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ABSTRACT
Nautilus remains of great interest to palaeontologists after a long history of actualistic
comparisons and speculations on aspects of the palaeoecology of fossil cephalopods,
which are otherwise impossible to assess. Although a large amount of work has
been dedicated to Nautilus ecology, conch geometry and volumes of shell parts
and chambers have been studied less frequently. In addition, although the focus
on volumetric analyses for ammonites has been increasing recently with the
development of computed tomographic technology, the intraspecific variation of
volumetric parameters has never been examined. To investigate the intraspecific
variation of the phragmocone chamber volumes throughout ontogeny, 30 specimens
of Recent Nautilus pompilius and two Middle Jurassic ammonites (Normannites
mitis) were reconstructed using computed tomography and grinding tomography,
respectively. Both of the ontogenetic growth trajectories from the two Normannites
demonstrate logistic increase. However, a considerable difference in Normannites
has been observed between their entire phragmocone volumes (cumulative chamber
volumes), in spite of their similar morphology and size. Ontogenetic growth
trajectories from Nautilus also show a high variation. Sexual dimorphism appears
to contribute significantly to this variation. Finally, covariation between chamber
widths and volumes was examined. The results illustrate the strategic difference in
chamber construction between Nautilus and Normannites. The former genus persists
to construct a certain conch shape, whereas the conch of the latter genus can change
its shape flexibly under some constraints.

Subjects Developmental Biology, Evolutionary Studies, Marine Biology, Paleontology, Zoology
Keywords Ammonoidea, Nautilida, Intraspecific variability, Sexual dimorphism, Growth, 3D
reconstruction, Jurassic, CT scan, Cephalopoda

INTRODUCTION
Ammonoids and nautiloids are well-known, long-lived molluscan groups, both of which

faced devastation at the end of the Cretaceous, but with different responses: extinction

versus survival. What these two groups have in common is the external conch, which makes
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them superficially similar. Because of that, a number of palaeontologists investigated the

ecology and anatomy of living Nautilus as an analogy for those of extinct ammonites

over the last decades (e.g., Collins, Ward & Westermann, 1980; Saunders & Landman,

1987; Ward, 1987; Ward, 1988). However, it was Jacobs & Landman (1993) who argued

that, despite its superficial morphologic similarity, Nautilus was an insufficient model

to reconstruct ammonoid palaeoecology, given their phylogenetic positions, which are

distant within the Cephalopoda. This argument is now widely accepted (e.g., Warnke &

Keupp, 2005). Whereas palaeoecology and evolution of ammonoids need to be discussed

based on their own fossil record, those of modern Nautilus can be satisfactorily analogized

to fossil nautilids, which have borne persistent conch morphologies throughout their

evolution (Ward, 1980).

Molluscan conchs are not only exoskeletal structures but also retain a complete record of

their ontogeny because of their accretionary growth. One of the most important apomor-

phic structures of cephalopods, the chambered part of their conch (phragmocone), was

used by most cephalopods and is still used by some cephalopods as a buoyancy device. The

ammonite phragmocone has been of great interest for palaeontologists, in order to reveal

otherwise-obscure aspects of ammonite palaeoecology (Geochemical analyses: Moriya et

al., 2003; Lukeneder et al., 2010; Stevens, Mutterlose & Wiedenroth, 2015; 2 dimensional

analyses of septal angles: Kraft, Korn & Klug, 2008; Arai & Wani, 2012). Buoyancy had not

been examined by quantifying phragmocone volumes due to the lack of adequate methods

until modern scanning technique enabled to reconstruct complete ammonite empirical

volume models (Lemanis et al., 2015; Naglik, Rikhtegar & Klug, 2015; Tajika et al., 2015).

Unfortunately, all of these contributions included only one specimen per species due to the

great expenditure of time needed for segmenting the image stacks. Conclusions from such

limited studies may be biased if the examined specimens represent more or less extreme

variants of one species (intraspecific variation). The life mode of living Nautilus is known

to be essentially demersal, retaining their buoyancy as either roughly neutral when active or

slightly negative when at rest (Ward & Martin, 1978), even though they change their habitat

frequently via vertical migration (Dunstan, Ward & Marshall, 2011). The majority of Nau-

tilus ecology research has included studies on anatomy, behaviour, and habitat, whereas

geometry and volume of their phragmocones, which are similar to that of fossil nautiloids,

have been examined less frequently (e.g., Ward, 1979; Hoffmann & Zachow, 2011). Inves-

tigation of the relationship between Nautilus conchs and their ecology could become a

reference to examine the relationship between fossil cephalopods and their palaeoecology.

Multiple methods have been applied to reconstruct conchs of cephalopods including

both fossilized and extant animals (Kruta et al., 2011; Hoffmann et al., 2014; Lemanis et al.,

2015; Naglik et al., 2015; Tajika et al., 2015; for general aspects of virtual palaeontology, see

Garwood, Rahman & Sutton, 2010; Sutton, Rahman & Garwood, 2014). Non-destructive

computed tomography (CT) superficially appears to be the best suitable method because

rare fossils can be analysed without destroying them. Medical scanners are often used,

but they often yield insufficient contrast between conch and internal sediment or cement

because these materials may have similar densities (e.g., Garwood, Rahman & Sutton,
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2010; Hoffmann & Zachow, 2011). Furthermore, the resolution obtained from medical

scanners is not adequate, specifically in such cases where accurate measurements of minute

structures such as ammonite protoconchs (as small as 0.5 mm in diameter; e.g., Lemanis

et al., 2015) are required. Fossil cephalopods are thus difficult materials to examine by this

non-destructive method, but conchs of living cephalopods with no sediment filling can

easily be reconstructed with a good resolution. Computed microtomography (µCT) is

an alternative because it has a stronger beam, resulting in high resolution and thus better

reconstructions. µCT-imagery produced using high energy levels has greater penetrative

power but suffers from the lack of contrast, however, making the subsequent segmentation

process difficult.

By contrast, Lemanis et al. (2015) presented the first successful attempt to reconstruct an

ammonite ammonitella in detail. They scanned a perfectly preserved hollow ammonite

using phase contrast tomography. Propagation phase contrast X-ray synchrotron

microtomography (PPC-SR-µCT) was employed by Kruta et al. (2011) who reconstructed

ammonite radulae in detail. The limited availability of the facility, heavy data load, and

potential contrast problems discourage application of this method for fossil cephalopods.

In contrast to the non-destructive methods, destructive grinding tomography can be used

to reconstruct fossilized cephalopods (Naglik et al., 2015; Tajika et al., 2015). This method,

which preserves colour information of the shells (aiding in segmentation), does not require

hollow preservation of fossils, thus permitting the examination of all well-preserved fossils

without suffering from noise such as beam hardening or poor contrast, which commonly

occur when using CT.

Volumetric analyses of intraspecific variability of phragmocone chambers throughout

ontogeny have not previously been analysed in either Nautilus or ammonoids. Such data

may contribute to the better understanding of the palaeoecology of extinct ammonoids

and nautiloids. The aims of this study are to answer the following questions based on

empirical 3D models reconstructed from real specimens: (1) How did chamber volumes

change through ontogenetic development of ammonites and nautilids? (2) How much did

the volumetric growth trajectories differ between two conspecific ammonites (exemplified

using middle Jurassic Normannites)? (3) What was the intraspecific variation of volumetric

growth trajectories of modern Nautilus? (4) Are the differences in chamber volumes

between male and female nautilids significant? (5) Is there a difference in construction

of chambers between the ammonites and modern Nautilus?

MATERIAL
Two ammonite specimens examined are from the Middle Jurassic and belong to the genus

Normannites (Normannites mitis). One of them (Nm. 1) was reconstructed by Tajika et al.

(2015) to test its buoyancy. Both specimens were found in the Middle Bajocian (Middle

Jurassic) of Thürnen, Switzerland. The nicely preserved specimens are suitable for 3D

reconstruction, even though one of the specimens (Nm. 2) has an incomplete aperture,

which does not allow for buoyancy calculation. The maximum conch diameters of Nm. 1

and Nm. 2 are 50.0 mm and 49.0 mm, respectively.
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An additional 30 conchs of Recent Nautilus pompilius (21 adults: 12 males, 9 females;

9 juveniles) were also studied. All of the conchs were collected in the Tagnan area in the

Philippines (see Fig. 1 in Wani, 2004; Fig. 1 in Yomogida & Wani, 2013). Maturity of

Nautiilus was defined as bearing black band, or septal crowding (for mature modification

of Nautilus see Klug, 2004). Males and females were differentiated based on previous

studies: mature males have larger shells and a broader, rounder aperture than females

(Stenzel, 1964; Haven, 1977; Saunders & Spinosa, 1978; Arnold, 1984). In the juvenile stage,

however, the sex is indeterminable since the morphological differences of shells are not

profound. The details of the specimens are summarized in Table 1. The specimens are

stored in Mikasa City Museum, Hokkaido, Japan.

METHODS
3D reconstructions of ammonites
Grinding tomography was employed to reconstruct the two Jurassic ammonite specimens.

This method has been applied to previous studies for invertebrates, e.g., bivalves

(Götz, 2003; Götz, 2007; Götz & Stinnesbeck, 2003; Hennhöfer, Götz & Mitchell, 2012;

Pascual-Cebrian, Hennhöfer & Götz, 2013) and ammonoids (Naglik et al., 2015; Tajika

et al., 2015). During each of the 422 grinding phases, 0.06 mm was automatically ground

off of the specimens until the specimen was completely destroyed. Subsequently, each

ground surface was automatically scanned with a resolution of 2,400 dpi. Due to the very

high number of slices and the very time consuming segmenting process, only every fourth

scan of the obtained image stack was segmented. The voxel sizes of x, y and z dimensions

are 0.025, 0.025 and 0.24 mm, respectively. We separately segmented the external conch,

all septa, and the siphuncle manually using Adobe® Illustrator (Adobe Systems). The

segmented image stacks have been exported to VGstudiomax® 2.1 (Volume Graphics),

which produced 3D models out of the 2D image stacks. Further technical details for the

ammonite reconstructions are given in Tajika et al. (2015) and for the general procedure of

grinding tomography in Pascual-Cebrian, Hennhöfer & Götz (2013).

3D reconstructions of modern Nautilus
Conchs of all specimens were scanned at the Laboratory of Physical Anthropology of

Kyoto University using a 16-detector-array CT device (Toshiba Alexion TSX-032A) with

the following data acquisition and image reconstruction parameters: beam collimation:

1.0 mm; pitch: 0.688; image reconstruction kernel: sharp (FC30); slice increment: 0.2 mm;

tube voltage and current: 120 kV 100 mA. This resulted in volume data sets with isotropic

spatial resolution in the range of 0.311 and 0.440 mm. The obtained data sets were

exported to Avizo® 8.1 (FEI Visualization Sciences Group) where segmentation was

conducted. As mentioned in Hoffmann et al. (2014), the calculated mass of a specimen

based on the CT data set does not correspond exactly to the actual mass measured on the

physical specimen due to noise and the partial volume effect (PVE) from the scan, which

may cause significant errors during the segmentation process. Wormanns et al. (2004)

reported that segmentation can also introduce errors between specimens. In our scans,
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Table 1 Details of the studied specimens, Normannites mitis from the Middle Jurassic, Switzerland,
and modern Nautilus pompilius from the Philippines.

Specimen
number

Species Maturity Sex Maximum
diameter (mm)

Number of
chambers

Nm.1 Normannites mitis Mature Male 50 60?

Nm.2 Normannites mitis Mature Male 49 59?

7 Nautilus pompilius Mature Female 189 35

8 Nautilus pompilius Mature Female 152 30

10 Nautilus pompilius Mature Female 175 32

11 Nautilus pompilius Mature Female 165 30

12 Nautilus pompilius Mature Female 168 33

15 Nautilus pompilius Mature Female 189 33

16 Nautilus pompilius Mature Male 183 33

17 Nautilus pompilius Mature Male 183 33

20 Nautilus pompilius Immature Indet. 105 26

23 Nautilus pompilius Immature Indet. 112 26

30 Nautilus pompilius Immature Indet. 147 30

31 Nautilus pompilius Immature Indet. 136 29

32 Nautilus pompilius Immature Indet. 136 32

33 Nautilus pompilius Immature Indet. 135 27

34 Nautilus pompilius Immature Indet. 144 32

35 Nautilus pompilius Immature Indet. 124 28

36 Nautilus pompilius Immature Indet. 157 37

38 Nautilus pompilius Mature Male 150 31

39 Nautilus pompilius Mature Male 147 32

40 Nautilus pompilius Mature Male 151 30

41 Nautilus pompilius Mature Male 184 34

42 Nautilus pompilius Mature Female 169 33

43 Nautilus pompilius Mature Male 155 31

44 Nautilus pompilius Mature Male 164 35

46 Nautilus pompilius Mature Male 160 31

48 Nautilus pompilius Mature Male 165 35

51 Nautilus pompilius Mature Female 179 33

53 Nautilus pompilius Mature Male 181 36

54 Nautilus pompilius Mature Male 164 29

56 Nautilus pompilius Mature Female 176 32

the resulting differences between the actual masses of the conchs and the calculated mass

ranged from 50 to 63%. However, use of the same devices and methods and a combination

of the same grey-scale threshold value for the outer whorls and the manual tracing for the

innermost whorls reduce the noise and preserve the overall trend of variability in volumes

between each specimen. Out of 45 scanned specimens, only 30 scanned specimens with

nearly the same contrast were carefully chosen and analysed, while scans from other 15

specimens with different contrasts were discarded to minimize errors which may occur

from differences in contrast between scans. Nevertheless, the variability is to some degree

affected by the errors due to the noise and PVE. A list of the differences between calculated
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Figure 1 3D reconstructions of the two specimens of Normannites mitis, modern Nautilus pompilius
(specimen 17), and their phragmocones. (1A) 3D model of Normannites mitis (Nm. 1); (1B) 3D model
of Normannites mitis (Nm. 2); (1C) extracted phragmocone of Nm. 1 (1D); extracted phragmocone of
Nm. 2; (2A, B) 3D models of Nautilus pompilius (specimen 17); (2C) extracted phragmocone of Nautilus
pompilius (specimen 17); (2D) Backface of 3D model of Nautilus pompilius (specimen 17). Scale bars are
1 cm.

shell volumes and estimated actual shell volumes calculated from mass measurements

is provided in Table S1 (estimated volume error: 60.8–91.3%). The segmented data sets

were exported as STL files using the software Avizo® 8.1. The volumetric data from the

phragmocone were extracted and calculated in Meshlab (ISTL–CNR research center) and

Matlab 8.5 (Math Works), respectively. The measurements of the diameters and widths of

the conchs were conducted with the program ForMATit developed by NM.

RESULTS
Difference between two Normannites specimens in ontogenetic
volume changes
Constructed 3D models of the ammonites are shown in Fig. 1 (1A–1D). Measured

chamber volumes (Table 2) were plotted against chamber numbers (Fig. 2). In the two

Normannites specimens, the overall trends of growth trajectories of individual chamber

volumes (Fig. 2A) are more or less the same, showing logistic increase throughout

ontogeny until the onset of the so-called ‘terminal countdown’ (Seilacher & Gunji, 1993)

when they start showing a downward trend over the last 5 chambers (Nm. 1) and over

the last 7 chambers (Nm. 2). The curve from Nm. 1 illustrates a nearly steady growth
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Figure 2 Volumes plotted against chamber numbers in Normannites mitis. The volumes prior to
chamber 25 (Nm. 1) and 27 (Nm. 2) have not been measured. (A) Scatter plot of chamber numbers
and individual chamber volumes; (B) Scatter plot of chamber numbers and cumulative phragmocone
volumes.

rate even though a syn vivo epizoan worm with mineralized tube grew on the fifth whorl

of the ammonite (Tajika et al., 2015). By contrast, Nm. 2 does not show traces of any

syn vivo epizoans, but it displays a sudden decrease of the volume of the 45th chamber

where another trend sets off, which persists to the last chamber. In addition, we plotted the

cumulative volumes of the phragmocone chambers against chamber numbers (Fig. 2B).

Since the curves are derivatives of those of Fig. 2, the phragmocone volumes increase with

the same trend. The cumulative phragmocone volume of Nm. 1 is larger than that of Nm.

2, although the latter retained the larger phragmocone volume throughout ontogeny until

the onset of the morphologic countdown.
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Table 2 Raw data of measured chamber volumes and widths in Normannites mitis.

Normannites mitis

Specimen Nm. 1 Nm. 2

Chamber Volume (mm3) Width (mm) Volume (mm3) Width (mm)

25 0.9 – – –

26 1.3 – – –

27 2.0 – 1.6 –

28 2.1 2.6 2.5 –

29 2.6 2.6 3.0 –

30 2.9 2.7 3.8 –

31 3.4 2.6 4.8 –

32 4.2 3.1 5.3 –

33 6.0 4.1 7.4 –

34 9.6 4.1 8.8 –

35 8.6 4.6 11.3 –

36 10.7 4.6 12.4 –

37 12.9 4.6 16.2 3.9

38 16.0 4.6 16.8 3.9

39 16.2 4.7 20.4 4.8

40 26.1 5.5 30.8 5.8

41 28.9 5.8 43.1 7.2

42 39.2 6.5 61.0 7.7

43 49.7 7.4 72.4 7.7

44 59.1 7.9 78.6 7.7

45 66.7 8.4 54.0 7.2

46 81.4 8.9 76.3 7.2

47 99.4 9.4 93.1 7.9

48 113.3 9.8 130.4 8.6

49 155.1 10.3 198.6 11.0

50 171.8 11.3 296.0 13.2

51 255.9 12.5 380.5 15.1

52 338.7 14.6 446.4 15.1

53 397.6 15.1 458.6 15.1

54 498.5 16.6 425.7 13.9

55 557.4 16.6 384.6 13.4

56 510.2 17.5 409.1 15.1

57 576.1 17.5 428.5 15.4

58 528.4 18.0 375.1 15.9

59 497.3 18.0 339.3 15.4

60 410.5 18.0 – –

Intraspecific variability of modern Nautilus in ontogenetic volume
changes
Constructed 3D models of modern Nautilus are shown in Fig. 1(2A–2D). As in the Jurassic

ammonite, individual chamber volumes and phragmocone volumes (Table 3) were plotted

against chamber numbers (Figs. 3A and 3B). Figure 3 shows that all the curves increase
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Table 3 Raw data of measured chamber volumes in Nautilus pompilius.

Nautilus pompilius

Volumes (ml)

Chamber 7 8 10 11 12 15 16 17 20 23

1 0.0011 0.0080 0.0082 0.0118 0.0139 0.0088 0.0099 0.0101 0.0153 0.0120

2 0.0123 0.0331 0.0257 0.0416 0.0384 0.0317 0.0145 0.0307 0.0329 0.0370

3 0.0468 0.1013 0.0760 0.1056 0.1091 0.0866 0.0424 0.0882 0.0922 0.1440

4 0.1142 0.1951 0.1539 0.1980 0.1809 0.1571 0.1109 0.1584 – 0.1904

5 0.1837 0.2417 0.2028 0.2214 0.2050 0.2032 0.1859 1.9870 0.2939 0.1658

6 0.2236 0.1264 0.1397 0.1244 0.1081 0.1327 0.2182 1.2660 0.1387 –

7 0.1287 0.1987 0.1736 0.2603 0.1742 0.1711 0.1610 0.1911 0.1504 0.1875

8 0.1767 0.2520 0.2027 0.2639 0.2046 0.1654 0.2183 0.2065 0.1695 0.2451

9 0.2265 0.2800 0.2472 0.3593 0.2370 0.2352 0.2730 0.2418 0.2092 0.3563

10 0.2619 0.3126 0.2873 0.4043 0.3378 0.2344 0.3047 0.2709 0.2314 0.3615

11 0.3097 0.4201 0.3461 0.4913 0.3364 0.2671 0.3856 0.3332 0.3010 0.2962

12 0.3254 0.5510 0.4246 0.5882 0.3992 0.3542 0.4402 0.4326 0.4017 0.5029

13 0.3419 0.6398 0.4958 0.6988 0.4677 0.4407 0.5293 0.4632 0.3846 0.6454

14 0.4342 0.8348 0.6386 0.9175 0.5496 0.5297 0.6218 0.5654 0.5069 0.7712

15 0.5986 0.9723 0.7534 1.1123 0.7096 0.5844 0.7034 0.7108 0.5902 0.8968

16 0.6954 1.1514 0.9129 1.2902 0.8697 0.6870 0.8370 0.8858 0.7431 1.0808

17 0.7329 1.5420 0.9722 1.5716 0.9987 0.8377 1.1188 1.0799 0.9711 1.3026

18 0.8595 1.8436 1.2630 2.0393 1.1376 1.0711 1.3181 1.3902 1.1740 1.5484

19 1.1690 2.4328 1.6209 2.3768 1.4889 1.4076 1.6280 1.7581 1.5174 1.7800

20 1.3495 2.8077 1.6611 3.1048 1.8336 1.6886 1.8692 2.2017 1.8071 2.4023

21 1.7666 3.4284 2.2127 3.8014 2.2195 2.2858 2.3806 2.7137 2.2284 2.8600

22 2.0429 4.7002 2.4138 5.1772 2.8784 2.6827 3.0621 2.9842 2.8115 3.4343

23 2.6836 5.8684 3.6654 6.4984 3.4312 3.0022 3.8081 4.2956 3.3740 4.4262

24 3.1432 7.3975 3.9932 6.3292 4.0784 3.9945 4.8836 5.7708 4.3020 5.5624

25 3.8981 9.2433 5.9550 10.8780 4.8802 5.2016 6.4403 6.5720 5.5132 6.8422

26 4.7613 12.1851 7.2257 13.0345 6.1415 6.9912 7.7378 8.3211 6.5154 8.3682

27 6.2645 14.8837 9.1428 15.1136 7.1537 6.9741 10.2469 9.7510 – –

28 7.6362 18.9061 11.6261 15.0097 9.3969 9.9014 11.9939 12.6750 – –

29 8.9947 23.4334 14.3625 18.0443 11.4332 13.0762 15.4993 15.4005 – –

30 11.6532 21.7685 18.6543 16.2038 13.7770 15.9414 18.4287 17.8146 – –

31 14.3670 – 22.4427 – 17.3911 21.2605 21.4919 22.5759 – –

32 18.7249 – 25.6854 – 19.8835 25.8978 26.6814 25.5356 – –

33 22.7825 – – – 19.3914 23.7399 21.6118 29.6341 – –

34 28.9011 – – – – – – – – –

35 25.0228 – – – – – – – – –

36 – – – – – – – – – –

(continued on next page)

Tajika et al. (2015), PeerJ, DOI 10.7717/peerj.1306 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.1306


Table 3 (continued)

Chamber 30 31 32 33 34 35 36 38 39 40

1 0.0009 0.0081 0.0015 0.0081 0.0076 0.0010 0.0216 0.0098 0.0106 0.0101

2 0.0093 0.0307 0.0112 0.0138 0.0238 0.0151 0.0566 0.0283 0.0415 0.0413

3 0.0491 0.1274 0.0372 0.0523 0.0673 0.0441 0.1162 0.0987 0.0610 0.1276

4 0.1152 0.0900 0.1024 – – 0.1044 0.1356 0.1778 0.1955 0.2445

5 0.2002 0.1677 0.1703 0.2591 0.1836 0.1951 0.0903 0.2302 0.2274 0.2826

6 0.2263 0.2333 0.2108 0.3325 0.0731 0.1551 0.0677 0.1288 0.1437 0.1377

7 0.1298 0.1515 0.1059 0.1488 0.1445 0.1211 0.0875 0.1754 0.2137 0.1577

8 0.2507 0.1968 0.1578 0.2810 0.1506 0.2130 0.1325 0.2319 0.2327 0.2791

9 0.2457 0.2774 0.1513 0.3327 0.1912 0.2311 0.1384 0.2424 0.2748 0.3210

10 0.3184 0.3346 0.2389 0.3967 0.2178 0.3198 0.1650 0.3559 0.3628 0.3354

11 0.3811 0.4392 0.2743 0.4897 0.2891 0.3354 0.1998 0.3528 0.3506 0.4696

12 0.4743 0.4943 0.2953 0.5830 0.2969 0.4166 0.2167 0.4391 0.4582 0.5265

13 0.5728 0.5368 0.3519 0.6721 0.3613 0.4578 0.2776 0.5343 0.5336 0.6694

14 0.6597 0.5660 0.4364 0.7652 0.4548 0.4956 0.3469 0.6659 0.5510 0.7933

15 0.8527 0.6376 0.4978 0.9763 0.5328 0.6623 0.3984 0.8642 0.7349 0.9906

16 0.9906 0.9415 0.5625 1.1348 0.6799 0.8069 0.4671 1.0654 0.8903 1.1742

17 1.2034 1.2099 0.6816 1.5905 0.8066 0.9817 0.5594 1.2510 1.1273 1.4877

18 1.5362 1.4315 0.8131 1.7629 0.9474 1.2012 0.7268 1.5251 1.3187 1.8743

19 1.7694 1.7856 0.9522 2.2513 1.2071 1.3979 0.8601 1.8645 1.6630 2.3415

20 2.0389 1.9788 1.1264 3.0569 1.4379 1.8163 0.9568 2.3037 2.1185 2.8293

21 2.8880 2.6252 1.4726 3.5649 1.7398 2.2560 1.1435 3.0019 2.5387 3.4876

22 3.3829 3.0792 1.5172 4.5086 2.0732 2.7278 1.3670 3.8435 3.1226 4.1792

23 3.6387 4.1283 2.0698 5.8497 2.6354 3.5553 1.4716 5.0250 4.3051 5.2172

24 5.5978 4.8777 2.5775 7.8330 3.0635 4.2451 1.9052 5.9666 5.0770 6.9681

25 6.6551 6.6584 2.9776 10.0561 3.7968 5.6042 2.1254 7.4867 6.4071 9.1711

26 8.4330 8.2790 3.7357 12.3302 4.6313 7.0547 2.4165 9.5045 7.9895 11.4558

27 10.9828 10.7209 4.2277 16.8159 5.7833 8.7436 3.1417 12.3553 9.9455 14.8504

28 14.0144 13.7381 5.9748 – 6.7042 11.2815 3.9028 15.4332 12.1152 18.7030

29 17.9875 16.9861 6.9056 – 8.9703 – 4.0146 19.5149 16.8772 21.2875

30 22.9906 – 8.7325 – 10.3012 – 5.5218 22.3363 19.1758 20.7897

31 – – 11.0929 – 13.7366 – 6.4224 21.7169 22.8448 –

32 – – 13.4910 – 16.1578 – 8.3757 – 10.9346 –

33 – – – – – – 9.7338 – – –

34 – – – – – – 13.6863 – – –

35 – – – – – – 15.1073 – – –

36 – – – – – – 19.3678 – – –

(continued on next page)
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Table 3 (continued)

Chamber 41 42 43 44 46 48 51 53 54 56

1 0.0100 0.0054 0.0090 0.0050 0.0265 0.0047 0.0175 0.0061 0.0100 0.0093

2 0.0292 0.0247 0.0306 0.0186 0.0771 0.0183 0.0470 0.0181 0.0342 0.0315

3 0.0905 0.0708 0.0881 0.0496 0.1503 0.0468 0.1091 0.0549 0.0913 0.0873

4 0.1417 0.1532 0.1587 0.1075 0.1971 0.0971 0.1735 0.1069 0.1690 0.1472

5 0.2076 0.2127 0.2030 0.1600 0.1691 0.1455 0.1890 0.1296 0.1763 0.2053

6 0.1124 0.1729 0.1402 0.1743 0.1699 0.1296 0.1049 0.0991 0.0946 0.2054

7 0.1508 0.1493 0.1831 0.1235 0.2227 0.0904 0.1476 0.0782 0.2062 0.1376

8 0.1697 0.2169 0.2357 0.1846 0.2459 0.1272 0.1975 0.1243 0.1836 0.1697

9 0.2163 0.2819 0.2991 0.1938 0.3018 0.1317 0.2505 0.1579 0.2436 0.2927

10 0.2786 0.3644 0.3365 0.2052 0.3498 0.1749 0.2403 0.1804 0.3114 0.3502

11 0.3207 0.4320 0.3932 0.2967 0.4234 0.1962 0.3590 0.2276 0.3474 0.3969

12 0.4028 0.5334 0.4842 0.3297 0.4885 0.2544 0.3641 0.2631 0.3622 0.4777

13 0.3789 0.6502 0.5946 0.4074 0.6444 0.2892 0.4552 0.2786 0.4824 0.5308

14 0.3697 0.8009 0.7316 0.4628 0.7167 0.3641 0.5052 0.3390 0.5973 0.7307

15 0.4970 1.1199 0.8541 0.5346 0.9162 0.4755 0.6910 0.4319 0.7167 0.9280

16 0.7079 1.3768 1.0209 0.6888 1.1237 0.5788 0.8284 0.5339 0.9275 1.0657

17 0.8187 1.6980 1.3506 0.8180 1.4206 0.7132 0.9799 0.6473 1.0603 1.3458

18 0.9482 2.1715 1.5373 0.9756 1.5012 0.7694 1.2509 0.7253 1.3217 1.4686

19 1.1905 2.5023 1.9608 1.2337 2.1029 0.9727 1.4561 1.0164 1.5396 1.8512

20 1.4391 3.1098 2.1780 1.5515 2.4645 1.2410 1.7334 1.0873 1.9675 2.3222

21 1.7595 4.1807 2.9540 1.9814 3.2696 1.4992 2.1757 1.4246 2.4795 2.8080

22 2.1740 5.2048 3.5435 2.6261 3.7837 1.9494 2.6698 1.6820 3.0712 3.4655

23 2.6913 6.7107 4.6642 2.7189 4.6898 2.2113 3.5267 1.9744 3.6531 4.4481

24 3.3197 8.3822 5.6355 4.1850 6.2850 2.6959 3.8889 2.5256 4.6271 5.2782

25 3.9711 9.8258 7.2365 4.8333 7.7151 3.3410 5.4467 3.2210 5.7637 6.6173

26 5.1796 14.0874 8.8481 6.3843 9.6012 4.1416 7.0138 3.7303 7.4533 8.4093

27 6.3708 16.9760 10.8568 7.8972 12.4969 5.2332 8.5615 4.3930 9.1647 10.4171

28 7.3239 20.3430 13.3318 10.4022 16.2270 6.3615 10.4667 4.8603 10.4041 13.1087

29 9.5327 25.8620 16.3558 13.1177 19.5241 7.5145 13.5815 6.7250 13.7364 15.5874

30 11.9083 24.6416 18.0790 17.3703 24.7367 9.4214 17.3426 8.8509 18.1738 20.3345

31 14.4140 – 20.2377 20.7735 20.2453 12.4135 20.6539 11.0477 22.7498 22.5689

32 18.5821 – – 27.8035 – 15.0377 25.8738 14.1953 24.6066 19.6485

33 23.3349 – – 27.8442 – 18.3685 21.4921 17.2212 15.7064 –

34 27.2882 – – – – 22.6245 – 22.1384 – –

35 – – – – – 26.4088 – 26.0839 – –

36 – – – – – – – 21.8776 – –
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Figure 3 Chamber volumes plotted against chamber numbers in all examined Nautilus pompilius. (A)
Scatter plot of chamber numbers and individual chamber volumes; (B) Scatter plot of chamber numbers
and phragmocone volumes.

logistically, as in the ammonites, with a rather high variability. As far as the terminal

countdown is concerned, only the last or no chamber of the adult specimens shows the

volume decrease. By contrast, the two ammonites show this decrease over the last 5–7

chambers (even higher numbers of chambers may be included in other ammonite species:

e.g., 18 in the Late Devonian Pernoceras, 14 in the Early Carboniferous Ouaoufilalites; see

Korn, Bockwinkel & Ebbighausen, 2010; Klug et al., 2015) bearing the irregular growth. It

has been reported that mature males of Nautilus from the Fiji Islands have larger shells and
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a broader, rounder aperture than those of females (Stenzel, 1964; Haven, 1977; Saunders

& Spinosa, 1978; Arnold, 1984) but there were no significant differences between sexes

in shell form in Nautilus from the Philippines (Tanabe et al., 1983). In order to assess

the differences between male and female conchs, their growth trajectories are shown

in Fig. 4. Maximum diameters of the conchs versus number of chambers (Fig. 5A) and

maximum diameters versus phragmocone volumes are also plotted (Fig. 5B) to assess if

previously-recognized morphologic differences between males and females of Nautilus

are detectable here. A statistical test (analysis of the residual sum of squares; ARSS) was

carried out to determine whether there are differences between males and females in

growth trajectories (Fig. 4B) and morphological features (maximum diameters of conchs

vs. number of chambers; maximum diameters of conchs vs. phragmocone volumes; Figs.

5A and 5B). This test is used to compare linear models (Zar, 1996). A similar statistical

test, which compares non-linear models, described by Akamine (2004) was also conducted

for growth trajectories of males and females (Fig. 4C) to verify whether or not the results

from ARSS are valid. The results of the statistical tests suggest that there are significant

differences between males and females (Tables 5 and 6).

Comparison of chamber formation between ammonites and
Nautilus
Widths (for Normannites: Table 2; for Nautilus: Table 4) and volumes of each chamber

were plotted against chamber numbers for the ammonites (Fig. 6) and Nautilus (Fig. 7).

It should be noted that the widths of each chamber for the ammonites may not be very

accurate. For instance, for the widths of the 42nd to 44th chamber of Nm. 2 (Fig. 6B), we

obtained the same value (7.7 mm), which presumably does not represent the actual width.

This has been caused by the reduction in resolution resulting from segmenting only every

4th slice with an increment between two images 0.24 mm in voxel z (instead of 0.06 mm;

see the method section above for details). In addition to the low resolution, the obscure

limit between chambers and septa at the edges of the chambers (on the flanks) in the slices

might also have resulted in some errors in segmentation. However, the overall trend of the

widths through ontogeny should still be correctly depicted and thus, the errors mentioned

above were negligible for our study (Fig. 6B).

DISCUSSION
Ontogenetic volumetric growth of ammonites
Due to preservation and limited resolution, the chambers in the first two whorls of the

Jurassic ammonites could not be precisely measured. Therefore, the chamber numbers

referred to below were estimated based on recognizable chambers and more or less

constant septal spacing. There appears to be a subtle point where the slope of the

curves changes at around the 28–29th chamber (Fig. 2B), corresponding to a conch

diameter of about 4.5 mm. This change may represent the end of the second growth

stage of ammonoids, the neanic stage, because it has been reported that the neanic

stage of ammonoids lasts until a conch diameter of 3–5 mm (Bucher et al., 1996). This

point may have been related to the change of their mode of life, i.e., from planktonic to
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Figure 4 Comparison between males and females. Chamber volumes plotted against chamber num-
bers in Nautilus pompilius. Squares and diamonds represent the female and male, respectively. (A)
Scatter plot of chamber numbers and individual volumes; (B) Semilog scatter plot of chamber numbers
and individual volumes; (C) Scatter plot of chamber numbers and cumulative phragmocone volumes.
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Figure 5 Comparison between males and females. Squares, diamonds, and triangles represent the
female, male, and indeterminable sex, respectively. (A) Scatter plot of maximum conch diameters and
chamber numbers of a specimen; (B) Scatter plot of maximum conch diameters and the phragmocone
volume.

nektoplanktonic or nektonic (Arai & Wani, 2012). Taking this into account, the first two

whorls of the conch comprise the first two growth stages, namely the embryonic and

the neanic stages (Bucher et al., 1996; Westermann, 1996; Klug, 2001). Note that since the

volumes of chambers formed before the 25th and 27th in Nm. 1 and Nm. 2 have not
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Figure 6 Volumes and widths of chambers plotted against chamber numbers in Normannites mitis.
Squares and diamonds represent volumes and widths, respectively. (A) Nm.1; (B) Nm. 2.

been measured due to the poor resolution, the transition between the first two growth

stages has not been examined. Naglik et al. (2015) three-dimensionally examined three

different Palaeozoic ammonoid species. They documented a change in the slope of growth

trajectories around the 19th–21st chamber in each specimen. The last several chambers

display fluctuating growth known as terminal countdown (Seilacher & Gunji, 1993). In

Nm. 2, an abrupt decrease of chamber volume occurred at the 45th chamber, marking

another trend resulting in a lower cumulative volume than in Nm. 1. It is known that

injuries can affect the septal spacing in modern Nautilus (Ward, 1985; compare Keupp

& Riedel, 1995) as well as in ammonoids (Kraft, Korn & Klug, 2008). However, there

are no visible injuries on the conch of Nm. 2, suggesting that this might have not been
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Figure 7 Volumes and widths of chambers plotted against chamber numbers in Nautilus pompil-
ius. Squares and diamonds represent volumes and widths, respectively. (A) Specimen 8; (B) Specimen
7; (C) Specimen 53. Specimens with different growth trajectories were analysed.
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Table 4 Raw data of measured chamber widths of Nautilus pompilius.

Nautilus pompilius

Widths (mm)

Chambers Specimen 8 Specimen 7 Specimen 53

6 – – –

7 – – –

8 – – –

9 – – –

10 – – –

11 13.8 – 13.8

12 14.1 11.5 14.1

13 14.5 12.4 14.5

14 15.2 13.2 15.2

15 16.3 14.2 16.3

16 16.6 15.1 16.6

17 17.4 16.3 17.4

18 18.2 17.0 18.2

19 19.3 17.8 19.3

20 20.4 19.1 20.4

21 21.8 20.4 21.8

22 22.6 21.4 22.6

23 24.6 22.9 24.6

24 26.2 24.3 26.2

25 30.0 26.1 30.0

26 30.1 27.4 30.1

27 32.3 29.2 32.3

28 34.0 31.0 34.0

29 36.2 33.1 36.2

30 39.7 36.1 39.7

31 42.4 38.9 42.4

32 45.2 41.7 45.2

33 48.3 44.7 48.3

34 52.8 47.9 52.8

35 55.6 51.5 55.6

36 – 54.5 –

the case. Although the ammonite could have repaired a shell injury, it would be hard to

recognize the presence of such a sublethal injury due to low resolution or the effects of shell

replacement. Environmental changes might also have affected the conch construction.

For example, in modern scleractinian corals, it is suggested that the Mg/Ca ratio in the

sea water alters the skeletal growth rate (Ries, Stanley & Hardie, 2006). The knowledge

of the sedimentary facies of the host rock from which the ammonites were extracted is

insufficient to identify possible causes for the alteration of shell growth. Another possibility

is the presence of parasites such as tube worms. They might have grown on the external

conch, which affected the buoyancy of the ammonite. Interestingly, Nm. 1 preserves the
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Table 5 Results of statistical tests (analyses of the residual sum of squares) comparing linear regressions of males and female.

Comparison N
(male)

N
(female)

RSS
(male)

RSS
(female)

DF
(male)

DF
(female)

t Significance

Chamber number vs. chamber volume
(between the 1st and 5th chambers)

60 45 59.9 4,601 58 43 0.005 ns (P > 0.5)

Chamber number vs. chamber volume
(from the 6th chamber)

332 243 108.3 104.0 330 240 16.8 s (P < 0.05)

Maximum diameter vs. number of chambers 12 9 46.5 14.6 10 7 1.9 s (P < 0.1)

Maximum diameter vs. total volume of phragmocone 12 9 927.6 721.0 10 7 2.2 s (P < 0.1)

Notes.
N, number of samples; RSS, residual sum of squares; DF, degree of freedom; ns, not significant; s, significant.

Table 6 Results of a statistical test (an analysis of the residual sum of squares) comparing nonlinear regressions of males and females.

Comparison RSS
(total)

RSS
(male)

RSS
(female)

DF
(male)

DF
(female)

F Significance

Chamber number vs. chamber volume
(from the 6th chamber)

2775.3 1670.0 1040.4 332 243 4.55 s (P < 0.1)

Notes.
RSS, residual sum of squares; DF, degree of freedom; ns, not significant; s, significant.

trace of a worm tube in the 41th chamber of the fifth whorl (Tajika et al., 2015), which had

no detectable effect on chamber formation (Fig. 2A). Because of the absence of any trace of

syn vivo epifauna on the conch, this scenario is unlikely.

The two different cumulative volumes of phragmocone chambers should result in a

difference in buoyancy, given that the size of the two ammonites is more or less equal. The

buoyancy of Nm. 1 was calculated by Tajika et al. (2015) as being positively buoyant in the

(unlikely) absence of cameral liquid. Based on these calculations, they estimated the fill

fraction of cameral liquid to attain neutral buoyancy as being about 27%. Unfortunately,

the incompleteness of the aperture of Nm. 2 does not permit to calculate the buoyancy. It

is quite reasonable, however, to speculate that Nm. 2 requires slightly less cameral liquid

to reach neutral buoyancy (>27%) because of its size, its smaller phragmocone, and its

most-likely similar conch mass. The fact that specimens with only minute morphological

differences of the same species (Normannites mitis) likely expressed variation in buoyancy

raises the question whether morphologically more diverse genera like Amaltheus (Hammer

& Bucher, 2006) also varied more strongly in buoyancy regulation.

Ontogenetic volumetric growth of modern Nautilus and its
intraspecific variation
Landman, Rye & Shelton (1983) reported that the first seven septa of Recent Nautilus are

more widely spaced than the following ones; the point where septal spacing changes lies

between the 7th and 8th chamber. It is considered to correspond to the time of hatching,

which is also reflected in the formation of a shell-thickening and growth halt known as the

nepionic constriction. This feature is also reported from fossil nautilids (Landman, Rye &

Shelton, 1983; Wani & Ayyasami, 2009; Wani & Mapes, 2010).
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In the growth trajectories of specimen 17 (Fig. 3A and Table 3), there are two

abnormalities (the 5th and 6th chambers). These are supposedly artefacts caused by the

low resolution of the scan combined with the small size of these structures and the resulting

course surface of extracted chamber volume. This can occasionally cause some errors

in calculating volumes in Matlab. But this problem occurred only in specimen 17, even

though the low resolution would have caused errors in early rather than in late ontogeny.

Our results revealed a constant growth rate until the 5th or 6th chamber (Fig. 4B).

Thereafter, the growth changes to another constant growth rate. Differences in the position

of the nepionic constriction may be the artefact of low resolution of the scan, which might

have made the very first (and possibly the second) chamber invisible. The position of the

nepionic constriction, however, has some intraspecific variation (Chirat, 2001). Stenzel

(1964) and Landman et al. (1994) showed some septal crowding between septa number

4 and 5 and between 9 and 10, respectively. Taking this into account, it is likely that our

results are reflections of intraspecific variation. Nevertheless, in each examined specimen,

the chamber volumes fluctuate but typically increase until the appearance of the nepionic

constriction (Table 3). At the mature growth stage, most specimens show a volume

reduction of the last chamber. Variability in chamber volume could be a consequence

of several factors that influence the rate of chamber formation (growth rate): temperature,

pH (carbon saturation degree), trace elements, food availability, sexual dimorphism,

injuries, and genetic predisposition for certain metabolic features.

A relevant model for shell growth may be the ‘temperature size rule’ (e.g., Atkinson,

1994; Irie, 2010) which states the negative relationship between temperature and

maturation size at moderate temperature, even though the growth rate slows down and the

body size increases under extremely high or low temperatures. Rosa et al. (2012) observed

a significant negative correlation between sea surface temperature and body size in coastal

cephalopods. If this rule is applicable to the examined Nautilus, the temperature might

have changed the growth rate of each individual because vertical migration of Nautilus

is reported to range from near the sea surface to slightly below 700 m (Dunstan, Ward

& Marshall, 2011). Dunstan, Ward & Marshall (2011) also suggested that the strategy for

vertical migration of geographically separated Nautilus populations may vary depending

on the slope, terrain and biological community. At this point, it is hard to conclude

whether or not the temperature size rule applies because the behaviour of Nautilus in the

Philippines can be highly different from Australian Nautilus as reported by Dunstan, Ward

& Marshall (2011). Knowledge of their behaviour or possible environmental preference

during growth is necessary to examine this aspect. Westermann et al. (2004) described

the period of chamber formation of Nautilus pompilius which ranges from 14 to more

than 400 days. It is still likely that one individual inhabited different water depths from

other individuals, producing varying trends of growth trajectories. Tracking the behaviour

of modern Nautilus in the Philippines may provide more information on the role and

applicability of the temperature size rule.

Analyses of stable isotopes have been used to estimate habitats of shelled animals

(e.g., Landman et al., 1994; Moriya et al., 2003; Auclair et al., 2004; Lécuyer & Bucher,
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2006; Lukeneder et al., 2010; Ohno, Miyaji & Wani, 2015). It might be worthwhile to

examine the isotopic composition of the shells of a few nautilid and ammonoid shells

with different volumetric changes through ontogeny, because this may shed some light on

the relationships between habitat and growth trajectories.

The pH (or carbon saturation degree) influences shell secretion. A decrease of carbon

saturation causes a lack of CO2−

3 -ions, which are required to produce aragonitic or calcitic

shells (e.g., Ries, Cohen & McCorkle, 2009). In Sepia officinalis, elevated calcification rates

under hypercapnic conditions have been shown by Gutowska et al. (2010). This change

in pH may alter the time needed to form a chamber and thereby reduce or increase

the chamber volume. Similarly, trace elements like the Mg/Ca ratio in the sea water can

affect the growth rate (for corals see, e.g., Ries, Stanley & Hardie, 2006). Food availability

(e.g., lack of food) is also a possible explanation for the great variation. Wiedmann &

Boletzky (1982) showed a link between lack of food and lower growth rates, resulting

in closer septal spacing. Strömgren & Cary (1984) demonstrated a positive correlation

between growth rate of mussels and food source. It is likely that there was at least some

competition for food between Nautilus individuals and probably also with other animals.

The individuals in a weaker position might have had access to less food or food of poorer

quality.

Intraspecific variability can also originate from sexual dimorphism. In the case of

Nautilus, males tend to be slightly larger than females with slightly broader adult body

chambers (Hayasaka et al., 2010; Saunders & Ward, 2010; Tanabe & Tsukahara, 2010).

However, in the juvenile stage, the morphological differences are not very pronounced,

thus often hampering sexing. The two average slopes in the curves of chamber volumes

obtained from males and females were compared using a test (analysis of the residual sum

of squares: ARSS) described in Zar (1996). This test was conducted independently for the

embryonic stage and the other growth stages since the critical point between the 5th and

the 6th chamber changes the slope of the growth curve (Fig. 4B). Moreover, an analysis of

the residual sum of squares for nonlinear regressions was performed to compare the two

average logistic models of males and females for the latter stage (Fig. 4C). No significant

difference in the embryonic stage and a significant difference in the later stage (Tables 5

and 6) suggest that the differentiation in chamber volume between both sexes begins

immediately after hatching. The results (Fig. 4) also show, however, the occurrence of

conch morphologies common to both sexes. Taking this into account, their volume is not

an ideal tool for sexing. The same statistical test for linear regressions was also conducted

to compare the number of formed chambers (Fig. 5A) and the phragmocone volume

(Fig. 5B) with maximum conch diameter between male and female individuals. The test

results (Table 5) suggest that there is a significant difference between the female and male

in both cases, although the significance levels are not strict (the number of chambers vs.

maximum diameter: P < 0.05: the entire phragmocone volume vs. maximum diameter:

P < 0.1). A greater sample, however, may yield a clearer separation. The results of a series of

statistical tests (Table 5; analyses of the residual sum of squares) suggest that the males tend

to produce more chambers than females with nearly the same conch diameter. Bearing
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in mind that mature males are generally larger than mature females in maximum conch

diameter (Hayasaka et al., 2010), this may potentially indicate a prolonged life span or less

energetic investment in reproduction. By contrast, the addition of another chamber to

males could be associated with their sexual maturity; the weight of the large spadix and a

large mass of spermatophores in males might necessitate more space and buoyancy. Ward

et al. (1977) reported that the total weight of males of Nautilus pompilius from Fiji exceeds

that of females by as much as 20%. What remains unclear is the reason why females tend to

have larger phragmocone volumes than males while they are immature. It is true, however,

that even within each sex, the variability of the total phragmocone volumes is quite high

(standard deviation for males: 15.4; for females: 13.4; for both males and females: 14.3). Of

course one should also bear in mind the possibility that these high variabilities may have

partially originated from the errors discussed in the method section.

Injuries are visible in several of the examined specimens, yet there is no link to a

temporal or spatial change in chamber volume in the growth curves. Yomogida & Wani

(2013) examined injuries of Nautilus pompilius from the same locality in the Philippines,

reporting traces of frequent sublethal attacks rather early in ontogeny than in later stages.

The frequency of sublethal attacks early in ontogeny may be one of the factors determining

the steepness of the growth trajectory curves. This aspect can be tested in further studies.

Additionally, morphological variability may also root in genetic variability but the causal

link is difficult to test.

Covariation of chamber volumes and widths in ammonoids and
nautiloids
The relationship between chamber volumes of Nautilus pompilius (Fig. 7) revealed

that their chamber widths expanded at a constant pace irrespective of the change in

chamber volume. For the construction of the Nautilus conch and its ontogeny, a rather

constant conch morphology might have been advantageous with the buoyancy regulation

depending largely on septal spacing only. Likewise, Hoffmann, Reinhoff & Lemanis (2015)

reported on Spirula that has a sudden decrease of chamber volume which is not correlated

with changes in whorl height or whorl width but with changes in septal spacing. By

contrast, the chamber widths and volumes of the ammonites appear to covary (Fig. 6). This

distinct covariation may have partially contributed to the high morphological variability

with some constraints in response to fluctuating environmental conditions or predatory

attacks (for details, see the discussion for Nautilus above). This aspect, however, needs to be

examined further using an image stack of an ammonite with a higher resolution and better

preservation to rule out artefacts.

CONCLUSIONS
We virtually reconstructed the conchs of two Middle Jurassic ammonites (Normannites

mitis) and 30 specimens of Recent nautilids (Nautilus pompilius) using grinding tomogra-

phy and computed tomography (CT), respectively, to analyse the intraspecific variability

in volumetric change of their chambers throughout ontogeny. The data obtained from the

constructed 3D models led to the following conclusions:
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1. Chamber volumes of Normannites mitis and Nautilus pompilius were measured to com-

pare the ontogenetic change. The growth trajectories of Normannites mitis and Nautilus

pompilius follow logistic curves throughout most of their ontogeny. The last several

chambers of Normanites mitis show fluctuating chamber volumes, while most speci-

mens of Nautilus pompilius demonstrate a volume reduction of only the last chamber.

2. Growth trajectories of the two Normannites mitis specimens were compared. The two

specimens appear to have a transition point between the 28th and 29th chamber from

which the slopes of their growth curves change, which has been documented previously.

However, their entire phragmocone volumes differ markedly in late ontogeny although

the two shells have similar morphology and size. Intraspecific variation of buoyancy

was not testable in this study due to the low sample number. This aspect needs to be

addressed in future research because buoyancy analyses could provide information on

the habitat of ammonoids.

3. Growth trajectories of thirty Nautilus pompilius conchs show a high variability, even

though the high variabilitiy may have partially originated from the errors discussed in

the method section.

4. Results of statistical tests for Nautilus pompilius corroborate that the variability is

increased by the morphological difference between the two sexes: adult males have larger

volumes than females with the same diameter. This may be ascribed to the formation of

voluminous reproductive organs in the male (spadix). Individual chamber volumes of

the female tend to be larger than those of males. The results also show that intraspecific

variability within one sex is moderately strong. Examinations of their injuries, isotopic

analyses of the examined conchs or tracking the behaviour of Nautilus could yield more

information on the relationship between their variability in chamber volumes and

ecology. Such data could help to reconstruct the palaeoecology of fossil nautiloids and

possibly also of extinct ammonoids.

5. Covariation between the chamber widths and volumes in ammonites and Nautilus

pompilius were examined. The results illustrate that conch construction of Nautilus

pompilius is robust, maintaining a certain shape, whereas the conch development of

the examined ammonites was more plastic, changing shape during growth under some

fabricational constraints. Further investigations need to be carried out to verify the

covariation between widths and volumes of ammonites with other variables such as

conch thickness, conch width, and perhaps buoyancy using a reconstruction method

with a higher resolution and perfectly-preserved materials.
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We would like to thank Dominik Hennhöfer and Enric Pascual Cebrian (Universität

Heidelberg) for carrying out the grinding tomography. Beat Imhof (Trimbach) kindly

donated the two specimens of Normannites. We are also thankful to Torsten Scheyer

(Universität Zürich) for the introduction to the use of Avizo® 8.1. Kathleen Ritterbush

(University of Chicago) proofread the manuscript and corrected the English. The fruitful

discussion with Kozue Nishida (The Geological Survey of Japan) is greatly appreciated.

Tajika et al. (2015), PeerJ, DOI 10.7717/peerj.1306 23/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.1306


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study is supported by the Swiss National Science Foundation SNF (project numbers

200020 132870, 200020 149120, and 200021 149119). The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Swiss National Science Foundation SNF: 200020 132870, 200020 149120, 200021 149119.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Amane Tajika conceived and designed the experiments, performed the experiments,

analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the

paper.

• Naoki Morimoto performed the experiments, contributed reagents/materials/analysis

tools, reviewed drafts of the paper.

• Ryoji Wani and Carole Naglik contributed reagents/materials/analysis tools, reviewed

drafts of the paper.

• Christian Klug wrote the paper, reviewed drafts of the paper.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1306#supplemental-information.

REFERENCES
Akamine T. 2004. Statistical test and model selection of fish growth formula. Bulletin of the

Japanese Society of Fisheries Oceanography 68(1):44–51.

Arai K, Wani R. 2012. Variable growth modes in late cretaceous ammonoids: implications for
diverse early life histories. Journal of Paleontology 86:258–267 DOI 10.1666/11-068.1.

Arnold JM. 1984. Cephalopod reproduction. In: Biggelar, ed. The mollusca, vol. 7. New York:
Academic Press, 419–454.

Atkinson D. 1994. Temperature and organism size—a biological law for ectotherms? Advances in
Ecological Research 25:1–58 DOI 10.1016/S0065-2504(08)60212-3.

Auclair AC, Lécuyer C, Bucher H, Sheppard SMF. 2004. Carbon and oxygen isotope composition
of Nautilus macromphalus: a record of thermocline waters off New Caledonia. Chemical Geology
207:91–100 DOI 10.1016/j.chemgeo.2004.02.006.

Bucher H, Landman NH, Klofak SM, Guex J. 1996. Mode and rate of growth in ammonoids.
In: Landman NH, Tanabe K, Davis RA, eds. Ammonoid paleobiology. New York: Plenum,
407–461.

Tajika et al. (2015), PeerJ, DOI 10.7717/peerj.1306 24/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.7717/peerj.1306#supplemental-information
http://dx.doi.org/10.1666/11-068.1
http://dx.doi.org/10.1016/S0065-2504(08)60212-3
http://dx.doi.org/10.1016/j.chemgeo.2004.02.006
http://dx.doi.org/10.7717/peerj.1306


Chirat R. 2001. Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology
27:485–499 DOI 10.1666/0094-8373(2001)027<0485:AOESGI>2.0.CO;2.

Collins D, Ward PD, Westermann GEG. 1980. Function of cameral water in Nautilus. Paleobiology
6:168–172.

Dunstan AJ, Ward PD, Marshall NJ. 2011. Vertical distribution and migration patterns of Nautilus
pompilius. PLoS ONE 6(2):e16311 DOI 10.1371/journal.pone.0016311.

Garwood RJ, Rahman IA, Sutton MD. 2010. From clergymen to computers—the advent of virtual
palaeontology. Geology Today 26:96–100 DOI 10.1111/j.1365-2451.2010.00753.x.
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