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Background: As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for
plant survival and growth but also plays an important role in global carbon fixation. However,
photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by
future climate change.

Methods: In this study, we examined the photosynthetic responses of Phragmites australis (P. australis)
to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal
regimes (ambient temperature and + 4°C) in environment-controlled chambers.

Results: Our results showed that the net CO, assimilation rate (P,), maximal rate of Rubisco (V,..,),
maximal rate of ribulose-bisphosphate (RuBP) regeneration (J,.,,) and chlorophyll (Chl) content were
enhanced under increased precipitation condition, but were declined drastically under the condition of
water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content
(p>0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high
temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of
drought. The combination of high temperature and water deficit had more detrimental effect on P.
australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a
major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close
relationship with P, (R’=0.86, p<0.01). Under high temperature, P, was ralated to MDA content (R°=0.81,
p<0.01). High temperature disrupted the balance between V_,., and J..., (the ratio of J ., to V...,
decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis.
Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal
dissipation played a major role in PSIlI photoprotection, resulting in no significant change on actual PSlI
quantum vyield (®,g,) under both changing precipitation and high temperature conditions.

Conclusions: Our results highlight the significant role of precipitation change in regulating the
photosynthetic performance of P. australis under elevated temperature conditions, which may
exacerbate the drought-induced primary productivity reduction of P. australis under future climate
scenarios.
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Introduction

Global warming mainly caused by high levels of greenhouse gas emission is predicted to
increase the air temperature by 1.1-6.4°C in the next hundred years (Crowther et al. 2016). At
the same time, extreme precipitation events like drought and waterlogging will occur more
universally than ever (I/PCC, 2019). The changing global climate will not only aggravate the
frequency and intensity of environmental stresses but also pose serious threat on agriculture
production (Hossain et al. 2021, aughan et al. 2018, Xin and & 2021), ecosystem stability
(Kanojia & Dijkwel 2018; White et al. 2021) and terrestrial C and N cycling (Crowther et al.
2016, Li et al. 2021). Among the environmental factors, ambient temperature and soil water
content are two major abiotic factors in the limitation of plant distribution and productivity
(Kiisters et al. 2021, Yan et al. 2020; Kumari et al. 2021). Their change will directly and/or
indirectly influence plant physiological processes, such as resource allocation (Farfan-Vignolo &
Asard 2012; Forbes et al. 2020), net photosynthetic rate (Shao et al. 2021, Yamori et al. 2014),

carboxylation efficiency (Liu et al. 2022), photochemical efficiency of photosystem II (PSII)
(Aragon-Gastéelum et al. 2020, Song et al. 2016a) and water use efficiency (Liu et al. 2019),
which then impact the global carbon cycling. Among all the plant physiological processes,
photosynthesis plays an important role in substance metabolism (Ort et al. 2015, Zhu et al.
2020). Thus, the understand of how plant photosynthesis responses to the concurrent warming
and precipitation change is necessary for plants better facing future climate change.

The high limitation on the plant carbon assimilation capacity under soil water deficient
conditions has been a major reason for plant growth and crop productivity reduction (Hussain et
al. 2021; Nolf et al. 2015). It is widely accepted that there are two ways in which water stress
affects the photosynthesis of plants: one is the stomatal limitations, such as closing the stoma and
lowering the stomatal conductance (Daryanto et al. 2017; Talbi et al. 2020); the other is non-
stomatal limitations, such as photosynthetic phosphorylation (Du et al. 2021), regeneration of
ribulose-1,5-bisphosphate (RuBP) (Song et al. 2016a), activation of Rubisco and the synthesis of
ATP (Ashraf & Harris 2013; Hu et al. 2020). The stomatal limitation is generally considered as
the main factor responsible for the reduction of photosynthesis under drought stress environment
(Liu et al. 2005, Song et al. 2020). However, long term of drought stress may lead to the
reduction of chlorophyll content (Bijanzadeh et al. 2022), the content of Rubisco (Gadzinowska
et al. 2021), the maximum Rubisco carboxylation rate and potential maximum rate of electron
transport for RuBP regeneration (Song et al. 2016a), resulting in the decline of the plants'
photosynthetic rate (He et al. 2021; Wang et al. 2019).

The photosynthesis of plants is regarded as the most sensitive process to high temperature
stress (Xalxo et al. 2020). High temperature lasting for only a few minutes to several hours will
drastically damage the structure and function of photosynthetic apparatus such as thylakoid
lamella and stroma, decrease the production of ATP, inhibiting a series of enzyme activities,
affect the transport of photosynthetic electrons and reduce the photosynthetic rate finally (Hu et
al. 2020). Heat stress can also cause photosynthesis decline through enhancing the generation of
reactive oxygen species (ROS) (Hao et al. 2019), destroying the function of PSII (Jahan et al.
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2021;Janka et al. 2015) suppressing the synthesis of chloroplast (Song et al. 2016b), and
inhibiting the activity of ribulosel,5-bisphosphate carboxylase/oxygenase (Rubisco) (Perdomo et
al. 2017). In tomato plants, heat stress (40°C) significantly decreased photosynthetic pigment
concentrations and inhibited Rubisco accumulation resulting in a reduction of photosynthetic
efficiency (Parrotta et al. 2020). Based on a 3-year study, Zhong et al. (2014) also reported that
an air temperature elevation of 1.5°C could decreased the net photosynthetic rate of Phragmites
australis by 28%. In contrast, a recent study showed that increase of 4°C significantly increased
the net photosynthesis rate, transpiration rate, leaf temperature and chlorophyll content in leaves
of lettuce by 114.9%, 65.5%, 7.1%and 9.8%, respectively (Ouyang et al. 2020). Although an
emerging pool of knowledge shows that plant photosynthesis was noticeable affected by heat
stress, the mechanism of the photoinhibition caused by high temperature is still need further
research.

Coastal wetlands account for 0.22%-0.34% of global land surface (Fennessy 2014) and act
as “blue carbon” resources due to the relatively high net primary productivity and low organic
matter decomposition rate (Drake et al. 2015; Zhong et al. 2016). It is estimated that 13-17.2 Pg
of carbon were stored in coastal wetlands (Hiraishi et al., 2014). However, coastal wetlands are
also potential source of global greenhouse gases (Hsieh et al. 2020). The climate change
increased the release rate of carbon in the CO, and CH,4 through organic matter decomposition
and decreased the amount of carbon stored in coastal wetlands. It is found that a 1.5°C
temperature enhancement could result in the gas emissions released form wetlands increase by
37.5% (Liu et al. 2020). As plant photosynthesis is the major way of carbon fixation in coastal
wetlands, keep the photosynthesis at a high rate under climate change conditions is essential for
global carbon cycling. Phragmites australis (P. australis) belonging to the Poaceae family, is the
main constructive and dominant plants in coastal wetlands of China and plays an important role
in maintaining the ecosystem function (Guan et al. 2017). Their spatial distribution is mainly
limited by air temperature change and soil water deficit. The research on P. australis's
photosynthetic characteristics in response to rising temperature and changing precipitation
pattern can provide a theoretical basis for dealing with climate change in coastal wetlands. This
main aims of the work were to investigate the photosynthetic responses of P. australis to
precipitation change under elevated temperature conditions. Specifically, three key research
questions were addressed in the paper: (1) Are there any negative or positive influences of
temperature and precipitation change on photosynthetic performance of P. australis? (2) What
are the physiological mechanisms of precipitation change and high temperature affecting the
carbon assimilation of P. australis? (3) What are the protection mechanisms of P. australis to
avoid damage caused by environmental stress?

Materials & Methods

Plant culture and experimental design

The experiment was carried out at the Dezhou University, Shandong Province, China. The
seeds of P. australis and soils were obtained from the costal wetland in Kenli, Dongying, China.
The soil sample site has a northern subtropical marine monsoon climate. The annual average
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temperature and precipitation which obtained from the Kenli Meteorological Station of the China
Meteorological Administration (37°35'N, 118°33'E; elevation 85 m) in the past ten years (2010 -
2019) were 12°C and 552 mm, respectively. About 70-74% of the annual precipitation is
concentrated from July to September.

Before sowing in plastic pots, the seeds of P. australis were sterilized by potassium
permanganate solution (0.7%) for 8 min and washed with deionized water for three times. Each
plastic pot (18 cm in height and 20 cm in diameter) was filled with 5.0 kg of dry soil and planted
with ten plants. The experimental soil was paddy fluvo-aquic soil, and the basic physical and
chemical properties of the soil were as follows: soil pH 7.91, organic matter 9.42 g-kg-!, total
nitrogen 0.77 g-kg-!, available phosphorus 5.92 g-kg'!, and available potassium 168.72 g-kg-!.

After the third leaf emerged, the seedlings were thinned to three plants per pot. There were
three precipitation treatments and two temperature treatments were selected for experiment. The
precipitation treatments were set as: average monthly precipitation (July to September) over 10
years (Wy); WO increased by 30% (W.30); WO decreased by 30% (W _3¢). The temperature
treatments were set as 26.3/21.6°C (T,) and 30.3/25.6°C (T,). The treatments were set based on
the monthly average temperature and rainfall during P. australis's major growth stage (July to
September) in the past ten years (2010 - 2019). Each treatment and corresponding experiments
were established in triplicates. Totally, 18 pots with healthy plants (three plants per pot) were
randomly selected and placed into two environmental control chambers (RGD-500D3). The size
of environmental control chamber was 750 x 660 x 2050 mm (length x width % height). Growing
conditions in the environmental control chamber were maintained as follows: 390 ppm CO,
concentration, 1000 pmol photons-m2-s! photosynthetic photon flux density, and 14 h
photoperiod per day. All the parameter measurements were conducted after 92 days of plant
growth.

Masurements
(1) Leaf gas exchanges

Three plants from each treatment were randomly chosen from different pots for
measurement. Gas exchange parameters were measured on the healthy and fully expanded leaves
of P. australis with an open gas exchange system (CIRAS-3, PP-system, Hitchin, UK).
[llumination was supplied to the leaves from a red-blue LED light source. The leaf chamber
temperature, CO, concentration and photosynthetic photon flux density (PPFD) were controlled
at 25°C, 390 ppm and 900 pmol-m2-s’!, respectively.

(2) A/C; curve

The measurement of A/C; curves was performed on the same leaves used for gas exchange
parameter measurements. A/C; curve was measured under a light saturation level of 900 pmol-m-
2.5 PPFD, and estimated using the CO, response curve of photosynthesis. The CO, gradients for
A/C; curves included 390, 200, 100, 50, 390, 600, 800, 1000 pmol-mol-! levels stepwise. The
analysis of 4/C; curve was conducted with using the plant ecophys R package, which based on
the model of Farquhar et al. (1980).

(3) Chlorophyll fluorescence measurements
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Three areas of interest at different position of leaf were selected to calculate the
fluorescence parameters. Based on the method described by Song et al. (2016C), the actual PSII
quantum yield (@psy1), quantum yield of regulated energy dissipation of PSII (@xpq), and
quantum yield of nonregulated energy dissipation of PSII (@yo) were measured using an
imaging-PAM fluorometer (Walz, Effeltrich, Germany). The fluorescence parameters were
calculated using fellow equations described by Lazar et al. (2015):

Dpsi=(Fin'—F)/Fo'=AF/Fy,

Dnpo=1—~DPpsi—1/[NPO+1+qL(Fi/Fo—1)]

Dno=1/[(NPO+1+gL)(F/Fo—1)]

where F, is the maximum fluorescence in the dark-adapted state, /) is the minimum Chl
fluorescence yield, F},' is the maximum fluorescence yield in the light-adapted state, F is the Chl
fluorescence during actinic illumination, gL is the fraction of open PSII centers, NPQ is the non-
photochemical quenching.

(4) Chlorophyll content

The chlorophyll content was measured according to the method described by Hiscox and
Israelstam (1979). Briefly, 0.25 g fresh leaf samples were mashed in 80% acetone (v/v) in a 4°C
refrigerator overnight. After filtered through two-layer nylon net, the extract was then
centrifuged at 15000 g for 5 min to obtain the supernatant. After determining the absorbance of
the supernatant at wavelengths of 663 and 646 nm, the contents of chlorophyll a and b were
calculated according to the equations of Lichtenthaler and Buschmann (2001):

Chlorophyll a=12.25 Age; - 2.79 A7

Chlorophyll b=21.50 Ags7- 5.10 Ages
(5) Malondialdehyde (MDA) content
The MDA content was measured according to the thiobarbituric acid (TBA) chromogenic
method described by Song et al. (2016b). Briefly, 1.0 g fresh leaf samples were homogenized
with 0.1% trichloroacetic acid (TCA, 2.0 mL, pH 7.0) for 2 h and centrifuged at 15.000g for 10
min. Then, 0.5 mL of supernatant was added to 1.5 mL of TBA. After the mixture was incubated
in a shaking water bath at 90°C for 20 min, the reaction was rapidly stopped by ice-water bath.
These samples were centrifuged at 10.000g for 5 min to obtain the supernatant. The absorbance
of the supernatant was detected at 532, 450, and 600 nm. The amount of MDA was calculated
with the following equation:

MDA=6.45%(A532—A600)—0.56xA450
Statistical analysis

All statistical analyses were performed using SPSS 21.0 (SPSS Institute, Inc., Cary, NC,
USA). Effects of warming and precipitation change were analyzed using one-way analysis of
variance with a Duncan's multiple range test at a 5% probability level. The linear curve fitting
and graphing were performed using Origin 2021 software (Origin Lab, United States).

Results

Chlorophyll content
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Under both two temperature conditions (T, and Ty), the Chl content of P. australis was
significantly affected by precipitation change. It can be seen from Table 1 that, at the condition
of Ty, W.3¢ caused the increase of Chl a, Chl b and Chl a+b content by 25.6%, 33.8% and 31.1%,
respectively, with the Chl a/b ratio decreased by 6.6%. At the same temperature, a decreasing
precipitation (W 30) led to the decline in Chl b and Chl a+b content (10.1% and 6.2%,
respectively) and the increase in Chl a/b ratio (12.2%). At a higher temperature (T4), the
adjustment of precipitation resulted in similar variations in the contents and ratios of Chl
contents. Moreover, under different precipitation conditions (W39, Wy and W 3), the Chl a, Chl
b and Chl a+b content at the higher temperature (T,) decreased by 3.5%-13.0%, 18.7%-32.0%
and 12.9%-24.2%, respectively, with the Chl a/b ratio increasing by 7.6%-25.3%.

MDA content

Malondialdehyde (MDA) as a product of lipid peroxidation can be used as a marker for
oxidative stress under environmental stress conditions. The higher MDA content indicates the
stronger cell membrane lipid peroxidation. It can be seen from Fig. 1 that, under both T, and T,
conditions, W30 had no significant effect on MDA content (p>0.05). But W-3 led to the
significant increase of MDA by 10.1% under T, condition and by 9.5% under T4 condition. At
the same time, high temperature also enhanced MDA content. As shown in Figure 1, under
different precipitation conditions (W.39, Wy and W_3y), the MDA content in the T4 treatment
groups increased by 5.2%, 6.3% and 5.7%, respectively, compared with the T, treatment groups.
Photosynthetic parameters

From Table 2, it was found that at the condition of Ty, compared to Wy, net CO,
assimilation rate (P,) in W.3( treatment increased by 32.8% and in W 3, treatment reduced by
18.9%, respectively. The other gas exchange parameters such as stomatal conductance (Gy),
intercellular CO, concentration (C;), transpiration rate (7;) and water use efficiency (WUE) were
not significantly affected by W3, or W_3. At the condition of Ty, the photosynthetic parameters
between W3y and W, showed no remarkable difference, while W 3, significantly reduced the
values of WUE, P,, G, C; and T; by 25.2%, 52%, 14.1% and 33.0%, respectively. Under all
precipitation conditions, high temperature negatively affected photosynthesis of P. australis and
reduced P, by 6.6%~17.4%.

The change of P, as a function of increased C; in the chloroplast can be used to reflect the
biochemical limitations of photosynthesis under high temperature and changing precipitation
conditions. As shown in Table 2, at the condition of Ty, W3, enhanced V .x and Jp. by 25.3%
and 60.3%, while W _3, caused the reduction by 34.6% and 8.2%, respectively. At the condition
of T4, W3 resulted in a significant increase of V. and J.x by 63.8% and 27.3%, while W 3
caused the reduction by 27.4% and 28.4%, respectively. Under W, and W _3, conditions, T4
significantly reduced V. by 14.5% and 5.1%, while increased J,,,x by 4.7% and 18.4%,
respectively. At the condition of W3¢, Vemax increased by 11.7% and Jy,.x decreased by 16.9% in
the T, treatment group.

Chlorophyll fluorescence parameter

Peer] reviewing PDF | (2021:10:67054:1:0:NEW 17 Jan 2022)



Peer]

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

conditions

The effect of water treatments on @pgy;, Pnpg and Pno under two temperature conditios
were shown in Figure 2. Under T, condition, precipitation change (W.39, W_3) had no
significant effect on @Ppgyy (p>0.05), but drastically increased @npg by 14.9% and 32.3% and
reduced @no by 13.3% and 22.7%, respectively. Under T4 condition, @pgyy in the W39 and W 3
treatment groups increased by 8.6% and 6.8%, ®@o increased by 30.3% and 21.3%, while @npq
decreased by 25.4% and 18.9%, respectively. Under different precipitation treatments (W39, W
and W 30), compared to T, the change of ®@pg caused by T4 was 29.6%, -4.1% and 9.3%, the
change of ®@ypq caused by T4 was -10.6%, 36.8% and -16.0%, and the change of ®yo caused by
T4 was 5.8%, -29.7% and 11.6%, respectively.

Discussion

High temperature and precipitation change as two major abiotic stresses always occur
simultaneously, which threaten the sustainability of future crop production and biodiversity
(Alam et al. 2021; Hosseini Sanehkoori et al. 2021, Kiisters et al. 2021; Zhang et al. 2018). In
the present study, we found that the positive effects of increased precipitation and the adverse
effects of decreased precipitation on chlorophyll content, CO, assimilation rate, lipid
peroxidation (as indicated by MDA) and the energy partitioning of PSII were significant.
Meanwhile, high temperature inhibited the positive effects of increased precipitation and
aggravated the adverse effects of decreased precipitation. Similarly, in the studies on Leymus
chinensis (Xu & Zhou 2011), Stipa bungeana (Song et al. 2016¢), Ziziphus jujube (Jiang et al.
2020), and Robinia pseudoacacia (Yan et al. 2020), the high temperature combined with severe
drought exacerbated the adverse effects on plant growth and photosynthesis.

Plants exposed to environmental stresses, such as drought, extreme temperatures or their
combinations, that tempt several metabolic disparities leading to oxidative damage due to ROS
accumulation, resulting in detrimental secondary eftects on plant organelles (Raja et al. 2020;
Vurukonda et al. 2016). ROS buildup in plants can damage cell functions by causing oxidative
damage, resulting in DNA nicking, amino acids and photosynthetic pigments biosynthesis
inhibition, and even cell death (Nath et al. 2016, Raja et al. 2017). MDA content, a result of
ROS mediated lipid peroxidation, is used as biomarker of membrane damage caused by various
abiotic stresses (Morales and Munné-Bosch, 2019). In the present, increased precipitation
showed no significant effect on MDA content in leaves of P. australis, while the decreased
precipitation and elevated temperature remarkable increased the MDA content. The results
suggest precipitation decreased by 30% and temperature elevated by 4°C accelerates MDA
formation, resulting in serious lipid peroxidation (Morales and Munné-Bosch, 2019). Similar
results aré found in studies on Solanum lycopersicum (Raja et al. 2020), maize (Naz et al. 2021), were
and Echinacea purpurea (Hosseinpour et al. 2020). The increase in the MDA content indicates
that water deficit and high temperature destroy the antioxidant defense system, generate lipid
peroxidation, and cause oxidative burst and excess oxidative damage to the cell membrane in P.
australis plants. The increase in lipid peroxidation is widely reported to cause oxidative damage
to chloroplast organs (Sohag et al., 2020) and leads to chlorophyll degradation (Bagheri et al.
2019). The noticeable reduction of Chl a and Chl b in the W 3y and T, treatment supports the
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finding that water deficit and high temperature trigger oxidative damage to the expression of
chlorophyll a-b binding protein gene (Sun et al. 2022) and the synthesis of chlorophylls (Gujjar
et al. 2020), which inevitably leads to a decrease in leaf photosynthetic efficiency (Wang et al.
2019) and plant productivity (Song et al. 2019).

The response of photosynthetic capacity to the variation of soil water depends on the
threshold of soil water condition. Lamptey et al. (2020) and Snider et al. (2014) proved that the
photosynthetic activity will be enhanced under moderate soil water condition but be lowered
under excess water or severe water deficit conditions. In the present study, increased
precipitation (W.30) did not exceed the threshold of soil moisture and significantly increased the
value of P,. This suggests that the precipitation increased by 30% is a moderate soil water
condition for the potential photosynthetic capacity of P. australis. The reduction of P, at the W 3
condition demonstrated that the severe drought stress can drastically inhibit the photosynthesis of
P. australis. At the same time, previous studies also showed that the photosynthesis and plant
growth will be limited by higher temperature above the optimum point (Rodriguez et al. 2015).
In our study, the reduction of P, under T, condition indicated that the temperature 4°C higher
than the ambient temperature (26.3/21.6°C) has exceeded the optimum point and is adversely to
the photosynthesis of P. australis. However, the threshold of soil water condition and the
optimum temperature point for the photosynthesis of P. australis are still unclear and need
further investigation. It is widely accepted that the decline in P, C;, 7, and WUE could be
attributed to decreased G under drought and heat stress conditions (Carvalho et al. 2019; Li et
al. 2021, Olorunwa et al. 2021). In this euvrrent study, under ambient temperature (T,) condition,
the G, C;, T, and WUE showed no remarkable differences in different precipitation treatments,
indicating the soil water deficit is not the limiting factor in stomatal openness, water
consumption (transpiration) and utilization for P. australis plants. On the other hand, with the
increasing of temperature (T4), precipitation decreased by 30% caused a remarkable reduction of
G, Cyand T, sifé’gegisshtn%hat higher temperature exacerbates the detrimental effect of water
shortage, which is in accordance with the studies on Xanthoceras sorbifolium Bunge (Du et al.
2021), Solanum lycopersicum (Raji et al. 2020), and Stipa bungeana (Song et al. 2016c¢).
Furthermore, drought and heat stress also cause damage to the photosynthetic apparatus as
confirmed by reduced V. and Jiax, as the decline in these two parameters are ascribed to
reducing the active Rubisco number and diminishing the photosynthetic energy during the
process of CO, assimilation (Olorunwa et al. 2021; Zhuang et al. 2020).

The mechanisms of precipitation change affecting the carbon assimilation can be studied by
stomatal limitation and non-stomatal limitation. Song et al. (2020) indicated that the reduction in
photosynthesis of a water-stressed maize was mainly caused by stomatal limitation, whereas Li
et al. (2020) reported that stomatal limitation did not play a major role in the change of
photosynthesis of transgenic tobacco plants. The different results may be attributed to various
responses from species, Stressilastingitime and stressitreatment:duration (Mitchell et al. 2008,
Song et al. 2020). In our experiment, to figure out which is the main factor in limiting the
photosynthesis, linear regression analysis was performed to illustrate the relationship of P, with
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Gy, Vemaxs Jmax, Chl a+b content, Chl a/b ratio and MDA content under T, and T4 conditions,
respectively (Figure 3). From the linear regression analyses, it was found there is no significant
relationship between P, and G (p>0.05). But P, had a significantly positive linear correlation
with Vo nax, Jmax and Chl a+b content, as well as a significantly negative linear correlation with
Chl a/b ratio and MDA content. The results indicate that non-stomatal limitation caused by
precipitation change plays a major role in determining the carbon assimilation rate. Similar result
can be found in the research by Xu & Zhou (2011), Song et al. (2016a), and Li et al. (2020). At
the condition of Ty, Chl a+b content had the closest relationship with P, (R?>=0.86, Figure 3D)
compared with other non-stomatal limitation factors. This suggests that the effect of increased
precipitation on Chl content plays a major role in determining the carbon assimilation under
ambient temperature condition. At the condition of T4, MDA content had the closest relationship
with P, (R?>=0.81, Figure 3F) compared with other non-stomatal limitation factors. This suggests
that the effect of increased precipitation on lipid peroxidation plays a major role in determining
the carbon assimilation under high temperature condition.

In the present study, we found that high temperature induced the stomatal opening (increase
in G, Table 2), but resulted in a decrease in carbon assimilation (decrease in P,, Table 2), which
is consistent with the research on Leymus chinensis by Xu & Zhou (2006). The response
mechanism of plant photosynthesis to temperature can be studied by the balance between Vax
and Jyax (And & Sharkey 1982; Song et al. 2016c). Wullschleger (1993) investigated 109
different species and concluded that there was a strong correlation between Ve yax and Ji.x, which
means there was a fixed balance relationship between RuBp carboxylation and regeneration in
spite of the species or growth conditions. In our study, Vy.x and Ji,.x showed a significant linear
relationship under ambient temperature (T,) condition, with the ratio of J.x to Vemax being 1.88
(»<0.05, Figure 4A). However, with the increasing of temperature (T,4), even though there was
still an obvious linear relationship between V.x and Jiax (<0.05, Figure 4B), the ratio of Jp.x
to Vemax decreased to 1.12. These results indicate that high temperature disrupted the balance
between V. and Jiax, resulting in a negative effect on the photosynthesis of P. australis.
Similar results were also supported by the study of Huang et al (2021).

Chlorophyll fluorescence can be used to detect the real photosynthetic behavior of the
whole plant under stress quickly (Bhagooli et al. 2021). Based on this, it is possible to evaluate
both the function of photosynthetic apparatus and the effects of environmental stress on plants.
Environmental stress mainly damages the photosynthetic apparatus of PSII, and PS IT will
adjust the rate of electron transport and photochemical efficiency in response to the weakened
ability of CO, assimilation (4Aragon-Gastélum et al. 2020; Hasanuzzaman et al. 2013). The
damage caused by excess light energy to the system will be mitigated by heat dissipation. Water
deficiency and heat stress will cause the inactivation or damage of leaf's PS I reaction center
(He et al 2021; Mathur et al. 2014). This will lead to the damage of the photosynthetic
apparatus and bring about the photoinhibition, which is consistent with the studies by Farfan-
Vignolo & Asard (2012) and Yan et al. (2018). In our present research, precipitation change and
high temperature had a significant effect on the photosynthesis of P. australis. However, how P.
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australis resists those environmental stresses to protect itself is still unknown. To solve this
problem, three fluorescence parameters (@psy;, Prnpg and Pno) based on Lake model were used to

detect the partitioning of absorbed light energy and to explore the protective mechanism in PS II
reaction center (Kramer et al. 2004, Li et al. 2019). Among the three fluorescence parameters,
®pg; (absorbed light energy utilized by PSII photochemistry) reflects the linear electron transport
indirectly, @npq (thermally dissipated via ApH and xanthophyll-dependent energy quenching)
represents the yield of dissipation by downregulation, and @y (thermally dissipated via ApH
and xanthophyll-dependent energy quenching) reflects the yield of other non-photochemical
losses (Garcia-Sanchez et al. 2012; Nabi et al. 2021). In Figure 2, it was found that precipitation
change and high temperature had no significant effect on the value of @pg;, suggesting that heat
dissipation of the excess light energy was dissipated to the extracelular as a form of heat to
protect the photosynthetic apparatus from damage caused by AT (Lietal 2019;
Song et al. 2016¢c). Moreover, Figure 5 showed that there was a strong relationship (p<0.01)
between Ppgy; and Pypg, and the correlation between Ppgy; and Pyo were not evident (p>0.05).
This suggests that that the xanthophyll cycle-mediated thermal dissipation plays a major role in
PSII photoprotection under changing precipitation and high temperature conditions, while the
non-regulated quenching mechanism may play a less important role (Demmig-Adams & Adams
2018; Stael et al. 2015). The results are opposite with the findings on plant responses to heat
stress, water deficit and cold stress by other scholars (Dias et al. 2018; Osorio et al. 2011,
Savitch et al. 2009; Song et al. 2016b). The possible reason is that P. australis as the dominant
species of coastal wetlands in China has a strong ability in resisting environmental stress by ---China, having...
dissipating excess excitation energy, which cannot be used in PSII photochemistry reaction as
harmless heat through the xanthophyll cycle (Demmig-Adams et al. 1996, Lu et al. 2020; Zhang
etal. 2015).
Conclusions

In conclusion, the photosynthesis of P. australis during precipitation changing is dependent
on non-stomatal limitation but not stomatal closure, which have a significant negative linear
correlation with Chl a/b ratio and MDA content. At the same time, high temperature causes the
biochemical limitation on photosynthesis, inhibits the positive effects of increased precipitation
and aggravates the adverse effects of drought on photosynthesis of P. australis. Even though
high temperature and drought (precipitation decrease) significantly decrease the carbon
assimilation rate, P. australis still has a strong ability to protect itself from damages by
transforming excess excitation energy into harmless heat. This study highlighted the significant
role of precipitation change in regulating the photosynthetic performance of P. australis under
elevated temperature conditions, which may help us to better understand the mechanisms of
vegetation degradation and provide knowledge basis for the restoration of the vegetation in
climate sensitive regions under the background of global change.
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Table 1l(on next page)

Effects of warming and precipitation changes on chlorophyll content in leaves of
Phragmites australis.

Different lowercases indicate significant difference between different precipitation

treatments within the same temperature treatment compared with control (p<0.05).
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Treatment Chla (mg/g) Chlb (mg/g) Chla/b (%) Chla+Chlb (mg/g)
Wi 1.08+0.05a  1.86+0.08 a 58.2+0.7 b 2.95+0.13 a

Ty Wy  0.86£0.04b  1.39+£0.02 b 62.3£1.7b 2.25+0.06 b
Wi;o  0.86£0.01b  1.25+0.09 ¢ 69.9+4.7 a 2.11£0.10 b
Wi 0.94+0.01a 1.51+£0.05a 62.6£2.4 ¢ 2.45+0.04 a

T4 Wy  0.83£0.02b  1.13£0.10 b 74.0+4.4 b 1.96+0.12 b
Wi 0.75£0.01 ¢ 0.85+0.04 ¢ 87.6+£3.8 a 1.60+0.05 ¢
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Table 2(on next page)

Effects precipitation change on photosynthetic parameters in leaves of Phragmites
australis under ambient temperature (T,) and high temperature (T4) conditions.

Different lowercases indicate significant difference between different precipitation

treatments within the same temperature treatment compared with control (p<0.05).
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Photosynthetic parameters

Pn i WUE chax
Treatment G, T, (mmol-m- Jmax
(umol CO,'m2s (mol H,O'm?*s (nmol CO, mmol (umol-m?-s
(umol-mol1) L.g1) (umol-m?2-s)
D) " H,0) D)
Wz 11.5t1.0a 0.18+0.03 a 271+12 a 35403 a 33+03a 52.0+£8.1 a 121.0+£23.1 a
To Wo 8.6£0.4 b 0.14+0.08 a 224+69 a 3. 7418 a 2713 a 41.5+1.8b 75.5+£11.7 ab
W30 7.0£0.7 ¢ 0.15+0.01 a 303+2 a 34+03a 21404 a 27.1£54 ¢ 69.3£18.6 b
Wiz 9.5+0.1 a 0.14+0.01 a 26712 a 3.5+40.1a 2.740.1 a 58.1 £6.5a 110.6+6.0 a
T4 Wo 8.1£0.7 a 0.17+0.03 a 298+15 ab 3.0+0.3 a 2.7+£0.01 a 354+4.6 b 79.0+4.1b
W30 6.0£1.2b 0.08+0.01 b 256+24 b 2.0+£0.6 b 32+13a 25.7+£3.8 b 56.5£10.0 b
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Figure 1

Effects of warming and precipitation changes on Malondialdehyde content in leaves of
Phragmites australis.

Vertical bars represent £SD of the mean (n=3), and different letters on the SD bars indicate

significant differences among the all treatments (p < 0.05).
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Figure 2

Effects of warming and precipitation changes on®,, (A), @, (B ) and @,,(C) in leaves of
Phragmites australis.

The horizontal line represents the median value and the open rectangle represents the mean

value (n=9). * p<=0.05, * p<=0.01, *** p<=0.001.
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Figure 3

Relationship between P, and (A) G, (B) V ..« (C) J..x (D) Chl a+b, (E) Chl a/b and (F)
MDA content under ambient temperature (T,) and high temperature (T4) conditions.
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Figure 4

Relationship between the maximum rate of RuBP carboxylation (V,,,.) and RuBP
regeneration capacity (/,..,) in leaves of Phragmites australis under warming and
precipitation change conditions.
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Figure 5

Relationship between quantum yields of PSIl photochemistry (®,,) and quantum yields

of requlated energy dissipation (®,,,) in leaves of Phragmites australis under warming

and precipitation change conditions.
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