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ABSTRACT
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, hundreds
of millions of people have been infected worldwide. There have been unprecedented
efforts in acquiring effective vaccines to confer protection against the disease. mRNA
vaccines have emerged as promising alternatives to conventional vaccines due to their
high potency with the capacity for rapid development and low manufacturing costs.
In this review, we summarize the currently available vaccines against SARS-CoV-2 in
development, with the focus on the concepts of mRNA vaccines, their antigen selection,
delivery and optimization to increase the immunostimulatory capability of mRNA as
well as its stability and translatability. We also discuss the host immune responses
to the SARS-CoV-2 infection and expound in detail, the adaptive immune response
upon immunization with mRNA vaccines, in which high levels of spike-specific IgG
and neutralizing antibodies were detected after two-dose vaccination. mRNA vaccines
have been shown to induce a robust CD8+ T cell response, with a balanced CD4+

TH1/TH2 response. We further discuss the challenges and limitations of COVID-19
mRNA vaccines, where newly emerging variants of SARS-CoV-2 may render currently
deployed vaccines less effective. Imbalanced and inappropriate inflammatory responses,
resulting from hyper-activation of pro-inflammatory cytokines, which may lead to
vaccine-associated enhanced respiratory disease (VAERD) and rare cases ofmyocarditis
and pericarditis also are discussed.

Subjects Molecular Biology, Immunology, Infectious Diseases, COVID-19
Keywords mRNA vaccine, COVID-19, SARS-CoV-2, Innate immune response, Adaptive
immune response, Humoral immune response, Cell-mediated immune response, Immunogenicity
mechanism, Variants of concern

INTRODUCTION
The ongoing global transmission of coronavirus disease 2019 (COVID-19) is being caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-strand
single-stranded (ss) RNA virus, which has infected more than 375 million people and
claimed the lives of at least 5.6 million people, worldwide (as of January 2022, WHO). It
is a global phenomenon that has caused significant social, economic and political impacts
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and challenges worldwide, leading to travel restrictions and severely disrupting public
health services. SARS-CoV-2 typically induces respiratory-like illnesses that develops
into pneumonia and symptoms of the disease are mild to severe, which include cough,
sore throat, fever or chills, headache, breathing difficulties, loss of taste or smell, nausea
and diarrhea (CDC, 2021). Similarly, severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are the
other two pathogenic and highly transmissible coronaviruses that have caused major
deadly pneumonic pandemics in humans since the 21st century. The betacoronavirus
SARS-CoV-2 belongs to the subfamily Coronavirinae of the family Coronaviridae and
the order Nidovirales, and contains a large genome of about 30,000 bases (Chen et al.,
2020b). The coronavirus is composed of an envelope that contains envelope (E) and
membrane (M) proteins, coated with homotrimeric spike (S) glycoproteins, and a helical
capsid consisting of nucleocapsid (N) proteins bound to the RNA genome. The full-length
SARS-CoV-2 S glycoprotein consists of two subunits, namely S1 and S2 subunits. Viral
entry into host cells is mediated by the S glycoprotein binding to its receptor, angiotensin-
converting enzyme 2 (ACE2) through the receptor-binding domain (RBD) of the S1
subunit. The binding subsequently induces viral fusion to the host cellular membranes
through irreversible conformational changes, mediated by its S2 subunit (Hoffmann et al.,
2020). The full-length S glycoprotein, S1 subunit and RBD have been shown to induce
neutralizing antibodies (nAbs) and T cell-mediated immunity, and serve as promising
targets for vaccine development against SARS-CoV-2 (Amanat & Krammer, 2020). On the
verge of the ongoing calamity and death, the urgent need for effective vaccines providing
protection against the virus is crucial. In this review, we discuss the recent development
of vaccines for COVID-19, with the focus on mRNA vaccines and its immunogenicity
mechanism and limitations in promoting adaptive protection against SARS-CoV-2.

SURVEY METHODOLOGY
In order to extensively review the literature on immunogenicity mechanism of mRNA
vaccines against SARS-CoV-2, we conducted thorough searches in PubMed and Google
Scholar using the following terms: vaccine development; spike; mRNA optimization; lipid
nanoparticle; adjuvants; immune response; innate immune response; adaptive immune
response; humoral immune response; cell-mediated immune response; cellular immune
response; antibody; IgA; IgM; IgG; cytokines; T cell; B cell; or macrophages in combination
with SARS-CoV-2 or COVID-19 or Pfizer vaccine or BNT162b2 or Moderna vaccine or
mRNA-1273.While current literatures published onmRNAvaccine/SARS-CoV-2/COVID-
19 in English within the last two years were considered, literatures that contained relevant
critical information to the review’s objectives were also included. This information will be
valuable for scientists and researchers in guiding the development of mRNA vaccines for
protection against the ongoing COVID-19 pandemic.
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Figure 1 The number of vaccine candidates being developed against severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) to date. There are 140 vaccine candidates that are currently at least
in stage 1 clinical trials, whereas 194 vaccines are in pre-clinical stages. PS, protein subunit; VVnr, viral
vector (non-replicating); DNA, DNA-based vaccines; IV, inactivated virus; RNA, RNA-based vaccines;
VVr, viral vector (replicating); VLP, virus-like particle; LAV, live-attenuated virus; LAB, live-attenuated
bacterial vector; BVr, bacterial vector (replicating); Cell, cellular-based vaccine; BaV, bacterial antigen-
spore expression vector (WHO, 2022).

Full-size DOI: 10.7717/peerj.13083/fig-1

THE OTHER COVID-19 VACCINES
At this time in the pandemic and in the absence of effective therapeutic treatments for
COVID-19 patients, a vaccine is the most promising way to control the pandemic and stop
the spread of SARS-CoV-2. There have been unprecedented efforts in acquiring effective
vaccines against the disease. To date, there are 334 vaccine candidates in development
worldwide (Fig. 1), in which 140 vaccines are in clinical and 194 vaccines are in pre-clinical
developments (as of 24th January 2022) (WHO, 2022). Vaccines provide adaptive immunity
against the disease and are generally made of an inactivated or live attenuated pathogen,
as well as recombinant protein subunits, vectored and conjugated vaccines, and virus-like
particles. Inactivated vaccines are developed using the SARS-CoV-2 virus growing in
cell culture, typically Vero cells (Gao et al., 2020; Wang et al., 2020). The cultured virus
is then inactivated using heat or chemicals such as β-propiolactone or formaldehyde
to inhibit the viral reproduction capability, while maintaining its immune response
stimulation. Examples of inactivated vaccines include CoronaVac (previously known as
PiCoVacc), which is developed by the Chinese company Sinovac Biotech (Gao et al., 2020),
BBIBP-CorV and WIBP-CorV by Sinopharm (Wang et al., 2020), BBV152 (also known as
Covaxin) by the Indian company Bharat Biotech (Ella et al., 2021), CoviVac by the Russian
Academy of Sciences and VLA2001 by the French company Valneva SE. These vaccines
may contain adjuvants such as alum (aluminum hydroxide), alhydroxiquim-II, CpG 1018
and others to induce high levels of antibody production and long-lasting immunity.

Live attenuated vaccines are manufactured by using a pathogen with reduced virulence
that replicates to a limited extent, which does not cause disease but retains the ability
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to stimulate immune response. Attenuation can be achieved by physical or chemical
approaches, as well as genetic modifications using codon de-optimization or gene deletion.
To date, only two live attenuated vaccine candidates have entered Phase 1 clinical trial
(Fig. 1): one that is being developed by Codagenix, in collaboration with the Serum Institute
of India (codenamed as COVI-VAC), and the other is MV-014-212, manufactured by
Meissa Vaccines (WHO, 2022). Both vaccines are formulated to be administered as a single
intranasal dose, developed using codon de-optimization technology. A pre-clinical safety
and efficacy report published in July 2021 showed that the COVI-VAC vaccine protected
hamsters from COVID-19 and promoted the formation of a potent virus-neutralizing
antibody response (Wang et al., 2021b). Two other codon de-optimized live attenuated
COVID-19 vaccine candidates in pre-clinical stage are being developed by Mehmet Ali
Aydinlar University/Acıbadem Labmed Health Services A.S. and Indian Immunologicals
Ltd/Griffith University (WHO, 2022).

A large number of SARS-CoV-2 vaccine candidates that are currently being developed
rely on viral vectors, which carry a relevant gene from the target virus, the S gene for
SARS-CoV-2 for example. The SARS-CoV-2 viral vector vaccines are based either on
replicating or inactivated non-replicating viral vector platforms, typically adenovirus
although other viral platforms such as modified lentivirus, vaccinia Ankara, Newcastle
disease virus, Sendai virus, influenza, measles as well as rabies viruses are also being used.
There are 6 replicating and 20 non-replicating viral vector vaccine candidates in clinical
development of at least in Phase 1 trial (Fig. 1), with the Oxford/AstraZeneca AZD1222
(ChAdOx1-S, commercialized as Covishield or Vaxzevria), the CanSino AD5-nCOV
(commercialized as Convidecia) and the Janssen/Johnson & Johnson Ad26.COV2.S are
the only non-replicating viral vector vaccines that have passed the Phase 4 clinical trial and
currently being distributed for mass vaccination (WHO, 2022). The Oxford/AstraZeneca
vaccine is given by intramuscular injection, two doses administered four weeks apart
and using the modified chimpanzee adenovirus ChAdOx1 as a vector. A safety report
published in March 2021 showed an efficacy of 76.0% from participants who received a
single standard dose from day 22 to day 90 of vaccination, whereas in participants who
received two standard doses, the efficacy was increased to 81.3% (Voysey et al., 2021). The
CanSino AD5-nCOV vaccine is given by intramuscular injection, aerosol inhalation, or
both and has been shown to induce higher nAbs percentage in individuals with history
of COVID-19 infection than those without prior COVID-19 infection (Hernández-Bello
et al., 2021). Aerosolised Ad5-nCoV is well received, although two doses of aerosolised
AD5-nCoV elicited similar nAb responses to one dose of intramuscular injection (Wu et
al., 2021). A single dose of the Janssen/Johnson & Johnson Ad26.COV2.S vaccine, on the
other hand, induced rapid binding and nAb responses as well as robust CD4+ and CD8+

T-cell mediated immune responses (Stephenson et al., 2021). The vaccine has been shown
to protect against symptomatic and asymptomatic SARS-CoV-2 infection, and is effective
against severe disease, including hospitalization and death (Sadoff et al., 2021).

Recombinant protein subunit vaccines, in which viral proteins such as the whole S
glycoprotein or the recombinant RBD of the S glycoprotein, are injected intramuscularly,
have the potential to elicit protection to the host against the viral infection. However, due
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to the limited number of viral components involved, their effectiveness in protecting the
host is limited because they do not display the complete antigenic complexity of the virus.
Adjuvants are therefore needed to enhance the stimulatory capacity of subunit vaccines.
For instance, full length recombinant SARS-CoV-2 S glycoprotein nanoparticle adjuvanted
with Matrix-M1 is used in the production of the Novavax NVX-CoV2373 vaccine (Keech
et al., 2020). In addition, two Sanofi/GSK COVID-19 vaccines, code-named VAT0002 and
VAT0008 (commercialized as Vidprevtyn) are adjuvanted recombinant S protein subunit
vaccines and have been reported to show strong immune responses. Preliminary results
from a clinical trial of the VAT0002 vaccine as booster showed nAbs increased 9- to 43-fold,
regardless of the primary vaccine received (Sanofi, 2021). The full S protein is relatively
difficult to express, which contributes to low production rate and high production cost. The
RBD of the S protein, although is much smaller, is easier to express and could be produced
at large quantities using different expression systems such as insect cells, mammalian cells,
yeast and plants, as well as in Escherichia coli (Chen et al., 2005; Krammer, 2020). Recently,
a RBD-based recombinant protein vaccine, the HIPRA PHH-1 V vaccine, which consists
of a novel RBD fusion heterodimer containing the Alpha (B.1.1.7) and Beta (B.1.351)
variants of SARS-CoV-2 has been developed. The vaccine showed promising results in
protecting mice from COVID-19 infection, with robust activation of CD4+ and CD8+ T
cells (Barreiro et al., 2021). Although many potent nAbs bind to RBD (Ju et al., 2020; Yang
et al., 2020), other neutralizing epitopes that are present on the full-length S glycoprotein
are absent in the RBD-derived vaccine, whichmay render the vaccinemore prone to impact
from antigenic drift and lead to reduced effectiveness.

Recently, the first plasmidDNAvaccine against SARS-CoV-2was rolled out. TheZyCoV-
D vaccine, which is developed by Indian pharmaceutical company Cadila Healthcare,
carrying the gene encoding the S glycoprotein and is given by intradermal injection, three
doses administered 28 days apart (Dey et al., 2021). The vaccine has been issued with an
Emergency Use Authorization (EUA) for use in India. A safety and immunogenicity report
published recently showed that the DNA vaccine induced robust humoral and cellular
immune responses against the SARS-CoV-2 S protein (Momin et al., 2021). Neutralizing
geometric mean titers (GMTs) of immunoglobulin G (IgG) have been shown to increase
significantly from 7.00 on day 0 to 1,019.61 on day 70 (14 days after three doses of the
vaccine). However, on day 84 (28 days after three doses of the vaccine), GMTs decreased
and remained stable at 748.46 (Momin et al., 2021). A double-blind, placebo-controlled
Phase III study is currently ongoing and the interim results show that the efficacy of the
vaccine to be 67% against symptomatic COVID-19 (Mallapaty, 2021).

MRNA VACCINES AGAINST SARS-COV-2
mRNA vaccines have emerged as promising alternatives to conventional vaccines. Although
conventional vaccine approaches, such as inactivated and live attenuated pathogens and
subunit vaccines provide long and durable protection against dangerous diseases, the
need for more rapid development with low-cost manufacture and large-scale deployment
becomemajor hurdles to the vaccine development, especially to cater for pandemics.mRNA
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vaccine provides high potency against a disease with the capacity for rapid development
and low-cost manufacturing, providing new opportunity for protection against a variety
of emerging dangerous diseases (Pardi et al., 2018). Additionally, conventional vaccines
may not suitable for non-infectious diseases, such as cancer. mRNA vaccine encoding
tumor-associated antigens with the RNActive technology is currently being evaluated
in several clinical trials and may provide a new treatment for cancer (Beck et al., 2021;
Fiedler et al., 2016). Cancer vaccination involves the induction of tumor-specific B- and
T-cell responses, and has been shown to induce a balanced humoral and cellular immune
responses in animal models (Fiedler et al., 2016). Furthermore, mRNA vaccines have been
shown to elicit potent immunity against viral diseases in animal models of Ebola, Zika,
influenza, rabies, cytomegalovirus and others, using lipid-encapsulated or naked forms of
sequence-optimized mRNA (Pardi et al., 2018).

The COVID-19 pandemic has triggered an urgent need for vaccines to be developed
as fast as possible against SARS-CoV-2. mRNA vaccines, which can be produced at a
faster rate provided new alternative approaches in the protection against SARS-CoV-2.
These vaccines are usually administered intramuscularly and directed into human cells,
where transcription of the nucleic acid into viral proteins takes place. Currently, there are
23 RNA-based vaccine candidates recorded in the clinical development (Fig. 1) (WHO,
2022). BNT162b2 (Tozinameran), the very first vaccine approved by the Food and Drug
Administration (FDA) against SARS-CoV-2, is a lipid nanoparticle-formulated, nucleoside-
modified mRNA vaccine, developed by Pfizer Inc. and BioNTech SE. The vaccine, which
has been issued with an EUA on 11 December 2020, consists of 2 doses of 30 µg (300 µl
each), administered intramuscularly three weeks apart (Lamb, 2021). Based on clinical
trials in people aged 16 years and older, the vaccine has been shown to have an efficacy
of 95% at protecting against COVID-19 in people without evidence of previous infection
(Oliver et al., 2020; Polack et al., 2020). mRNA-1273 (Moderna COVID-19 vaccine) is
another nucleoside-modified mRNA vaccine, developed by the United States National
Institute of Allergy and Infectious Diseases (NIAID), the Biomedical Advanced Research
and Development Authority (BARDA) and Moderna, Inc, which has been issued with an
EUA on 18 December 2020. The vaccine is administered by intramuscular injection, two
0.5 ml doses (100 µg) given four weeks apart. The mRNA-1273 has been shown to have an
efficacy of approximately 94% at preventing COVID-19 illness, including severe disease,
starting 14 days after the first dose (Baden et al., 2021). The development for both vaccines
began in January 2020 and in just less than three months later, both vaccines entered Phase
I clinical trial. By December 2020, the vaccines were issued with an EUA and are currently
being distributed worldwide. BothmRNA-1273 and BNT162b2 carry a piece of mRNA that
encodes the SARS-CoV-2 S glycoprotein, the immunogen in which the immune response
is activated against the virus upon its expression. BNT162b2 and mRNA-1273 encode
the full-length S protein, modified by two proline mutations (S-2P) to maintain it in the
prefusion conformation (Corbett et al., 2020a;Walsh et al., 2020).
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Spike glycoprotein
The S protein forms a homotrimeric complex protruding from the viral surface and consists
of two functional subunits, S1 and S2, which are responsible for host cell receptor binding
and viral membrane fusion, respectively. The smaller S1 subunit comprises an N-terminal
domain (NTD) and three C-terminal domains (CTD1–3). CTD1 forms the RBD and
contributes to stabilization of the membrane-anchored S2 subunit. The RBD mediates the
binding to the host cell receptor, ACE2. The larger S2 subunit contains the machinery for
the membrane fusion and consists of a hydrophobic fusion peptide (FP), heptad repeat 1
(HR1), central helix (CH), connector domain (CD), heptad repeat 2 (HR2), transmembrane
domain (TM) and cytoplasmic tail (CT) (Kalathiya et al., 2020; Kirchdoerfer et al., 2016;
Walls et al., 2020). In all coronaviruses, the S glycoprotein is cleaved upon the binding by
host proteases at the S1/S2 junction; cleavage has been suggested to activate the protein for
host membrane fusion through irreversible conformational changes, driving the S protein
from a pre-fusion to a post-fusion conformations (Cai et al., 2020; Song et al., 2018;Wrapp
et al., 2020). There is a second cleavage site, S2′, located 130 residues from the N terminus
of the S2 subunit that is highly conserved among coronaviruses. Cleavage at the S2′ site
by host cell proteases is vital for successful infection by coronaviruses (Belouzard, Chu &
Whittaker, 2009; Gui et al., 2017; Park et al., 2016; Walls et al., 2017).

The surface-exposed S glycoprotein is the main focus for therapeutic design and
vaccine development as it is the main target of nAbs upon infection. The post-fusion S
glycoprotein is strategically decorated with N-linked glycans, which have been suggested as
a potential viral protective strategy to evade the host immune response (Cai et al., 2020).
Moreover, N-linked glycans are important in correct protein folding and for providing
accessibility to host proteases and nAbs (Walls et al., 2016; Xiong et al., 2017). The full-
length S glycoprotein, the S1 subunit and especially the RBD are capable of inducing
T cell-mediated immune response as well as potent nAbs in individuals infected with
MERS-CoV, SARS-CoV and SARS-CoV-2 (Amanat & Krammer, 2020; He et al., 2004; Lan
et al., 2015; Suthar et al., 2020). Moreover, RBD-specific humoral and cellular immunity
were detected in COVID-19 convalescent individuals, where significant concentrations of
nAbs, IgG and IgM as well as T cell-specific interferon gamma (IFN-γ) were present (Ni et
al., 2020). In a separate animal study, RBD-specific IgG accounted for half of the S-induced
antibody responses, suggesting RBD is the dominant immunogen as the concentration of
N-specific IgG induced was 30-fold lower (Gao et al., 2020). In addition, immunization
with the recombinant RBD of SARS-CoV-2 has been shown to elicit a robust neutralizing
antibody response, even in the absence of antibody-dependent enhancement (Quinlan et
al., 2020). Therefore, RBD is a promising immunogen and has been widely used in vaccine
development, providing protection against SARS-CoV-2.

Naturally, viruses accumulate mutations over time; thousands of mutations have
been described, especially in the S glycoprotein. While majority of the mutations are
disadvantageous to viral fitness, some confer selective advantages, such as increased
transmissibility as well as decreased effectiveness of the host immune response. Mutations
induce modifications in the S glycoprotein structures, causing a change in the antigenic
properties. SARS-CoV-2 lineages B.1.1.7 (Alpha variant), B.1.351 (Beta variant), P.1
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(Gamma variant), B.1.617.2 (Delta variant) and B.1.1.529 (Omicron variant) are the
main variants of concern (VOC) not only because of their enhanced infectivity and
transmissibility but also due to their abilities to potentially reduce neutralization by
nAbs (Dejnirattisai et al., 2021; Salleh, Derrick & Deris, 2021; Wall et al., 2021; Wang et al.,
2021a). These variants could limit the vaccine effectiveness, thus achieving herd immunity
by vaccinations would therefore be more difficult.

mRNA optimization
The immunostimulatory capability of mRNA as well as its stability and translatability are
the main critical concerns to be optimized in the mRNA vaccine development. Increased
stability and translation can be achieved by optimizing many regions of the mRNA. For
example, the 5′ and 3′ untranslated regions (UTRs) that are responsible for recruiting
RNA-binding protein profoundly influence the stability and translation of mRNA (Fig. 2).
These regulatory elements in both UTRs vastly increase the half-life and expression of
mRNA (Holtkamp et al., 2006). Furthermore, the length of the 3′-UTR also plays an
important role in increasing the translational efficiency and the stability of an mRNA,
where the addition of 100 additional bases to the 3′-UTR has been shown to increase the
mRNA translational efficiency and stability in Chinese hamster ovary cells by 38-fold and
2.5-fold, respectively (Tanguay & Gallie, 1996). In addition, poly(A) tail also plays a key
regulatory role in the mRNA stability and translational efficiency. Polyadenylation can
be added by using poly(A) polymerase or directly from the encoding DNA template. An
optimal length of poly(A) tail stabilizes mRNA and increases protein translation (Pardi et
al., 2018). The Moderna mRNA-1273 and Pfizer BNT162b2 vaccines are produced using a
sequence-optimized mRNA encoding the SARS-CoV-2 S protein, flanked by 5′-UTR and
3′-UTR sequences and a poly(A) tail (Corbett et al., 2020a; Vogel et al., 2021).

The addition of 5′ Cap structure by using various versions of synthetic cap analogues is
crucial for efficient protein translation. For instance, the translational efficiency of ‘anti-
reverse’ cap analogue-cappedmRNAs has been greatly increased as the conventional reverse
cap structures reduce the translational efficiency of mRNAs (Grudzien-Nogalska et al.,
2007; Stepinski et al., 2001). Apart from improved translation, 5′-capping is also important
for facilitating pre-mRNA splicing, providing protection for mRNA from exonuclease
degradation and acting as the binding site for the translation initiation complex eIF4F
(Park et al., 2021). For majority of mRNA vaccines developed for SARS-CoV-2, including
the licensed Pfizer and Moderna vaccines, a m7GpppNmN cap, also known as Cap 1 was
added to the 5′-end using capping enzyme or 2′-O-methyltransferase (Corbett et al., 2020a;
De Alwis et al., 2021;McKay et al., 2020; Sahin et al., 2020). Moreover, codon optimization
by modifying rare codons in protein-coding sequences with identical commonly occurring
codons can result in improvements in protein expression levels. The reason for this is
because commonly preferred codons correlate with the abundance of cognate tRNAs
that are available in the cytoplasm (Gustafsson, Govindarajan & Minshull, 2004; Hanson
& Coller, 2017). Another example is that the enrichment of G:C content in the mRNA
sequence. The translational efficiency of a GC-rich sequence has been shown to be 100-fold
higher than that of a GC-poor counterpart (Kudla et al., 2006). Although these codon

Salleh et al. (2022), PeerJ, DOI 10.7717/peerj.13083 8/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.13083


Figure 2 The optimization and delivery of mRNA vaccine.mRNA vaccines, developed against SARS-
CoV-2, are optimized to include a 5′-capping and an untranslated region (UTR) at the 5′-end. The ma-
jority of mRNA vaccines developed against SARS-CoV-2 use a m7GpppNmN cap, also known as Cap 1,
which is added to the 5′-end using the capping enzyme 2′-O-methyltransferase. These additional struc-
tures are added to increase the stability and improve the translation of mRNA. Similarly, an UTR and a
poly(A) tail are added at the 3′-end of mRNA, both are crucial for the mRNA stability and translation
initiation. The open reading frame (ORF), which encoding the receptor-binding domain (RBD) (PDB:
6M0J) (Lan et al., 2015) or the full-length spike (S) glycoprotein (PDB: 6VSB) (Wrapp et al., 2020), is op-
timized by using commonly occurring codons to replace rare codons. In addition, the sequence is mod-
ified to include GC rich content or modified nucleosides such as 1-methylpseudouridine. mRNA opti-
mization by using modified nucleosides and common codons could potentially increase the immunostim-
ulatory and efficacy of mRNA vaccines. In order to protect mRNA from the extracellular ribonucleases,
amine-containing carrier molecules such as lipid nanoparticles (LNPs) are commonly used, which consist
of phospholipid bilayer shell and ionizable cationic lipids. In addition, cholesterols and polyethylene glycol
(PEG)-containing lipids are also added to increase the overall shell structure and stability.

Full-size DOI: 10.7717/peerj.13083/fig-2

optimizations could positively modulate the protein expression, it is also possible that
these changes could also affect mRNA secondary structure conformation, the kinetics of
translation as well as its subsequent protein folding, which then could potentially influence
the specificity and magnitude of the immune response (Buhr et al., 2016; Pardi et al., 2018;
Yu et al., 2015).

Past studies have shown that the immunostimulatory ability of mRNA can be influenced
by the introduction of modified nucleosides aside from complexing mRNA with various
carrier molecules, which we have discussed above. Incorporation of naturally modified
nucleosides, such as m5C, m6A, m5U, s2U or pseudouridine and 1-methylpseudouridine
into mRNA prevents activation of the endosomal sensors Toll-like receptor 3 (TLR-3),
TLR-7 and TLR-8 (Nance & Meier, 2021). RNA recognition by these endosomal sensors
induces type I interferon (IFN) production and thus incorporating modified nucleosides
could potentially reduce type I IFN signaling, hence decreasing the host innate immune
response towards the RNA (Karikó et al., 2005). Nucleoside modifications also partially
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suppress the recognition of double-stranded (ds)RNA species, resulting in more efficient
translation of nucleoside-modified mRNA, compared to unmodified mRNA in vitro,
especially in primary dendritic cells (DCs) and in vivo in mice, where the highest level of
protein production was observed (Pardi et al., 2018). Conversely, the immunostimulatory
properties of mRNA can also be increased by the introduction of an adjuvant (Pardi et al.,
2018). Although the information on the use of adjuvant in mRNA vaccines against SARS-
CoV-2 is scant, there are few inactivated, subunit and virus-like particle vaccines against
SARS-CoV-2 have been developed with adjuvants. The use of adjuvants in coronavirus
vaccines has been extensively reviewed (Liang et al., 2020). Adjuvants such as CpG 1018,
AS03 andMF59 have been licensed to be used in vaccines against SARS-CoV-2 by Dynavax,
GlaxoSmithKline and Seqirus, respectively (Liang et al., 2020; Thanh Le et al., 2020). AS03
and MF59 are emulsion adjuvants, which have been previously used in vaccines developed
against SARS-CoV and MERS-CoV. AS03 elicited both potent humoral and cellular
immune responses to an inactivated SARS-CoV vaccines, where the use of the adjuvant
resulted in higher antibody titers compared to non-adjuvanted vaccines (Roberts et al.,
2010). Furthermore, self-amplifying mRNA vaccines that have been formulated with a
cationic nanoemulsion adjuvant based on the licensed MF59, have shown an increase in
immunogenicity and potency in a variety of animal models (Brito et al., 2014). Apart from
emulsion adjuvants, salt-based aluminum adjuvants such as aluminum hydroxide were also
used. They were the first adjuvants used in licensed human vaccines and are still commonly
used due to their safety and ability to increase immune responses (Liang et al., 2020). A
recent study of the inactivated SARS-CoV-2 vaccine, CoronaVac, which is adjuvanted with
aluminum hydroxide provided complete protection in non-human primates with potent
humoral response (Gao et al., 2020).

Lipid nanoparticle
mRNA vaccines require an efficient delivery for their success and clinical translation in the
cytoplasm. mRNA vaccines are designed to be administered with a carrier molecule that
protects the genetic material from degradation by omnipresent extracellular ribonucleases
and delivers it to the cytoplasm without substantial toxicity. To reach the cytoplasm, the
mRNA must cross the cell membrane, a dynamic and formidable barrier, in which both
mRNA molecule and the cell membrane are negatively charged. Recent advances in the
design of mRNA manufacturing and intracellular delivery methods have vastly improved
the mRNA delivery system. Multiple types of polymers, peptides and lipid-based carriers
have shown promise in preclinical and some clinical studies (Kowalski et al., 2019). In
order to protect mRNA against ribonuclease degradation and to shield its negative polarity,
amine-containing carrier molecules such as lipid nanoparticles (LNPs) are commonly
used for in vivo mRNA delivery among potential non-viral vectors (Fig. 2). LNPs can be
manufactured in large-scale with relative ease, and low-cost. LNPs can be co-formulated
with adjuvants and surface-decorated with ligands, receptors and antigens to facilitate
the uptake by the desired type of immune cells, such as antigen-presenting cells (APCs).
For example, coating the particles with a polyethylene glycol (PEG)-containing lipid can
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reduce complement system activation facilitating longer presence in the circulation, thus
improving the vaccine delivery (Reichmuth et al., 2016).

Adjuvants, conversely can be added to LNPs to increase the immune response (Reichmuth
et al., 2016). Adjuvants such as 1,2-dioleyl-3-trimethylammonium-propane chloride salt
(a cationic lipid), have been shown to activate TLR-4, which in turn increasing the
production of T helper cytokines, such as interleukin-2 (IL-2), tumor necrosis factor alpha
(TNF-α) and IFN-γ (Kedmi, Ben-Arie & Peer, 2010). Aluminum salts were first utilized to
increase the immune response of conventional vaccines. It is used in inactivated vaccines
against SARS-CoV-2 such as CoronaVac and BBIBP-CorV, which contain aluminum
hydroxide as adjuvants (Gao et al., 2020; Wang et al., 2020). However, mRNA vaccines
against SARS-CoV-2 do not require the use of other adjuvants as the LNP seems to serve as
an adjuvant (Chung et al., 2020). Some lipids have been reported to have an adjuvant effect
by themselves and can activate the immune response and induce inflammation (Reichmuth
et al., 2016). Although Pfizer/BioNTech and Moderna do not explicitly mention the use
of an adjuvant, but mRNA already contains immunostimulatory properties through the
activation of pathogen recognition receptors (Chung et al., 2020). Previous studies have
shown that mRNA vaccines against influenza demonstrated potent self-adjuvantation
and induced balanced immune responses comprising both humoral and cellular effector
responses. mRNA poses self-adjuvantation via its recognition by the endosomal sensors
TLR-3, TLR-7 and TLR8, and the cytoplasmic sensors such as RIG-I or MDA-5 (Fig. 3)
(Edwards et al., 2017; Kowalczyk et al., 2016).

LNP generally consists of a lipid bilayer shell that surrounds an aqueous core and
is usually made of a combination of different kinds of lipids, each has its own distinct
functions (Fig. 2). LNP formulations mostly rely on ionizable cationic lipids, whose
positive charge efficiently binds to the negatively charged RNA. Some anionic and neutral
formulations, such as phospholipids and cholesterol are used for their structural roles
in LNP. Phospholipids facilitate endosomal escape by disrupting the lipid bilayer and
promote a transition from a lamellar to a hexagonal phase in the endosome (Cui, Chen
& Zhu, 2008; Reichmuth et al., 2016). Cholesterol serves as a stabilizing agent in LNP and
is also important in promoting the transition from lamellar to hexagonal phases. The
hexagonal phase is crucial for dissociation of mRNA from LNP and its translocation across
the endosomal membrane into the cytosol (Zuhorn et al., 2005). Cholesterol has been
shown to strengthen fluid bilayers and reduce the leakage of contents from liposomes
(Allen & Cullis, 2013). Lipid-anchored PEGs are formulated on the LNP surface, where
they serve as a barrier that stabilizes LNP and reduces nonspecific binding to proteins.
They also reduce cellular uptake by the reticulo-endothelial system and interaction with
the endosomal membrane, while increasing the blood circulation time of LNP in order to
reach target immune cells such as APCs (Reichmuth et al., 2016).

COVID-19 AND IMMUNE RESPONSE
SARS-CoV-2 infects mammalian lung epithelial cells by binding via its S glycoprotein to
the ACE2 receptor, which is abundantly expressed on the surface of the lung and intestine,
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Figure 3 Cellular and humoral host immune responses to SARS-CoV-2 viral infection. SARS-CoV-2
viral entry into the epithelial host cells is mediated by the S glycoprotein binding to the cell receptor
angiotensin-converting enzyme (ACE2) via the RBD of the S1 subunit. The binding depends on the
type II transmembrane serine protease (TMPRSS2) for the S protein priming (Hoffmann et al., 2020) .
Upon entry, the virus is recognized by the innate immune receptors, such as toll-like receptor 3 (TLR-3),
TLR-7/8 and RIG-1/MDA-5, leading to the subsequent production of type I interferons (IFNs) and
pro-inflammatory cytokines (interleukin 1 (IL-1), IL-6, IL-7 and tumor necrosis factor alpha (TNF-α)).
Type I IFNs such as IFN-α and IFN-β are crucial in suppressing the propagation of the virus and essential
in the activation of pro-inflammatory and anti-viral IFN-stimulated genes (ISGs) via the JAK-STAT
signaling pathway (McNab et al., 2015) . Cytokines produced by infected cells then modulate the adaptive
immune response via the activation of a plethora of immune cells such as macrophages, natural killer
(NK) cells, CD4+ T cells and B cells, which produce IgA, IgG and IgM antibodies to neutralize the virus
(Chen et al., 2020a; DelValle et al., 2020; Ni et al., 2020). However, an unbalanced immune response that
leads to hyperactivation of the inflammatory immune response causes a phenomenon called cytokine
storm and its associated macrophage activation syndrome (MAS), which leads to immune exhaustion
and causes severe clinical symptoms of coronavirus disease 2019 (COVID-19) (Song et al., 2020). Patients
with SARS-CoV-2 infection displayed a functional exhaustion of NK and CD8+ T cells, associated with an
increased expression of the inhibitory receptor NKG2A (Antonioli et al., 2020; Zheng et al., 2020).

Full-size DOI: 10.7717/peerj.13083/fig-3
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and less frequently, in the kidney, heart and adipose tissues (Murgolo et al., 2021). Binding
to the receptor activates proteolytic cleavage by the type II transmembrane serine protease
(TMPRSS2) near the junction between the S1 and S2 subunits, which leads to viral and
host cellular membrane fusion, and subsequent transfer of the viral RNA into the host
cell cytoplasm (Fig. 3) (Hoffmann et al., 2020). Infection with SARS-CoV-2 induces both
humoral and cell-mediated immunity in humans (Chen et al., 2020a; Del Valle et al., 2020;
Ni et al., 2020). Various innate recognition and response cascades are triggered by the
SARS-CoV-2 infection that are crucial for the recognition and suppression of pathogens,
and for subsequent activation of the adaptive immune system. Since the lung epithelial cells
serve as the main tissue tropism for SARS-CoV-2 infection, the mucosal surfaces present
the first line of defense. A previous study has reported that early SARS-CoV-2-specific
humoral responses were dominated by IgA antibodies, with high concentrations detected
in the saliva and bronchoalveolar lavage fluid, within three weeks upon infection (Sterlin et
al., 2021). Antibody responses against SARS-CoV-2 include IgA, IgG and IgM, but IgA has
been reported to contribute to the virus neutralization at a greater extent compared with
IgG (Sterlin et al., 2021). Moreover, dimeric IgA antibodies that are abundantly found in
mucosal tissues including the upper respiratory tract, neutralized SARS-CoV-2 15 times
more potently than their monomeric counterparts (Wang et al., 2021c). Blood samples
collected from convalescent individuals reported that N- and RBD-specified IgG and IgM
antibodies were both detected in the blood sera, significantly at high levels even after at
least 2 weeks after discharge (Ni et al., 2020). This demonstrates that natural infection with
SARS-CoV-2 induces a robust humoral response, which lasts weeks after the infection.

Cytokines such as IFNs and ILs play important roles in the immune response against
SARS-CoV-2. Pro-inflammatory cytokines such as IL-1β, IL-6, IL-12, IL-17, IFN-γ and
TNF-α, as well as cytokines involved in anti-inflammation like IL-10 have also been
described to be elevated in COVID-19 patients. In addition, various studies have also
described abnormal levels of cytokines that are involved in adaptive immunity such as IL-2
and IL-4 in the patients. Moreover, other cytokines that are directly or indirectly involved
in the activation of immune cascades, which serve as important regulators of immune
responses such as IL-7, IL-13, M-CSF, G-CSF, GM-CSF, IP-10 and MCP-1 have also been
observed to be elevated in the COVID-19 patients (Chen et al., 2020a; Costela-Ruiz et al.,
2020; Huang et al., 2020). It has been shown that hyper activation of the inflammatory
immune response can lead to a phenomenon called cytokine storm (Fig. 3) and subsequent
immune exhaustion which may lead to disease severity (Song et al., 2020). For instance,
excessive production of the pro-inflammatory cytokines TNF-α and IFN-γ synergistically
induce inflammatory cell death, leading to tissue damage and eventually death (Karki et
al., 2021). Furthermore, imbalanced and inappropriate inflammatory response, which is
defined by low levels of type I and III IFNs contrasted to elevated chemokines and high
expression of IL-6, drives the development of severe COVID-19 (Blanco-Melo et al., 2020).
IL-6 is a crucial main factor in cytokine storm and has been reported to be present at high
levels in severe COVID-19 patients, which may cause severe damage to lung tissue (Huang
et al., 2020).
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Infection with SARS-CoV-2 activates cell-mediated immunity, in which macrophages
serve as one of the primary cellular defenses against the pathogen. Macrophages are a group
of innate immune cells that can be found in the lungs and along the upper respiratory
tract, where they are among the early immune cells to act on invading virions. They
produce pro-inflammatory molecules such as IL-6 that destroy the threats. Their activities
on the SARS-CoV-2 virus drive both inflammation and the progression of COVID-19.
Severe infections, which induce macrophage activation syndrome (MAS) can lead to
dysregulation of macrophage response that severely damage the host (Merad & Martin,
2020). MAS is associated with cytokine storm, with markedly increased production of
pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-1, IL-6, IL-7, and IL-18, as well
as inflammatory chemokines including CXC-chemokine ligand 10 (CXCL10/IP-10),
CC-chemokine ligand 2 (CCL2) and CCL3 (Merad & Martin, 2020; Schulert & Grom,
2015). Interestingly, several studies have shown that macrophages and monocytes can be
infected by SARS-CoV-2 and the infection induced host immunoparalysis for the benefit of
COVID-19 progression (Boumaza et al., 2021; Szekely et al., 2021). Monocytes are blood-
circulating, phagocytic innate immune cells that play an important role in protecting the
host organism against the invading pathogens (Knoll, Schultze & Schulte-Schrepping, 2021).
However, a significantly higher percentage of CD14+CD16+ inflammatory monocytes
was observed in the peripheral blood of COVID-19 patients admitted to intensive care
units (ICUs), associated with markedly high expression of IL-6 as compared to non-ICU
patients (Zhou et al., 2020). In contrast, a significant decrease of peripheral blood cytotoxic
lymphocytes such as CD8+ T lymphocytes and natural killer (NK) cells is observed in severe
COVID-19 patients. This functional exhaustion of cytotoxic lymphocytes is associated with
increased expression of the inhibitory receptor NKG2A on the surface of NK and CD8+ T
cells. More importantly, the number of NK and CD8+ T cells was elevated to normal levels
with reduced expression of NKG2A in convalescent patients (Antonioli et al., 2020; Zheng
et al., 2020).

ACTIVATION OF ADAPTIVE IMMUNE RESPONSE BY MRNA
VACCINES
mRNA vaccine-induced antibody responses
Several studies showed that natural infection by SARS-CoV-2 induces potent nAb
production in convalescent individuals. Thus, mRNA vaccines developed for COVID-19
have been focused on their ability to induce robust nAb responses. A strong, dose-dependent
antibody response was observed in participants immunized with the Pfizer/BioNTech
BNT162b1 vaccine. A previous report showed that RBD-specific IgG increased in a
dose-dependent manner, with geometric mean concentrations (GMCs) in the range
of 3,920–18,289 U ml−1 in BNT162b1-vaccinated individuals after 21 days of receiving a
second dose (day 43), as compared to a GMCof 602Uml−1 in non-vaccinated convalescent
individuals. A second dose is necessary to elevate antibody concentrations as the IgG GMC
of individuals who received a priming dose was only at 755 U ml−1 by day 43. Likewise,
substantial increases in nAb titers were also observed in a dose-dependent manner after the
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second dose (Sahin et al., 2020). These results complement with the earlier Phase I/II study
of the BNT162b1 vaccine, where a clear dose response was elicited with neutralizing GMTs
observed after the second dose particularly, at higher dose concentrations (Mulligan et al.,
2020). Similarly, a safety and immunogenicity report of another Pfizer/BioNTech vaccine
candidate BNT162b2, which is currently licensed under the brand name Comirnaty,
showed that the vaccine elicited similar dose-dependent SARS-CoV-2-neutralizing GMTs,
which were similar to or higher than the GMT of a panel of SARS-CoV-2 convalescent
serum samples. IgG and virus-neutralizing responses to vaccination with 10 µg to 30 µg of
BNT162b2 were boosted by the second dose, reaching highest neutralization titers on day
35 (two weeks after the second dose), which was similar to vaccination with BNT162b1
(Walsh et al., 2020). Although BNT162b2 is quite effective in providing protection against
the wild-type SARS-CoV-2 infection, there is a time-dependent reduction in nAbs has
been reported, which was associated with lower nAb activity against SARS-CoV-2 variants
such as Delta (Tartof et al., 2021). This has prompted the recommendation of a third dose,
particularly after the emergence of the Omicron variant. Several reports showed that the
third dose of BNT162b2 provided added protection against SARS-CoV-2 (Peled et al.,
2021; Saciuk et al., 2022; Terpos et al., 2022). The third dose elicited neutralization titers
and IgG anti-RBD antibodies of more than 9-fold and 3-fold higher, respectively than the
range achieved after the second dose (Peled et al., 2021).

Immunogenicity evaluation of the mRNA-1273 vaccine, which is currently sold under
the brand name Spikevax, in non-human rhesus macaques receiving 10 or 100 µg of
the vaccine showed a robust neutralizing activity and rapid protection in the upper and
lower airways of the primates. The vaccine induced neutralizing GMTs of 501 and as
high as 3481 in the 10- and 100-µg dose groups, respectively. In addition, S-specified
IgG antibody response was markedly increased in a dose-dependent manner after two
vaccinations (Corbett et al., 2020a). In another study, the mRNA-1273 vaccine has been
shown to induce potent neutralizing responses to both wild-type SARS-CoV-2 and D614G
mutant, which has become dominant around the world (Corbett et al., 2020a). Similar
to BNT162b2, it has been reported that there was a marked decrease in antibody after 6
months of vaccination with mRNA-1273 (Tré-Hardy et al., 2021). The third dose has been
shown to increase nAb response against the SARS-CoV-2 variants such as Alpha, Beta and
Delta, compared to the wild-type (Kumar et al., 2021).

Safety and immunogenicity assessment of another mRNA vaccine, CVnCoV, developed
by CureVac showed robust immune responses in all groups of participants, especially of
the S- and RBD-specified IgG production (Kremsner et al., 2021). Although the vaccine
has been proven to induce strong humoral responses with high titers of virus-nAbs in its
Phase I clinical (Kremsner et al., 2021) as well as previous pre-clinical studies in mice and
hamsters (Hoffmann et al., 2021a; Rauch et al., 2021), its Phase II/III clinical trial showed
the CVnCoV vaccine’s efficacy against symptomatic COVID-19 is only 48% (CureVac,
2021). Moreover, nAb levels in the recipients who received the CVnCoV vaccine were
comparable with those in sera from convalescent patients (Kremsner et al., 2021), but
much lower than those recipients who received the Pfizer and Moderna vaccines, possibly
due to lower 12 µg dose used, as compared to 30 µg and 100 µg for the Pfizer andModerna
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vaccines, respectively. Due to low efficacy recorded from its clinical trial, CureVac has totally
abandoned the development of CVnCoV and now has moved forward in developing a
second-generation mRNA vaccine, in collaboration with GlaxoSmithKline (Adams, 2021).

Activation of T cells and cytokine production
Infection by SARS-CoV-2 stimulates the production of nAbs, virus-specific T cells as well
as robust immune-modulatory cytokines. As a key factor for several antiviral responses,
IFN-γ has been shown to act synergistically with IFN-β in inhibiting SARS-CoV replication
(Sainz et al., 2004). The Phase I/II clinical trial of the Pfizer BNT162b1 vaccine showed that
IFN-γ and IL-2 were secreted primarily by the RBD-specific CD4+ T cells and fractions
of CD8+ T cells, in agreement with the previous preclinical studies in mice and macaques
(Sahin et al., 2020;Vogel et al., 2021). BNT162b vaccines elicited high level of specific CD4+

T cells that primarily produced the T-helper-1 (TH1) cytokines IFN-γ, IL-2 or TNF-α,
as opposed to the T-helper-2 (TH2) cytokines IL-4, IL-5 or IL-13 (Fig. 4), indicating
a TH1-biased response (Sahin et al., 2020; Vogel et al., 2021). Increase in the strength of
CD4+ T cell responses has most likely contributed to the high RBD-binding IgG and nAb
titers. Although the strength of CD8+ T cell responses correlated positively with CD4+

T cell responses, it did not significantly correlate with nAb titers. Interestingly, unlike
RBD-specific IgG and nAb responses, T cell responses were not dose-dependent, in which
a dose as low as 1 µg has been shown to elicit a robust expansion of T cells in most patients
(Sahin et al., 2020). However, in a separate study using the mRNA-1273 vaccine showed
that TH1 response is dose-dependent and the response levels were higher in the 100-µg dose
compared to the control or in the 10-µg dose groups. TH2 responses, conversely remained
low or undetectable in both 10- and 100-µg dose groups. CD40L, a cell–surface marker
that is abundantly expressed after CD4+ T-cell activation and IL-21, which is produced
by CD4+ T follicular helper (TfH) cells were also detected in both groups. CD40L is
important for B-cell activation and efficient isotype switching whereas TfH cells are crucial
for generation of long-term B-cell memory (Corbett et al., 2020b).

Vaccines provide long-term protection from infection by generating memory B cells and
long-lived plasma cells, which persistently produce antigen-specific antibodies. Memory B
cells that produce full-length S protein- and RBD-specific IgG1 and IgG2a/b were detected
at significantly high concentrations, along with full-length S protein- and RBD-specific
IgM-producing B cells, after administration of a single vaccine dose (Laczkó et al., 2020).
Activation of T cell response depends on the number of antigenic determinants, in which
the full-length S protein vaccine has been shown to induce greater T cell responses
compared to the shorter RBD vaccine. This is because the longer full-length S protein
produced by mRNA vaccines contains additional T cell epitopes and therefore, the vast
majority of CD4+ T cells recognize epitopes in both the N-terminal and C-terminal
domains of the S protein, while interestingly the majority of CD8+ T cell response was
directed only at epitopes in the N-terminal domain (Laczkó et al., 2020). CVnCoV, which
encodes the full-length SARS-CoV-2 S protein has been shown to induce both S-specific
CD4+ and CD8+ T-cell responses in mice (Rauch et al., 2021). Moreover, immunization
with the S1 domain induced much higher IgG and IgA antibody levels than the RBD
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Figure 4 mRNA vaccine delivery by LNP and its mechanism in promoting the adaptive immune re-
sponse.mRNA vaccines are delivered to antigen presenting cells such as dendritic cells, macrophages
and B cells. LNP protects mRNA from enzymatic degradation by extracellular ribonucleases. Positively
charged ionizable cationic lipids favor mRNA localization at the negatively charged cell membrane, as well
as facilitate endocytosis and the subsequent endosomal escape (Reichmuth et al., 2016). Upon translation,
the RBD or full-length S glycoprotein will be secreted out of the host cell or processed into smaller pep-
tides by proteasome. Processed antigenic peptides are transported into the endoplasmic reticulum (not
shown) and Golgi apparatus, and loaded onto major histocompatibility complex (MHC) class I or class
II molecules, where they will be subsequently presented on the cell surface. MHC I is recognized by the
cytotoxic T cell via CD8+ receptor, whereas MHC II is recognized by the helper T cell via CD4+ receptor,
leading to the production of inflammatory cytokines and the subsequent induction of humoral and cell-
mediated immune responses.

Full-size DOI: 10.7717/peerj.13083/fig-4

vaccine (Wang et al., 2021d). In contrast, vaccination with mRNA-1273 that encoding the
full-length prefusion-stabilized SARS-CoV-2 S-2P protein has been shown to induce low
or undetectable CD8+ T cell response, although the CD4+ T cell response remained high
(Corbett et al., 2020b). However, in a later study, mRNA-1273 has been shown to induce
a robust CD8+ T cell response, with a balanced TH1/TH2 response (Corbett et al., 2020a).
In addition, immunization with two doses of BNT162b1 that encoding the trimerized
RBD elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with
RBD-binding IgG concentrations higher than those observed in sera from convalescent

Salleh et al. (2022), PeerJ, DOI 10.7717/peerj.13083 17/35

https://peerj.com
https://doi.org/10.7717/peerj.13083/fig-4
http://dx.doi.org/10.7717/peerj.13083


individuals (Sahin et al., 2020). High CD8+ T cells detected were possibly due to RBD
multimerization, a strategy used to optimize its immunogenicity.

CHALLENGES AND LIMITATIONS OF COVID-19 MRNA
VACCINES
mRNA vaccine represents a promising alternative compared to conventional vaccines due
to their high potency and ability for rapid development, with cost-efficient production.
However, the physiochemical properties of mRNA may influence its stability, cellular
delivery and organ distribution. Thus, optimal construction of mRNA for the delivery and
translation is required to reduce the risks of degradation, posed by extracellular RNases.
The use of molecular carrier that was discussed above, such as LNPs, co-formulated with
adjuvants and surface-decorated with ligands, receptors and antigens would facilitate the
cellular uptake ofmRNAvaccines and reduce degradation.mRNAneeds to be engineered to
resemble fully processed mature mRNAmolecules as they occur naturally in the cytoplasm
of eukaryotic cells. The mRNA products should contain an open reading frame (ORF) that
encodes the protein of interest, flanking UTRs, a 5′ Cap and a poly(A) tail (Pardi et al.,
2018). These modifications could not only provide extra protection from RNases, but are
also important for facilitating and improving protein translation (Holtkamp et al., 2006;
Pardi et al., 2018; Park et al., 2021). mRNA optimization by using modified nucleosides
and common codons could also increase the immunostimulatory capability and efficacy of
mRNA vaccines. For instance, the Pfizer BNT162b2 and Moderna mRNA-1273 vaccines,
which use uracil-modified mRNA have been proven to give 95% efficacy in preventing
COVID-19 (Baden et al., 2021; Polack et al., 2020). However, CVnCoV, the unmodified
mRNA vaccine with naturally occurring nucleotides encoding the full-length S protein
failed to provide the minimum efficacy in Phase III trials with only 48% protection against
COVID-19 (CureVac, 2021; Kremsner et al., 2021). This is because the unmodified mRNA
that is detected by the endosomal sensors TLR-7 and TLR-8 may trigger the production
of type I IFNs, which can block the activation of B cells and subsequent production of
antibodies (Karikó et al., 2005;McNab et al., 2015; Pardi et al., 2018).

TheCD4+ T cell activation is critical for the activation of B cells and antibody production.
However, the induction of TH2 cytokines such as IL-4, IL-5 and IL-13 has been associated
with vaccine-associated enhanced respiratory disease (VAERD), a set of diseases with
predominant involvement of the lower respiratory tract. VAERD was previously observed
in some preclinical animal models of SARS and MERS coronavirus vaccines (Bolles et
al., 2011). Examples include enhanced respiratory syncytial virus infection and atypical
measles, occurring after administration of vaccines for the respective viruses (Munoz et
al., 2021). Therefore, it is imperative to achieve a balance TH1/TH2 cytokine production
as high COVID-19-associated mortality has been observed from an imbalance TH1/TH2
response (Pavel et al., 2021). For instance, VAERD is usually not observed when a CD4+

TH1 response occurs in the absence of a TH2 response. The Ig subclass and T cell cytokine
data from mRNA-1273 shows that the immunization with the vaccine elicited a balanced
TH1/TH2 response, in which low IgG2a/IgG1 ratios and low levels of IL-4, IL-5 and IL-13
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were recorded (Corbett et al., 2020a). In addition, low or undetectable levels of the TH2
cytokines IL-4, IL-5 or IL-13 were observed after the immunization with the BNT162b
vaccines, whereas strong TH1-type CD4+ T cell responses were recorded (Vogel et al.,
2021). All these data together demonstrate that the mRNA vaccines, which are currently
deployed against SARS-CoV-2 are capable in avoiding TH2-biased immune responses that
have been linked to VAERD.

There are few rare complications associated with mRNA vaccinations, especially in
young adults and adolescent males. Several vaccine-associated cases of myocarditis,
pericarditis and cardiomyopathy have been reported, which occurred within a week
after receiving the second dose of either the Pfizer BNT162b2 or Moderna mRNA-1273
vaccines (Bozkurt, Kamat & Hotez, 2021; Kim et al., 2021; King et al., 2021; Pepe, Gregory
& Denniss, 2021). Acute myocarditis is most commonly due to viral infections but rare
cases of vaccine-associated myocarditis have previously been reported in healthy adults
that received the smallpox and influenza vaccines (Cheng et al., 2016; Kuntz et al., 2018).
Although the exact mechanisms for myocarditis are obscure, several potential mechanisms
of myocarditis linked to mRNA vaccinations have been proposed. In certain individuals
with genetic predisposition, the immune system may detect the mRNA molecule as an
antigen, thus activating pro-inflammatory cascades and immunologic pathways, leading
to dysregulated cytokine expression (Bozkurt, Kamat & Hotez, 2021). In addition, nAbs
against the SARS-CoV-2 S glycoprotein have been shown to cross-react with structurally
similar human proteins such as α-myosin and transglutaminases, possibly leading to an
increase in autoimmune diseases (Vojdani & Kharrazian, 2020). Further evaluation of these
rare complications upon vaccination with mRNA vaccines is warranted to assess potential
risk of morbidity, including cardiac injury.

Since the emergence of SARS-CoV-2 in the late 2019, over a thousand mutations have
been recorded and some confer resistance to the virus. Certain combinations of specific
point mutations that induce modifications in the S glycoprotein structures, leading to a
change in the antigenic properties proving to be more alarming than others. VOCs such
as Alpha, Beta, Gamma, Delta and Omicron variants are concerning because of their
increased transmission and they can potentially decrease neutralization by nAbs, which
may render currently deployed vaccines less effective (Salleh, Derrick & Deris, 2021). For
instance, N501Y mutation, which is present in the Alpha, Beta and Gamma variants is
found in the RBD and has been shown to confer resistance by disrupting antibody binding
(Supasa et al., 2021). Sera obtained from the individuals who have been immunized with
themRNA-1273 and BNT162b2 vaccines showed amoderate 2-fold and 3.3-fold reduction,
respectively in the neutralization against the Alpha variant (Shen et al., 2021; Supasa et al.,
2021). Moreover, neutralization of the Gamma variant by the BNT162b2 vaccine showed a
reduction of 2.6-fold, relative to the original wild-type strain, significantly better than the
neutralization of the Beta variant, which recorded a 7.6-fold reduction (Dejnirattisai et al.,
2021). Although these findings have showed reductions in neutralization, vaccine efficacy
remains high and for now, these variants are not major concerns for the current COVID-19
vaccines. Moreover, vaccine-elicited CD4+ T cells have been shown to effectively recognize
some of the VOCs, providing protection from severe disease even in the absence of effective
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nAbs (Woldemeskel, Garliss & Blankson, 2021). However, new emerging mutations would
further challenge the vaccine efficacy and therefore, it is imperative to continuously assess
these vaccine efficacies against potential emerging new variants. For instance, the E484K
mutation that was previously found in the Beta and Gamma variants, has been recently
discovered in the Alpha variant. The mutation has been shown to further reduce antibody
neutralization, by disrupting the binding of serum polyclonal nAbs (Jangra et al., 2021).
The recent emergence of the Omicron variant, which has been recently designated as a VOC
on 26th November 2021 is alarming as it harbors a large number of mutations, particularly
30 mutations in the S glycoprotein, half of which are located in the RBD (Araf et al., 2022).
Some of its S mutations such as K417N, T478K, N501Y and D614G, all of which are also
found in the previous VOCs, are responsible in enhanced viral transmission and immune
evasion (Salleh, Derrick & Deris, 2021; Shanmugaraj et al., 2021). Furthermore, H655Y and
N679K mutations, both are located near the furin cleavage site and predicted to increase
S cleavage, thus enhancing the viral transmissibility (Peacock et al., 2021). Nevertheless,
whether the current COVID-19 vaccines could potentially resist the new Omicron variant
is still under investigation. However, several recent reports suggested that the Omicron
variant is more likely to evade neutralization by antibodies from individuals vaccinated
with the Pfizer/BioNTech vaccine, compared to the wild-type and Delta variant (Hoffmann
et al., 2021b; Lu et al., 2021). It is concerning that emerging variants of SARS-CoV-2,
through mutations in the S glycoprotein, especially the RBD can evade nAbs induced by
vaccination. Furthermore, it has been reported that there is a time-dependent reduction in
nAbs of mRNA vaccines, which was associated with lower nAb activity against SARS-CoV-2
variants such as Delta (Tartof et al., 2021) that has prompted the administration of a third
dose, particularly after the emergence of the Omicron variant. Although the third dose
has been shown to elicit high and robust immune responses against the current VOCs
(Peled et al., 2021; Saciuk et al., 2022; Terpos et al., 2022), if the immunity continues to
wane over the time for mRNA vaccines, it is possible more doses will be required to confer
prolong protection against newly emerging variants, and to provide durable and sustainable
immunity against SARS-CoV-2. Therefore, urgent safety and efficacy assessment against
newly emerging variants is required to verify the effectiveness of these vaccines.

CONCLUSION
mRNA vaccines have emerged as promising alternatives to provide protection against
SARS-CoV-2 due to their high potency with the capacity for rapid development and
low-cost production. Immunization with two doses of mRNA vaccine elicited a robust
CD8+T cell response, with a balanced CD4+ TH1/TH2 response. High levels of S-specific
IgG and nAbs were also detected. mRNA vaccines have been shown to provide a robust
protection with high efficacy against the virus, newly emerging variants of SARS-CoV-2
may render the currently deployed mRNA vaccines less effective. Although these challenges
and limitations as well as adverse events following immunization pose potential risks to
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the development of the mRNA vaccines, their benefits in providing protection against
SARS-CoV-2 outweigh the risks.
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