Is there a hybridization barrier between *Gentiana lutea* color morphs?

María Losada, Tania Veiga, Javier Guitián, José Guitián, Pablo Guitián, Mar Sobral

In Gentiana lutea two varieties are described, G. lutea var. aurantiaca with orange corolla colors and G. lutea var. lutea with yellow corolla colors. Both varieties co-occur in NW Spain. However, it is not known whether a hybridization barrier exists between these G. *lutea* color varieties. If that is the case, this barrier might reflect that *G. lutea* varieties are the product of a secondary contact or that they are currently under an ongoing speciation process. We know that abiotic environmental factors are not related to flower color variation among G. lutea populations in NW Spain. But, pollinators cause selection on flower color in this species, if G. lutea is dependent on pollinators, they might be currently driving or reinforcing the existence of these two morphs. Thus, we aim to test the compatibility between flower color varieties in G. lutea and its dependence on pollen vectors. Within a G. lutea population we analyzed differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among varieties). Our results confirmed that reproductive success is higher within color varieties than among varieties, due to seed viability reduction on hybrids from different varieties, and that G. lutea reproductive success is strongly dependent on pollinators. Regardless of the allopatric or sympatric origin of G. lutea flower color, we conclude that a partial hybridization barrier exists between G. lutea varieties, which are at least partially driven by the dependence of G. lutea on pollinators.

1 Is there a hybridization barrier between *Gentiana lutea* color morphs?

- 2 María Losada[⊠], Tania Veiga¹, Javier Guitián ¹, José Guitián², Pablo Guitián¹, Mar Sobral ²
- 3 [™] Corresponding author: María Losada Cuquejo. Department of Cell Biology and Ecology,
- 4 Biology School, University of Santiago de Compostela, 15782 Santiago de Compostela, A
- 5 Coruña (Spain). (+34) 669 981 882 // maria.cuquexo@gmail.com
- 6 Department of Botany, Biology School, University of Santiago de Compostela, Santiago de
- 7 Compostela, A Coruña (Spain).
- 8 ² Department of Cell Biology and Ecology, Area of Ecology, Biology School, University of
- 9 Santiago de Compostela, Santiago de Compostela, A Coruña (Spain).

10

11

Abstract

12 In Gentiana lutea two varieties are described, G. lutea var. aurantiaca with orange corolla 13 colors and G. lutea var. lutea with yellow corolla colors. Both varieties co-occur in NW Spain. However, it is not known whether a hybridization barrier exists between these G. lutea color 14 varieties. If that is the case, this barrier might reflect that G. lutea varieties are the product of a 15 16 secondary contact or that they are currently under an ongoing speciation process. We know 17 that abiotic environmental factors are not related to flower color variation among G. lutea 18 populations in NW Spain. But, pollinators cause selection on flower color in this species, if G. 19 *lutea* is dependent on pollinators, they might be currently driving or reinforcing the existence 20 of these two morphs. Thus, we aim to test the compatibility between flower color varieties in 21 G. lutea and its dependence on pollen vectors. Within a G. lutea population we analyzed 22 differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among 23 24 varieties). Our results confirmed that reproductive success is higher within color varieties than 25 among varieties, due to seed viability reduction on hybrids from different varieties, and that G.

lutea reproductive success is strongly dependent on pollinators. Regardless of the allopatric or 26 sympatric origin of G. lutea flower color, we conclude that a partial hybridization barrier 27 28 exists between G. lutea varieties, which are at least partially driven by the dependence of G. lutea on pollinators. 29 30 **Keywords** Pollen vectors, *Gentiana lutea*, flower color morphs, self-incompatibility, 31 hybridization barrier, outcrossing success. 32 Introduction 33 34 Pollen vectors can drive plant evolution and diversification throughout their selection on floral traits (Darwin, 1859; Darwin, 1862; Thompson, 1994; Barrett & Harder, 1996; 35 36 Charlesworth, 2006). In particular, animal pollinators exert selective pressures on plant traits 37 through natural selection (Stebbins, 1970) and many flowering plants rely on those pollen 38 vectors to reproduce. Species widely differ in their dependence on pollen vectors for seed 39 production, from complete autogamy to xenogamy, requiring cross-pollination for successful 40 reproduction (Darwin, 1877; Axelrod, 1960). Most angiosperms need vectors for pollen 41 transference between plants, which are mainly insects but can also be other animals and to a 42 lesser extent wind or water (Harder & Barrett, 1996; Ackerman, 2000; Ollerton, Winfree & Tarrant, 2011). Different floral strategies were developed to attract these animals (Ghazoul, 43 44 2006), which may affect plant fitness to a large degree (Waser, 1983; Conner & Rush, 1996). 45 This plant-pollinator relationship promotes evolution of species involved in such an interaction. Thus, the degree of dependence on animal pollinators might affect the strength of 46 47 selection and therefore the likelihood of species diversification. 48 Flower color variation in polymorphic species may originate from different selective pressures exerted by pollinators, which favor isolation between different color morphs and 49

50	cause sympatric diversification (Gegear & Burns, 2007). Thus, pollinator behavior may favor
51	one of the color morphs, with individuals visiting one color morph more frequently than a
52	different flower color morph (Hopkins & Rausher, 2012). Additionally, many plant species
53	show floral divergences due to geographic isolation suffered by climatic changes during
54	Quaternary period (Gómez & Lunt, 2007; Vargas et al., 2009; Martín-Bravo et al., 2010;
55	Fernández-Mazuecos & Vargas, 2011; Blanco-Pastor, Vargas & Pfeil, 2012; Blanco-Pastor &
56	Vargas, 2013; Fernández-Mazuecos et al., 2013). Thus, a secondary contact between flower
57	color varieties that remained geographical isolated after a long time, could explain
58	reproductive incompatibility between floral color morphs. Despite the origin of the
59	phenotypic floral variation, diversification between flower color varieties may be reinforced
60	by pollinator preferences (Campbell, Alarcon & Wu, 2003).
61	Gentiana lutea L. shows flower color variation from orange to yellow both, within and among
62	populations (Sobral et al., 2015) at the western extreme of the distribution range. Two
63	different varieties are described for Gentiana lutea L. depending on flower color: Gentiana
64	lutea L. var. aurantiaca (M. Laínz) showing orange corolla colors and Gentiana lutea L. var.
65	lutea showing yellow corollas (Laínz, 1982; Renobales, 2003). Gentiana lutea's flower color
66	is a trait with a genetic basis (Zhu et al., 2002; Zhu et al., 2003) and there are genetic
67	differences among populations (González-López et al., 2014). We know that flower color
68	variation among populations in this species across NW Spain, is not related to abiotic
69	environmental factors such as elevation, temperature, radiation and rainfall (Veiga et al., 'in
70	press'). Additionally, we know that pollinators exert selective pressures on G. lutea flower
71	color (Veiga et al., 2015) and play a role in flower color differentiation among G. lutea
72	populations (Sobral et al., 2015). But, it is not completely understood the degree of
73	dependence of <i>G. lutea</i> on pollen vectors to successfully reproduce. Rossi (2012) described <i>G.</i>
74	lutea as a partial self-compatible species. However, others cite G. lutea as a self-incompatible

75	species, which may need animal pollinators to reproduce (Hegi, 1927; Kèry, Matthies &
76	Spillmann, 2000; Kozuharova & Anchev, 2006; González-López et al., 2014).
77	The aim of this study is to test if there is some degree of incompatibility between Gentiana
78	lutea color varieties due to a partial hybridization barrier, which might be caused or reinforced
79	by selective pressures exerted by pollinators on G. lutea flower color. If a hybridization barrier
80	exists between G. lutea color morphs we might expect crossings among varieties to have a
81	lower reproductive success (Hauser, Jørgensen & Østergård, 1998; Hauser, Shaw &
82	Østergård, 1998). Additionally, if <i>G. lutea</i> color morphs are under a diversification process
83	driven by selective pressures exerted by pollinators (Veiga et al., 2015; Sobral et al., 2015),
84	we would expect G. lutea to strongly depend on the pollinating vectors exerting this selection.
85	Thus, G. lutea crossings among different individuals would have higher reproductive success
86	than crossings within-individual plants. In order to investigate our hypothesis, we proposed
87	the following questions; (i) Are there any differences in reproductive success (seed number,
88	seed weight, seed viability and seed germinability) between within-color variety crossings
89	and among-color variety crossings? (ii) Are there any differences in reproductive success
90	between autogamic seeds and seeds coming from among individual crossings?
91	
92	Materials & Methods
) _	White Hais & Wethous
93	Gentiana lutea L. (Gentianaceae) is a herbaceous perennial plant distributed along the Central
94	and Southern European mountains typically growing on livestock grazing grasslands and
95	hillsides from montane to sub-alpine habitats, approximately from 800 to 2.500 m a.s.l.
96	(Hesse, Rees & Müller-Schärer, 2007; Anchisi et al., 2010). This long-lived species presents a
97	rhizome, which develops one (rarely two or three) unbranched stout stem with basal leaves,
98	approximately growing up to 200 cm tall (Renobales, 2012). Flowering occurs in summer

99	(June-July) when the fertile stems show flowers, grouped in pseudo-whorls, which bloom
100	spirally; and the inflorescence develops in succession from apex to base (Kozuharova, 1994).
101	There are two different varieties that differ in flower color: Gentiana lutea L. var. aurantiaca
102	(M. Laínz) with orange flowers and Gentiana lutea var. lutea L. with yellow flowers (Laínz,
103	1982; Renobales, 2003). Gentiana lutea flowers show rotate corollas with lobes (Renobales,
104	2012), which facilitate the access of pollinators to the nectaries; and are visited by at least 11
105	families of insects, belonging to four orders (Rossi et al., 2014). The main flower visitors of
106	G. lutea plants at the Cantabrian Mountains are bumblebees, followed by cuckoo bumblebees
107	and honeybees (Sobral et al., 2015). Fruits hold many flattened, elliptic and winged seeds
108	disseminated through anemochory (Struwe & Albert, 2002).
109	We carried out experimental manipulations at one <i>G. lutea</i> population in León, Spain (43° 03'
110	N; 6° 04' W; 1600 m a.s.l.) in July 2012. For field experiments, we received field permit from
111	Environmental Territorial Service from León, Territorial Delegation of Government of Spain,
112	Regional Government of Castilla and León (Identifier:12_LE_325_RNA_PuebladeLilio_INV;
113	Reference: 06.01.013.016/ROT/abp; File number: AEN/LE/103/12). Note that in this study,
114	we will distinguish two different flower color classes (orange and yellow). Both varieties do
115	not differ in their UV reflectance but they do differ in their visible reflectance (see Veiga et
116	al., 2015); thus, we use visible reflectance to indentify color varieties. We haphazardly chose
117	five flowers on each of 25 orange-flowered plants and 25 yellow-flowered plants. Flower
118	buds, except the control group, were bagged with tulle before flower opening and until fruit
119	formation in order to avoid contact with pollen vectors.
120	We created the following treatments: (1) Control group (C), in which we applied no treatment,
121	so natural pollination occurred; (2) Spontaneous autogamy (Sa), in which pollen was not
122	applied manually and only pollen from the same flower may spontaneously arrive to the
123	ovary; (3) Facilitated autogamy (Fa), in which we applied pollen manually from the flower's

124	own anthers; (4) Facilitated xenogamy within varieties (Fxw), in which we emasculated
125	flowers by cutting the stamens before pollen release in order to prevent the entry of flower's
126	own pollen, and applied pollen manually from other plants of the same flower color; (5)
127	Facilitated xenogamy among varieties (Fxa), in which we emasculated the flowers and
128	applied pollen manually from plants with different flower color.
129	Reproductive success can be quantified as the number of fertile descendants produced by an
130	individual throughout its life. It is not feasible to quantify reproductive success in long-lived
131	species in these terms, so seed production is considered a good estimate (see the review of
132	Kingsolver et al., 2001). Other measures of reproductive success are seed viability and seed
133	germinability. We used four measures of reproductive success: number of seeds, weight of
134	seeds (mg), rate of viable seeds (seed viability) and germination rate (seed germinability).
135	Due to manipulations some bags were opened, thus plants with the five treatments were down
136	to 26. 130 ripped fruits were collected before opening, being careful to ensure that the seeds
137	were fully formed. On each fruit we measured seed weight (mg) and counted the number of
138	seeds and the number of ovules not developed; from the sum of non-fertilized ovules and the
139	seeds we obtained the total number of ovules. Total number of ovules did not vary among
140	treatments (data not shown), thus we used the absolute number of seeds produced in each
141	fruit, instead of calculating the seed production relative to the ovules on each fruit.
142	We also measured seed germinability and seed viability. We haphazardly chose up to 20 seeds
143	in each fruit and distributed them on filter paper in petri plates. Seed number was very low in
144	the autogamy treatments; thus, seeds from spontaneous autogamy (Sa) and facilitated
145	autogamy (Fa) treatments were grouped. In total, we analyzed viability and germination rate
146	of 1,800 seeds (10 plates per treatment and between 30 and 50 seeds per plate). Germination
147	was induced with gibberellic acid 100 mg/L at 24 h of darkness and constant temperature of
148	23 °C (Bell et al., 1995). The state of germination and wetting of the plates were controlled on

149	alternate days; the filter paper was removed every 2-3 days to reduce fungal infection. Seeds
150	with a radicle of at least 2 mm were considered germinated. Seed germinability is the
151	percentage of germinated seeds. We controlled germination rate for a period of 45 days. After
152	45 days we tested seed viability by crushing the seeds with the tip of the tweezers. Soft and
153	dark seeds were not considered viable and harsh and light-colored seeds were considered
154	viable (as Hesse, Rees & Müller-Schärer, 2007). These seeds along with the germinated seeds
155	were considered the total number of viable seeds.
156	We calculated the Self-Compatibility Index (SCI) to describe the <i>G. lutea</i> breeding system (as
157	Lloyd & Schoen, 1992). SCI is assessed as the average seed set for facilitated autogamy (Fa)
158	divided by the average seed set for facilitated xenogamy (Fxw or Fxa) and gives information
159	about the self-compatibility of the species. SCI values range from 0 to 1.5 and a species is
160	considered self-incompatible when its values are between 0 and 0.75 (Lloyd & Schoen,
161	1992).
162	To assess the occurrence of self-fertilization, we calculated the Auto-Fertility Index (AFI)
163	dividing the seed set for spontaneous autogamy (Sa) by the seed set for facilitated xenogamy
164	within varieties (Fxw or Fxa) (Lloyd & Schoen, 1992). AFI gives information about the
165	autonomous autogamy degree of the species.
166	In order to analyze the differences in seed number and seed weight among treatments we used
167	a generalized linear mixed model (GzLMM); the fixed factors were the treatment (five
168	categories: C "Control group", Sa "Spontaneous autogamy", Fa "Facilitated autogamy", Fxw
169	"Facilitated xenogamy within varieties", Fxa "Facilitated xenogamy among varieties"), the
170	maternal flower color (color variety) and the interaction between color variety and treatment.
171	Plant individual was a random factor nested within maternal flower color (color variety).
172	To test for differences in seed viability and germinability depending on treatment, we used a
173	generalized linear model (GzLM) for each response variable. Treatment was a fixed factor
	7/22

(with four categories, since the seeds of spontaneous and facilitated autogamy treatments were joint to have a sufficient sample). Note that first, we performed a generalized linear mixed model (GzLMM), where treatment was a fixed factor and plate number was a random factor nested within treatment, but it did not converge. Additionally, we could not test if the germination rate varied between colors or individuals because of insufficient sample size. Error distribution and link function were selected to minimize the AIC_{C:} number of seeds was fitted to a Poisson distribution and a logarithmic link function; whereas weight of seeds was fitted to a Linear distribution and identity link function. Both seed viability and seed germinability were adjusted to a Binomial distribution and probit link function. Analyses were performed with SPSS software (IBM SPSS Statistics for Windows, Version 20.0, IBM Corp.,Somers, NY).

185

186

174

175

176

177

178

179

180

181

182

183

184

Results

187 The most successful reproductive mechanism for Gentiana lutea was found to be cross-188 pollination between individuals within the same color variety. Conversely, cross-pollination 189 among flower color varieties reduced plant reproductive success. In addition, we found that G. 190 *lutea* depends on pollinators to reproduce. 191 Number of seeds, seed weight and germinability were similar for within-color variety 192 crossings than for among-color variety crossings (Table 1; Fig. 1; Fig. 2). However, seeds 193 from crossings within varieties present higher viability than seeds from among variety 194 crossings (Fig. 2). Thus, seed viability decreases when pollen donor and receptor belong to 195 different color varieties (Fig. 2). This fact may imply that seed viability decrease is an 196 important component of the partial hybridization barrier between G. lutea color morphs. 197 Fruits under autogamy treatments produced fewer and lighter seeds than fruits from inter-

198 individual crossings. In addition, the effect of treatments on seed weight was the same for both color varieties (no significant color variety * treatment interaction: p > 0.05; Table 1; 199 200 Fig. 1); although we found that under natural pollination, orange-flowering individuals 201 produced more seeds per fruit than vellow-flowering individuals (significant simple effect of 202 flower color: p < 0.001; Table 1; Fig. 1). On the contrary, within the spontaneous autogamy 203 treatment, yellow-flowering individuals produced more seeds per fruit (p < 0.001; Table 1; 204 Fig. 1). Additionally, we found significant differences among treatments for both, seed 205 viability and seed germinability (p < 0.001; Table 1; Fig. 2). Note that both xenogamy 206 treatments resulted in greater seed germinability than the autogamy treatments and control group (Fig. 2). 207 208 The Self-compatibility index scored 0.0687. SCI ranges from 0 to 1.5, with values of SCI 209 under 0.75 meaning that the species is self-incompatible. Thus, Gentiana lutea is a self-210 incompatible species which relies in cross-pollination to successfully reproduce. Auto-Fertilization Index (AFI) scored 0.0695 meaning that G. lutea is a non-autogamous species. 211 212 **Discussion** 213 214 The most advantageous reproductive mechanism for *Gentiana lutea* L. is cross-pollination 215 between the same color morphs. Our results suggest that a partial hybridization barrier exists 216 between G. lutea flower color morphs, likely due to a past or ongoing divergence between G. 217 lutea varieties. Regardless of the origin of both varieties, it seems that the differentiation is 218 driven or reinforced by the strong dependency of G. lutea on pollen vectors which exert 219 selective pressures on flower color (Veiga et al., 2015; Sobral et al., 2015). It is well known that flower color and other floral traits (aroma, shape, flower sap content) 220 221 play an essential role on plant reproduction, because they lead animal preferences (Tepedino,

222	1979; Quattrocchio et al., 1999). Specific sets of floral traits (pollination syndromes) are often
223	associated with particular groups of pollinators. This close animal-plant interaction among
224	species may drive floral evolution (Fenster et al., 2004; Hoballah et al., 2007). Angiosperm
225	diversification may derive from reproductive isolation due to changes in pollinator habitat
226	composition (Bradshaw & Schemske, 2003; Streisfeld & Kohn, 2007; Hoballah et al., 2007;
227	Dauber et al., 2010). A speciation process among flower color varieties of the same species
228	can occur (Straw, 1955; Waser, 1998; Gegear & Burns, 2007) and may be driven by
229	differences in pollinator community, which show higher preference for one morph as many
230	studies suggest (Dronamraju, 1960; Quattrocchio et al., 1999; Hopkins & Rausher, 2012). We
231	know that Gentiana lutea's pollinators show different color preferences among populations at
232	the Cantabrian Mountains (Spain), partially due to differences on the pollinator spectrum
233	within each population and specific flower color preferences from each pollinator species
234	(Sobral et al., 2015). Sympatric speciation could originate due to selective pressures exerted
235	by the pollinators (Quattrocchio et al., 1999; Hopkins & Rausher, 2011) that facilitate
236	isolation between flower color varieties when cross-pollinations are avoided or reduced
237	(Hopkins & Rausher, 2012).
238	Floral divergence is not always sufficient to produce isolation between morphs and
239	consequent speciation (Fernández-Mazuecos & Vargas, 2011). The geographic isolation
240	produced by the Quaternary climatic changes, which can be accompanied by differences in
241	the pollinator spectra from isolated populations, has been identified as the main cause of
242	divergence in several mountane plant species (Hewitt, 2000; Thompson, 2005; Martín-Bravo
243	et al., 2010; Alarcón et al., 2012; Blanco-Pastor & Vargas, 2013; Fernández-Mazuecos et al.,
244	2013). A subsequent secondary contact between both color morphs in Gentiana lutea L. could
245	generate a similar situation to that actually shows our study population and surrounding area,
246	whether is a recent or an old contact, it seems that the maintenance of different color morphs

247	is reinforced by the fitness reduction on hybrids and the pollinator behavior, as our results
248	confirmed (Table 1; Fig. 1; Fig. 2).
249	The Self-Compatibility Index obtained here suggests that Gentiana lutea L. is a self-
250	incompatible species (Lloyd & Schoen, 1992). Therefore, this species relies on pollen vectors
251	for a successful reproduction, as in the case of the most flowering-plant species (Axelrod,
252	1960; Tepedino, 1979). The Self-Compatibility Index (SCI=0.068) results were similar to the
253	Auto-Fertilization Index (AFI= 0.069). Note that SCI is the ratio between the average seeds
254	produced in facilitated autogamy treatment and the average seeds produced in facilitated
255	xenogamy, whereas AFI is assessed from the ratio between seeds set from spontaneous
256	autogamy and facilitated xenogamy treatment. Similar values of the two indexes imply that
257	the number of seeds produced when a flower's own pollen arrives both, naturally and
258	manually is similar. This fact may suggest that self-incompatibility in this species is not
259	caused by a physical barrier separating pollen from the same flower, but is caused by some
260	pre- zygotic barrier mechanism in which pollen from same flower is not fertilizing the ovules,
261	or by some post-zygotic barrier that may produce a lower quality and number of autogamic
262	seeds (Charlesworth & Charlesworth, 1987; Hopkins, 2013).
263	It is an interesting fact that seed number and weight, and to a lesser extent seed germinability,
264	from natural pollination is intermediate between autogamy treatments and xenogamy
265	crossings (see Fig. 1; Fig. 2). This result suggests that pollen vectors carry to a plant, in
266	natural conditions, both pollen from that plant and pollen from different plants. Therefore,
267	those animal pollinators that have higher mobility between plants and lower mobility among
268	flowers within plants would pollinate more successfully (Dauber et al., 2010; Rossi et al.,
269	2014).
270	On the other hand, yellow-flowering plants set a greater number of seeds when spontaneous
271	self-pollination occurs, which might suggest that the self-incompatibility degree in this

species varies among varieties and is actually higher for orange-flowering individuals (Fig. 1). This implies that the Auto-Fertilization Index might vary among color morphs. Additionally, we found differences in seed number within the natural pollination treatment, in which orange flowers set a greater number of seeds. We know that pollinator assemblage shows preferences for yellowness within our study population, in which yellow-flowering individuals have a greater total seed set (Veiga et al., 2015). However, our results suggest that although orangeflowering plants have lower fitness than yellow ones, they produce more seeds per fruit (see Table1; Fig. 1). We know that pollinators exert selective pressures on Gentiana lutea L. flower color (Veiga et al., 2015) and that these selective pressures drive flower color differentiation in this species (Sobral et al., 2015). Additionally, we know that abiotic factors such as temperature, radiation, elevation and rainfall are not related to flower color variation among G. lutea populations (Veiga et al., 'in press'). With the available information, it is not clear whether we are dealing with an ecological speciation process in which the original color differentiation is due to an allopatric or sympatric process; but our results bring to light the existence of phenotypic differentiation and a lower fitness in hybrids. Regardless of the origin of the divergence, it seems that today a divergence process is ongoing among G. lutea color morphs driven by selection on flower color exerted by pollinators.

290

291

292

293

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Acknowledgments

The authors thank P. Domínguez for field assistance and I. Neylan for reviewing the manuscript.

294

295

References

296 **Ackerman JD. 2000.** Abiotic pollen and pollination: ecological, functional, and evolutionary 297 perspectives. Plant Systematics and Evolution 222 (1-4): 167–185. DOI: 298 10.1007/BF00984101. 299 Alarcón M, Vargas P, Sáez L, Molero J, Juan José Aldasoro JJ. 2012. Genetic diversity of 300 mountain plants: Two migration episodes of Mediterranean Erodium (Geraniaceae). Molecu-301 lar Phylogenetics and Evolution 63 (3): 866–876. DOI:10.1016/j.ympev.2012.02.031. 302 Anchisi E, Bernini A, Piaggi E, Polani F. 2010. Genziane d'Europa [Gentians of Europe]. 303 Pavia: Verba & Scripta s.a.s. (In Italian) 304 **Axelrod DI. 1960.** The evolution of flowering plants. In: Tax S, ed. *Evolution after Darwin I*. 305 The evolution of life. Chicago: University of Chicago Press, 227–305. 306 **Barrett SCH, Harder LD. 1996.** Ecology and evolution of plant mating. *Tree* **11** (2): 73–79. 307 Bell DT, Rokich DP, McChesney CJ, Plummer JA. 1995. Effects of temperature, light and 308 gibberellic acid on the germination of seeds of 43 species native to Western Australia. Journal 309 of Vegetation Science 6 (6): 797–806. 310 Blanco-Pastor JL, Vargas P, Pfeil BE. 2012. Coalescent simulations reveal hybridization 311 and incomplete lineage sorting in Mediterranean *Linaria*. *PLoS ONE* **7** (6): e39089. 312 DOI:10.1371/journal.pone.0039089. 313 Blanco-Pastor JL, Vargas P. 2013. Autecological traits determined two evolutionary strate-314 gies in Mediterranean plants during the Ouaternary: low differentiation and range expansion 315 versus geographical speciation in *Linaria*. *Molecular Ecology* **22** (22): 5651–5668. DOI: 316 10.1111/mec.12518. 317 Bradshaw HD, Schemske DW. 2003. Allele substitution at a flower colour locus produces a

pollinator shift in monkeyflowers. Nature 426: 176–178. DOI: 10.1038/nature02106.

318

319 Campbell DR, Alarcon R, Wu CA. 2003. Reproductive isolation and hybrid pollen disadvantage in *Ipomopsis*. Journal of Evolutionary Biology **16** (3): 536–540. DOI: 320 321 10.1046/j.1420-9101.2003.00538.x. 322 Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary conse-323 quences. Annual Review of Ecology and Systematics 18:237–268. DOI: 324 10.1146/annurev.es.18.110187.001321. **Charlesworth D. 2006.** Evolution of plant breeding systems. *Current Biology* **16**: 726–735. 325 326 DOI: 10.1016/j.cub.2006.07.068. 327 Conner JK, Rush S. 1996. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum, Oecologia 105 (4): 509–516, DOI: 10.1007/BF00330014. 328 329 **Darwin CR. 1859.** Chapter IV: Natural selection. In: Murray J, ed. On the origin of species 330 by means of natural selection, or the preservation of favoured races in the struggle for life. 331 London: W. Clowes and Sons, 92–95. 332 Darwin CR. 1862. Chapter I: Structure of orchis. In: Murray J, ed. On the various 333 contrivances by which British and foreign orchids are fertilised by insects and on the good 334 effects of intercrossing. London: W. Clowes and Sons, 34–44. 335 Darwin CR. 1877. Chapter XII: General results. In: Appleton D and Company, ed. The 336 effects of cross and self-fertilization in the vegetable kingdom. New York: Appleton, 436–469. 337 Dauber J, Biesmeijer, JC, Gabriel D, Kunin WE, Lamborn E, Meyer B, Nielsen A, Potts 338 SG, Roberts PM, Sober V, Settele J, Steffan-Dewenter I, Stout JC, Teder T, Tscheulin T, 339 Vivarelli D, Petanidou T. 2010. Effects of patch size and density on flower visitation and 340 seed set of wild plants: a pan-European approach. *Journal of Ecology* **98**: 188–196. DOI: 341 10.1111/i.1365-2745.2009.01590.x. 342 **Dronamraju KR. 1960.** Selective visits of butterflies to flowers, a possible factor in sympatric speciation. *Nature* **186**:178–179. DOI: 10.1038/186178a0. 343

344	Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination
345	syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics
346	35 : 375–403. DOI: 10.1146/annurev.ecolsys.34.011802.132347.
347	Fernández-Mazuecos M, Vargas P. 2011. Historical isolation versus recent long-distance
348	connections between Europe and Africa in bifid toadflaxes (Linaria sect. Versicolores). PLoS
349	ONE 6 (7): e22234. DOI:10.1371/journal.pone.0022234.
350	Fernández-Mazuecos M, Blanco-Pastor JL, Gómez JM, Vargas P. 2013. Corolla
351	morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores).
352	Annals of Botany 112: 1705–1722. DOI: 10.1093/aob/mct214.
353	Gegear RJ, Burns JG. 2007. The birds, the bees, and the virtual flowers: Can pollinator
354	behavior drive ecological speciation in flowering plants? <i>The American Naturalist</i> 170 (4):
355	551–566. DOI: 10.1086/521230.
356	Ghazoul J. 2006. Floral diversity and the facilitation of pollination. <i>Journal of Ecology</i> 94 :
357	295–304. DOI: 10.1111/j.1365-2745.2006.01098.x.
358	Gómez A, Lunt DH. 2007. Refugia within refugia: patterns of phylogeographic concordance
359	in the Iberian Peninsula. In: Weiss S, Ferrand N, eds. Phylogeography of Southern European
360	refugia. Dordrecht: Springer, 155–188. DOI: 10.1007/1-4020-4904-8_5.
361	González-López O, Polanco C, György Z, Pedryc A, Casquero PA. 2014. Genetic
362	variation of the endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in populations
363	from the Northwest Iberian Peninsula. International Journal of Molecular Sciences 15 (6):
364	10052–10066. DOI: 10.3390/ijms150610052.
365	Harder LD, Barrett SCH. 1996. Pollen dispersal and mating patterns in animal-pollinated
366	plants. In: Lloyd DG, Barrett SCH, eds. Floral biology: Studies on floral evolution in animal-
367	pollinated plants. New York: Chapman & Hall, 140–190.
368	Hauser TP. Jørgensen RB. Østergård H. 1998. Fitness of backcross and F2 hybrids

- between weedy *Brassica rapa* and oilseed rape (*B. napus*). *Heredity* **81**: 436–443.
- 370 DOI:10.1046/j.1365-2540.1998.00425.x.
- 371 Hauser TP, Shaw RG, Østergård H. 1998. Fitness of F1 hybrids between weedy *Brassica*
- 372 rapa and oilseed rape (B. napus). Heredity **81** (4): 429–435. DOI:10.1046/j.1365-
- 373 2540.1998.00424.x.
- 374 **Hegi G. 1927.** *Illustrierte Flora von Mitteleuropa*. München: JF Lehmanns-Verlag.
- Hesse E, Rees M, Müller-Schärer H. 2007. Seed bank persistence of clonal weeds in
- 376 contrasting habitats: implications for control. *Plant Ecology* **190**: 233–243. DOI:
- 377 10.1007/s11258-006-9203-7.
- Hewitt GH. 2000. The genetic legacy of quaternary ice ages. *Nature* 405: 907–913. DOI:
- 379 10.1038/35016000.
- 380 Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell'Olivo A,
- 381 **Arnold M, Kuhlemeier C. 2007.** Single gene– mediated shift in pollinator attraction in
- 382 Petunia. *Plant Cell* **19** (3): 779–790. DOI: 10.1105/tpc.106.048694.
- 383 Hopkins R, Rausher MD. 2011. Identification of two genes causing reinforcement in the
- Texas wildflower *Phlox drummondii*. *Nature* **469**: 411–414. DOI: 10.1038/nature09641.
- 385 **Hopkins R, Rausher MD. 2012.** Pollinator-mediated selection on flower color allele drives
- 386 reinforcement. *Science* **335** (6070): 1090–1092. DOI: 10.1126/science.1215198.
- 387 **Hopkins R. 2013.** Reinforcement in plants. *New Phytologist* **197** (4): 1095–1103. DOI:
- 388 10.1111/nph.12119.
- **IBM Corp. Released. 2011.** *IBM SPSS Statistics for Windows, Version 20.0. Armonk*, NY:
- 390 IBM Corp.
- 391 **Kèry M, Matthies D, Spillmann HH. 2000.** Reduced fecundity and offspring performance in
- small populations of the declining grassland plants *Primula veris* and *Gentiana lutea*. *Journal*
- 393 of Ecology **88**: 17–30. DOI: 10.1046/j.1365-2745.2000.00422.x.

- 394 Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A,
- 395 **Gibert P, Beerli P. 2001.** The strength of phenotypic selection in natural populations. *The*
- 396 American Naturalist 157 (3): 245–261. DOI: 10.1086/319193.
- 397 Kozuharova EK. 1994. Modes of pollination of some Gentiana L. species distributed in Bul-
- 398 garia. Annuals of the University of Sofia, 2, Botanika 85: 215–224.
- 399 Kozuharova EK, Anchev ME. 2006. Nastic corolla movements of nine *Gentiana* species
- 400 (Gentianaceae), presented in the Bulgarian flora. *Phytologia Balcanica* **12** (2): 255–265.
- 401 **Laínz M. 1982**. *Mis contribuciones al conocimiento de la flora de Asturias* [My contributions
- 402 to the knowledge of the Asturian flora]. Oviedo: Diputación Provincial de Asturias, Instituto
- 403 de Estudios Asturianos (CSIC).
- 404 Lloyd DG, Schoen DJ. 1992. Self- and cross-fertilization in plants. I. Functional dimensions.
- 405 International Journal of Plant Sciences 153 (3): 358–369.
- 406 Martín-Bravo S, Valcárcel V, Vargas P, Luceño M. 2010. Geographical speciation related
- 407 to Pleistocene range shifts in the Western Mediterranean Mountains (*Reseda* sect.
- 408 *Glaucoreseda*, *Resedaceae*). *Taxon* **59** (2): 466–482.
- 409 Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by
- 410 animals? Oikos **120**: 321–326. DOI: 10.1111/j.1600-0706.2010.18644.x.
- 411 Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R. 1999.
- Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower
- 413 color. *The Plant Cell* **11**: 1433–1444.
- 414 **Renobales G. 2003.** Notas acerca del tratamiento de las Gentianaceae para flora Ibérica
- [Notes about the treatment of the Gentianaceae for Iberian flora]. *Anales del Jardín Botánico*
- 416 *de Madrid* **60** (2): 461–469. (In Spanish)
- 417 **Renobales G. 2012.** Gentiana lutea L. In: Castroviejo S, Talavera S, Andrés C, Arista M,
- 418 Fernández Piedra MP, Gallego MJ, Ortiz PL, Romero Zarco C, Salgueiro FJ, Silvestre S,

- 419 Quintanar A, eds. Flora ibérica XI: Gentianaceae-Boraginaceae [Iberian flora XI:
- 420 Gentianaceae-Boraginaceae]. Madrid: Real Jardín Botánico (CSIC), 10–13. (In Spanish)
- **Rossi M. 2012.** Taxonomy, phylogeny and reproductive ecology of *Gentiana lutea* L. D. Phil.
- 422 Thesis, University of Bologna, Italy.
- 423 Rossi M, Fisogni A, Nepi M, Quaranta M, Galloni M. 2014. Bouncy versus idles: On the
- 424 different role of pollinators in the generalist Gentiana lutea L. Flora Morphology,
- 425 Distribution, Functional Ecology of Plants **209** (3-4): 164–171. DOI:
- 426 10.1016/j.flora.2014.02.002.
- 427 Sobral M, Veiga T, Domínguez P, Guitián JA, Guitián P, Guitián J. 2015. Selective
- 428 pressures explain differences in flower color among Gentiana lutea populations. PLoS ONE
- 429 **10** (7): e0132522. DOI:10.1371/journal.pone.0132522.
- 430 **Stebbins GL. 1970.** Adaptive radiation of reproductive characteristics in angiosperms, I:
- Pollination mechanisms. *Annual Review of Ecology and Systematics* **1**: 307–326. DOI:
- 432 10.1146/annurev.es.01.110170.001515.
- 433 Straw RM. 1955. Hybridization, homogamy and sympatric speciation. Evolution 9 (4): 441–
- 434 444.
- 435 **Streisfeld MA, Kohn JR. 2007.** Environment and pollinator-mediated selection on parapatric
- floral races of *Mimulus aurantiacus*. *Journal of Evolutionary Biology* **20**: 122–132. DOI:
- 437 10.1111/j.1420-9101.2006.01216.x.
- 438 **Struwe L, Albert VA. 2002.** *Gentianaceae: systematics and natural history.* Cambridge:
- 439 Cambridge University Press.
- Thompson JN. 1994. *The co-evolutionary process*. Chicago: University of Chicago Press.
- **Thompson JD. 2005.** *Plant evolution in the Mediterranean*. Oxford: Oxford University
- 442 Press.
- Tepedino V.J. 1979. The importance of bees and other insect pollinators in maintaining floral

444	species composition. Great Basin Naturalist Memoires 3: 139–150.
445	Vargas P, Carrió E, Guzmán B, Amat E, Güemes J. 2009. A geographical pattern of
446	Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear
447	DNA polymorphisms. <i>Journal of Biogeography</i> 36 (7): 1297–1312. DOI: 10.1111/j.1365-
448	2699.2008.02059.x.
449	Veiga T, Guitián JA, Guitián P, Guitián J, Sobral M. 2015. Are pollinators and seed
450	predators selective agents on flower color in Gentiana lutea? Evolutionary Ecology 29 (3):
451	451–464. DOI: 10.1007/s10682-014-9751-6.
452	Veiga T, Guitián J, Guitián P, Guitián JM, Munilla I, Sobral M. 'in press'. Flower color
453	variation in the montane plant <i>Gentiana lutea</i> L. (Gentianaceae) is unrelated to abiotic factors.
454	Plant Ecology & Diversity.
455	Waser NM. 1983. The adaptive nature of floral traits: ideas and evidence. In: Real L ed.
456	Pollination biology. Orlando: Academic press, 241–285.
457	Waser NM. 1998. Pollination, angiosperm speciation, and the nature of species boundaries.
458	Oikos 82 (1): 198–201. DOI: 10.2307/3546930.
459	Zhu C, Yamamura S, Koiwa H, Nishihara M, Sandmann G. 2002. cDNA cloning and
460	expression of carotenogenic genes during flower development in Gentiana lutea. Plant
461	Molecular Biology 48 (3): 277–285. DOI: 10.1023/A: 1013383120392.
462	Zhu C, Yamamura S, Nishihara M, Koiwa H, Sandmann G. 2003. cDNAs for the
463	synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower
464	development. <i>Biochimica et Biophysica Acta</i> (BBA) 1625 (3): 305–308. DOI:
465	10.1016/S0167-4781(03)00017-4.
466	
467	
468	

470

Table 1: Effect of different treatments of pollination on female reproductive success

471 (number of seeds, seeds weight, seed viability and seed germinability).

We marked in bold the statistically significant factors (P < 0.05).

Response Variable	N	Factors	Variance	S.E.	Wald	d.f.	P
					Chi-Square		
Seed number	130	Random effect					
		Plant (Color variety)	0.050	0.016			
		Fixed effects					
		Treatment			504.389	4	0.000
		Color morph			0.001	1	0.971
		Color morph*Treatment			23.222	4	0.000
Seed weight	108	Random effect					
		Plant (Color variety)	6.748	3.112			
		Fixed effects					
		Treatment			44.347	4	0.003
		Color morph			0.004	1	0.949
		Color morph *Treatment			0.177	4	0.950
Seed viability	1,800	Fixed effects					
		Treatment			30.906	3	0.000
Seed germinability	1,800	Fixed effects					
		Treatment			32.966	3	0.000

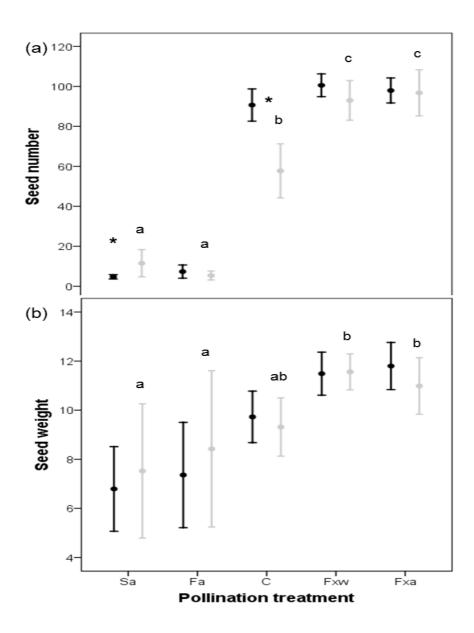


Figure 1: Reproductive success assessed by seed number (A) and seed weight in mg (B), in function of different pollination treatments.

Pollination treatments were: Spontaneous autogamy (Sa); Facilitated autogamy (Fa); Control group (C), Facilitated xenogamy within varieties (Fxw) and Facilitated xenogamy among varieties (Fxa). Significant statistical differences between treatments are marked with different letters, and significant statistical differences between color varieties (orange: black-colored bars; yellow: grey-colored bars) are marked with an asterisk. Bars show the Standard Error (S.E.).

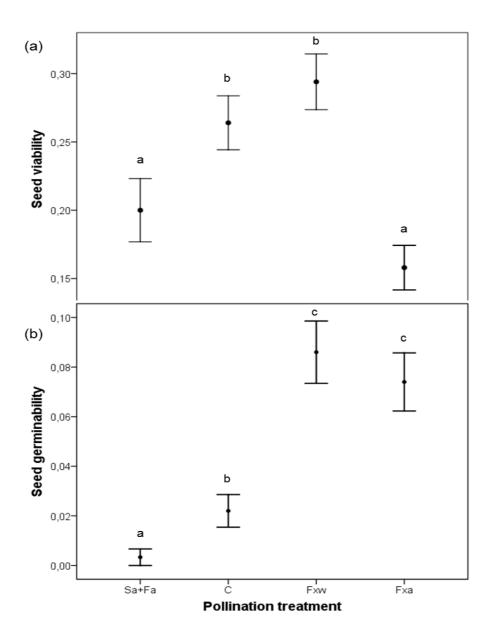


Figure 2: Reproductive success assessed by seed viability (A) and seed germinability (B), in function of different pollination treatments.

Pollination treatments were the following: Spontaneous autogamy (Sa) + Facilitated autogamy (Fa); Control group (C), Facilitated xenogamy within varieties (Fxw) and Facilitated xenogamy among varieties (Fxa). The statistical significant differences between treatments are marked with different letters. Bars show the Standard Error (S.E.).