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Is there a hybridization barrier between Gentiana lutea color
morphs?

Maria Losada, Tania Veiga, Javier Guitian, José Guitian, Pablo Guitidn, Mar Sobral

In Gentiana lutea two varieties are described, G. lutea var. aurantiaca with orange corolla
colors and G. lutea var. lutea with yellow corolla colors. Both varieties co-occur in NW
Spain. However, it is not known whether a hybridization barrier exists between these G.
lutea color varieties. If that is the case, this barrier might reflect that G. lutea varieties are
the product of a secondary contact or that they are currently under an ongoing speciation
process. We know that abiotic environmental factors are not related to flower color
variation among G. lutea populations in NW Spain. But, pollinators cause selection on
flower color in this species, if G. lutea is dependent on pollinators, they might be currently
driving or reinforcing the existence of these two morphs. Thus, we aim to test the
compatibility between flower color varieties in G. lutea and its dependence on pollen
vectors. Within a G. lutea population we analyzed differences in reproductive success
(number, weight, viability and germinability of seeds) depending on fertilization
treatments (autogamy and xenogamy within variety and among varieties). Our results
confirmed that reproductive success is higher within color varieties than among varieties,
due to seed viability reduction on hybrids from different varieties, and that G. lutea
reproductive success is strongly dependent on pollinators. Regardless of the allopatric or
sympatric origin of G. lutea flower color, we conclude that a partial hybridization barrier
exists between G. lutea varieties, which are at least partially driven by the dependence of
G. lutea on pollinators.

Peer] reviewing PDF | (2015:07:5890:0:1:NEW 21 Jul 2015)


LaryssaLeigh


10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Peer]

Is there a hybridization barrier between Gentiana lutea color morphs?
Maria Losada™, Tania Veigal, Javier Guitian 1, José Guitiénz, Pablo Guitiénl, Mar Sobral >
“ Corresponding author: Maria Losada Cuquejo. Department of Cell Biology and Ecology,

Biology School, University of Santiago de Compostela, 15782 Santiago de Compostela, A

Corufia (Spain). (+34) 669 981 882 // maria.cuquexo@gmail.com

! Department of Botany, Biology School, University of Santiago de Compostela, Santiago de
Compostela, A Coruna (Spain).
? Department of Cell Biology and Ecology, Area of Ecology, Biology School, University of

Santiago de Compostela, Santiago de Compostela, A Coruiia (Spain).

Abstract

In Gentiana lutea two varieties are described, G. lutea var. aurantiaca with orange corolla
colors and G. lutea var. lutea with yellow corolla colors. Both varieties co-occur in NW Spain.
However, it is not known whether a hybridization barrier exists between these G. lutea color
varieties. If that is the case, this barrier might reflect that G. lutea varieties are the product of a
secondary contact or that they are currently under an ongoing speciation process. We know
that abiotic environmental factors are not related to flower color variation among G. lutea
populations in NW Spain. But, pollinators cause selection on flower color in this species, if G.
lutea is dependent on pollinators, they might be currently driving or reinforcing the existence
of these two morphs. Thus, we aim to test the compatibility between flower color varieties in
G. lutea and its dependence on pollen vectors. Within a G. lutea population we analyzed
differences in reproductive success (number, weight, viability and germinability of seeds)
depending on fertilization treatments (autogamy and xenogamy within variety and among
varieties). Our results confirmed that reproductive success is higher within color varieties than

among varieties, due to seed viability reduction on hybrids from different varieties, and that G.
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lutea reproductive success is strongly dependent on pollinators. Regardless of the allopatric or
sympatric origin of G. lutea flower color, we conclude that a partial hybridization barrier
exists between G. lutea varieties, which are at least partially driven by the dependence of G.

lutea on pollinators.

Keywords Pollen vectors, Gentiana lutea, flower color morphs, self-incompatibility,

hybridization barrier, outcrossing success.

Introduction

Pollen vectors can drive plant evolution and diversification throughout their selection on
floral traits (Darwin, 1859; Darwin, 1862; Thompson, 1994; Barrett & Harder, 1996;
Charlesworth, 2006). In particular, animal pollinators exert selective pressures on plant traits
through natural selection (Stebbins, 1970) and many flowering plants rely on those pollen
vectors to reproduce. Species widely differ in their dependence on pollen vectors for seed
production, from complete autogamy to xenogamy, requiring cross-pollination for successful
reproduction (Darwin, 1877; Axelrod, 1960). Most angiosperms need vectors for pollen
transference between plants, which are mainly insects but can also be other animals and to a
lesser extent wind or water (Harder & Barrett, 1996; Ackerman, 2000; Ollerton, Winfree &
Tarrant, 2011). Different floral strategies were developed to attract these animals (Ghazoul,
2006), which may affect plant fitness to a large degree (Waser, 1983; Conner & Rush, 1996).
This plant-pollinator relationship promotes evolution of species involved in such an
interaction. Thus, the degree of dependence on animal pollinators might affect the strength of

selection and therefore the likelihood of species diversification.

Flower color variation in polymorphic species may originate from different selective

pressures exerted by pollinators, which favor isolation between different color morphs and
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cause sympatric diversification (Gegear & Burns, 2007). Thus, pollinator behavior may favor
one of the color morphs, with individuals visiting one color morph more frequently than a
different flower color morph (Hopkins & Rausher, 2012). Additionally, many plant species
show floral divergences due to geographic isolation suffered by climatic changes during
Quaternary period (Goémez & Lunt, 2007; Vargas et al., 2009; Martin-Bravo et al., 2010;
Fernandez-Mazuecos & Vargas, 2011; Blanco-Pastor, Vargas & Pfeil, 2012; Blanco-Pastor &
Vargas, 2013; Fernandez-Mazuecos et al., 2013). Thus, a secondary contact between flower
color varieties that remained geographical isolated after a long time, could explain
reproductive incompatibility between floral color morphs. Despite the origin of the
phenotypic floral variation, diversification between flower color varieties may be reinforced

by pollinator preferences (Campbell, Alarcon & Wu, 2003).

Gentiana lutea L. shows flower color variation from orange to yellow both, within and among
populations (Sobral et al., 2015) at the western extreme of the distribution range. Two
different varieties are described for Gentiana lutea L. depending on flower color: Gentiana
lutea L. var. aurantiaca (M. Lainz) showing orange corolla colors and Gentiana lutea L. var.
lutea showing yellow corollas (Lainz, 1982; Renobales, 2003). Gentiana lutea's flower color
is a trait with a genetic basis (Zhu et al., 2002; Zhu et al., 2003) and there are genetic
differences among populations (Gonzélez-Lopez et al., 2014). We know that flower color
variation among populations in this species across NW Spain, is not related to abiotic
environmental factors such as elevation, temperature, radiation and rainfall (Veiga et al., 'in
press'). Additionally, we know that pollinators exert selective pressures on G. lutea flower
color (Veiga et al., 2015) and play a role in flower color differentiation among G. lutea
populations (Sobral et al., 2015). But, it is not completely understood the degree of
dependence of G. lutea on pollen vectors to successfully reproduce. Rossi (2012) described G.

lutea as a partial self-compatible species. However, others cite G. lutea as a self-incompatible
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species, which may need animal pollinators to reproduce (Hegi, 1927; Kéry, Matthies &

Spillmann, 2000; Kozuharova & Anchev, 2006; Gonzalez-Lopez et al., 2014).

The aim of this study is to test if there is some degree of incompatibility between Gentiana
lutea color varieties due to a partial hybridization barrier, which might be caused or reinforced
by selective pressures exerted by pollinators on G. lutea flower color. If a hybridization barrier
exists between G. lutea color morphs we might expect crossings among varieties to have a
lower reproductive success (Hauser, Jorgensen & Ostergérd, 1998; Hauser, Shaw &
Ostergdrd, 1998). Additionally, if G. lutea color morphs are under a diversification process
driven by selective pressures exerted by pollinators (Veiga et al., 2015; Sobral et al., 2015),
we would expect G. lutea to strongly depend on the pollinating vectors exerting this selection.
Thus, G. lutea crossings among different individuals would have higher reproductive success
than crossings within-individual plants. In order to investigate our hypothesis, we proposed
the following questions; (i) Are there any differences in reproductive success (seed number,
seed weight, seed viability and seed germinability) between within-color variety crossings
and among-color variety crossings? (ii) Are there any differences in reproductive success

between autogamic seeds and seeds coming from among individual crossings?

Materials & Methods

Gentiana lutea L. (Gentianaceae) is a herbaceous perennial plant distributed along the Central
and Southern European mountains typically growing on livestock grazing grasslands and
hillsides from montane to sub-alpine habitats, approximately from 800 to 2.500 m a.s.l.
(Hesse, Rees & Miiller-Schirer, 2007; Anchisi et al., 2010). This long-lived species presents a
rhizome, which develops one (rarely two or three) unbranched stout stem with basal leaves,

approximately growing up to 200 cm tall (Renobales, 2012). Flowering occurs in summer
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(June-July) when the fertile stems show flowers, grouped in pseudo-whorls, which bloom
spirally; and the inflorescence develops in succession from apex to base (Kozuharova, 1994).
There are two different varieties that differ in flower color: Gentiana lutea L. var. aurantiaca
(M. Lainz) with orange flowers and Gentiana lutea var. lutea L. with yellow flowers (Lainz,
1982; Renobales, 2003). Gentiana lutea flowers show rotate corollas with lobes (Renobales,
2012), which facilitate the access of pollinators to the nectaries; and are visited by at least 11
families of insects, belonging to four orders (Rossi et al., 2014). The main flower visitors of
G. lutea plants at the Cantabrian Mountains are bumblebees, followed by cuckoo bumblebees
and honeybees (Sobral et al., 2015). Fruits hold many flattened, elliptic and winged seeds

disseminated through anemochory (Struwe & Albert, 2002).

We carried out experimental manipulations at one G. lutea population in Ledn, Spain (43° 03’
N; 6°04° W; 1600 m a.s.l.) in July 2012. For field experiments, we received field permit from
Environmental Territorial Service from Leodn, Territorial Delegation of Government of Spain,
Regional Government of Castilla and Leon (Identifier:12 LE 325 RNA PuebladeLilio INV;
Reference: 06.01.013.016/ROT/abp; File number: AEN/LE/103/12). Note that in this study,
we will distinguish two different flower color classes (orange and yellow). Both varieties do
not differ in their UV reflectance but they do differ in their visible reflectance (see Veiga et
al., 2015); thus, we use visible reflectance to indentify color varieties. We haphazardly chose
five flowers on each of 25 orange-flowered plants and 25 yellow-flowered plants. Flower
buds, except the control group, were bagged with tulle before flower opening and until fruit

formation in order to avoid contact with pollen vectors.

We created the following treatments: (1) Control group (C), in which we applied no treatment,
so natural pollination occurred; (2) Spontaneous autogamy (Sa), in which pollen was not
applied manually and only pollen from the same flower may spontaneously arrive to the

ovary; (3) Facilitated autogamy (Fa), in which we applied pollen manually from the flower's
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own anthers; (4) Facilitated xenogamy within varieties (Fxw), in which we emasculated
flowers by cutting the stamens before pollen release in order to prevent the entry of flower's
own pollen, and applied pollen manually from other plants of the same flower color; (5)
Facilitated xenogamy among varieties (Fxa), in which we emasculated the flowers and

applied pollen manually from plants with different flower color.

Reproductive success can be quantified as the number of fertile descendants produced by an
individual throughout its life. It is not feasible to quantify reproductive success in long-lived
species in these terms, so seed production is considered a good estimate (see the review of
Kingsolver et al., 2001). Other measures of reproductive success are seed viability and seed
germinability. We used four measures of reproductive success: number of seeds, weight of
seeds (mg), rate of viable seeds (seed viability) and germination rate (seed germinability).
Due to manipulations some bags were opened, thus plants with the five treatments were down
to 26. 130 ripped fruits were collected before opening, being careful to ensure that the seeds
were fully formed. On each fruit we measured seed weight (mg) and counted the number of
seeds and the number of ovules not developed; from the sum of non-fertilized ovules and the
seeds we obtained the total number of ovules. Total number of ovules did not vary among
treatments (data not shown), thus we used the absolute number of seeds produced in each

fruit, instead of calculating the seed production relative to the ovules on each fruit.

We also measured seed germinability and seed viability. We haphazardly chose up to 20 seeds
in each fruit and distributed them on filter paper in petri plates. Seed number was very low in
the autogamy treatments; thus, seeds from spontaneous autogamy (Sa) and facilitated
autogamy (Fa) treatments were grouped. In total, we analyzed viability and germination rate
of 1,800 seeds (10 plates per treatment and between 30 and 50 seeds per plate). Germination
was induced with gibberellic acid 100 mg/L at 24 h of darkness and constant temperature of

23 °C (Bell et al., 1995). The state of germination and wetting of the plates were controlled on
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alternate days; the filter paper was removed every 2-3 days to reduce fungal infection. Seeds
with a radicle of at least 2 mm were considered germinated. Seed germinability is the
percentage of germinated seeds. We controlled germination rate for a period of 45 days. After
45 days we tested seed viability by crushing the seeds with the tip of the tweezers. Soft and
dark seeds were not considered viable and harsh and light-colored seeds were considered
viable (as Hesse, Rees & Miiller-Schérer, 2007). These seeds along with the germinated seeds

were considered the total number of viable seeds.

We calculated the Self-Compatibility Index (SCI) to describe the G. lutea breeding system (as
Lloyd & Schoen, 1992). SCl is assessed as the average seed set for facilitated autogamy (Fa)
divided by the average seed set for facilitated xenogamy (Fxw or Fxa) and gives information

about the self-compatibility of the species. SCI values range from 0 to 1.5 and a species is

considered self-incompatible when its values are between 0 and 0.75 (Lloyd & Schoen,

1992).

To assess the occurrence of self-fertilization, we calculated the Auto-Fertility Index (AFI)
dividing the seed set for spontaneous autogamy (Sa) by the seed set for facilitated xenogamy
within varieties (Fxw or Fxa) (Lloyd & Schoen, 1992). AFI gives information about the

autonomous autogamy degree of the species.

In order to analyze the differences in seed number and seed weight among treatments we used
a generalized linear mixed model (GzLMM); the fixed factors were the treatment (five
categories: C “Control group”, Sa “Spontaneous autogamy”, Fa “Facilitated autogamy”, Fxw
“Facilitated xenogamy within varieties”, Fxa “Facilitated xenogamy among varieties”), the
maternal flower color (color variety) and the interaction between color variety and treatment.

Plant individual was a random factor nested within maternal flower color (color variety).

To test for differences in seed viability and germinability depending on treatment, we used a

generalized linear model (GzLM) for each response variable. Treatment was a fixed factor
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(with four categories, since the seeds of spontaneous and facilitated autogamy treatments
were joint to have a sufficient sample). Note that first, we performed a generalized linear
mixed model (GzLMM), where treatment was a fixed factor and plate number was a random
factor nested within treatment, but it did not converge. Additionally, we could not test if the
germination rate varied between colors or individuals because of insufficient sample size.
Error distribution and link function were selected to minimize the AICc. number of seeds was
fitted to a Poisson distribution and a logarithmic link function; whereas weight of seeds was
fitted to a Linear distribution and identity link function. Both seed viability and seed
germinability were adjusted to a Binomial distribution and probit link function. Analyses were
performed with SPSS software (IBM SPSS Statistics for Windows, Version 20.0, IBM

Corp.,Somers, NY).

Results

The most successful reproductive mechanism for Gentiana lutea was found to be cross-
pollination between individuals within the same color variety. Conversely, cross-pollination
among flower color varieties reduced plant reproductive success. In addition, we found that G.

lutea depends on pollinators to reproduce.

Number of seeds, seed weight and germinability were similar for within-color variety
crossings than for among-color variety crossings (Table 1; Fig. 1; Fig. 2). However, seeds
from crossings within varieties present higher viability than seeds from among variety
crossings (Fig. 2). Thus, seed viability decreases when pollen donor and receptor belong to
different color varieties (Fig. 2). This fact may imply that seed viability decrease is an

important component of the partial hybridization barrier between G. lutea color morphs.

Fruits under autogamy treatments produced fewer and lighter seeds than fruits from inter-
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individual crossings. In addition, the effect of treatments on seed weight was the same for
both color varieties (no significant color variety * treatment interaction: p > 0.05; Table 1;
Fig. 1); although we found that under natural pollination, orange-flowering individuals
produced more seeds per fruit than yellow-flowering individuals (significant simple effect of
flower color: p <0.001; Table 1; Fig. 1). On the contrary, within the spontaneous autogamy
treatment, yellow-flowering individuals produced more seeds per fruit (p < 0.001; Table 1;
Fig. 1). Additionally, we found significant differences among treatments for both, seed
viability and seed germinability (p < 0.001; Table 1; Fig. 2). Note that both xenogamy

treatments resulted in greater seed germinability than the autogamy treatments and control
group (Fig. 2).

The Self-compatibility index scored 0.0687. SCI ranges from 0 to 1.5, with values of SCI
under 0.75 meaning that the species is self-incompatible. Thus, Gentiana lutea is a self-

incompatible species which relies in cross-pollination to successfully reproduce. Auto-

Fertilization Index (AFI) scored 0.0695 meaning that G. lutea is a non-autogamous species.

Discussion

The most advantageous reproductive mechanism for Gentiana lutea L. is cross-pollination
between the same color morphs. Our results suggest that a partial hybridization barrier exists
between G. lutea flower color morphs, likely due to a past or ongoing divergence between G.
lutea varieties. Regardless of the origin of both varieties, it seems that the differentiation is
driven or reinforced by the strong dependency of G. lutea on pollen vectors which exert

selective pressures on flower color (Veiga et al., 2015; Sobral et al., 2015).

It is well known that flower color and other floral traits (aroma, shape, flower sap content)

play an essential role on plant reproduction, because they lead animal preferences (Tepedino,
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1979; Quattrocchio et al., 1999). Specific sets of floral traits (pollination syndromes) are often
associated with particular groups of pollinators. This close animal-plant interaction among
species may drive floral evolution (Fenster et al., 2004; Hoballah et al., 2007). Angiosperm
diversification may derive from reproductive isolation due to changes in pollinator habitat
composition (Bradshaw & Schemske, 2003; Streisfeld & Kohn, 2007; Hoballah et al., 2007;
Dauber et al., 2010). A speciation process among flower color varieties of the same species
can occur (Straw, 1955; Waser, 1998; Gegear & Burns, 2007) and may be driven by
differences in pollinator community, which show higher preference for one morph as many
studies suggest (Dronamraju, 1960; Quattrocchio et al., 1999; Hopkins & Rausher, 2012). We
know that Gentiana lutea’s pollinators show different color preferences among populations at
the Cantabrian Mountains (Spain), partially due to differences on the pollinator spectrum
within each population and specific flower color preferences from each pollinator species
(Sobral et al., 2015). Sympatric speciation could originate due to selective pressures exerted
by the pollinators (Quattrocchio et al., 1999; Hopkins & Rausher, 2011) that facilitate
isolation between flower color varieties when cross-pollinations are avoided or reduced

(Hopkins & Rausher, 2012).

Floral divergence is not always sufficient to produce isolation between morphs and
consequent speciation (Ferndndez-Mazuecos & Vargas, 2011). The geographic isolation
produced by the Quaternary climatic changes, which can be accompanied by differences in
the pollinator spectra from isolated populations, has been identified as the main cause of
divergence in several mountane plant species (Hewitt, 2000; Thompson, 2005; Martin-Bravo
et al., 2010; Alarcon et al., 2012; Blanco-Pastor & Vargas, 2013; Fernandez-Mazuecos et al.,
2013). A subsequent secondary contact between both color morphs in Gentiana lutea L. could
generate a similar situation to that actually shows our study population and surrounding area,

whether is a recent or an old contact, it seems that the maintenance of different color morphs

Peer] reviewing PDF | (2015:07:5890:0:1:NEW 21 Jul 2015) 10/22



247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

Peer]

is reinforced by the fitness reduction on hybrids and the pollinator behavior, as our results

confirmed (Table 1; Fig. 1; Fig. 2).

The Self-Compatibility Index obtained here suggests that Gentiana lutea L. is a self-
incompatible species (Lloyd & Schoen, 1992). Therefore, this species relies on pollen vectors
for a successful reproduction, as in the case of the most flowering-plant species (Axelrod,
1960; Tepedino, 1979). The Selt-Compatibility Index (SCI=0.068) results were similar to the
Auto-Fertilization Index (AFI= 0.069). Note that SCI is the ratio between the average seeds
produced in facilitated autogamy treatment and the average seeds produced in facilitated
xenogamy, whereas AFI is assessed from the ratio between seeds set from spontaneous
autogamy and facilitated xenogamy treatment. Similar values of the two indexes imply that
the number of seeds produced when a flower’s own pollen arrives both, naturally and
manually is similar. This fact may suggest that self-incompatibility in this species is not
caused by a physical barrier separating pollen from the same flower, but is caused by some
pre- zygotic barrier mechanism in which pollen from same flower is not fertilizing the ovules,
or by some post- zygotic barrier that may produce a lower quality and number of autogamic

seeds (Charlesworth & Charlesworth, 1987; Hopkins, 2013).

It is an interesting fact that seed number and weight, and to a lesser extent seed germinability,
from natural pollination is intermediate between autogamy treatments and xenogamy
crossings (see Fig. 1; Fig. 2). This result suggests that pollen vectors carry to a plant, in
natural conditions, both pollen from that plant and pollen from different plants. Therefore,
those animal pollinators that have higher mobility between plants and lower mobility among
flowers within plants would pollinate more successfully (Dauber et al., 2010; Rossi et al.,

2014).

On the other hand, yellow-flowering plants set a greater number of seeds when spontaneous
self-pollination occurs, which might suggest that the self-incompatibility degree in this
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species varies among varieties and is actually higher for orange-flowering individuals (Fig. 1).
This implies that the Auto-Fertilization Index might vary among color morphs. Additionally,
we found differences in seed number within the natural pollination treatment, in which orange
flowers set a greater number of seeds. We know that pollinator assemblage shows preferences
for yellowness within our study population, in which yellow-flowering individuals have a
greater total seed set (Veiga et al., 2015). However, our results suggest that although orange-
flowering plants have lower fitness than yellow ones, they produce more seeds per fruit (see

Tablel; Fig. 1).

We know that pollinators exert selective pressures on Gentiana lutea L. flower color (Veiga et
al., 2015) and that these selective pressures drive flower color differentiation in this species
(Sobral et al., 2015). Additionally, we know that abiotic factors such as temperature, radiation,
elevation and rainfall are not related to flower color variation among G. lutea populations
(Veiga et al., 'in press'). With the available information, it is not clear whether we are dealing
with an ecological speciation process in which the original color differentiation is due to an
allopatric or sympatric process; but our results bring to light the existence of phenotypic
differentiation and a lower fitness in hybrids. Regardless of the origin of the divergence, it
seems that today a divergence process is ongoing among G. lutea color morphs driven by

selection on flower color exerted by pollinators.
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Table 1: Effect of different treatments of pollination on female reproductive success

(number of seeds, seeds weight, seed viability and seed germinability).

We marked in bold the statistically significant factors (P < 0.05).

Response Variable N Factors Variance S.E. Wald df. P
Chi-Square
Seed number 130  Random effect
Plant (Color variety) 0.050 0.016
Fixed effects
Treatment 504.389 4 0.000
Color morph 0.001 1 0971
Color morph*Treatment 23.222 4 0.000
Seed weight 108  Random effect
Plant (Color variety) 6.748 3.112
Fixed effects
Treatment 44.347 4 0.003
Color morph 0.004 1 0.949
Color morph *Treatment 0.177 4 0.950
Seed viability 1,800 Fixed effects
Treatment 30.906 3 0.000
Seed germinability 1,800 Fixed effects
Treatment 32.966 3 0.000
20/22
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475

476  Figure 1: Reproductive success assessed by seed number (A) and seed weight in mg (B),
477  in function of different pollination treatments.

478  Pollination treatments were: Spontaneous autogamy (Sa); Facilitated autogamy (Fa); Control
479  group (C), Facilitated xenogamy within varieties (Fxw) and Facilitated xenogamy among va-
480 rieties (Fxa). Significant statistical differences between treatments are marked with different
481 letters, and significant statistical differences between color varieties (orange: black-colored

482  bars; yellow: grey-colored bars) are marked with an asterisk. Bars show the Standard Error

483 (S.E.).
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Figure 2: Reproductive success assessed by seed viability (A) and seed germinability (B),
in function of different pollination treatments.

Pollination treatments were the following: Spontaneous autogamy (Sa) + Facilitated autoga-
my (Fa); Control group (C), Facilitated xenogamy within varieties (Fxw) and Facilitated xe-
nogamy among varieties (Fxa). The statistical significant differences between treatments are

marked with different letters. Bars show the Standard Error (S.E.).
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