

Error of alpha rhythm extraction by the CSSA method with different embedding
dimensions
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1 Table 2. Error of alpha rhythm extraction by the CSSA method with different embedding 

2 dimensions

L 𝛆(𝛍𝑽𝟐/𝐇𝐳) L 𝛆(𝛍𝑽𝟐/𝐇𝐳) L 𝛆(𝛍𝑽𝟐/𝐇𝐳) L 𝛆(𝛍𝑽𝟐/𝐇𝐳)
20 0.78 70 0.50 120 0.47 170 0.53

30 0.62 80 0.27 130 0.40 180 0.43

40 0.43 90 0.46 140 0.47 190 0.52

50 0.59 100 0.51 150 0.53 200 0.54

60 0.32 110 0.43 160 0.46

3
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Table 4(on next page)

Classification accuracy for all subjects of the CSSA, basic SSA, IIR, and WDec methods
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1 Table 3. Classification accuracy for all subjects of the CSSA, basic SSA, IIR, and WDec 

2 methods.

Subject # CSSA basic SSA IIR WDec

Subject 1 80.22% 76.92% 79.12% 81.32%

Subject 2 95.60% 93.41% 95.60% 97.80%

Subject 3 96.70% 57.14% 94.51% 95.60%

Subject 4 95.60% 94.51% 95.60% 96.70%

Subject 5 98.90% 94.51% 98.90% 97.80%

Subject 7 96.70% 98.90% 94.51% 96.70%

Subject 8 100% 100% 100% 100%

Subject 9 81.32% 82.42% 83.52% 80.22%

Subject 10 100% 99% 100% 97.80%

Subject 11 96.70% 95.60% 96.70% 95.60%

Subject 12 76.92% 70.33% 74.73% 78.02%

Subject 13 100% 92.31% 100% 98.90%

Subject 14 87.91% 89.01% 87.91% 85.71%

Subject 15 95.60% 86.81% 95.60% 92.31%

Subject 16 86.81% 85.71% 86.81% 86.81%

Subject 17 92.31% 90.11% 91.21% 91.21%

Subject 18 95.60% 91.21% 97.80% 96.70%

Subject 19 83.52% 79.12% 79.12% 51.65%

Subject 20 98.90% 97.80% 98.90% 97.80%

Subject 21 94.51% 95.60% 93.41% 95.60%

Subject 22 85.71% 85.71% 85.71% 85.71%

Average 92.36% 88.38% 91.89% 90.47%

STD 7.05% 10.35% 7.50% 10.88%

3
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Figure 1
Procedures of the spontaneous EEG simulation based on the MPA EEG model

(A) The power spectrum of a real EEG. The peak frequencies ( ), amplitude (Bi) and the

frequency width (Bi) at half of amplitude of EEG rhythms were determined based on the

power spectrum. (B) The simulated four rhythms: delta, theta, alpha and beta, based on the
determined parameters. (C) The simulated spontaneous EEG generated by a combination of
the four rhythms.
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Figure 2
The power spectrum density of the first six reconstructed components of the simulated
EEG signal processed by the CSSA method

(A) L=40; (B) L=80
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Figure 3
The power spectrum density of the first six reconstructed components of the simulated
EEG signal processed by the basic SSA method with the embedding dimension L=40
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Figure 4
The extracted alpha rhythms of the simulated EEG signal and the PSD of the simulated
and extracted alpha rhythms

(A) The extracted alpha rhythm of the simulated EEG signal by the CSSA method with the
embedding dimension set to be L=40. RC3 represents the alpha rhythm. (B) The PSD of the
simulated and extracted alpha rhythm by CSSA method when L=40. The slash shadow part is

the component mixing and the error of extracted alpha rhythms is 0.43 uV2/Hz . (C) The
extracted alpha rhythm of the simulated EEG signal by the CSSA method with the embedding
dimension set to be L=80. RC3 and RC4 represent the alpha rhythm. (D) The PSD of the
simulated and extracted alpha rhythm by CSSA method when L=80. The error of extracted

alpha rhythms is 0.27 uV2/Hz . (E) The extracted alpha rhythm of the simulated EEG signal by
the basic SSA method. RC3, RC4, RC5 and RC6 represent the alpha rhythm. (F) The PSD of
the simulated and extracted alpha rhythm by the basic SSA method. The error of extracted

alpha rhythms is 0.89 uV2/Hz.
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Figure 5
The PSD of the extracted alpha rhythms by IIR and WDec method

(A) The PSD of the simulated alpha rhythm and the extracted alpha rhythms by CSSA and IIR.
(B) The PSD of the simulated alpha rhythm and the extracted alpha rhythms by CSSA and
WDec
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Figure 6
Artifacts removal of EEG signals

(A) A raw EEG epoch of subject 17# in eyes-open condition. (B) A raw EEG epoch of subject
17# in eyes-closed condition. (C) The corrected eyes-open EEG signal after artifact removal.
(D) The corrected eyes-closed EEG signal after artifact removal
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Figure 7
The PSD of first six RCs of real EEG signals processed by the CSSA method

(A) eyes-open condition and (B) eyes-closed condition
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Figure 8
The extracted alpha rhythms of real EEG signals

(A) eyes-open and (B) eyes-closed condition and the (C) the spectrogram of alpha rhythms

PeerJ reviewing PDF | (2021:05:60946:0:0:CHECK 7 May 2021)

Manuscript to be reviewed



Figure 9
The PSD of the extracted alpha rhythms using the CSSA, basic SSA, WDec and IIR
methods. The PSD of the extracted alpha rhythms using the CSSA and basic SSA
method

(A) eyes-open and (D) eyes-closed conditions; The PSD of the extracted alpha rhythms using
the CSSA and WDec method under (B) eyes-open and (E) eyes-closed conditions; The PSD of
the extracted alpha rhythms using the CSSA and IIR method under (C) eyes-open and (F)
eyes-closed conditions.
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Figure 10
Classification results for subject 17# between eyes-open and eyes-closed states

(A) the CSSA method, (B) the basic SSA method, (C) the IIR method and (D) the WDec
methods
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Figure 11
Set up of the experiment

(A) Schematic of the recorded EEG data and (B) The photograph of the experiment. 114
times of alternating periods of 30 s eyes open followed by 30 s eyes closed. The desired EEG
segments were cut off in the middle of every period of the eyes-open and eyes-closed states.
Each segment last for 8 s
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Figure 12
Classification results for experimental EEG signals between eyes-open and eyes-closed
states

(A) the CSSA method, (B) the basic SSA method, (C) the IIR method and (D) the WDec
methods
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