

Effect of precipitation change on the photosynthetic performance of *Phragmites australis* under elevated temperature conditions

Linhong Teng 1, Hanyu Liu 1, Xiaonan Chu 1, Xiliang Song Corresp., 2, Lianhui Shi Corresp. 2

Corresponding Authors: Xiliang Song, Lianhui Shi Email address: sxl0424@126.com, shilh@sdau.edu.cn

Background: As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for plant survival and growth but also plays an important role in global carbon fixation. However, photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by future climate change.

Methods: In this study, we examined the photosynthetic responses of *Phragmites australis* (P. australis) to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal regimes (ambient temperature and + 4°C) in environment-controlled chambers.

Results: Our results showed that the net CO_2 assimilation rate (P_n) , maximal rate of Rubisco (V_{cmax}) , maximal rate of ribulose-bisphosphate (RuBP) regeneration (J_{max}) and chlorophyll (Chl) content were enhanced under increased precipitation condition, but were declined drastically under the condition of water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content (p>0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of drought. The combination of high temperature and water deficit had more detrimental effect on P. australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close relationship with P_n ($R^2=0.86$, p<0.01). Under high temperature, P_n was ralated to MDA content ($R^2=0.81$, p<0.01). High temperature disrupted the balance between V_{cmax} and J_{max} (the ratio of J_{max} to V_{cmax} decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis. Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII quantum yield (Φ_{psin}) under both changing precipitation and high temperature conditions.

Conclusions: Our results highlight the significant role of precipitation change in regulating the photosynthetic performance of *P. australis* under elevated temperature conditions, which may exacerbate the drought-induced primary productivity reduction of *P. australis* under future climate scenarios.

Dezhou University, Dezhou, China

² Shandong Agricultural University, Taian, China

Introduction

Global warming mainly caused by high levels of greenhouse gas emission is predicted to increase the air temperature by 1.1-6.4°C in the next hundred years (Crowther et al. 2016). At the same time, extreme precipitation events like drought and waterlogging will occur more universally than ever (IPCC, 2019). The changing global climate will not only aggravate the frequency and intensity of environmental stresses but also pose serious threat on agriculture production (Hossain et al. 2021; aughan et al. 2018; Xin and & 2021), ecosystem stability (Kanojia & Dijkwel 2018; White et al. 2021) and terrestrial C and N cycling (Crowther et al. 2016; Li et al. 2021). Among the environmental factors, ambient temperature and soil water content are two major abiotic factors in the limitation of plant distribution and productivity (Küsters et al. 2021; Yan et al. 2020; Kumari et al. 2021). Their change will directly and/or indirectly influence plant physiological processes, such as resource allocation (Farfan-Vignolo & Asard 2012; Forbes et al. 2020), net photosynthetic rate (Shao et al. 2021; Yamori et al. 2014), carboxylation efficiency (Liu et al. 2022), photochemical efficiency of photosystem II (PSII) (Aragón-Gastélum et al. 2020; Song et al. 2016a) and water use efficiency (Liu et al. 2019), which then impact the global carbon cycling. Among all the plant physiological processes, photosynthesis plays an important role in substance metabolism (Ort et al. 2015; Zhu et al. 2020). Thus, the understand of how plant photosynthesis responses to the concurrent warming and precipitation change is necessary for plants better facing future climate change.

The high limitation on the plant carbon assimilation capacity under soil water deficient conditions has been a major reason for plant growth and crop productivity reduction (*Hussain et al. 2021; Nolf et al. 2015*). It is widely accepted that there are two ways in which water stress affects the photosynthesis of plants: one is the stomatal limitations, such as closing the stoma and lowering the stomatal conductance (*Daryanto et al. 2017; Talbi et al. 2020*); the other is non-stomatal limitations, such as photosynthetic phosphorylation (*Du et al. 2021*), regeneration of ribulose-1,5-bisphosphate (RuBP) (*Song et al. 2016a*), activation of Rubisco and the synthesis of ATP (*Ashraf & Harris 2013; Hu et al. 2020*). The stomatal limitation is generally considered as the main factor responsible for the reduction of photosynthesis under drought stress environment (*Liu et al. 2005; Song et al. 2020*). However, long term of drought stress may lead to the reduction of chlorophyll content (*Bijanzadeh et al. 2022*), the content of Rubisco (*Gadzinowska et al. 2021*), the maximum Rubisco carboxylation rate and potential maximum rate of electron transport for RuBP regeneration (*Song et al. 2016a*), resulting in the decline of the plants' photosynthetic rate (*He et al. 2021; Wang et al. 2019*).

The photosynthesis of plants is regarded as the most sensitive process to high temperature stress (*Xalxo et al. 2020*). High temperature lasting for only a few minutes to several hours will drastically damage the structure and function of photosynthetic apparatus such as thylakoid lamella and stroma, decrease the production of ATP, inhibiting a series of enzyme activities, affect the transport of photosynthetic electrons and reduce the photosynthetic rate finally (*Hu et al. 2020*). Heat stress can also cause photosynthesis decline through enhancing the generation of reactive oxygen species (ROS) (*Hao et al. 2019*), destroying the function of PSII (*Jahan et al.*

54

55

56

57 58

59

60

61 62

63

64

65

66 67

68

69

70 71

72

73

74 75

76

77

78

79

80

41 2021; Janka et al. 2015) suppressing the synthesis of chloroplast (Song et al. 2016b), and inhibiting the activity of ribulose1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Perdomo et 42 al. 2017). In tomato plants, heat stress (40°C) significantly decreased photosynthetic pigment 43 concentrations and inhibited Rubisco accumulation resulting in a reduction of photosynthetic 44 45 efficiency (Parrotta et al. 2020). Based on a 3-year study, Zhong et al. (2014) also reported that an air temperature elevation of 1.5°C could decreased the net photosynthetic rate of *Phragmites* 46 australis by 28%. In contrast, a recent study showed that increase of 4°C significantly increased 47 the net photosynthesis rate, transpiration rate, leaf temperature and chlorophyll content in leaves 48 of lettuce by 114.9%, 65.5%, 7.1% and 9.8%, respectively (*Ouyang et al. 2020*). Although an 49 50 emerging pool of knowledge shows that plant photosynthesis was noticeable affected by heat stress, the mechanism of the photoinhibition caused by high temperature is still need further 51 52 research.

Coastal wetlands account for 0.22%-0.34% of global land surface (Fennessy 2014) and act as "blue carbon" resources due to the relatively high net primary productivity and low organic matter decomposition rate (Drake et al. 2015; Zhong et al. 2016). It is estimated that 13-17.2 Pg of carbon were stored in coastal wetlands (Hiraishi et al., 2014). However, coastal wetlands are also potential source of global greenhouse gases (Hsieh et al. 2020). The climate change increased the release rate of carbon in the CO₂ and CH₄ through organic matter decomposition and decreased the amount of carbon stored in coastal wetlands. It is found that a 1.5°C temperature enhancement could result in the gas emissions released form wetlands increase by 37.5% (Liu et al. 2020). As plant photosynthesis is the major way of carbon fixation in coastal wetlands, keep the photosynthesis at a high rate under climate change conditions is essential for global carbon cycling. Phragmites australis (P. australis) belonging to the Poaceae family, is the main constructive and dominant plants in coastal wetlands of China and plays an important role in maintaining the ecosystem function (Guan et al. 2017). Their spatial distribution is mainly limited by air temperature change and soil water deficit. The research on *P. australis*'s photosynthetic characteristics in response to rising temperature and changing precipitation pattern can provide a theoretical basis for dealing with climate change in coastal wetlands. This main aims of the work were to investigate the photosynthetic responses of P. australis to precipitation change under elevated temperature conditions. Specifically, three key research questions were addressed in the paper: (1) Are there any negative or positive influences of temperature and precipitation change on photosynthetic performance of P. australis? (2) What are the physiological mechanisms of precipitation change and high temperature affecting the carbon assimilation of P. australis? (3) What are the protection mechanisms of P. australis to avoid damage caused by environmental stress?

Materials & Methods

Plant culture and experimental design

The experiment was carried out at the Dezhou University, Shandong Province, China. The seeds of *P. australis* and soils were obtained from the costal wetland in Kenli, Dongying, China. The soil sample site has a northern subtropical marine monsoon climate. The annual average

temperature and precipitation which obtained from the Kenli Meteorological Station of the China Meteorological Administration (37°35′N, 118°33′E; elevation 85 m) in the past ten years (2010 - 2019) were 12°C and 552 mm, respectively. About 70-74% of the annual precipitation is concentrated from July to September.

Before sowing in plastic pots, the seeds of *P. australis* were sterilized by potassium permanganate solution (0.7%) for 8 min and washed with deionized water for three times. Each plastic pot (18 cm in height and 20 cm in diameter) was filled with 5.0 kg of dry soil and planted with ten plants. The experimental soil was paddy fluvo-aquic soil, and the basic physical and chemical properties of the soil were as follows: soil pH 7.91, organic matter 9.42 g·kg⁻¹, total nitrogen 0.77 g·kg⁻¹, available phosphorus 5.92 g·kg⁻¹, and available potassium 168.72 g·kg⁻¹.

After the third leaf emerged, the seedlings were thinned to three plants per pot. There were three precipitation treatments and two temperature treatments were selected for experiment. The precipitation treatments were set as: average monthly precipitation (July to September) over 10 years (W₀); W0 increased by 30% (W₊₃₀); W0 decreased by 30% (W₋₃₀). The temperature treatments were set as $26.3/21.6^{\circ}$ C (T₀) and $30.3/25.6^{\circ}$ C (T₄). The treatments were set based on the monthly average temperature and rainfall during *P. australis*'s major growth stage (July to September) in the past ten years (2010 - 2019). Each treatment and corresponding experiments were established in triplicates. Totally, 18 pots with healthy plants (three plants per pot) were randomly selected and placed into two environmental control chambers (RGD-500D3). The size of environmental control chamber was $750 \times 660 \times 2050$ mm (length × width × height). Growing conditions in the environmental control chamber were maintained as follows: 390 ppm CO₂ concentration, $1000 \, \mu$ mol photons·m⁻²·s⁻¹ photosynthetic photon flux density, and 14 h photoperiod per day. All the parameter measurements were conducted after 92 days of plant growth.

Masurements

(1) Leaf gas exchanges

Three plants from each treatment were randomly chosen from different pots for measurement. Gas exchange parameters were measured on the healthy and fully expanded leaves of *P. australis* with an open gas exchange system (CIRAS-3, PP-system, Hitchin, UK). Illumination was supplied to the leaves from a red-blue LED light source. The leaf chamber temperature, CO₂ concentration and photosynthetic photon flux density (PPFD) were controlled at 25°C, 390 ppm and 900 µmol·m⁻²·s⁻¹, respectively.

(2) A/C_i curve

The measurement of A/C_i curves was performed on the same leaves used for gas exchange parameter measurements. A/C_i curve was measured under a light saturation level of 900 μ mol·m²·s⁻¹ PPFD, and estimated using the CO₂ response curve of photosynthesis. The CO₂ gradients for A/C_i curves included 390, 200, 100, 50, 390, 600, 800, 1000 μ mol·mol⁻¹ levels stepwise. The analysis of A/C_i curve was conducted with using the plant ecophys R package, which based on the model of Farquhar et al. (1980).

(3) Chlorophyll fluorescence measurements

135

136

137

138

139

140

143

- 121 Three areas of interest at different position of leaf were selected to calculate the fluorescence parameters. Based on the method described by Song et al. (2016C), the actual PSII 122 quantum yield (Φ_{PSII}), quantum yield of regulated energy dissipation of PSII (Φ_{NPO}), and 123 quantum yield of nonregulated energy dissipation of PSII (Φ_{NO}) were measured using an 124 125 imaging-PAM fluorometer (Walz, Effeltrich, Germany). The fluorescence parameters were calculated using fellow equations described by Lazár et al. (2015): 126 $\Phi_{\text{PSII}} = (F_{\text{m}}' - F_{\text{s}})/F_{\text{m}}' = \Delta F/F_{\text{m}}'$
- 127
- $\Phi_{\text{NPO}} = 1 \Phi_{\text{PSII}} 1/[NPQ + 1 + qL(F_{\text{m}}/F_0 1)]$ 128
- 129 $\Phi_{NO}=1/[(NPQ+1+qL)(F_m/F_0-1)]$
- where $F_{\rm m}$ is the maximum fluorescence in the dark-adapted state, F_0 is the minimum Chl 130
- fluorescence yield, F_m is the maximum fluorescence yield in the light-adapted state, F_s is the Chl 131
- fluorescence during actinic illumination, qL is the fraction of open PSII centers, NPO is the non-132
- photochemical quenching. 133

(4) Chlorophyll content

The chlorophyll content was measured according to the method described by Hiscox and Israelstam (1979). Briefly, 0.25 g fresh leaf samples were mashed in 80% acetone (v/v) in a 4°C refrigerator overnight. After filtered through two-laver nylon net, the extract was then centrifuged at 15000 g for 5 min to obtain the supernatant. After determining the absorbance of the supernatant at wavelengths of 663 and 646 nm, the contents of chlorophyll a and b were calculated according to the equations of Lichtenthaler and Buschmann (2001):

- Chlorophyll a=12.25 A_{663} 2.79 A_{647} 141
- 142 Chlorophyll b= $21.50 A_{647} - 5.10 A_{663}$

(5) Malondialdehyde (MDA) content

- The MDA content was measured according to the thiobarbituric acid (TBA) chromogenic 144
- method described by Song et al. (2016b). Briefly, 1.0 g fresh leaf samples were homogenized 145
- with 0.1% trichloroacetic acid (TCA, 2.0 mL, pH 7.0) for 2 h and centrifuged at 15.000g for 10 146
- 147 min. Then, 0.5 mL of supernatant was added to 1.5 mL of TBA. After the mixture was incubated
- in a shaking water bath at 90°C for 20 min, the reaction was rapidly stopped by ice-water bath. 148
- These samples were centrifuged at 10.000g for 5 min to obtain the supernatant. The absorbance 149
- of the supernatant was detected at 532, 450, and 600 nm. The amount of MDA was calculated 150
- 151 with the following equation:
- 152 $MDA=6.45\times(A532-A600)-0.56\times A450$

Statistical analysis 153

- All statistical analyses were performed using SPSS 21.0 (SPSS Institute, Inc., Cary, NC, 154
- 155 USA). Effects of warming and precipitation change were analyzed using one-way analysis of
- variance with a Duncan's multiple range test at a 5% probability level. The linear curve fitting 156
- and graphing were performed using Origin 2021 software (Origin Lab, United States). 157

Results 158

159

Chlorophyll content

Under both two temperature conditions (T₀ and T₄), the Chl content of *P. australis* was significantly affected by precipitation change. It can be seen from **Table 1** that, at the condition of T₀, W₊₃₀ caused the increase of Chl a, Chl b and Chl a+b content by 25.6%, 33.8% and 31.1%, respectively, with the Chl a/b ratio decreased by 6.6%. At the same temperature, a decreasing precipitation (W₋₃₀) led to the decline in Chl b and Chl a+b content (10.1% and 6.2%, respectively) and the increase in Chl a/b ratio (12.2%). At a higher temperature (T₄), the adjustment of precipitation resulted in similar variations in the contents and ratios of Chl contents. Moreover, under different precipitation conditions (W₊₃₀, W₀ and W₋₃₀), the Chl a, Chl b and Chl a+b content at the higher temperature (T₄) decreased by 3.5%-13.0%, 18.7%-32.0% and 12.9%-24.2%, respectively, with the Chl a/b ratio increasing by 7.6%-25.3%.

MDA content

Malondialdehyde (MDA) as a product of lipid peroxidation can be used as a marker for oxidative stress under environmental stress conditions. The higher MDA content indicates the stronger cell membrane lipid peroxidation. It can be seen from **Fig. 1** that, under both T_0 and T_4 conditions, W_{+30} had no significant effect on MDA content (p>0.05). But W- $_{30}$ led to the significant increase of MDA by 10.1% under T_0 condition and by 9.5% under T_4 condition. At the same time, high temperature also enhanced MDA content. As shown in Figure 1, under different precipitation conditions (W_{+30} , W_0 and W_{-30}), the MDA content in the T4 treatment groups increased by 5.2%, 6.3% and 5.7%, respectively, compared with the T_0 treatment groups.

Photosynthetic parameters

From **Table 2**, it was found that at the condition of T_0 , compared to W_0 , net CO_2 assimilation rate (P_n) in W_{+30} treatment increased by 32.8% and in W_{-30} treatment reduced by 18.9%, respectively. The other gas exchange parameters such as stomatal conductance (G_s) , intercellular CO_2 concentration (C_i) , transpiration rate (T_r) and water use efficiency (WUE) were not significantly affected by W_{+30} or W_{-30} . At the condition of T_4 , the photosynthetic parameters between W_{+30} and W_0 showed no remarkable difference, while W_{-30} significantly reduced the values of WUE, P_n , G_s , C_i and T_r by 25.2%, 52%, 14.1% and 33.0%, respectively. Under all precipitation conditions, high temperature negatively affected photosynthesis of P. australis and reduced P_n by 6.6%~17.4%.

The change of $P_{\rm n}$ as a function of increased $C_{\rm i}$ in the chloroplast can be used to reflect the biochemical limitations of photosynthesis under high temperature and changing precipitation conditions. As shown in **Table 2**, at the condition of T₀, W₊₃₀ enhanced $V_{\rm cmax}$ and $J_{\rm max}$ by 25.3% and 60.3%, while W₋₃₀ caused the reduction by 34.6% and 8.2%, respectively. At the condition of T₄, W₊₃₀ resulted in a significant increase of $V_{\rm cmax}$ and $J_{\rm max}$ by 63.8% and 27.3%, while W₋₃₀ caused the reduction by 27.4% and 28.4%, respectively. Under W₀ and W₋₃₀ conditions, T4 significantly reduced $V_{\rm cmax}$ by 14.5% and 5.1%, while increased $J_{\rm max}$ by 4.7% and 18.4%, respectively. At the condition of W₊₃₀, $V_{\rm cmax}$ increased by 11.7% and $J_{\rm max}$ decreased by 16.9% in the T₄ treatment group.

Chlorophyll fluorescence parameter

200

201

202203

204

205

206

207

208209

210

211

212

213

214

215216

217

218

219

220

221222

223

224225

226

227

228229

230231

232233

234

235

236

237

238

conditions

The effect of water treatments on Φ_{PSII} , Φ_{NPQ} and Φ_{NO} under two temperature conditions were shown in **Figure 2**. Under T₀ condition, precipitation change (W₊₃₀, W₋₃₀) had no significant effect on Φ_{PSII} (p>0.05), but drastically increased Φ_{NPQ} by 14.9% and 32.3% and reduced Φ_{NO} by 13.3% and 22.7%, respectively. Under T₄ condition, Φ_{PSII} in the W₊₃₀ and W₋₃₀ treatment groups increased by 8.6% and 6.8%, Φ_{NO} increased by 30.3% and 21.3%, while Φ_{NPQ} decreased by 25.4% and 18.9%, respectively. Under different precipitation treatments (W₊₃₀, W₀ and W₋₃₀), compared to T₀, the change of Φ_{PSII} caused by T₄ was 29.6%, -4.1% and 9.3%, the change of Φ_{NPQ} caused by T₄ was -10.6%, 36.8% and -16.0%, and the change of Φ_{NO} caused by T₄ was 5.8%, -29.7% and 11.6%, respectively.

Discussion

High temperature and precipitation change as two major abiotic stresses always occur simultaneously, which threaten the sustainability of future crop production and biodiversity (*Alam et al. 2021; Hosseini Sanehkoori et al. 2021; Küsters et al. 2021; Zhang et al. 2018*). In the present study, we found that the positive effects of increased precipitation and the adverse effects of decreased precipitation on chlorophyll content, CO₂ assimilation rate, lipid peroxidation (as indicated by MDA) and the energy partitioning of PSII were significant. Meanwhile, high temperature inhibited the positive effects of increased precipitation and aggravated the adverse effects of decreased precipitation. Similarly, in the studies on *Leymus chinensis* (*Xu & Zhou 2011*), *Stipa bungeana* (*Song et al. 2016c*), *Ziziphus jujube* (*Jiang et al. 2020*), and *Robinia pseudoacacia* (*Yan et al. 2020*), the high temperature combined with severe drought exacerbated the adverse effects on plant growth and photosynthesis.

Plants exposed to environmental stresses, such as drought, extreme temperatures or their combinations, that tempt several metabolic disparities leading to oxidative damage due to ROS accumulation, resulting in detrimental secondary effects on plant organelles (Raja et al. 2020; Vurukonda et al. 2016). ROS buildup in plants can damage cell functions by causing oxidative damage, resulting in DNA nicking, amino acids and photosynthetic pigments biosynthesis inhibition, and even cell death (Nath et al. 2016; Raja et al. 2017). MDA content, a result of ROS mediated lipid peroxidation, is used as biomarker of membrane damage caused by various abiotic stresses (Morales and Munné-Bosch, 2019). In the present, increased precipitation showed no significant effect on MDA content in leaves of P. australis, while the decreased precipitation and elevated temperature remarkable increased the MDA content. The results suggest precipitation decreased by 30% and temperature elevated by 4°C accelerates MDA formation, resulting in serious lipid peroxidation (Morales and Munné-Bosch, 2019). Similar results are found in studies on Solanum lycopersicum (Raja et al. 2020), maize (Naz et al. 2021), and Echinacea purpurea (Hosseinpour et al. 2020). The increase in the MDA content indicates that water deficit and high temperature destroy the antioxidant defense system, generate lipid peroxidation, and cause oxidative burst and excess oxidative damage to the cell membrane in P. australis plants. The increase in lipid peroxidation is widely reported to cause oxidative damage to chloroplast organs (Sohag et al., 2020) and leads to chlorophyll degradation (Bagheri et al. 2019). The noticeable reduction of Chl a and Chl b in the W_{-30} and T_4 treatment supports the

240

241

242243

244

245

246

247

248

249

250

251252

253

254

255256

257

258

259

260261

262

263

264

265

266

267

268269

270

271

272

273

274

275

276

277278

finding that water deficit and high temperature trigger oxidative damage to the expression of chlorophyll a-b binding protein gene (*Sun et al. 2022*) and the synthesis of chlorophylls (*Gujjar et al. 2020*), which inevitably leads to a decrease in leaf photosynthetic efficiency (*Wang et al. 2019*) and plant productivity (*Song et al. 2019*).

The response of photosynthetic capacity to the variation of soil water depends on the threshold of soil water condition. Lamptey et al. (2020) and Snider et al. (2014) proved that the photosynthetic activity will be enhanced under moderate soil water condition but be lowered under excess water or severe water deficit conditions. In the present study, increased precipitation (W_{+30}) did not exceed the threshold of soil moisture and significantly increased the value of P_n . This suggests that the precipitation increased by 30% is a moderate soil water condition for the potential photosynthetic capacity of P. australis. The reduction of P_n at the W_{20} condition demonstrated that the severe drought stress can drastically inhibit the photosynthesis of P. australis. At the same time, previous studies also showed that the photosynthesis and plant growth will be limited by higher temperature above the optimum point (*Rodriguez et al. 2015*). In our study, the reduction of P_n under T_4 condition indicated that the temperature 4°C higher than the ambient temperature (26.3/21.6°C) has exceeded the optimum point and is adversely to the photosynthesis of *P. australis*. However, the threshold of soil water condition and the optimum temperature point for the photosynthesis of P. australis are still unclear and need further investigation. It is widely accepted that the decline in P_n , C_i , T_r and WUE could be attributed to decreased G_s under drought and heat stress conditions (Carvalho et al. 2019; Li et al. 2021; Olorunwa et al. 2021). In this current study, under ambient temperature (T₀) condition, the G_s , C_i , T_r and WUE showed no remarkable differences in different precipitation treatments, indicating the soil water deficit is not the limiting factor in stomatal openness, water consumption (transpiration) and utilization for P. australis plants. On the other hand, with the increasing of temperature (T₄), precipitation decreased by 30% caused a remarkable reduction of G_s , C_i and T_r , suggesting that higher temperature exacerbates the detrimental effect of water shortage, which is in accordance with the studies on Xanthoceras sorbifolium Bunge (Du et al. 2021), Solanum lycopersicum (Raji et al. 2020), and Stipa bungeana (Song et al. 2016c). Furthermore, drought and heat stress also cause damage to the photosynthetic apparatus as confirmed by reduced $V_{\rm cmax}$ and $J_{\rm max}$, as the decline in these two parameters are ascribed to reducing the active Rubisco number and diminishing the photosynthetic energy during the process of CO₂ assimilation (*Olorunwa et al. 2021; Zhuang et al. 2020*).

The mechanisms of precipitation change affecting the carbon assimilation can be studied by stomatal limitation and non-stomatal limitation. Song et al. (2020) indicated that the reduction in photosynthesis of a water-stressed maize was mainly caused by stomatal limitation, whereas Li et al. (2020) reported that stomatal limitation did not play a major role in the change of photosynthesis of transgenic tobacco plants. The different results may be attributed to various responses from species, stress lasting time and stress treatment duration (*Mitchell et al. 2008; Song et al. 2020*). In our experiment, to figure out which is the main factor in limiting the photosynthesis, linear regression analysis was performed to illustrate the relationship of P_n with

 G_s , V_{cmax} , J_{max} , Chl a+b content, Chl a/b ratio and MDA content under T_0 and T_4 conditions, respectively (**Figure 3**). From the linear regression analyses, it was found there is no significant relationship between P_n and G_s (p>0.05). But P_n had a significantly positive linear correlation with V_{cmax} , J_{max} and Chl a+b content, as well as a significantly negative linear correlation with Chl a/b ratio and MDA content. The results indicate that non-stomatal limitation caused by precipitation change plays a major role in determining the carbon assimilation rate. Similar result can be found in the research by Xu & Zhou (2011), Song et al. (2016a), and Li et al. (2020). At the condition of T_0 , Chl a+b content had the closest relationship with P_n (R^2 =0.86, **Figure 3D**) compared with other non-stomatal limitation factors. This suggests that the effect of increased precipitation on Chl content plays a major role in determining the carbon assimilation under ambient temperature condition. At the condition of T_4 , MDA content had the closest relationship with P_n (R^2 =0.81, **Figure 3F**) compared with other non-stomatal limitation factors. This suggests that the effect of increased precipitation on lipid peroxidation plays a major role in determining the carbon assimilation under high temperature condition.

In the present study, we found that high temperature induced the stomatal opening (increase in G_s , **Table 2**), but resulted in a decrease in carbon assimilation (decrease in P_n , **Table 2**), which is consistent with the research on *Leymus chinensis* by Xu & Zhou (2006). The response mechanism of plant photosynthesis to temperature can be studied by the balance between V_{cmax} and J_{max} (*And* & *Sharkey 1982; Song et al. 2016c*). Wullschleger (1993) investigated 109 different species and concluded that there was a strong correlation between V_{cmax} and J_{max} , which means there was a fixed balance relationship between RuBp carboxylation and regeneration in spite of the species or growth conditions. In our study, V_{cmax} and J_{max} showed a significant linear relationship under ambient temperature (T_0) condition, with the ratio of J_{max} to V_{cmax} being 1.88 (p<0.05, **Figure 4A**). However, with the increasing of temperature (T_4), even though there was still an obvious linear relationship between V_{cmax} and J_{max} (p<0.05, **Figure 4B**), the ratio of J_{max} to V_{cmax} decreased to 1.12. These results indicate that high temperature disrupted the balance between V_{cmax} and J_{max} , resulting in a negative effect on the photosynthesis of P. australis. Similar results were also supported by the study of Huang et al (2021).

Chlorophyll fluorescence can be used to detect the real photosynthetic behavior of the whole plant under stress quickly (*Bhagooli et al. 2021*). Based on this, it is possible to evaluate both the function of photosynthetic apparatus and the effects of environmental stress on plants. Environmental stress mainly damages the photosynthetic apparatus of PS II, and PS II will adjust the rate of electron transport and photochemical efficiency in response to the weakened ability of CO₂ assimilation (*Aragón-Gastélum et al. 2020; Hasanuzzaman et al. 2013*). The damage caused by excess light energy to the system will be mitigated by heat dissipation. Water deficiency and heat stress will cause the inactivation or damage of leaf's PS II reaction center (*He et al. 2021; Mathur et al. 2014*). This will lead to the damage of the photosynthetic apparatus and bring about the photoinhibition, which is consistent with the studies by Farfan-Vignolo & Asard (2012) and Yan et al. (2018). In our present research, precipitation change and high temperature had a significant effect on the photosynthesis of *P. australis*. However, how *P.*

319 australis resists those environmental stresses to protect itself is still unknown. To solve this problem, three fluorescence parameters (Φ_{PSII} , Φ_{NPO} and Φ_{NO}) based on Lake model were used to 320 detect the partitioning of absorbed light energy and to explore the protective mechanism in PS II 321 reaction center (Kramer et al. 2004; Li et al. 2019). Among the three fluorescence parameters, 322 Φ_{PSII} (absorbed light energy utilized by PSII photochemistry) reflects the linear electron transport 323 indirectly, Φ_{NPO} (thermally dissipated via ΔpH and xanthophyll-dependent energy quenching) 324 represents the yield of dissipation by downregulation, and Φ_{NO} (thermally dissipated via ΔpH 325 and xanthophyll-dependent energy quenching) reflects the yield of other non-photochemical 326 losses (García-Sánchez et al. 2012; Nabi et al. 2021). In Figure 2, it was found that precipitation 327 328 change and high temperature had no significant effect on the value of Φ_{PSII} , suggesting that heat dissipation of the excess light energy was dissipated to the extracelular as a form of heat to 329 protect the photosynthetic apparatus from damage caused by photoinhibition (*Li et al. 2019*; 330 Song et al. 2016c). Moreover, Figure 5 showed that there was a strong relationship (p < 0.01) 331 332 between Φ_{PSII} and Φ_{NPO} , and the correlation between Φ_{PSII} and Φ_{NO} were not evident (p>0.05). 333 This suggests that that the xanthophyll cycle-mediated thermal dissipation plays a major role in PSII photoprotection under changing precipitation and high temperature conditions, while the 334 335 non-regulated quenching mechanism may play a less important role (Demmig-Adams & Adams 336 2018; Stael et al. 2015). The results are opposite with the findings on plant responses to heat 337 stress, water deficit and cold stress by other scholars (Dias et al. 2018; Osório et al. 2011; 338 Savitch et al. 2009; Song et al. 2016b). The possible reason is that P. australis as the dominant 339 species of coastal wetlands in China has a strong ability in resisting environmental stress by ... China, having... dissipating excess excitation energy, which cannot be used in PSII photochemistry reaction as 340 341 harmless heat through the xanthophyll cycle (Demmig-Adams et al. 1996; Lu et al. 2020; Zhang 342 et al. 2015).

Conclusions

343 344

345 346

347

348

349 350

351

352

353

354

355

356 357

358

In conclusion, the photosynthesis of *P. australis* during precipitation changing is dependent on non-stomatal limitation but not stomatal closure, which have a significant negative linear correlation with Chl a/b ratio and MDA content. At the same time, high temperature causes the biochemical limitation on photosynthesis, inhibits the positive effects of increased precipitation and aggravates the adverse effects of drought on photosynthesis of *P. australis*. Even though high temperature and drought (precipitation decrease) significantly decrease the carbon assimilation rate, *P. australis* still has a strong ability to protect itself from damages by transforming excess excitation energy into harmless heat. This study highlighted the significant role of precipitation change in regulating the photosynthetic performance of *P. australis* under elevated temperature conditions, which may help us to better understand the mechanisms of vegetation degradation and provide knowledge basis for the restoration of the vegetation in climate sensitive regions under the background of global change.

Acknowledgements

We are grateful to Li Changjiang at Shandong Agricultural University for his assistance in the data collection and processing.

References

- Alam MR, Nakasathien S, Molla MSH,Islam MA,Maniruzzaman M, Sarobol MA, Vichukit V, Hassan MM, Dessoky ES, El-Ghany EMA,Brestic M,Skalicky M, Jagadish SVK, and Hossain A. 2021. Kernel water relations and kernel filling traits in maize (*Zea mays* L.) are influenced by water-deficit condition in a tropical environment. *Frontiers in Plant Science* 12:717178. DOI 10.3389/fpls.2021.717178
- Aragón-Gastélum JL, Ramírez-Benítez JE, González-Durán E, González-Salvatierra C, Ramírez-Tobías HM, Flores J, Gutiérrez-Alcántara EJ, Méndez-Guzmán E, and Jarquín-Gálvez R. 2020. Photochemical activity in early-developmental phases of *Agave angustifolia* subsp. *tequilana* under induced global warming: Implications to temperature stress and tolerance. *Flora* 263:151535. DOI 10.1016/j.flora.2019.151535
- And GDF, and Sharkey TD. 1982. Stomatal conductance and photosynthesis. *Annurevplant Physiol* 33:317-345. DOI 10.1146/annurev.pp.33.060182.001533
- Ashraf M, and Harris PJC. 2013. Photosynthesis under stressful environments: An overview.
 Photosynthetica 51:163-190. DOI 10.1007/s11099-013-0021-6
- Bagheri M, Gholami M, and Baninasab B. 2019. Hydrogen peroxide-induced salt tolerance in relation to antioxidant systems in pistachio seedlings. *Scientia Horticulturae* 243:207-213.
 DOI 10.1016/j.scienta.2018.08.026
- 377 **Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, and Zhou GS, 2006.** Effec to fsoi Idrought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. *Pedosphere* 16:326-332. DOI 10.1016/s1002-0160(06)60059-3
- Bijanzadeh E, Barati V, and Egan TP. 2022. Foliar application of sodium silicate mitigates
 drought stressed leaf structure in corn (*Zea mays* L.). *South African Journal of Botany* 147:8 17. DOI 10.1016/j.sajb.2021.12.032
- Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S,
 Soondur M, Pilly SS, Beesoo R, Wijayanti DP, Bachok ZB, Monrás VC, Casareto BE,
 Suzuki Y, and Baker AC. 2021. Chlorophyll fluorescence A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants.
 Marine Pollution Bulletin 165:112059. DOI 10.1016/j.marpolbul.2021.112059
- Carvalho M, Castro I, Moutinho-Pereira J, Correia C, Egea-Cortines M, Matos M, Rosa E, Carnide V, and Lino-Neto T. 2019. Evaluating stress responses in cowpea under drought stress. *Journal of Plant Physiology* 241:153001. DOI 10.1016/j.jplph.2019.153001.
- stress. Journal of Plant Physiology 241:153001. DOI 10.1016/j.jplph.2019.153001.
 Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB,
 Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y,
- Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M,
- Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H,
- Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S,
- Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK,
- 397 Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, and Bradford MA. 2016.
- 398 Quantifying global soil carbon losses in response to warming. *Nature* 540:104-108. DOI 10.1038/nature20150
- Daryanto S, Wang L, and Jacinthe PA. 2017. Global synthesis of drought effects on cereal,
- legume, tuber and root crops production: A review. *Agricultural Water Management* 179:18-

- 402 33. DOI 10.1016/j.agwat.2016.04.022
- Demmig-Adams B, and Adams WW. 2018. An integrative approach to photoinhibition and photoprotection of photosynthesis. *Environmental and Experimental Botany* 154:1-3. DOI 10.1016/j.envexpbot.2018.05.006
- Demmig-Adams B, Adams WW, Barker DH, Logan BA, Bowling DR, and Verhoeven AS.
 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to
 thermal dissipation of excess excitation. 98:253-264. DOI 10.1034/j.1399-
- 409 3054.1996.980206.x
- Dias CS, Araujo L, Alves Chaves JA, DaMatta FM, and Rodrigues FA. 2018. Water
 relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves
 infected with Colletotrichum truncatum. *Plant Physiology and Biochemistry* 127:119-128.
 DOI 10.1016/j.plaphy.2018.03.016
- 414 Drake K, Halifax H, Adamowicz SC, and Craft C. 2015. Carbon Sequestration in Tidal Salt
 415 Marshes of the Northeast United States. *Environmental Management* 56:998-1008. DOI
 416 10.1007/s00267-015-0568-z
- Du W, Ruan C, Li J, Li H, Ding J, Zhao S, and Jiang X. 2021. Quantitative proteomic analysis
 of *Xanthoceras sorbifolium* Bunge seedlings in response to drought and heat stress. *Plant Physiology and Biochemistry* 160:8-17. DOI 10.1016/j.plaphy.2021.01.002
- Farfan-Vignolo ER, and Asard H. 2012. Effect of elevated CO₂ and temperature on the
 oxidative stress response to drought in *Lolium perenne* L. and *Medicago sativa* L. *Plant Physiol Biochem* 59:55-62. DOI 10.1016/j.plaphy.2012.06.014
- Farquhar GD, Von CS, and Berry JA. 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. *Planta* 149:78-90. DOI 10.1007/BF00386231
- Forbesa SJ, Cernusaka LA, Northfielda TD, Gleadowc RM, Lambertd S, and Cheesman
 AW. 2020. Elevated temperature and carbon dioxide alter resource allocation to growth,
 storage and defence in cassava (*Manihot esculenta*). *Environmental and Experimental* Botany 173:103997. DOI 10.1016/j.envexpbot.2020.103997
- Gadzinowska J, Hura K, Ostrowska A, and Hura T. 2021. Activity of the photosynthetic
 apparatus in dehydrated leaves of a perennial shrub *Rosa rubiginosa* L. with different levels
 of drought memory. *Environmental and Experimental Botany* 187:104493. DOI
 10.1016/j.envexpbot.2021.104493
- García-Sánchez M, Korbee N, Pérez-Ruzafa IM, Marcos C, Domínguez B, Figueroa FL,
 and Pérez-Ruzafa Á. 2012. Physiological response and photoacclimation capacity of
 Caulerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson
 meadows in the Mar Menor lagoon (SE Spain). Mar Environ Res 79:37-47. DOI
 10.1016/j.marenvres.2012.05.001
- Genty B, Briantais J-M, and Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochimica et Biophysica Acta (BBA) General Subjects* 990:87-92. DOI 10.1016/S0304-4165(89)80016-9
- Guan B, Yu J, Hou A, Han G, Wang G, Qu F, Xia J, and Wang X. 2017. The ecological
 adaptability of *Phragmites australis* to interactive effects of water level and salt stress in the
 Yellow River Delta. *Aquatic Ecology* 51:107-116. DOI 10.1007/s10452-016-9602-3

- 444 Gujjar RS, Banyen P, Chuekong W, Worakan P, Roytrakul S, and Supaibulwatana K. 2020.
- A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco
- activity. *Plants* 9:1106. DOI doi.org/10.3390/plants9091106
- 448 Hao L, Guo L, Li R, Cheng Y, Huang L, Zhou H, Xu M, Li F, Zhang X, and Zheng Y.
- 2019. Responses of photosynthesis to high temperature stress associated with changes in leaf
- structure and biochemistry of blueberry (*Vaccinium corymbosum* L.). *Scientia Horticulturae* 246:251-264. DOI 10.1016/j.scienta.2018.11.007
- 452 Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, and Fujita M. 2013.
- 453 Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.
- 454 International journal of molecular sciences 14:9643-9684. DOI 10.3390/ijms14059643
- 455 He W, Yan K, Zhang Y, Bian L, Mei H, and Han G. 2021. Contrasting photosynthesis,
- photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-
- osmotic salt and drought stresses. *Environmental and Experimental Botany* 182:104313. DOI
- 458 10.1016/j.envexpbot.2020.104313
- 459 Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG. 2014.
- 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories:
- Wetlands. IPCC, Switzerland.
- 462 Hiscox, JD, and Israelstam, G. F. 1979. A method for the extraction of chlorophyll from leaf
 463 tissue without maceration. *Canadian Journal of Botany*, 57:1332-1334. DOI 10.1139/b79-163
- Hossain A, Skalicky M, Brestic M, Maitra S, Alam MA, Syed MA, Hossain J, Sarkar S, Saha S, Bhadra P, Shankar T, Bhatt R, Chaki AK, Sabagh AE, and Islam T. 2021.
- Consequences and mitigation strategies of abiotic stresses in wheat (*Triticum aestivum* L.)
- under the changing climate. *Agronomy* 11:214. DOI 10.3390/agronomy11020241
- Hosseini Sanehkoori F, Pirdashti H, and Bakhshandeh E. 2021. Quantifying water stress and temperature effects on camelina (*Camelina sativa* L.) seed germination. *Environmental and Experimental Botany* 186:104450. DOI 10.1016/j.envexpbot.2021.104450
- Hosseinpour M, Ebadi A, Habibi H, Nabizadeh E, and Jahanbakhsh S. 2020. Enhancing
 enzymatic and nonenzymatic response of Echinacea purpurea by exogenous 24-
- epibrassinolide under drought stress. *Industrial Crops & Products* 146:112045. DOI 10.1016/j.indcrop.2019.112045
- Hsieh SH, Yuan CS, Ie IR, Yang L, Lin HJ, and Hsueh ML. 2020. In-situ measurement of greenhouse gas emissions from a coastal estuarine wetland using a novel continuous monitoring technology: Comparison of indigenous and exotic plant species. Journal of Environmental Management 281:111905. DOI 10.1016/j.jenvman.2020.111905
- Hu W, Cao Y, Loka DA, Harris-Shultz KR, Reiter RJ, Ali S, Liu Y, and Zhou Z. 2021.
 Exogenous melatonin improves cotton (*Gossypium hirsutum* L.) pollen fertility under drought
 by regulating carbohydrate metabolism in male tissues. Plant Physiology and Biochemistry
 151:579-588. DOI 10.1016/j.plaphy.2020.04.001
- Hu Y, Kang S, Ding R, Du T, Tong L, and Li S. 2020. The dynamic yield response factor of alfalfa improves the accuracy of dual crop coefficient approach under water and salt stress.
- 485 Water 12:1224. DOI 10.3390/w12051224
- Huang G, Yang Y, Zhu L, Peng S, and Li Y. 2021. Temperature responses of photosynthesis and stomatal conductance in rice and wheat plants. *Agricultural and Forest Meteorology*

- 488 300:108322. DOI 10.1016/j.agrformet.2021.108322
- Hussain S, Ulhassan Z, BresticM, Zivcak M, Zhou W, Allakhverdiev SI, Yang X, Safdar ME,
 Yang W, and Liu W. 2021. Photosynthesis research under climate change. Photosynthesis
- 491 Research 150:5-19. DOI 10.1007/s11120-021-00861-z
- 492 IPCC. 2019. Climate Change and Land: an IPCC special report on climate change,
- desertification, land degradation, sustainable land management, food security, and
- greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V.
- 495 Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van
- Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira,
- P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.
- 498 Jahan MS, Guo S, Sun J, Shu S, Wang Y, El-Yazied AA, Alabdallah NM, Hikal M,
- 499 Mohamed MHM, Ibrahim MFM, and Hasan MM. 2021. Melatonin-mediated
- photosynthetic performance of tomato seedlings under high-temperature stress. *Plant*
- 501 *Physiology and Biochemistry* 167:309-320. DOI 10.1016/j.plaphy.2021.08.002
- Janka E, Körner O, Rosenqvist E, and Ottosen CO. 2015. Using the quantum yields of
- photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature
- stress in chrysanthemum (Dendranthema grandiflora). Plant Physiology and Biochemistry
- 505 90:14-22. DOI 10.1016/j.plaphy.2015.02.019
- Jiang W, Chen L, Han Y, Cao B, and Song L. 2020. Effects of elevated temperature and
- drought stress on fruit coloration in the jujube variety 'Lingwuchangzao' (Ziziphus jujube cv.
- Lingwuchangzao). Scientia Horticulturae 274:109667. DOI 10.1016/j.scienta.2020.109667
- **Kanojia A, and Dijkwel PP. 2018.** Abiotic stress responses are governed by reactive oxygen
- species and age. Annual Plant Reviews online, 295-326. DOI 9781119312994
- 511 Kramer DM, Johnson G, Kiirats O, and Edwards GE. 2004. New fluorescence parameters
- for the determination of QA redox state and excitation energy fluxes. *Photosynthesis*
- 513 Research 79:209. DOI 10.1023/b:pres.0000015391.99477.0d
- Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee
- B, Ghosh A, Reja MH, Chandran MAS, Nath R, Skalicky M, Brestic M, and Hossain A.
- 2021. Drought and heat stress in cool-season food legumes in sub-tropical regions:
- consequences, adaptation, and mitigation strategies. Plants 10:1038. DOI
- 518 10.3390/plants10061038
- 519 Küsters J, Pötsch EM, Resch R, and Gierus M. 2021. The effect of summer water stress on
- the nutritive value of orchard grass (*Dactylis glomerata* L.) in permanent grassland under
- increased temperature and elevated atmospheric CO₂. *Ecological Indicators* 125:107566.
- 522 DOI 10.1016/j.ecolind.2021.107566
- 523 Lamptey S, Li L, Xie J, and Coulter JA. 2020. Tillage system affects soil water and
- photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China. *Soil and*
- *Tillage Research* 196:104479. https://doi.org/10.1016/j.still.2019.104479
- Lazár, D. (2015). Parameters of photosynthetic energy partitioning. *Journal of Plant Physiology* 175, 131-147. https://doi.org/10.1016/j.jplph.2014.10.021
- 528 Li J, Zhao S, Yu X, Du W, Li H, Sun Y, Sun H, and Ruan C. 2021. Role of Xanthoceras
- 529 sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of

- stomatal closure and ROS homeostasis. *Plant Physiology and Biochemistry* 162:410-420. DOI 10.1016/j.plaphy.2021.03.007
- 532 Li P, Zhu Y, Song X, and Song F. 2020. Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of *Hybrid Pennisetum*. *Plant*
- 534 *Physiology and Biochemistry* 155:93-104. DOI 10.1016/j.plaphy.2020.06.033
- Li L, Konkel J, Jin VL, and Schaeffer SM. 2021. Conservation management improves
 agroecosystem function andresilience of soil nitrogen cycling in response to seasonal
- changesin climate. Science of the Total Environment 779:146457. DOI
- 538 10.1016/j.scitotenv.2021.146457
- 539 **Li Y, Song H, Zhou L, Xu Z, and Zhou G. 2019.** Tracking chlorophyll fluorescenc ea sa nindicato ro fdrough tan drewatering across the entire leaf lifespan in a maize field. *Agricultural Water Management* 211:190-201. DOI 10.1016/j.agwat.2018.09.050
- Li Y, Zhang T, Zhang Z, and He K. 2019. The physiological and biochemical photosynthetic properties of *Lycium ruthenicum* Murr in response to salinity and drought. *Scientia Horticulturae* 256:108530. DOI 10.1016/j.scienta.2019.05.057
- Liu B, Liang J, Tang G, Wang X, Liu F, and Zhao D. 2019. Drought stress affects on growth,
 water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks.
 Scientia Horticulturae 250:230-235. DOI 10.1016/j.scienta.2019.02.056
- Liu F, Jensen CR, Shahanzari A, Andersen MN, and Jacobsen SE. 2005. ABA regulated
 stomatal control and photosynthetic water use efficiency of potato (*Solanum tuberosum* L.)
 during progressive soil drying. *Plant Science* 168:831-836. DOI
 10.1016/j.plantsci.2004.10.016
- Liu S, Zheng Y, Ma R, Yu K, Han Z, Xiao S, Li Z, Wu S, Li S, Wang J, Luo Y, and Zou J.
 2020. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake
 enhancement under warming. *Global Change Biology* 26:4601-4613. DOI
 10.1111/gcb.15156
- Liu X, Zhang Y, Leng X, Yang Q, Chen H, Wang X, and Cui N. 2022. Exploring the
 optimisation of mulching and irrigation management practices for mango production in a dry
 hot environment based on the entropy weight method. *Scientia Horticulturae* 291:110564.
 DOI 10.1016/j.scienta.2021.110564
- Lu J, Nawaz MA, Wei N, Cheng F, and Bie Z. 2020. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. *Horticultural Plant Journal* 6:4-60. DOI 10.1016/j.hpj.2020.01.001
- Mathur S, Agrawal D, and Jajoo A. 2014. Photosynthesis: Response to high temperature
 stress. *Journal of Photochemistry and Photobiology B: Biology* 137:116-126. DOI
 10.1016/j.jphotobiol.2014.01.010
- Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SSO. 2008. Leaf water relations during
 summer water deficit: differential responses in turgor maintenance and variation in leaf
 structure among different plant communities in south-western Australia. *Plant, Cell & Environment* 31:1791-1802. DOI 10.1111/j.1365-3040.2008.01882.x
- Morales M, and Munné-Bosch S. 2019. Malondialdehyde: Facts and artifacts. Plant Physiology
 180:1246-1250. DOI 10.1104/pp.19.00405

- Nabi A, Parwez R, Aftab T, Khan MMA, and Naeem M. 2021. Triacontanol protects *Mentha* arvensis L. from nickel-instigated repercussions by escalating antioxidant machinery,
 photosynthetic efficiency and maintaining leaf ultrastructure and root morphology. *Journal of* Plant Growth Regulation 40:1594-1612.DOI 10.1007/s00344-020-10208-y
- Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, and Tuteja N. 2016. Reactive oxygen
 species generation-scavenging and signaling during plant-arbuscular mycorrhizal and
 Piriformospora indica interaction under stress condition. *Frontiers in Plant Science* 7:1574.
 DOI 10.3389/fpls.2016.01574
- Naz R, Sarfraz A, Anwar Z, Yasmin H, Nosheen A, Keyani R, and Roberts TH. 2021.
 Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (*Zea mays* L.). *Plant Physiology and Biochemistry* 159:285-300. DOI 0.1016/j.plaphy.2020.12.022
- Nolf M, Creek D, Duursma R, Holtum J, Mayr S, and Choat B. 2015. Stem and leaf hydraulic
 properties are finely coordinated in three tropical rain forest tree species. *Plant, Cell & Environment* 38:2652-2661. DOI 10.1111/pce.12581
- Olorunwa J, Shi A, and Barickman TC. 2021. Varying drought stress induces morpho physiological changes in cowpea (*Vigna unguiculata* (L.) genotypes inoculated with
 Bradyrhizobium japonicum. *Plant Stress* 2:100033. DOI 10.1016/j.stress.2021.100033
- Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, and Zhu XG. 2015. Redesigning
- photosynthesis to sustainably meet global food and bioenergy demand. 112:8529-8536. DOI 10.1073/pnas.1424031112
 Osório ML, Osório J, Vieira AC, Gonçalves S, and Romano A. 2011. Influence of enhanced
- temperature on photosynthesis, photooxidative damage, and antioxidant strategies in *Ceratonia siliqua* L. seedlings subjected to water deficit and rewatering. *Photosynthetica*49:3-12. DOI 10.1007/s11099-011-0001-7
- Ouyang Z, Tian J, Yan X, and Shen H. 2020. Effects of different concentrations of dissolved
 oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce.
 Agricultural Water Management 228:105896. DOI 10.1016/j.agwat.2019.105896
- Parrotta L, Aloisi I, Faleri C, Romi M, Duca SD, and Ca G. 2020. Chronic heat stress affects the photosynthetic apparatus of *Solanum lycopersicum* L. cv Micro-Tom. Plant Physiology and Biochemistry 154:463-475. DOI 10.1016/j.plaphy.2020.06.047
- Perdomo JA, Capó-Bauçà S, Carmo-Silva E, and Galmés J. 2017. Rubisco and rubisco
 activase play an important role in the biochemical limitations of photosynthesis in rice,
 wheat, and maize under high temperature and water deficit. Frontiers in plant science. 8:490.
 DOI 10.3389/fpls.2017.00490
- Raja V, Majeed U, Kang H, Andrabi K I, John R. and 2017. Abiotic stress:Interplay between
 ROS, hormones and MAPKs. Environ Exp Bot 137:142-157. DOI
 10.1016/j.envexpbot.2017.02.010
- Raja V, Qadir SU, Alyemeni MN, and Ahmad P. 2020. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in *Solanum lycopersicum*. *3 Biotech* 10:208. DOI 10.1007/s13205-020-

- 616 02206-4
- 617 Rodriguez E, da Conceição Santos M, Azevedo R, Correia C, Moutinho-Pereira J, Ferreira
- de Oliveira JMP, and Dias MC. 2015. Photosynthesis light-independent reactions are
- sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant *Pisum sativum* cultivar.
- 620 Environmental Science and Pollution Research 22:574-585. DOI 10.1007/s11356-014-3375-621 9
- 622 Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NPA, and Simmonds J. 2009. Effects
- of low temperature stress on excitation energy partitioning and photoprotection in *Zea mays*.
- 624 Functional Plant Biology 36:37-49. DOI 10.1071/FP08093
- 625 Shao R, Jia S, Tang Y, Zhang J, Li H, Li L, Chen J, Guo J, Wang H, Yang Q, Wang Y, Liu
- T, and Zhao X. 2021. Soil water deficit suppresses development of maize ear by altering
- metabolism and photosynthesis. *Environmental and Experimental Botany* 192:104651. DOI
- 628 10.1016/j.envexpbot.2021.104651
- 629 Snider JL, Collins GD, Whitaker J, Perry CD, and Chastain DR. 2014. Electron transport
- through photosystem II is not limited by a wide range of water deficit conditions in field-
- grown Gossypium hirsutum. Journal of Agronomy and Crop Science 200:77-82. DOI
- 632 10.1111/jac.12044
- 633 Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, and Hossain
- 634 MTA. 2020. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice.
- 635 Plant Soil and Environment 66:7-13. DOI 10.17221/472/2019-PSE
- 636 Song X, Zhou G, Xu Z, Lv X, and Wang Y. 2016a. A self-photoprotection mechanism helps
- Stipa baicalensis adapt to future climate change. Scitific Reports 6:25839. DOI
- 638 10.1038/srep25839
- 639 Song X, Wang Y, and Lv X. 2016b. Responses of plant biomass, photosynthesis and lipid
- peroxidation to warming and precipitation change in two dominant species (Stipa grandis
- and Leymus chinensis) from North China Grasslands. Ecology and Evolutation 6:1871-1882.
- DOI 10.1002/ece3.1982
- Song X, Zhou G, Xu Z, Lv X, and Wang Y. 2016c. Detection of photosynthetic performance
- of *Stipa bungeana* seedlings under climatic change using Chlorophyll fluorescence imaging.
- *Frontiers in plant science* 6:1254-1254. DOI 10.3389/fpls.2015.01254
- Song L, Jin J, and He J. 2019. Effects of severe water stress on maize growth processes in the
- field. Sustainability 11:5086. DOI 10.3390/su11185086
- 648 Song X, Zhou G, He Q, and Zhou H. 2020. Stomatal limitations to photosynthesis and their
- critical water conditions in different growth stages of maize under water stress. *Agricultural*
- Water Management 241:106330. DOI 10.1016/j.agwat.2020.106330
- Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, and Van Breusegem F.
- **2015.** Plant innate immunity sunny side up? *Trends in Plant Science* 20:3-11. DOI
- 653 10.1016/j.tplants.2014.10.002
- 654 Sun TT, Su ZH, Wang R, Liu R, Yang T, Zuo WT, Wen SS, and Wang LQ. 2022.
- Transcriptome and metabolome analysis reveals the molecular mechanisms of *Tamarix*
- 656 taklamakanensis under progressive drought and rehydration treatments. Environmental and

- 657 Experimental Botany 195:104766. DOI 10.1016/j.envexpbot.2021.104766
- Talbi S, Rojas JA, Sahrawy M, Rodríguez-Serrano M, Cárdenas KE, Debouba M, and
- 659 **Sandalio LM. 2020.** Effect of drought on growth, photosynthesis and total antioxidant
- capacity of the saharan plant *Oudeneya africana*. *Environmental and Experimental Botany* 176:104099. DOI 10.1016/j.envexpbot.2020.104099
- Vaughan MM, Block A, Christensen SA, Allen LH, and Schmelz EA. 2018. The effects of
 climate change associated abiotic stresses on maize phytochemical defenses. *Phytochemistry Reviews* 17:37-49. DOI 10.1007/s11101-017-9508-2
- Vurukonda SSKP, Vardharajula S, Shrivastava M, and SkZ A. 2016. Enhancement of drought
 stress tolerance in crops by plant growth promoting rhizobacteria. *Microbiol Research* 184:13 24. DOI 10.1016/j.micres.2015.12.003
- Wang XM, Wang XK, Su YB, and Zhang HX. 2019. Land pavement depresses photosynthesis
 in urban trees especially under drought stress. *Science of The Total Environment* 653:120 130. DOI 10.1016/j.scitotenv.2018.10.281
- White HJ, Caplat P, Emmerson MC, and Yearsley JM. 2021. Predicting future stability of
 ecosystem functioning under climate change. Agriculture, Ecosystems and Environment
 320:107600. DOI 10.1016/j.agee.2021.107600
- Wullschleger SD. 1993. Biochemical limitations to carbon assimilation in C3 plants-A
 retrospective analysis of the A/Ci curves from 109 species. *Journal of Experimental Botany* 44:907-920. DOI 10.1093/jxb/44.5.907
- Xalxo R, Yadu B, Chandra J, Chandrakar V, and Keshavkant S. 2020. Alteration in
 carbohydrate metabolism modulates thermotolerance of plant under heat stress. *Heat Stress* Tolerance in Plants 77-115. DOI 9781119432364
- Xin Y, and Tao F. 2021. Have the agricultural production systems in the North China
 Plainchanged towards to climate smart agriculture since 2000? Journal of Cleaner Production
 299: 126940. DOI 10.1016/j.jclepro.2021.126940
- Xu ZZ, and Zhou GS. 2006. Combined effects of water stress and high temperature on
 photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass *Leymus chinensis*. *Planta* 224:1080-1090. DOI 10.1007/s00425-006-0281-5
- Yamori W, Hikosaka K, and Way DA. 2014. Temperature response of photosynthesis in C3,
 C4, and CAM plants: temperature acclimation and temperature adaptation. *Photosynthesis Research* 119:101-117. DOI 10.1007/s11120-013-9874-6
- Yan K, Zhao S, Cui M, Han G, and Wen P. 2018. Vulnerability of photosynthesis and
 photosystem I in Jerusalem artichoke (*Helianthus tuberosus* L.) exposed to waterlogging.
 Plant Physiology and Biochemistry 125:239-246. DOI 10.1016/j.plaphy.2018.02.017
- Yan W, Zhong Y, and Z SG. 2020. Elevated temperature exacerbates the effects of drought on
 the carbon and hydraulic characteristics of Robinia pseudoacacia seedlings. *Agricultural and Forest Meteorology* 280:107794. DOI 10.1016/j.agrformet.2019.107794
- Zhang W, Yu X, Li M, Lang D, Zhang X, and Xie Z. 2018. Silicon promotes growth and root
 yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic
 adjustment and regulating antioxidant metabolism. *Crop Protection* 107:1-11. DOI

- 698 10.1016/j.cropro.2018.01.005
- Zhang JL, Niu JP, Duan Y, Zhang MX, Liu JY, Li PM, and Ma FW, 2015. Photoprotection
 mechanism in the 'Fuji' apple peel at differ-ent levels of photooxidative sunburn. *Physiologia Plantarum* 154:54-65. DOI 10.1111/ppl.12272
- Zhao CY, Si JH, Feng Q, Deo RC, Yu TF, and Li PD. 2017. Physiological response tosalinity
 stress and tolerance mechanics of Populus euphratica. *Environmental Monitoring and Assessment* 189:533. DOI 10.1007/s10661-017-6257-z
- Zhong Q, Gong J, Wang K, and Zhang C. 2014. Effects of 3-year air warming on growth of
 two perennial grasses (*Phragmites australis* and *Imperata cylindrica*) in a coastal salt marsh
 reclaimed for agriculture. *Aquatic Botany* 117:18-26. DOI 10.1016/j.aquabot.2014.04.001
- Zhong Q, Wang K, Lai Q, Zhang C, Zheng L, and Wang J. 2016. Carbon dioxide fluxes and their environmental control in a reclaimed coastal wetland in the Yangtze Estuary. *Estuaries and Coasts* 39:344-362. DOI 10.1007/s12237-015-9997-4
- Zhu B, Xie X, Meng S, Lu C, and Yao Y. 2020. Sensitivity of soil moisture to precipitation and temperature over China: Present state and future projection. *Science of The Total Environment* 705:135774. DOI 10.1016/j.scitotenv.2019.135774
- Zhuang J, Wang Y, Chi Y, Zhou L, Chen J, Zhou W, Song J, Zhao N, and Ding J. 2020.
 Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. *PeerJ* 8:10046. DOI 10.7717/peerj.10046

Table 1(on next page)

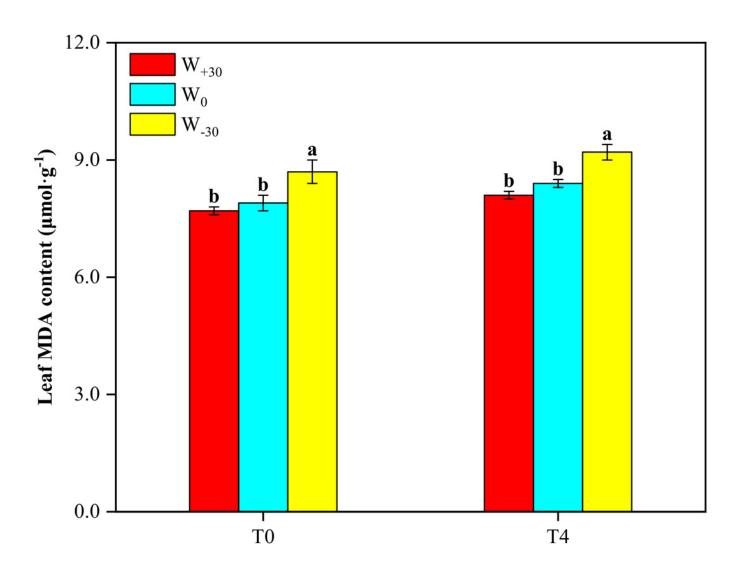
Effects of warming and precipitation changes on chlorophyll content in leaves of *Phragmites australis*.

Different lowercases indicate significant difference between different precipitation treatments within the same temperature treatment compared with control (p<0.05).

_							
Treatment		tment	Chl a (mg/g)	Chl b (mg/g)	Chl a/b (%)	Chl a+Chl b (mg/g)	
		W_{+30}	1.08±0.05 a	1.86±0.08 a	58.2±0.7 b	2.95±0.13 a	
	T_0	W_0	0.86±0.04 b	1.39±0.02 b	62.3±1.7 b	2.25±0.06 b	
		W_{-30}	0.86±0.01 b	1.25±0.09 c	69.9±4.7 a	2.11±0.10 b	
		W_{+30}	0.94±0.01 a	1.51±0.05 a	62.6±2.4 c	2.45±0.04 a	
	T4	\mathbf{W}_0	0.83±0.02 b	1.13±0.10 b	74.0±4.4 b	1.96±0.12 b	
		W_{-30}	0.75±0.01 c	0.85±0.04 c	87.6±3.8 a	1.60±0.05 c	

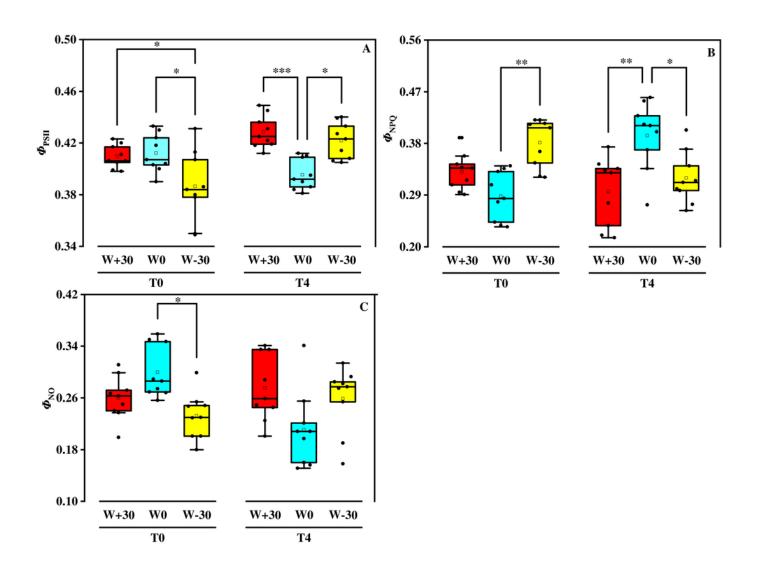
Table 2(on next page)

Effects precipitation change on photosynthetic parameters in leaves of *Phragmites* australis under ambient temperature (T₀) and high temperature (T4) conditions.

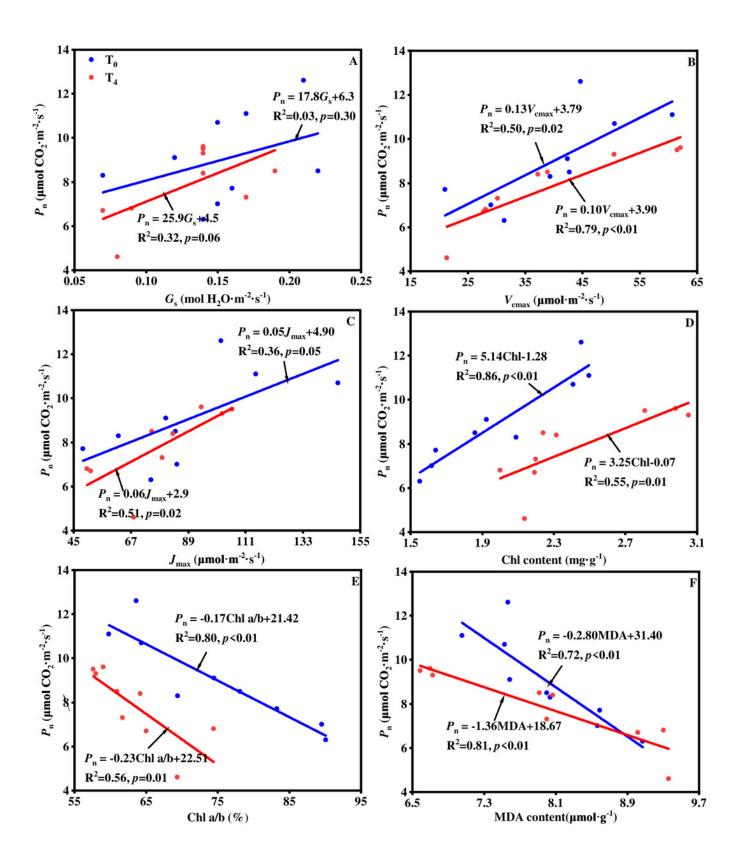

Different lowercases indicate significant difference between different precipitation treatments within the same temperature treatment compared with control (p<0.05).

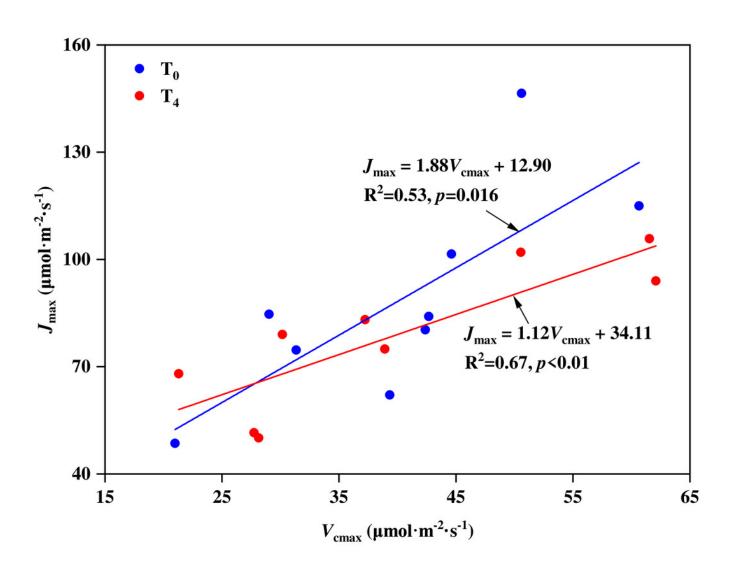
		Photosynthetic parameters										
Trea	itment	P _n (μmol CO ₂ ·m ⁻² ·s ⁻¹)	G _s (μmol·mol ⁻¹)	C _i (mol H ₂ O·m ² ·s ⁻ 1)	T _r (mmol·m ⁻ 1·s ⁻¹)	WUE (μmol CO ₂ ·mmol H ₂ O)	V _{cmax} (μmol·m²·s ⁻ 1)	J _{max} (μmol·m²·s ⁻¹)				
	W_{+30}	11.5±1.0 a	0.18±0.03 a	271±12 a	3.5±0.3 a	3.3±0.3 a	52.0±8.1 a	121.0±23.1 a				
T_0	\mathbf{W}_0	8.6±0.4 b	0.14±0.08 a	224±69 a	3.7±1.8 a	2.7±1.3 a	41.5±1.8 b	75.5±11.7 ab				
	W ₋₃₀	7.0±0.7 c	0.15±0.01 a	303±2 a	3.4±0.3 a	2.1±0.4 a	27.1±5.4 c	69.3±18.6 b				
	W_{+30}	9.5±0.1 a	0.14±0.01 a	267±2 a	3.5±0.1 a	2.7±0.1 a	58.1 ±6.5a	110.6±6.0 a				
T4	\mathbf{W}_0	8.1±0.7 a	0.17±0.03 a	298±15 ab	3.0±0.3 a	2.7±0.01 a	35.4±4.6 b	79.0±4.1 b				
	W_{-30}	6.0±1.2 b	0.08±0.01 b	256±24 b	2.0±0.6 b	3.2±1.3 a	25.7±3.8 b	56.5±10.0 b				

Effects of warming and precipitation changes on Malondialdehyde content in leaves of *Phragmites australis*.

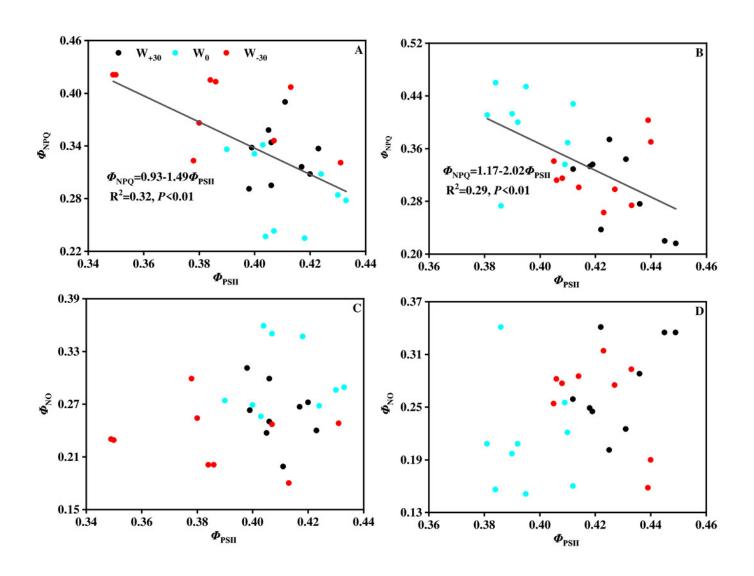

Vertical bars represent \pm SD of the mean (n=3), and different letters on the SD bars indicate significant differences among the all treatments (p < 0.05).

Effects of warming and precipitation changes on Φ_{PSII} (A), Φ_{NPQ} (B) and Φ_{NO} (C) in leaves of *Phragmites australis*.


The horizontal line represents the median value and the open rectangle represents the mean value (n=9). * p <= 0.05, ** p <= 0.01.



Relationship between P_n and (A) G_s , (B) V_{cmax} , (C) J_{max} , (D) Chl a+b, (E) Chl a/b and (F) MDA content under ambient temperature (T_0) and high temperature (T_0) conditions.



Relationship between the maximum rate of RuBP carboxylation (V_{cmax}) and RuBP regeneration capacity (J_{max}) in leaves of *Phragmites australis* under warming and precipitation change conditions.

Relationship between quantum yields of PSII photochemistry (ϕ_{PSII}) and quantum yields of regulated energy dissipation (ϕ_{NPQ}) in leaves of *Phragmites australis* under warming and precipitation change conditions.

