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Background: As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for
plant survival and growth but also plays an important role in global carbon fixation. However,
photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by
future climate change.

Methods: In this study, we examined the photosynthetic responses of Phragmites australis (P. australis)
to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal
regimes (ambient temperature and + 4°C) in environment-controlled chambers.

Results: Our results showed that the net CO2 assimilation rate (Pn), maximal rate of Rubisco (Vcmax),
maximal rate of ribulose-bisphosphate (RuBP) regeneration (Jmax) and chlorophyll (Chl) content were
enhanced under increased precipitation condition, but were declined drastically under the condition of
water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content
(p>0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high
temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of
drought. The combination of high temperature and water deficit had more detrimental effect on P.
australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a
major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close
relationship with Pn (R2=0.86, p<0.01). Under high temperature, Pn was ralated to MDA content (R2=0.81,
p<0.01). High temperature disrupted the balance between Vcmax and Jmax (the ratio of Jmax to Vcmax

decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis.
Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal
dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII
quantum yield (ΦPSII) under both changing precipitation and high temperature conditions.

Conclusions: Our results highlight the significant role of precipitation change in regulating the
photosynthetic performance of P. australis under elevated temperature conditions, which may
exacerbate the drought-induced primary productivity reduction of P. australis under future climate
scenarios.
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1 Introduction

2 Global warming mainly caused by high levels of greenhouse gas emission is predicted to 

3 increase the air temperature by 1.1-6.4°C in the next hundred years (Crowther et al. 2016). At 

4 the same time, extreme precipitation events like drought and waterlogging will occur more 

5 universally than ever (IPCC, 2019). The changing global climate will not only aggravate the 

6 frequency and intensity of environmental stresses but also pose serious threat on agriculture 

7 production (Hossain et al. 2021; aughan et al. 2018; Xin and & 2021), ecosystem stability 

8 (Kanojia & Dijkwel 2018; White et al. 2021) and terrestrial C and N cycling (Crowther et al. 

9 2016; Li et al. 2021). Among the environmental factors, ambient temperature and soil water 

10 content are two major abiotic factors in the limitation of plant distribution and productivity 

11 (Küsters et al. 2021; Yan et al. 2020; Kumari et al. 2021). Their change will directly and/or 

12 indirectly influence plant physiological processes, such as resource allocation (Farfan-Vignolo & 

13 Asard 2012; Forbes et al. 2020), net photosynthetic rate (Shao et al. 2021; Yamori et al. 2014), 

14 carboxylation efficiency (Liu et al. 2022), photochemical efficiency of photosystem Ⅱ (PSII) 

15 (Aragón-Gastélum et al. 2020; Song et al. 2016a) and water use efficiency (Liu et al. 2019), 

16 which then impact the global carbon cycling. Among all the plant physiological processes, 

17 photosynthesis plays an important role in substance metabolism (Ort et al. 2015; Zhu et al. 

18 2020). Thus, the understand of how plant photosynthesis responses to the concurrent warming 

19 and precipitation change is necessary for plants better facing future climate change.

20 The high limitation on the plant carbon assimilation capacity under soil water deficient 

21 conditions has been a major reason for plant growth and crop productivity reduction (Hussain et 

22 al. 2021; Nolf et al. 2015). It is widely accepted that there are two ways in which water stress 

23 affects the photosynthesis of plants: one is the stomatal limitations, such as closing the stoma and 

24 lowering the stomatal conductance (Daryanto et al. 2017; Talbi et al. 2020); the other is non-

25 stomatal limitations, such as photosynthetic phosphorylation (Du et al. 2021), regeneration of 

26 ribulose-1,5-bisphosphate (RuBP) (Song et al. 2016a), activation of Rubisco and the synthesis of 

27 ATP (Ashraf & Harris 2013; Hu et al. 2020). The stomatal limitation is generally considered as 

28 the main factor responsible for the reduction of photosynthesis under drought stress environment 

29 (Liu et al. 2005; Song et al. 2020). However, long term of drought stress may lead to the 

30 reduction of chlorophyll content (Bijanzadeh et al. 2022), the content of Rubisco (Gadzinowska 

31 et al. 2021), the maximum Rubisco carboxylation rate and potential maximum rate of electron 

32 transport for RuBP regeneration (Song et al. 2016a), resulting in the decline of the plants' 

33 photosynthetic rate (He et al. 2021; Wang et al. 2019).

34 The photosynthesis of plants is regarded as the most sensitive process to high temperature 

35 stress (Xalxo et al. 2020). High temperature lasting for only a few minutes to several hours will 

36 drastically damage the structure and function of photosynthetic apparatus such as thylakoid 

37 lamella and stroma, decrease the production of ATP, inhibiting a series of enzyme activities, 

38 affect the transport of photosynthetic electrons and reduce the photosynthetic rate finally (Hu et 

39 al. 2020). Heat stress can also cause photosynthesis decline through enhancing the generation of 

40 reactive oxygen species (ROS) (Hao et al. 2019), destroying the function of PSII (Jahan et al. 
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41 2021;Janka et al. 2015) suppressing the synthesis of chloroplast (Song et al. 2016b), and 

42 inhibiting the activity of ribulose1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Perdomo et 

43 al. 2017). In tomato plants, heat stress (40°C) significantly decreased photosynthetic pigment 

44 concentrations and inhibited Rubisco accumulation resulting in a reduction of photosynthetic 

45 efficiency (Parrotta et al. 2020). Based on a 3-year study, Zhong et al. (2014) also reported that 

46 an air temperature elevation of 1.5°C could decreased the net photosynthetic rate of Phragmites 

47 australis by 28%. In contrast, a recent study showed that increase of 4°C significantly increased 

48 the net photosynthesis rate, transpiration rate, leaf temperature and chlorophyll content in leaves 

49 of lettuce by 114.9%, 65.5%, 7.1%and 9.8%, respectively (Ouyang et al. 2020). Although an 

50 emerging pool of knowledge shows that plant photosynthesis was noticeable affected by heat 

51 stress, the mechanism of the photoinhibition caused by high temperature is still need further 

52 research. 

53 Coastal wetlands account for 0.22%-0.34% of global land surface (Fennessy 2014) and act 

54 as “blue carbon” resources due to the relatively high net primary productivity and low organic 

55 matter decomposition rate (Drake et al. 2015; Zhong et al. 2016). It is estimated that 13-17.2 Pg 

56 of carbon were stored in coastal wetlands (Hiraishi et al., 2014). However, coastal wetlands are 

57 also potential source of global greenhouse gases (Hsieh et al. 2020). The climate change 

58 increased the release rate of carbon in the CO2 and CH4 through organic matter decomposition 

59 and decreased the amount of carbon stored in coastal wetlands. It is found that a 1.5°C 

60 temperature enhancement could result in the gas emissions released form wetlands increase by 

61 37.5% (Liu et al. 2020). As plant photosynthesis is the major way of carbon fixation in coastal 

62 wetlands, keep the photosynthesis at a high rate under climate change conditions is essential for 

63 global carbon cycling. Phragmites australis (P. australis) belonging to the Poaceae family, is the 

64 main constructive and dominant plants in coastal wetlands of China and plays an important role 

65 in maintaining the ecosystem function (Guan et al. 2017). Their spatial distribution is mainly 

66 limited by air temperature change and soil water deficit. The research on P. australis's 

67 photosynthetic characteristics in response to rising temperature and changing precipitation 

68 pattern can provide a theoretical basis for dealing with climate change in coastal wetlands. This 

69 main aims of the work were to investigate the photosynthetic responses of P. australis to 

70 precipitation change under elevated temperature conditions. Specifically, three key research 

71 questions were addressed in the paper: (1) Are there any negative or positive influences of 

72 temperature and precipitation change on photosynthetic performance of P. australis? (2) What 

73 are the physiological mechanisms of precipitation change and high temperature affecting the 

74 carbon assimilation of P. australis? (3) What are the protection mechanisms of P. australis to 

75 avoid damage caused by environmental stress?

76 Materials & Methods

77 Plant culture and experimental design
78 The experiment was carried out at the Dezhou University, Shandong Province, China. The 

79 seeds of P. australis and soils were obtained from the costal wetland in Kenli, Dongying, China. 

80 The soil sample site has a northern subtropical marine monsoon climate. The annual average 
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81 temperature and precipitation which obtained from the Kenli Meteorological Station of the China 

82 Meteorological Administration (37°35′N, 118°33′E; elevation 85 m) in the past ten years (2010 - 

83 2019) were 12°C and 552 mm, respectively. About 70-74% of the annual precipitation is 

84 concentrated from July to September.

85 Before sowing in plastic pots, the seeds of P. australis were sterilized by potassium 

86 permanganate solution (0.7%) for 8 min and washed with deionized water for three times. Each 

87 plastic pot (18 cm in height and 20 cm in diameter) was filled with 5.0 kg of dry soil and planted 

88 with ten plants. The experimental soil was paddy fluvo-aquic soil, and the basic physical and 

89 chemical properties of the soil were as follows: soil pH 7.91, organic matter 9.42 g·kg-1, total 

90 nitrogen 0.77 g·kg-1, available phosphorus 5.92 g·kg-1, and available potassium 168.72 g·kg-1. 

91 After the third leaf emerged, the seedlings were thinned to three plants per pot. There were 

92 three precipitation treatments and two temperature treatments were selected for experiment. The 

93 precipitation treatments were set as: average monthly precipitation (July to September) over 10 

94 years (W0); W0 increased by 30% (W+30); W0 decreased by 30% (W-30). The temperature 

95 treatments were set as 26.3/21.6°C (T0) and 30.3/25.6°C (T4). The treatments were set based on 

96 the monthly average temperature and rainfall during P. australis's major growth stage (July to 

97 September) in the past ten years (2010 - 2019). Each treatment and corresponding experiments 

98 were established in triplicates. Totally, 18 pots with healthy plants (three plants per pot) were 

99 randomly selected and placed into two environmental control chambers (RGD-500D3). The size 

100 of environmental control chamber was 750 × 660 × 2050 mm (length × width × height). Growing 

101 conditions in the environmental control chamber were maintained as follows: 390 ppm CO2 

102 concentration, 1000 µmol photons·m-2·s-1 photosynthetic photon flux density, and 14 h 

103 photoperiod per day. All the parameter measurements were conducted after 92 days of plant 

104 growth.

105 Masurements
106 (1) Leaf gas exchanges
107 Three plants from each treatment were randomly chosen from different pots for 

108 measurement. Gas exchange parameters were measured on the healthy and fully expanded leaves 

109 of P. australis with an open gas exchange system (CIRAS-3, PP-system, Hitchin, UK). 

110 Illumination was supplied to the leaves from a red-blue LED light source. The leaf chamber 

111 temperature, CO2 concentration and photosynthetic photon flux density (PPFD) were controlled 

112 at 25°C, 390 ppm and 900 μmol·m-2·s-1, respectively.

113 (2) A/Ci curve
114 The measurement of A/Ci curves was performed on the same leaves used for gas exchange 

115 parameter measurements. A/Ci curve was measured under a light saturation level of 900 μmol·m-

116 2·s-1 PPFD, and estimated using the CO2 response curve of photosynthesis. The CO2 gradients for 

117 A/Ci curves included 390, 200, 100, 50, 390, 600, 800, 1000 μmol·mol-1 levels stepwise. The 

118 analysis of A/Ci curve was conducted with using the plant ecophys R package, which based on 

119 the model of Farquhar et al. (1980).

120 (3) Chlorophyll fluorescence measurements
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121 Three areas of interest at different position of leaf were selected to calculate the 

122 fluorescence parameters. Based on the method described by Song et al. (2016C), the actual PSII 

123 quantum yield (ΦPSII), quantum yield of regulated energy dissipation of PSII (ΦNPQ), and 

124 quantum yield of nonregulated energy dissipation of PSII (ΦNO) were measured using an 

125 imaging-PAM fluorometer (Walz, Effeltrich, Germany). The fluorescence parameters were 

126 calculated using fellow equations described by Lazár et al. (2015):

127 ΦPSII=(Fm'−Fs)/Fm'=ΔF/Fm'

128 ΦNPQ=1−ΦPSII−1/[NPQ+1+qL(Fm/F0−1)]
129 ΦNO=1/[(NPQ+1+qL)(Fm/F0–1)]

130 where Fm is the maximum fluorescence in the dark-adapted state, F0 is the minimum Chl 

131 fluorescence yield, Fm' is the maximum fluorescence yield in the light-adapted state, Fs is the Chl 

132 fluorescence during actinic illumination, qL is the fraction of open PSII centers, NPQ is the non-

133 photochemical quenching.

134  (4) Chlorophyll content
135 The chlorophyll content was measured according to the method described by Hiscox and 

136 Israelstam (1979). Briefly, 0.25 g fresh leaf samples were mashed in 80% acetone (v/v) in a 4°C 

137 refrigerator overnight. After filtered through two-layer nylon net, the extract was then 

138 centrifuged at 15000 g for 5 min to obtain the supernatant. After determining the absorbance of 

139 the supernatant at wavelengths of 663 and 646 nm, the contents of chlorophyll a and b were 

140 calculated according to the equations of Lichtenthaler and Buschmann (2001):

141 Chlorophyll a=12.25 A663 - 2.79 A647

142 Chlorophyll b= 21.50 A647 - 5.10 A663

143 (5) Malondialdehyde (MDA) content
144 The MDA content was measured according to the thiobarbituric acid (TBA) chromogenic 

145 method described by Song et al. (2016b). Briefly, 1.0 g fresh leaf samples were homogenized 

146 with 0.1% trichloroacetic acid (TCA, 2.0 mL, pH 7.0) for 2 h and centrifuged at 15.000g for 10 

147 min. Then, 0.5 mL of supernatant was added to 1.5 mL of TBA. After the mixture was incubated 

148 in a shaking water bath at 90°C for 20 min, the reaction was rapidly stopped by ice-water bath. 

149 These samples were centrifuged at 10.000g for 5 min to obtain the supernatant. The absorbance 

150 of the supernatant was detected at 532, 450, and 600 nm. The amount of MDA was calculated 

151 with the following equation:

152 MDA=6.45×(𝐴532−𝐴600)−0.56×𝐴450

153 Statistical analysis
154 All statistical analyses were performed using SPSS 21.0 (SPSS Institute, Inc., Cary, NC, 

155 USA). Effects of warming and precipitation change were analyzed using one-way analysis of 

156 variance with a Duncan's multiple range test at a 5% probability level. The linear curve fitting 

157 and graphing were performed using Origin 2021 software (Origin Lab, United States).

158 Results

159 Chlorophyll content
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160 Under both two temperature conditions (T0 and T4), the Chl content of P. australis was 

161 significantly affected by precipitation change. It can be seen from Table 1 that, at the condition 

162 of T0, W+30 caused the increase of Chl a, Chl b and Chl a+b content by 25.6%, 33.8% and 31.1%, 

163 respectively, with the Chl a/b ratio decreased by 6.6%. At the same temperature, a decreasing 

164 precipitation (W-30) led to the decline in Chl b and Chl a+b content (10.1% and 6.2%, 

165 respectively) and the increase in Chl a/b ratio (12.2%). At a higher temperature (T4), the 

166 adjustment of precipitation resulted in similar variations in the contents and ratios of Chl 

167 contents. Moreover, under different precipitation conditions (W+30, W0 and W-30), the Chl a, Chl 

168 b and Chl a+b content at the higher temperature (T4) decreased by 3.5%-13.0%, 18.7%-32.0% 

169 and 12.9%-24.2%, respectively, with the Chl a/b ratio increasing by 7.6%-25.3%.

170 MDA content
171 Malondialdehyde (MDA) as a product of lipid peroxidation can be used as a marker for 

172 oxidative stress under environmental stress conditions. The higher MDA content indicates the 

173 stronger cell membrane lipid peroxidation. It can be seen from Fig. 1 that, under both T0 and T4 

174 conditions, W+30 had no significant effect on MDA content (p>0.05). But W-30 led to the 

175 significant increase of MDA by 10.1% under T0 condition and by 9.5% under T4 condition. At 

176 the same time, high temperature also enhanced MDA content. As shown in Figure 1, under 

177 different precipitation conditions (W+30, W0 and W-30), the MDA content in the T4 treatment 

178 groups increased by 5.2%, 6.3% and 5.7%, respectively, compared with the T0 treatment groups.

179 Photosynthetic parameters
180 From Table 2, it was found that at the condition of T0, compared to W0, net CO2 

181 assimilation rate (Pn) in W+30 treatment increased by 32.8% and in W-30 treatment reduced by 

182 18.9%, respectively. The other gas exchange parameters such as stomatal conductance (Gs), 

183 intercellular CO2 concentration (Ci), transpiration rate (Tr) and water use efficiency (WUE) were 

184 not significantly affected by W+30 or W-30. At the condition of T4, the photosynthetic parameters 

185 between W+30 and W0 showed no remarkable difference, while W-30 significantly reduced the 

186 values of WUE, Pn, Gs, Ci and Tr by 25.2%, 52%, 14.1% and 33.0%, respectively. Under all 

187 precipitation conditions, high temperature negatively affected photosynthesis of P. australis and 

188 reduced Pn by 6.6%~17.4%.

189 The change of Pn as a function of increased Ci in the chloroplast can be used to reflect the 

190 biochemical limitations of photosynthesis under high temperature and changing precipitation 

191 conditions. As shown in Table 2, at the condition of T0, W+30 enhanced Vcmax and Jmax by 25.3% 

192 and 60.3%, while W-30 caused the reduction by 34.6% and 8.2%, respectively. At the condition 

193 of T4, W+30 resulted in a significant increase of Vcmax and Jmax by 63.8% and 27.3%, while W-30 

194 caused the reduction by 27.4% and 28.4%, respectively. Under W0 and W-30 conditions, T4 

195 significantly reduced Vcmax by 14.5% and 5.1%, while increased Jmax by 4.7% and 18.4%, 

196 respectively. At the condition of W+30, Vcmax increased by 11.7% and Jmax decreased by 16.9% in 

197 the T4 treatment group.

198 Chlorophyll fluorescence parameter 
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199 The effect of water treatments on ΦPSII, ΦNPQ and ΦNO under two temperature conditios 

200 were shown in Figure 2. Under T0 condition, precipitation change (W+30, W-30) had no 

201 significant effect on ΦPSII (p>0.05), but drastically increased ΦNPQ by 14.9% and 32.3% and 

202 reduced ΦNO by 13.3% and 22.7%, respectively. Under T4 condition, ΦPSII in the W+30 and W-30 

203 treatment groups increased by 8.6% and 6.8%, ΦNO increased by 30.3% and 21.3%, while ΦNPQ 

204 decreased by 25.4% and 18.9%, respectively. Under different precipitation treatments (W+30, W0 

205 and W-30), compared to T0, the change of ΦPSII caused by T4 was 29.6%, -4.1% and 9.3%, the 

206 change of ΦNPQ caused by T4 was -10.6%, 36.8% and -16.0%, and the change of ΦNO caused by 

207 T4 was 5.8%, -29.7% and 11.6%, respectively.

208 Discussion

209 High temperature and precipitation change as two major abiotic stresses always occur 

210 simultaneously, which threaten the sustainability of future crop production and biodiversity 

211 (Alam et al. 2021; Hosseini Sanehkoori et al. 2021; Küsters et al. 2021; Zhang et al. 2018). In 

212 the present study, we found that the positive effects of increased precipitation and the adverse 

213 effects of decreased precipitation on chlorophyll content, CO2 assimilation rate, lipid 

214 peroxidation (as indicated by MDA) and the energy partitioning of PSII were significant. 

215 Meanwhile, high temperature inhibited the positive effects of increased precipitation and 

216 aggravated the adverse effects of decreased precipitation. Similarly, in the studies on Leymus 

217 chinensis (Xu & Zhou 2011), Stipa bungeana (Song et al. 2016c), Ziziphus jujube (Jiang et al. 

218 2020), and Robinia pseudoacacia (Yan et al. 2020), the high temperature combined with severe 

219 drought exacerbated the adverse effects on plant growth and photosynthesis.

220 Plants exposed to environmental stresses, such as drought, extreme temperatures or their 

221 combinations, that tempt several metabolic disparities leading to oxidative damage due to ROS 

222 accumulation, resulting in detrimental secondary effects on plant organelles (Raja et al. 2020; 

223 Vurukonda et al. 2016). ROS buildup in plants can damage cell functions by causing oxidative 

224 damage, resulting in DNA nicking, amino acids and photosynthetic pigments biosynthesis 

225 inhibition, and even cell death (Nath et al. 2016; Raja et al. 2017). MDA content, a result of 

226 ROS mediated lipid peroxidation, is used as biomarker of membrane damage caused by various 

227 abiotic stresses (Morales and Munné-Bosch, 2019). In the present, increased precipitation 

228 showed no significant effect on MDA content in leaves of P. australis, while the decreased 

229 precipitation and elevated temperature remarkable increased the MDA content. The results 

230 suggest precipitation decreased by 30% and temperature elevated by 4°C accelerates MDA 

231 formation, resulting in serious lipid peroxidation (Morales and Munné-Bosch, 2019). Similar 

232 results are found in studies on Solanum lycopersicum (Raja et al. 2020), maize (Naz et al. 2021), 

233 and Echinacea purpurea (Hosseinpour et al. 2020). The increase in the MDA content indicates 

234 that water deficit and high temperature destroy the antioxidant defense system, generate lipid 

235 peroxidation, and cause oxidative burst and excess oxidative damage to the cell membrane in P. 

236 australis plants. The increase in lipid peroxidation is widely reported to cause oxidative damage 

237 to chloroplast organs (Sohag et al., 2020) and leads to chlorophyll degradation (Bagheri et al. 

238 2019). The noticeable reduction of Chl a and Chl b in the W-30 and T4 treatment supports the 

PeerJ reviewing PDF | (2021:10:67054:1:0:NEW 17 Jan 2022)

Manuscript to be reviewed

Valeria Spagnuolo

Valeria Spagnuolo
where is tha main sentence? Rephrase:
Plants exposed to environmental stresses, such as drought, extreme temperatures or their combinations, have to face several metabolic imbalances leading to oxidative damage due to ROS accumulation, resulting in detrimental secondary effects on plant organelles 

Valeria Spagnuolo
conditions

Valeria Spagnuolo

Valeria Spagnuolo

Valeria Spagnuolo
were



239 finding that water deficit and high temperature trigger oxidative damage to the expression of 

240 chlorophyll a-b binding protein gene (Sun et al. 2022) and the synthesis of chlorophylls (Gujjar 

241 et al. 2020), which inevitably leads to a decrease in leaf photosynthetic efficiency (Wang et al. 

242 2019) and plant productivity (Song et al. 2019).

243 The response of photosynthetic capacity to the variation of soil water depends on the 

244 threshold of soil water condition. Lamptey et al. (2020) and Snider et al. (2014) proved that the 

245 photosynthetic activity will be enhanced under moderate soil water condition but be lowered 

246 under excess water or severe water deficit conditions. In the present study, increased 

247 precipitation (W+30) did not exceed the threshold of soil moisture and significantly increased the 

248 value of Pn. This suggests that the precipitation increased by 30% is a moderate soil water 

249 condition for the potential photosynthetic capacity of P. australis. The reduction of Pn at the W-30 

250 condition demonstrated that the severe drought stress can drastically inhibit the photosynthesis of 

251 P. australis. At the same time, previous studies also showed that the photosynthesis and plant 

252 growth will be limited by higher temperature above the optimum point (Rodriguez et al. 2015). 

253 In our study, the reduction of Pn under T4 condition indicated that the temperature 4°C higher 

254 than the ambient temperature (26.3/21.6°C) has exceeded the optimum point and is adversely to 

255 the photosynthesis of P. australis. However, the threshold of soil water condition and the 

256 optimum temperature point for the photosynthesis of P. australis are still unclear and need 

257 further investigation. It is widely accepted that the decline in Pn, Ci, Tr and WUE could be 

258 attributed to decreased Gs under drought and heat stress conditions (Carvalho et al. 2019; Li et 

259 al. 2021; Olorunwa et al. 2021). In this current study, under ambient temperature (T0) condition, 

260 the Gs, Ci, Tr and WUE showed no remarkable differences in different precipitation treatments, 

261 indicating the soil water deficit is not the limiting factor in stomatal openness, water 

262 consumption (transpiration) and utilization for P. australis plants. On the other hand, with the 

263 increasing of temperature (T4), precipitation decreased by 30% caused a remarkable reduction of 

264 Gs, Ci and Tr, suggest that higher temperature exacerbates the detrimental effect of water 

265 shortage, which is in accordance with the studies on Xanthoceras sorbifolium Bunge (Du et al. 

266 2021), Solanum lycopersicum (Raji et al. 2020), and Stipa bungeana (Song et al. 2016c). 

267 Furthermore, drought and heat stress also cause damage to the photosynthetic apparatus as 

268 confirmed by reduced Vcmax and Jmax, as the decline in these two parameters are ascribed to 

269 reducing the active Rubisco number and diminishing the photosynthetic energy during the 

270 process of CO2 assimilation (Olorunwa et al. 2021; Zhuang et al. 2020).

271 The mechanisms of precipitation change affecting the carbon assimilation can be studied by 

272 stomatal limitation and non-stomatal limitation. Song et al. (2020) indicated that the reduction in 

273 photosynthesis of a water-stressed maize was mainly caused by stomatal limitation, whereas Li 

274 et al. (2020) reported that stomatal limitation did not play a major role in the change of 

275 photosynthesis of transgenic tobacco plants. The different results may be attributed to various 

276 responses from species, stress lasting time and stress treatment duration (Mitchell et al. 2008; 

277 Song et al. 2020). In our experiment, to figure out which is the main factor in limiting the 

278 photosynthesis, linear regression analysis was performed to illustrate the relationship of Pn with 
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279 Gs, Vcmax, Jmax, Chl a+b content, Chl a/b ratio and MDA content under T0 and T4 conditions, 

280 respectively (Figure 3). From the linear regression analyses, it was found there is no significant 

281 relationship between Pn and Gs (p>0.05). But Pn had a significantly positive linear correlation 

282 with Vcmax, Jmax and Chl a+b content, as well as a significantly negative linear correlation with 

283 Chl a/b ratio and MDA content. The results indicate that non-stomatal limitation caused by 

284 precipitation change plays a major role in determining the carbon assimilation rate. Similar result 

285 can be found in the research by Xu & Zhou (2011), Song et al. (2016a), and Li et al. (2020). At 

286 the condition of T0, Chl a+b content had the closest relationship with Pn (R2=0.86, Figure 3D) 

287 compared with other non-stomatal limitation factors. This suggests that the effect of increased 

288 precipitation on Chl content plays a major role in determining the carbon assimilation under 

289 ambient temperature condition. At the condition of T4, MDA content had the closest relationship 

290 with Pn (R2=0.81, Figure 3F) compared with other non-stomatal limitation factors. This suggests 

291 that the effect of increased precipitation on lipid peroxidation plays a major role in determining 

292 the carbon assimilation under high temperature condition.

293 In the present study, we found that high temperature induced the stomatal opening (increase 

294 in Gs, Table 2), but resulted in a decrease in carbon assimilation (decrease in Pn, Table 2), which 

295 is consistent with the research on Leymus chinensis by Xu & Zhou (2006). The response 

296 mechanism of plant photosynthesis to temperature can be studied by the balance between Vcmax 

297 and Jmax (And & Sharkey 1982; Song et al. 2016c). Wullschleger (1993) investigated 109 

298 different species and concluded that there was a strong correlation between Vcmax and Jmax, which 

299 means there was a fixed balance relationship between RuBp carboxylation and regeneration in 

300 spite of the species or growth conditions. In our study, Vcmax and Jmax showed a significant linear 

301 relationship under ambient temperature (T0) condition, with the ratio of Jmax to Vcmax being 1.88 

302 (p<0.05, Figure 4A). However, with the increasing of temperature (T4), even though there was 

303 still an obvious linear relationship between Vcmax and Jmax (p<0.05, Figure 4B), the ratio of Jmax 

304 to Vcmax decreased to 1.12. These results indicate that high temperature disrupted the balance 

305 between Vcmax and Jmax, resulting in a negative effect on the photosynthesis of P. australis. 

306 Similar results were also supported by the study of Huang et al (2021).

307 Chlorophyll fluorescence can be used to detect the real photosynthetic behavior of the 

308 whole plant under stress quickly (Bhagooli et al. 2021). Based on this, it is possible to evaluate 

309 both the function of photosynthetic apparatus and the effects of environmental stress on plants. 

310 Environmental stress mainly damages the photosynthetic apparatus of PSⅡ, and PSⅡ will 

311 adjust the rate of electron transport and photochemical efficiency in response to the weakened 

312 ability of CO2 assimilation (Aragón-Gastélum et al. 2020; Hasanuzzaman et al. 2013). The 

313 damage caused by excess light energy to the system will be mitigated by heat dissipation. Water 

314 deficiency and heat stress will cause the inactivation or damage of leaf's PSⅡ reaction center 

315 (He et al. 2021; Mathur et al. 2014). This will lead to the damage of the photosynthetic 

316 apparatus and bring about the photoinhibition, which is consistent with the studies by Farfan-

317 Vignolo & Asard (2012) and Yan et al. (2018). In our present research, precipitation change and 

318 high temperature had a significant effect on the photosynthesis of P. australis. However, how P. 
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319 australis resists those environmental stresses to protect itself is still unknown. To solve this 

320 problem, three fluorescence parameters (ΦPSII, ΦNPQ and ΦNO) based on Lake model were used to 

321 detect the partitioning of absorbed light energy and to explore the protective mechanism in PSⅡ 

322 reaction center (Kramer et al. 2004; Li et al. 2019). Among the three fluorescence parameters, 

323 ΦPSII (absorbed light energy utilized by PSII photochemistry) reflects the linear electron transport 

324 indirectly, ΦNPQ (thermally dissipated via ΔpH and xanthophyll-dependent energy quenching) 

325 represents the yield of dissipation by downregulation, and ΦNO (thermally dissipated via ΔpH 

326 and xanthophyll-dependent energy quenching) reflects the yield of other non-photochemical 

327 losses (García-Sánchez et al. 2012; Nabi et al. 2021). In Figure 2, it was found that precipitation 

328 change and high temperature had no significant effect on the value of ΦPSII, suggesting that heat 

329 dissipation of the excess light energy was dissipated to the extracelular as a form of heat to 

330 protect the photosynthetic apparatus from damage caused by photoinhibitory (Li et al. 2019; 

331 Song et al. 2016c). Moreover, Figure 5 showed that there was a strong relationship (p<0.01) 

332 between ΦPSII and ΦNPQ, and the correlation between ΦPSII and ΦNO were not evident (p>0.05). 

333 This suggests that that the xanthophyll cycle-mediated thermal dissipation plays a major role in 

334 PSII photoprotection under changing precipitation and high temperature conditions, while the 

335 non-regulated quenching mechanism may play a less important role (Demmig-Adams & Adams 

336 2018; Stael et al. 2015). The results are opposite with the findings on plant responses to heat 

337 stress, water deficit and cold stress by other scholars (Dias et al. 2018; Osório et al. 2011; 

338 Savitch et al. 2009; Song et al. 2016b). The possible reason is that P. australis as the dominant 

339 species of coastal wetlands in China has a strong ability in resisting environmental stress by 

340 dissipating excess excitation energy, which cannot be used in PSII photochemistry reaction as 

341 harmless heat through the xanthophyll cycle (Demmig-Adams et al. 1996; Lu et al. 2020; Zhang 

342 et al. 2015).

343 Conclusions

344 In conclusion, the photosynthesis of P. australis during precipitation changing is dependent 

345 on non-stomatal limitation but not stomatal closure, which have a significant negative linear 

346 correlation with Chl a/b ratio and MDA content. At the same time, high temperature causes the 

347 biochemical limitation on photosynthesis, inhibits the positive effects of increased precipitation 

348 and aggravates the adverse effects of drought on photosynthesis of P. australis. Even though 

349 high temperature and drought (precipitation decrease) significantly decrease the carbon 

350 assimilation rate, P. australis still has a strong ability to protect itself from damages by 

351 transforming excess excitation energy into harmless heat. This study highlighted the significant 
352 role of precipitation change in regulating the photosynthetic performance of P. australis under 

353 elevated temperature conditions, which may help us to better understand the mechanisms of 

354 vegetation degradation and provide knowledge basis for the restoration of the vegetation in 

355 climate sensitive regions under the background of global change.
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Table 1(on next page)

Effects of warming and precipitation changes on chlorophyll content in leaves of
Phragmites australis.

Different lowercases indicate significant difference between different precipitation
treatments within the same temperature treatment compared with control (p<0.05).
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Treatment Chl a (mg/g) Chl b (mg/g) Chl a/b (%) Chl a+Chl b (mg/g)

W+30 1.08±0.05 a 1.86±0.08 a 58.2±0.7 b 2.95±0.13 a

W0 0.86±0.04 b 1.39±0.02 b 62.3±1.7 b 2.25±0.06 bT0

W-30 0.86±0.01 b 1.25±0.09 c 69.9±4.7 a 2.11±0.10 b

W+30 0.94±0.01 a 1.51±0.05 a 62.6±2.4 c 2.45±0.04 a

W0 0.83±0.02 b 1.13±0.10 b 74.0±4.4 b 1.96±0.12 bT4

W-30 0.75±0.01 c 0.85±0.04 c 87.6±3.8 a 1.60±0.05 c

1

PeerJ reviewing PDF | (2021:10:67054:1:0:NEW 17 Jan 2022)

Manuscript to be reviewed



Table 2(on next page)

Effects precipitation change on photosynthetic parameters in leaves of Phragmites
australis under ambient temperature (T0) and high temperature (T4) conditions.

Different lowercases indicate significant difference between different precipitation
treatments within the same temperature treatment compared with control (p<0.05).
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Photosynthetic parameters

Treatment
Pn 

(μmol CO2·m
-2·s-

1)

Gs 

(μmol·mol-1)

Ci 

(mol H2O·m2·s-

1)

Tr (mmol·m-

1·s-1)

WUE 

(μmol CO2·mmol 

H2O)

Vcmax 

(μmol·m2·s-

1)

Jmax 

(μmol·m2·s-1)

W+30 11.5±1.0 a 0.18±0.03 a 271±12 a 3.5±0.3 a 3.3±0.3 a 52.0±8.1 a 121.0±23.1 a

W0 8.6±0.4 b 0.14±0.08 a 224±69 a 3.7±1.8 a 2.7±1.3 a 41.5±1.8 b 75.5±11.7 abT0

W-30 7.0±0.7 c 0.15±0.01 a 303±2 a 3.4±0.3 a 2.1±0.4 a 27.1±5.4 c 69.3±18.6 b

W+30 9.5±0.1 a 0.14±0.01 a 267±2 a 3.5±0.1 a 2.7±0.1 a 58.1 ±6.5a 110.6±6.0 a

W0 8.1±0.7 a 0.17±0.03 a 298±15 ab 3.0±0.3 a 2.7±0.01 a 35.4±4.6 b 79.0±4.1 bT4

W-30 6.0±1.2 b 0.08±0.01 b 256±24 b 2.0±0.6 b 3.2±1.3 a 25.7±3.8 b 56.5±10.0 b

1

2
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Figure 1
Effects of warming and precipitation changes on Malondialdehyde content in leaves of
Phragmites australis.

Vertical bars represent ±SD of the mean (n=3), and different letters on the SD bars indicate
significant differences among the all treatments (p < 0.05).
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Figure 2
Effects of warming and precipitation changes onΦPSII (A), ΦNPQ (B ) and ΦNO(C) in leaves of
Phragmites australis.

The horizontal line represents the median value and the open rectangle represents the mean
value (n=9). * p<=0.05, ** p<=0.01, *** p<=0.001.
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Figure 3
Relationship between Pn and (A) Gs, (B) Vcmax, (C) Jmax, (D) Chl a+b, (E) Chl a/b and (F)
MDA content under ambient temperature (T0) and high temperature (T4) conditions.
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Figure 4
Relationship between the maximum rate of RuBP carboxylation (Vcmax) and RuBP
regeneration capacity (Jmax) in leaves of Phragmites australis under warming and
precipitation change conditions.
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Figure 5
Relationship between quantum yields of PSII photochemistry (ΦPSII) and quantum yields
of regulated energy dissipation (ΦNPQ) in leaves of Phragmites australis under warming
and precipitation change conditions.
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