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ABSTRACT
Chinese bayberry (CB) is among the most popular and valuable fruits in China owing
to its attractive color and unique sweet/sour taste. Recent studies have highlighted
the nutritional value and health-related benefits of CB. CB has special biological
characteristics of evergreen, special aroma, dioecious, nodulation, nitrogen fixation.
Moreover, the fruits, leaves, and bark of CB plants harbor a number of bioactive
compounds including proanthocyanidins, flavonoids, vitamin C, phenolic acids, and
anthocyanins that have been linked to the anti-cancer, anti-oxidant, anti-inflammatory,
anti-obesity, anti-diabetic, and neuroprotective properties and to the treatment of
cardiovascular and cerebrovascular diseases. The CB fruits have been used to produce a
range of products: beverages, foods, and washing supplies. Future CB-related product
development is thus expected to further leverage the health-promoting potential of this
valuable ecological resource. The present review provides an overview of the botanical
characteristics, processing, nutritional value, health-related properties, and applications
of CB in order to provide a foundation for further research and development.

Subjects Agricultural Science, Biochemistry, Food Science and Technology, Plant Science
Keywords Chinese bayberry, Botanical characteristics, Bioactive compounds, Nutritional value,
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INTRODUCTION
Plants in the Myrica L. family include Myrica rubra, Myrica esculenta, Myrica Nana,
Myrica Adenophora, Myrica cerifera, Myrica Faya, Myrica Rivas martinezii, and ∼47
other species (Jia et al., 2015), which are found through Australia, North America, and
Southeast Asia (Erickson & Hamrick, 2003). Myrica L. family plant roots often exhibit
symbiotic relationships with nitrogen fixing rhizobia, including shrubs or small evergreen
or deciduous. Myrica rubra, which is known as the Chinese Bayberry (CB) and is an
important subtropical fruit species in southern China, is the only member of this family
that is subject to economic cultivation. It is an evergreen tree with a pleasing shape (Fig. 1A,
this tree (∼15 years) that about 2.5 m high was photographed in Hangzhou), and can be
planted for fire prevention and for greening purposes. Archaeological investigations of the
Hemudu site from the Neolithic Age have revealed that CB plants have been planted for at
least 7,000 years. These perennial shrubs are 2–3 m in height on average (maximum: 6 m),
with waxy or shiny single alternating leaves that are elliptic or oblanceolate in shape and
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8–13 cm in length, with new leaves appearing emerald green with yellow gland spots on
the back (Figs. 1B and 1C, the branches and leaves were photographed in Jinhua). CB is a
dioecious plant associated with the ZW sex-determination system and catkin inflorescence
(Jia et al., 2019; Wang et al., 2020a). The female inflorescence is a long oval ∼1.5 cm in
length often found in solitary leaf axils (Fig. 1D, female inflorescence was photographed
in Jinhua), whereas the male inflorescence is cylindrical, ∼3 cm in length, and clustered in
leaf axils, with green, yellow, red, and other colorations (Fig. 1E, male inflorescence was
taken from Jinhua and photographed in the laboratory in Hangzhou). CB fruits are drupes
encapsulating a single seed that ripen from mid-May to early July (Sun et al., 2013a), and
exhibit a distinctive aroma (Kang et al., 2012). The fruits can be separated into four groups
based upon coloration, including white, pink, red, and black type fruits (Figs. 1F and 1I, the
mature fruit were photographed in Shaoxing, Ningbo, Taizhou and Jinhua, respectively).
The outside of the seed exhibits many dense saccular bodies with a diameter of 2.5−3.6
cm (Fig. 1J), and there is no pericarp covering the surface of the fruit. Representative fruit
colors include the Shuijingzhong, Xiazhihong, Dongkui, and Biqizhong varieties, with black
varieties being most common. At present, the main varieties are Dongkui and Biqizhong.
Of these, Dongkui is a large fruit variety desirable to consumers and producers, while
Biqizhong fruits exhibit robust adaptability and a wide planting range and distribution.
Both of these varieties are primarily distributed in more than 10 provinces south of the
Yangtze River, including Zhejiang, Fujian, Jiangsu, Guangdong, and Hunan. According to
the analysis of the National Bureau of statistics in 2020, there are 87,995 hectares devoted
to CB cultivation in Zhejiang Province with an output of 654,997 tons valued at 4,699.72
million yuan (RMB) (approximately 740 million USD), underscoring the economic value
of this popular fruit.

CB is a nodular plant (Fig. 1K), with annual seedlings exhibiting a height of ∼30 cm,
and CB roots fix atmospheric nitrogen to facilitate plant growth through a symbiotic
relationship with Frankia (Nouioui et al., 2017). Frankia strains isolated from CB root
nodules exhibit rich genetic diversity (He et al., 2004a; He et al., 2004b). CB plants are
highly adaptable and can be readily grown in harsh or barren environments including
weakly acidic soil with a minimum tolerated temperature of −9 ◦C. Notably, CB exhibits
a number of ecological benefits, facilitating water and soil conservation, adjusting the
microenvironmental climate, controlling the flow of water and associated soil erosion, and
thereby reducing the risk of disastrous flooding.

CB is among the most popular and valuable fruits in China owing to its attractive color,
unique sweet/sour taste, and medicinal value. In the Ben Cao Gang Mu (compendium
of materia medica) written by Li Shizhen during the Ming Dynasty, CB is purported to
quench thirst, cleanse the stomach and intestines, and harmonize the viscera. Most studies
to date have focused on the function of isolated compounds or extracts derived from CB
leaves, bark, and fruits, all of which are utilized in traditional Chinese medicine owing to
their anti-bacterial, anti-cancer, anti-oxidant, and anti-inflammatory properties. These CB
extracts contain high levels of flavonols, phenolic acids, sugars, organic acids, proteins,
and vitamins (Xia et al., 2021a; Lyu et al., 2021), with CB fruits containing particularly
high levels of flavonoids and phenolic acids, which are regulated by many genes, such as
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Figure 1 Chinese Bayberry plants and fruits. (A) Tree shape. (B) Twig morphology. (C) Leaf morphol-
ogy. (D) Female flower. (E) Male flower. (F) White type fruit. (G) Pink type fruit. (H) Black type fruit. (I)
Red type fruit. (J) Fruit transverse section. (K) Seedling root system and nodular structure.

Full-size DOI: 10.7717/peerj.13070/fig-1

caffeoyl-CoA O-methyltransferase and anthocyanidin 3-O-glucosyltransferase (Ren et al.,
2019; Ren et al., 2021).

This review was constructed to provide a comprehensive overview of the nutritional
properties, health-related benefits, and applications of CB in an effort to highlight future
challenges and trends associated with the use of this economically important plant, in
addition to comprehensive characterizing the metabolites within CB fruits in order to
provide a foundation for further research and development.
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SURVEY METHODOLOGY
In this review article, we examine the National Center for Biotechnology Information
(NCBI), China National Knowledge Infrastructure (CNKI), Web of Science, and Google
Scholar platform. In this respect, we searched the keywords to retrieve relevant literature:
‘‘Chinese Bayberry or Red Bayberry’’, ‘‘Chinese bayberry nutrition’’, ‘‘Chinese bayberry
health properties’’, ‘‘Chinese bayberry Frankia’’ . While current publications between
2002 and 2021 were considered, publications that did not fall within this time period
but contained critical information and were relevant to the review’s objectives were also
considered. It primarily focuses on the analysis of data published from 2013 to 2021. The
Myrica rubra database (http://www.bayberrybase.cn/) were used to search relevant researchs
and key genes controlling substance synthesis. Since there were no reports on all detectable
secondary metabolites in CB fruit in the available references, we use some original data
for description. Additionally, the reference lists of the retrieved literature were combed for
additional pertinent publications.

THE NUTRITIONAL PROPERTIES OF CHINESE
BAYBERRY
Organic acids and sugars
CB fruits exhibit a please sweet and sour taste. Prior reports have indicated that these
fruits contain soluble solid levels ranging from 8.4–15.0% (Cheng et al., 2016; Liang et
al., 2019; Liang et al., 2020; Liu et al., 2020; Zhang et al., 2016a; Zhang et al., 2018a; Zhang
et al., 2021; Yan et al., 2016), with total sugar and total acid contents of 8.4% and 1.2%,
respectively. While the data herein were from multiple sources and were derived from
different analytical approaches, we have converted these data into the same units to reduce
variability and permit statistical analyses. Sucrose, fructose, and glucose are the main sugars
in CB fruits fruit, with respective content levels of 3.8–15.9 g/100 g, 0.9−1.9 g/100 g, and
0.9−1.6 g/100 g, respectively. Organic acids in these fruits primarily include citric acid,
malic acid, oxalic acid, tartaric acid, and vitamin C (ascorbic acid), with respective content
levels of 7.2–14.0 g/kg, 0.8 g/kg, 25.3 mg/kg, 438.5 mg/kg (Li et al., 2017), and 11.9–114.6
mg/100g (Table 1, values measured on a fresh weight basis), with vitamin C levels being
similar to those in strawberries (25.08–108.1 mg/100 g) (Kim et al., 2015;Urün et al., 2021)
and citrus fruits (110mg/100 g) (Elkhatim, Elagib & Hassan, 2018; Rey, Zacarías & Rodrigo,
2020).

Flavonoids
CB fruits contain high levels of flavonoids (13.6–294.3 mg/100 g fresh weight [FW])
(Sun et al., 2013a; Xia et al., 2021a; Zhang et al., 2018a). Flavonoids are key bioactive CB
derivatives, with the number of detected polyphenols 38 reported by liquid chromatography
quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), where proanthocyanidins,
as well as flavonols, including myricitrin and quercetrin, were the predominant ingredients
in a previous study (Liu et al., 2020). CB-derived flavonoids are thought to exhibit beneficial
anti-cancer and anti-diabetes activities (Zhang et al., 2018b). The most abundant flavonoid
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Table 1 The primary attributes of Chinese Bayberry fruits.

Attributes Assay method Range Average Reference

Soluble solids (%) Colorimetric assay 8.4–15.0 11.3 Liang et al. (2019);
Liang et al. (2020);
Zhang et al. (2018a)

Total sugar (%) Colorimetric assay 5.8–10.4 8.4 Cheng et al. (2016);
Liang et al. (2020);
Zhang et al. (2018a)

Glucose (g/100 g) Chromatography 0.9–1.6 1.2 Cheng et al. (2016);
Liang et al. (2019);
Zhang et al. (2018a)

Fructose (g/100 g) Chromatography 0.9–1.9 1.3 Cheng et al. (2016);
Liang et al. (2019);
Liang et al. (2020);

Sucrose (g/100 g) Chromatography 3.8–15.9 7.4 Cheng et al. (2016);
Li et al. (2017);
Zhang et al. (2018a)

Total acid (%) Colorimetric assay 0.7–2.6 1.2 Cheng et al. (2016);
Liang et al. (2019);
Liang et al. (2020);
Li et al. (2017)

Malic acid (g/kg) Chromatography 0.3–1.3 0.8 Liang et al. (2019);
Liang et al. (2020);
Li et al. (2017)

Oxalic acid (mg/kg) Chromatography 13.3–60.0 25.3 Liang et al. (2019);
Liang et al. (2020);
Zhang et al. (2018a)

Citric acid (g/kg) Chromatography 7.2–14.0 11.0 Liang et al. (2019);
Liang et al. (2020);
Zhang et al. (2018a);
Li et al. (2017)

Tartaric acid (mg/kg) Chromatography 220.6–583.6 438.5 Li et al. (2017)
Vitamin C (mg/100 g) Colorimetric assay 11.9–114.6 39.7 Li et al. (2017);

Liang et al. (2019);
Liang et al. (2020);
Zhang et al. (2018a)

Total polyphenol (mg/100 g) Chromatography 61.6–498.9 272.4 Sun et al. (2013a);
Xia et al. (2021a);

Total flavonoids (mg/100 g) Chromatography 13.6–294.3 149.3 Sun et al. (2013a);
Xia et al. (2021a);
Zhang et al. (2018a)

in these analyzed fruits was the cyanidin-3-O-glucoside (6,322–1,1846 mg/kg dry weight
[DW]), followed by the epicatechin (82.25–111.87 mg/kg DW), quercetin (5.98–36.47
mg/kg DW), myricetin-3-O-rhamnoside (21.2–91.6 mg/kg DW), kaempferol-3-O-
rhamnoside (279.14 mg/100 g DW), quercetin-3-O-rutinoside (0.07−1.39 mg/kg DW),
quercetin-3-O-galactoside (30.8 mg/g DW), quercetin-3-O-glucoside (8.2 mg/g DW) (Liu
et al., 2020; Zhang et al., 2016a; Zhang et al., 2021). The total relative anthocyanin levels in
these fruits are 2.80−5.12 mg/kg (DW) (Zhang et al., 2021). These substances account for
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the majority of secondary metabolites present in CB fruits, offering a valuable resource for
future studies of the association between flavonoids and physiological function.

Phenolic acids
Total phenolic content levels in CB fruits range from 61.6–498.94 mg/100 g FW (Sun et
al., 2013a; Xia et al., 2021a). These polyphenols exhibit anti-oxidant and anti-proliferative
activities, as well as bacteriostatic properties which have led to interest in their use as natural
preservatives (Tao et al., 2020). In prior analyses of secondary metabolites, 15 CB-derived
phenolic acids were identified (Liu et al., 2020). The content of protocatechuic acid, caffeic
acid, and p-coumaric acid levels in CB fruits are 32.12–133.84 mg/kg (DW), 0.39−4.45
mg/kg (DW), and 0.05−0.57 mg/kg (DW) (Zhang et al., 2021), and these compounds
have been ascribed beneficial pharmacological activities including the ability to prevent
platelet aggregation, reduce myocardial oxygen consumption, increase myocardial oxygen
tolerance, and slow the heart rate. In addition, they exhibit bacteriostatic, neuroprotective,
analgesic, anti-tumor, and anti-oxidant activity (Song et al., 2020).

CB fruits also contain a variety of other compounds including gallic acid and ellagic acid.
Total levels of gallic acid and ellagic acid are 19.81–102.30 mg/kg (DW) and 2.58–10.06
mg/kg (DW), respectively (Zhang et al., 2016a). Studies have shown that these compounds
may be of value in the context of treating liver disease, and for preventing retinal diseases
associated with oxidative damage, arteriosclerosis, and cerebrovascular diseases (Fu et al.,
2014; Liang et al., 2021; Mizuno et al., 2017).

In this review, we summarized 38 flavonoids and 15 phenolic acids that can be detected
in CB fruit, and analyzed the content of some of them, which provides a reference for
the separation, purification and functional research of secondary metabolites in future
research.

THE HEALTH-RELATED PROPERTIES OF CHINESE
BAYBERRY
Anti-cancer properties
Some researchers have demonstrated that CB extracts exhibit anti-cancer activity (Wang
et al., 2016), with many flavonoids (cyanidin-3-O-glucoside, myricanol, prodelphinidins,
proanthocyanidins, and isoquercitrin) having been shown to inhibit apoptosis in a variety
of tumor cells (Zhang et al., 2018b).

Many studies have explored the mechanistic basis for the anti-tumor activity of CB
extracts. For example, CB fruit-derived cyanidin-3-O-glucoside was shown to suppress
gastric adenocarcinoma xenograft growth in a dose-dependent fashion in mice (Wang
et al., 2016). Myricanol extracted from CB bark can similarly suppress A549 lung cancer
cell growth in a dose-dependent fashion (Dai et al., 2014), while myricitrin (myricetin-
3-O-rhamnoside), quercitrin (quercetin-3-rhamnoside), and proanthocyanidins derived
from CB leaves inhibited the growth of A2780/CP70 ovarian cancer cells (Zhang et al.,
2018b; Zhang et al., 2018c). CB leaf-derived prodelphinidin and proanthocyanidins can
further suppress the growth of OVCAR-3 human ovarian cancer cells (Fu et al., 2017;
Zhang et al., 2018d). Isoquercitrin extracted from CB fruits was also able to inhibit the
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viability and colony formation activity of the HepG2 and Huh7 human liver cancer cell
lines, activating apoptosis and autophagy dysregulation in these cells (Shui et al., 2020)
(Table 2). CB extracts may thus be a valuable resource for natural compounds with
anti-tumor activity.

Anti-oxidant, anti-inflammatory, and anti-aging properties
CB extracts exhibit potent anti-oxidant and free radical scavenging activity within treated
cells (Xia et al., 2021b). Both myricitrin and quercetin-3-rhamnoside extracted from CB
leaves, as well as anthocyanin extracted from CB fruits, function as potent anti-oxidants
(Zhang et al., 2016b; Huang et al., 2014). Similarly, proanthocyanidins derived from CB
leaves exhibit pronounced anti-oxidant potency (Fu et al., 2014), while cyanidin-3-O-
glucoside extracted from CB fruit can protect neonatal porcine islets against reactive
oxygen species-induced injury (Li et al., 2017a). Cyanidin-3-O-glucoside and myricetin
additionally exhibit anti-inflammatory activity when used to treat P. acnes-stimulated
human SZ95 sebocytes, making them promising modulators of inflammatory signaling
pathways in the treatment of skin acne (Chen et al., 2019). Phenolic-rich extracts derived
from CB can additionally prevent protein glycation and advanced glycation end-products
formation, in addition to exhibiting anti-aging properties (Zhang et al., 2021) (Table
2). CB fruits and leaves are an important source of therapeutically useful flavonoids
and polyphenolics. These extracts possess strong anti-oxidant anti-inflammatory, and
anti-aging properties, and may thus be developed as natural anti-oxidants to benefit public
health.

Anti-diabetic and anti-obesity properties
A number of natural products that exhibit hypoglycemic activity have been identified
in recent years (Dong et al., 2021; Hung et al., 2012; Chukwuma et al., 2019), and these
compounds are reported to be safe and to additionally possess promising anti-oxidant, anti-
tumor, and lipid-lowering activities. As such, they hold promise as alternative therapeutic
tools with the potential to alleviate pharmacological dependence upon hypoglycemic
and lipid-lowering drugs (Boath, Stewart & McDougall, 2012). Extracts from different CB
tissues have been found to exhibit these properties. For example, CB fruit extracts contain
high levels of flavonols and proanthocyanidins, and were found to significantly lower
fasting blood glucose while increasing glucose tolerance and insulin sensitivity in diabetic
KK-Ay mice (Liu et al., 2020; Zhang et al., 2016a). Moreover, the expression of the insulin
1 and glycogen synthase kinase 3 β genes were notably suppressed whereas hepatic AMPK
α phosphorylation was significantly increased in treated mice, suggesting that these CB
fruit extracts can exert anti-diabetic efficacy at least in part via an AMPK-dependent
pathway (Wang et al., 2020b). Cyanidin-3-glucoside-rich fruit extracts can further protect
pancreatic β cells against oxidative stress-induced injury and associated hypoglycemic
effects in diabetic mice (Sun et al., 2012). CB fruits are an excellent natural anti-diabetic
food, suggesting their potential application as a functional food ingredient or for further
drug discovery use in the prevention and control of diabetes mellitus and its complications.

Myricanol extracts derived from CB bark have been shown to suppress lipid
accumulation in zebrafish fed a high-fat diet by inhibiting peroxisomeproliferator-activated
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Table 2 A summary of studies evaluating the major health-related benefits associated with CB.

Health-promoting
benefit

Extract
fractions

In vitro
or in vivo

Compound Tumor cell type
or model animal

Research results Reference

Anti-cancer Fruit In vivo (mice) Cyanidin-3-O-glucoside Balb/c nude mice Cyanidin-3-glucoside sig-
nificantly suppressed the
growth of SGC-7901 tu-
mor xenografts.

Wang et al. (2016)

Bark In vitro Myricanol A549 human lung adeno-
carcinoma cells

Myricanol exhibited
growth-inhibiting and
apoptosis-inducing
activities in A549 cells.

Dai et al. (2014)

Leaves In vitro Myricitrin, quercetrin,
Proanthocyanidins

A2780/CP70 ovarian can-
cer cells

Flavonoids induced apop-
tosis and G1 cell cycle
arrest in ovarian cancer
cells.

Zhang et al. (2018b);
Zhang et al. (2018c)

Leaves In vitro Prodelphinidins, Proan-
thocyanidins

OVCAR-3 human ovarian
cancer cells

Prodelphinidins and
Proanthocyanidins
induced apoptosis in
OVCAR-3 human ovarian
cancer cells.

Fu et al. (2017);
Zhang et al. (2018d)

Fruit In vitro Isoquercitrin HepG2 and Huh7 hepato-
cellular carcinoma cells

Isoquercitrin induced
apoptosis and autophagy
in hepatocellular carci-
noma cells.

Shui et al. (2020)

Anti-oxidant Leaves, fruit In vitro Myricitrin, Quercetin-3-
O-rhamnoside, Phenolic
acids, Anthocyanin

– Flavonoids and pheno-
lic acids exhibited strong
chemical and cellular an-
tioxidant activity.

Zhang et al. (2016b)

Leaves In vitro Proanthocyanidins – Proanthocyanidins in
Chinese bayberry leaves
exhibited antioxidant po-
tency.

Fu et al. (2014)

Fruit In vivo (pigs) Cyanidin-3-O-glucoside Three-day-old Duroc/-
Landrace Large White F1
cross-neonatal pigs

Cyanidin-3-O-glucoside
exhibited protective effi-
cacy on neonatal porcine
islets.

Li et al. (2017a)

(continued on next page)
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Table 2 (continued)

Health-promoting
benefit

Extract
fractions

In vitro
or in vivo

Compound Tumor cell type
or model animal

Research results Reference

Anti-diabetic Fruit In vivo (mice) Proanthocyanidins,
Flavonols

KK-Ay mice Fruit extracts significantly
reduced fasting blood glu-
cose, elevated glucose tol-
erance, and insulin sen-
sitivity in diabetic KK-Ay

mice.

Liu et al. (2020);
Zhang et al. (2016a)

Fruit In vivo (mice) Cyanidin-3-O-glucoside Six to 8-week-old immune-
deficient C57BL/6-
rag1tm1/mom male mice

Cyanidin-3-O-glucoside
exhibited protective effi-
cacy on neonatal porcine
islets

Li et al. (2017a)

Fruit In vivo (mice) Cyanidin-3-O-Glucoside Pancreatic β cells, diabetic
mice

Cyanidin-3-glucoside ex-
hibited protective and hy-
poglycemic effects in dia-
betic mice.

Sun et al. (2012)

Fruit In vitro Flavonoids – Flavonoids have the abil-
ity to α-Glucosidase in-
hibitory activities.

Yan et al. (2016)

Leaves In vitro Proanthocyanidins – Proanthocyanidins exhib-
ited in vitro inhibitory ac-
tivity against pancreatic
α-amylase.

Wang et al. (2020b)

Anti-obesity Bark In vivo (zebrafish) Myricanol High-fat diet-fed zebrafish Myricanol mitigated lipid
accumulation high fat
diet-fed zebrafish.

Shen et al. (2019a)

Leaves In vivo (mice) Proanthocyanidin High-fat diet-induced
obese rats

Procyanidins exhibited
anti-obesity activity in
a high-fat diet-induced
obese rat model.

Zhou, Chen & Ye
(2017)

Neuroprotection Bark In vitro Myricitrin, Myricanol PC12 cells Myricitrin and myricano l
11-sulfate were shown to
be neuroprotective.

Shen et al. (2019b)

Anti-aging Fruit In vitro Phenolic extracts BSA-fructose model Phenolics inhibited pro-
tein glycation and the
formation of advanced
glycation end-products,
and exhibited anti-aging
properties.

Zhang et al. (2021)

(continued on next page)
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Table 2 (continued)

Health-promoting
benefit

Extract
fractions

In vitro
or in vivo

Compound Tumor cell type
or model animal

Research results Reference

Anti-inflammatory Fruit In vitro Flavonols, Myricitrin,
Myricetin

human SZ95 sebocytes Extracts had effects on
anti-inflammatory effects
in P. acnes-stimulated hu-
man SZ95 sebocytes.

Chen et al. (2019)

Treating cerebral
and cardiovascular
diseases

Root bark In vivo (mice) Myricitrin ApoE −/ −mouse Myricitrin protects
against oxidative
stress-induced vascular
endothelial cell damage
and inhibits early
atherosclerosis plaque
formation.

Sun et al. (2013b)

Bark In vivo (mice) Myricitrin Male Sprague-Dawley rats Myricitrin-induced sup-
pression of myocardial
apoptosis.

Sun et al. (2016)

Bark In vivo (mice) Flavonoids 8 week-old male Sprague-
Dawley rats

Flavonoids protected
against cardiomyocyte in-
jury.

Wang et al. (2019)

Fruit In vivo (mice) Anthocyanins Male ICR mice Anthocyanin protected
against cerebral ischemia-
reperfusion injury.

Cui et al. (2018)
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receptor γ , CCAAT/enhancer-binding protein α, and other adipogenic factors (Shen et
al., 2019a). Moreover, proanthocyanidin extracts derived from CB leaves can exhibit
anti-obesity activity owing to the upregulation of SIRT1 and the consequent deacetylation
of PPAR- γ together with C/EBP- α downregulation and BMP4 upregulation to increase
brown fat levels in a high-fat diet-induced rat model of obesity (Zhou, Chen & Ye, 2017).
CB extracts exhibit significant anti-obesity efficacy, and may thus offer value as a potential
therapeutic agent for the treatment of obesity.

The neuroprotective properties of CB and its therapeutic use in the
treatment of cerebrovascular and cardiovascular diseases
CB extracts have also been shown to exhibit neuroprotective activity and to be effective
in the treatment of cerebral and cardiovascular diseases. Anthocyanin-rich CB fruit
extracts can protect against cerebral ischemia-reperfusion injury in Male ICR mice (Cui
et al., 2018), while flavonoids derived from these fruits exert cardioprotective activity by
decreasing the severity of oxidative damage in 8-week-old Sprague-Dawley rats (Wang et
al., 2019). Moreover, an in vivo analysis of ApoE−/− model mice and Sprague-Dawley rats
found that myricitrin was able to significantly attenuate Dox-induced myocardial damage,
protecting against vascular endothelial cell damage and inhibiting the formation of early
atherosclerotic plaques (Sun et al., 2013b; Sun et al., 2016). Myricitrin was also found to
be neuroprotective (Shen et al., 2019b). The development of myricitrin and anthocyanin-
based flavonoids as novel drugs for treating cerebrovascular and cardiovascular diseases is
thus an important area for future research, and CB extracts are a valuable source of such
compounds and a food supplement with natural neuroprotective properties.

CB trees grow rapidly and need to be trimmed 2–3 times a year, resulting in a large
number of discarded leaves and branches. In traditional production contexts, these leaves
and branches will be crushed into slag and serve as raw materials for cheap organic
fertilizer. However, in light of this review of the various functions of CB extracts, it is
clear that valuable compounds can be extracted from non-fruit tissues including leaves,
bark, and roots, highlighting novel production opportunities for these discarded leaves
and branches. In the future, these safe to eat, these extracts can be applied for dietary use
for the prevention of tumor growth and the enhancement of immunity, offering further
economic benefits and extending the value and applications of CB.

CHINESE BAYBERRY PROCESSING AND COMMERCIAL
APPLICATIONS
Harvesting, preservation and storage
CB fruits are susceptible to mechanical damage and water loss, physiological deterioration,
and microbial decay, making them poorly suited to storage and transportation , such that
they have a post-harvest life of just 1–2 days under ambient temperatures, resulting in
severe post-harvest losses (Arbol et al., 2016;Wang et al., 2009). As such, high-quality fresh
fruits are most often picked by hand, while processed fruits are gathered using auxiliary
harvesting tools. Experienced pickers can harvest intact CB fruits at rates of 8–10 kg per
hour.
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The storage, preservation, and transportation of these fruits are thus essential to their
commercial dissemination. Current approaches to the storage of these fruits include
chemical preservation, hot air treatment, cold storage, and controlled atmosphere storage.
Controlled atmosphere storage primarily consists of the filling of closed packaging
containers with ∼15% CO2 or NO2 to inhibit ethylene release and fruit respiration,
followed by storage at 5−8 ◦ C, allowing fruits to be preserved for approximately 20 days.
Under traditional cold storage (5−8 ◦C), fruits can generally be preserved for 7 days.
Chemical preservation can be achieved by treating fruits with preservatives non-thermal
plasma-activated water, methyl jasmonate, and 1-MPC, allowing for preservation for up to
13 d (Wang et al., 2009; Ma et al., 2016). CB fruits can also be treated with hot air (48 ◦C)
for 3 h, followed by storage at 4 ◦C for about 15 days (Wang et al., 2010; Dai et al., 2021).

Chinese bayberry juice processing
CB fruits consist of 90–95% flesh and just 5–10% core by weight. Following harvesting,
CB fruits can be stored at low temperatures (4 ◦C or −20 ◦ C), after which fruits are
pressed, filtered, and the core and remaining residues are removed (Fang et al., 2006; Fang
et al., 2009), resulting in a juice yield of 73.50–84.00%. The total sugar content in prepared
CB juice ranges from 2.32−9.46 g/100 mL, while total acid levels range from 0.57−1.36
g/100 mL. total amino acid levels range from 0.057−1.672 g/L, and total phenolic acid and
flavonoid contents range from 1.149−2.243 mg/L and 286-907 mg/L, respectively (Tian
et al., 2019; Wang et al., 2012; Xu et al., 2014). Polypropylene membrane-filtered CB juice
can then be pasteurized, processed, and drunk directly following dilution to taste or stored
at −20 ◦C for up to 180 days.

Chinese bayberry wine processing
According to prior reports, to prepare CB wine, fresh or frozen CB fruits are crushed
using a juice extractor and sucrose is used to adjust the total soluble must content to 15.0◦

Brix. Musts are then pasteurized for 5 min at 100 ◦C followed by rapid cooling to 20 ◦C
(Zhang, Li & Fan, 2019). Fermentation is performed using a wild yeast strain isolated from
a natural CB mash and identified as Pichia kluyveri (Du et al., 2016; Li et al., 2017b), with
fermentation being conducted for 4–7 days at 28 ◦C until the total weight loss is less than
0.2 g/d. After fermentation, wine is clarified for 1 h with 0.20 g/L poly-vinylpyrrolidone and
0.06 g/L chitosan. Following centrifugation, wines are bottled with equal headspace volume
and stored for 70 days in the dark at room temperature (Xu et al., 2014). The resultant
wine exhibits a total anthocyanin content of 51.1–116.6 mg/L, as well as an ester content
of 25.713 mg/L. The primary esters in the resultant wine include ethyl decanoate (9.166
mg/L), ethyl octanoate (6.245 mg/L), ethyl acetate (3.462 mg/L), diethyl butanedioate
(2.741 mg/L), and ethyl dodecanoate (2.219 mg/L), respectively. Total acid levels range
from 0.323–0.907mg/L (Cao, Wu &Weng, 2020), while total phenols and flavonoids range
from 90.10–510 mg/L following fermentation.

Culinary and commercial applications
CB fruits exhibit a sugar/acid ratio of approximately 7–15, accounting for their sweet
and sour taste. These fruits can promote digestion and control the composition of the
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gut microbiome (Tao et al., 2020), and have long been used to produce a range of food
products and other commercial items. Broadly, these products can be classified into two
main categories: beverages, and foods. Beverages include CB juice (Fang et al., 2006), wine
(Zhao et al., 2019; Zhang et al., 2020), and sparkling water, while CB fruit-derived foods
(Fang, Zhang & Wang, 2007) include dried CB fruits, CB jam, canned CB fruits, candies,
ice cream, yam cake, steamed cake, and moon cake.

CB fruit dry powder
In one proof of concept study, frozen CB juice was thawed and mixed at a 1:1 ratio with
a maltodextrin solution (11◦ Brix), yielding a total solids content in the final solution of
11◦ Brix. This solution was then fed through a mini spray-dryer (aspirator rate: 100%, 35
m3/h; atomization air rotameter: 30 mm, 439 L/h with a co-current flow; drying air inlet
temperature: 150 ◦ C) with the pump rate being adjusted to maintain an 80 ◦C outlet
temperature. When air inlet temperatures were below 50 ◦C at the end of the experiment,
samples were collected (Fang & Bhandari, 2012). These spray-dried protects exhibited
stable polyphenol content and anti-oxidant activity over a 6-month storage period (Fang
& Bhandari, 2011). Dry powders are the most effective means of preserving the active
substances in CB fruits at present, and can also be directly leveraged for further processing
into health products or additives.

FUTURE CHALLENGES AND TRENDS
The fruits, leaves, and bark of CB plants contain many potent bioactive compounds
including cyanidin-3-O-glucoside, myricanol, isoquercitrin, myricitrin, isoquercitrin,
myricetin, proanthocyanidins, anthocyanins, and flavonols. Several of these compounds
exhibit promise for use in industrial applications and warrant further study. For example,
proanthocyanidins are sustainable amphiphilic materials with several promising health-
promoting properties, thus holding significant promise for use as biomaterials in the
context of compound encapsulation. Indeed, proanthocyanidins from CB leaves (Bayberry
Leaf Proanthocyanidins, BLPs) can encapsulate oils in the form of spherical microcapsules
with controlled morphological characteristics (Pan et al., 2020). Physicochemically stable
emulsions have also been developed using a self-assembling colloidal complex composed of
BLPs and gelatin (Chen et al., 2020). These microcapsules and emulsifiers offer significant
promise for future use in the preparation of food-grade emulsions.

The promising nutritive and health-related benefits of certain secondary metabolites
present within CB fruits remain to be assessed. For example, gallic acid has been shown
to be effective for the treatment of liquefied petroleum gas poisoning (Akinmoladun et al.,
2021), and intestinal parasites (Bouaziz et al., 2021), and in smokers, it can also reverse
the negative impacts of nicotine on male fertility (Jalili et al., 2021). As CB fruits contain
relatively high gallic acid levels (7.30 × 106), further research into the health-related
benefits of this CB-derived compound is warranted. Additionally, peonidin-3-O-glucoside
is reported to exhibit anti-depressant activity (Kurnianingsih et al., 2021), to inhibit
COVID-19 (Majumder & Mandal, 2020), and to serve as an effective anti-tumor agent
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(Zhou et al., 2018). Additional research regarding the multipotent activity of peonidin-
3-O-glucoside in a range of pathological contexts is thus warranted. Future CB-related
product development is thus expected to further leverage the health-promoting potential
of this valuable ecological resource.

At present, CB remains an underutilized plant species, primarily owing to difficulties
associated with the harvesting, preservation, storage, and transportation of these fruits.
As such, new approaches to extending the national and international benefits of CB are
needed, including the development of professional and practical harvesting strategies based
on fruit and planting environment characteristics, as well as additional research aimed at
optimizing efficient storage, preservation, and transportation technologies. Further efforts
to market these fruits based upon their exceptional nutritional value and wide applicability
in culinary and pharmaceutical contexts are also warranted.

With the development of genomic, transcriptomic, metabolomic, and other high-
throughput omics platforms, CB genomic data have become publically available (Jia et
al., 2019; Ren et al., 2019), providing a valuable sequence reference for researchers. These
omics-based platforms can thus be used for joint analyses aimed at deeply mining genes
associated with active functional compounds within CB fruits These platforms additionally
provide a basis for in-depth analyses of the regulation of these bioactive compounds, in
addition to highlighting opportunities for the in vitro synthesis these compounds and their
functional validation.

The nitrogen-fixing functions of CB have not been studied in detail to date. In the
future, such nitrogen fixation activity warrants further development and may make these
plants suitable for growing in barren mountains and evergreen regions. This may enable
to the vigorous development of CB into ecological economic forests, thereby maintaining
water and soil to improve local environmental conditions.

CONCLUSIONS
In summary, CB exhibits excellent nutritional value owing to the high levels of sugar,
vitamin C, anthocyanins, flavonoids, proanthocyanidins, and phenolic acids in these
fruits. The primary stages of CB processing include harvesting, fruit preservation, juice
pressing and filtering, and wine fermentation. CB exhibits beneficial anti-cancer, anti-
oxidant, anti-inflammatory, anti-diabetic, neuroprotective, anti-aging, and anti-obesity
properties in addition to offer value in the treatment of cardiovascular and cerebrovascular
diseases. CB is currently underutilized in culinary contexts, and has great potential to be
incorporated into various foods including high value-added products. CB contains a variety
of bioactive compounds with medicinal and therapeutic benefits, and the exploitation of
these compounds may offer a valuable resource for new product development.
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