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ABSTRACT
Background. Next Generation Sequencing (NGS) techniques dominate today’s land-
scape of genetics and genomics research. Though Illumina still dominates worldwide
sequencing, OxfordNanopore is one of the leading technologies currently being used by
biologists, medics and geneticists across various applications. OxfordNanopore is auto-
mated and relatively simple for conducting experiments, but generates gigabytes of raw
data, to be processed by often ambiguous set of alternative bioinformatics command-
line tools, and genomics frameworks which require a knowledge of bioinformatics to
run.
Results. We established an inter-collegiate collaboration across experimentalists and
bioinformaticians in order to provide a novel bioinformatics tool, free for academics.
This tool allows people without extensive bioinformatics knowledge to simply process
their raw genome sequencing data. Currently, due to ICT resources’ maintenance
reasons, our server is only capable of handling small genomes (up to 15 Mb). In this
paper, we introduce our tool, NanoForms: an intuitive and integrated web server for
the processing and analysis of raw prokaryotic genome data, coming from Oxford
Nanopore. NanoForms is freely available for academics at the following locations: http:
//nanoforms.tech (webserver) and https://github.com/czmilanna/nanoforms (GitHub
source repository).
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INTRODUCTION
Next Generation Sequencing technologies, such as Illumina (Gloor et al., 2010), Pacific
BioSciences (Rhoads & Au, 2015) and Oxford Nanopore (Jain et al., 2016), dominate
today’s landscape of genetics and genomics research. Each technology has its advantages,
disadvantages and market share in specific applications and niches. The applications of
Oxford Nanopore technology include eDNA extraction and sequencing (i.e., Garlapati et
al., 2019), rapid viral sequencing (including the current challenge of SARS-CoV2 (Wang
et al., 2020)), human genome comparative sequencing (De Coster et al., 2019) and many
others. Short-read sequencing technologies such as Illumina have made bacterial genome
sequencing relatively cheap and accessible. However, the procedure of closing microbial
genomes is often costly and laborious. Assembly of short reads from genomes that are
repetitive and/or have extreme %GC content remains challenging. These difficulties can
be mostly overcome by using single-molecule, long-read sequencing technologies such as
the Oxford Nanopore. Nanopore helps with closing bacterial genomes (Risse et al., 2015;
Kawalek et al., 2020), can deliver two strategies for bacterial genome assembly (Goldstein et
al., 2019), even helps to obtain complete bacterial chromosomes from microbiomes (Moss,
Maghini & Bhatt, 2020) or is used in routine microbial genome sequencing (Wick et al.,
2017a). Two main strategies are used to assemble bacterial genomes using long read
sequencing. In the first, nanopore reads are used for long read only genome assembly
followed by polishing with Illumina reads. Alternatively, long reads are used to enhance
genome assemblies that are generated from short-read Illumina data. In such case nanopore
reads can scaffold contigs generated by short read sequencing. It is also now possible to
extract 3D structures of the genome using Oxford Nanopore (Ulahannan et al., 2019).

Oxford Nanopore is relatively user-friendly, easily operated, inexpensive, and can
be simply adjusted to allow for rapid sample processing (including outdoor usage).
The downside is, after the experiment is done, researchers are left with a huge amount
of raw data. There is a wide variety of software tools available to perform taxonomic
classification of the raw data. There are also many comparative studies that evaluate the top
performing bioinformatics tools, provide recommendations for use cases, and show how
to run these tools (McIntyre et al., 2017; Escobar-Zepeda et al., 2018; Simon et al., 2019).
An inexperienced user, however, could easily become overwhelmed by the complexity
of the data, the fast pace of tool development, and the version updates, command changes,
installation problems, etc.

MATERIALS & METHODS
We used the following technologies to create the NanoForms server: Python language,
Linux/UNIX/BSD operating system, Django application server, Workflow Description
Language and Cromwell, Crontab, Docker and BioContainers (Da Veiga Leprevost et al.,
2017), and a custom set of bioinformatics tools. TheNanoForms server is freely available for
academic use and a commercial release of the server (for non-academics, businesses, etc.) is
planned. We also provide its source code (under GPLv3 license) for non-commercial uses.
The server is fully virtualized, with about 30 processor cores and 120 GB RAM available
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on average. The infrastructure is also hosted in a virtual environment. It can handle about
5-10 parallel jobs (taking into account dataset size limits of 15 GB). In general, single run
processing time depends on configuration, sample size and the assembly type (short reads,
long reads or both). It takes nearly two hours to process a 220 MB sample of ONT data,
yielding the results. Computation time grows in a near linear manner, with a 1 GB dataset
taking about five hours. Hybrid assemblies, which include a Unicycler polishing stage, can
take up to 10 h for a 1 GB dataset combined (300 MB of ONT and 600 MB of Illumina
data). However, actual run times will depend on server usage, so for complete control over
timings one can install a local version of nanoforms. The detailed diagram of the server
workflow is shown in Fig. 1.

The current version of the server includes the use of the following bioinformatics
applications: Nanoplot 1.32.0 NanoFilt 2.7.1 (De Coster et al., 2018), FastQC 0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), Flye 2.8.1 (Lin et al., 2016),
Bandage 0.8.1 (Wick et al., 2015), Rebaler 0.2.0 (https://github.com/rrwick/Rebaler),Medaka
1.0.1 (https://github.com/nanoporetech/medaka), Quast 3.2 (Mikheenko et al., 2018),
Fitlong 0.1.0 (https://github.com/rrwick/Filtlong), Prokka 1.14.6 (Seemann, 2014), Kraken
Tools 0.1 (Davis et al., 2013), Kraken 2.1.0 (Wood, Lu & Langmead, 2019) and Krona
2.7.1 (Ondov, Bergman & Phillippy, 2011). For hybrid genome assembly, we use Unicycler
0.3.0b (Wick et al., 2017b) and Fastp 0.18.0 (Chen et al., 2018) for filtering data from
Illumina. A hybrid assembly strategy has been developed to overcome the limitations of
both Illumina and Oxford Nanopore sequencing and to unlock their full potential for
genome assembly. Oxford Nanopore long reads can scaffold contigs generated by Illumina
short reads to disambiguate regions of the assembly graph that cannot be resolved by
Illumina short reads alone, as implemented in the Unicycler assembler (Chen, Erickson &
Meng, 2020).

The human genome comprises approximately 3 Gb of nucleotides while a typical raw
data set from Oxford Nanopore sequencing (before base-calling) exceeds 1 TB. This makes
it difficult to upload the data with even high-speed bandwidth (a 100 Mbps transfer would
take over 24 h to transfer the data alone). In addition, such large amounts of data would
require substantial funding for computing resources as the required calculations would be
considered Big Data. Because of these technological issues, we narrowed the analyses to
genomes of prokaryotic sizes (up to 15Mb in length, up to 15 GB in file size) but our server
also can handle small eukaryotic genomes (such as S. cerevisiae). Unicycler may not be the
best tool for yeast genomes but Flye and nanopore assembly pipeline from NanoForms,
might be easily used for small euakryotic genomes (see: Martín-Hernández et al., 2021).
After deploying this server and gathering remarks from the users, we are considering
designing another milestone which might address this problem. We also plan to launch
the commercial version of the server for institutional clients.

RESULTS
We introduce NanoForms: an intuitive and integrated web server for the processing and
analysis of raw data from small genomes, yielding from Oxford Nanopore technology. The
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Figure 1 NanoForms server workflow. Subsequent computation steps are run but in between, the user is
given the partial results can take action, i.e., give more specific parameters for the next programmes, based
on the data available (i.e., quality, quantity etc.). In the end, the report is generated and sent in a form of a
PDF file.

Full-size DOI: 10.7717/peerj.13056/fig-1
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user uploads an archived, single sequence file (FASTQ) or a list of archived, sequence files,
then the data is preprocessed. The user then chooses several options on the go and, after
subsequent steps, the user obtains the DNA/RNA sequence in a form of FASTA file as well
as the HTML summary with reports, images or statistics of the calculations performed.

The initial output from the NanoPlot program (read length vs. the read quality) gives
the user a quick outlook (as shown in Fig. 2) that helps him or her decide whether to
continue the analysis or to go back to the lab to fix the sample. The final output of the
NanoForms service is an assembled genome in fasta format, prokka annotation files
and Bandage diagram, allowing for easy graphical assessment of assembly completeness.
An example, derived for the Bacillus subtilis, is depicted in Fig. 3. Since the MinION is
marketed as needing only minor laboratory skills to operate, NanoForms needs practically
no bioinformatics skills to produce the sequence (however more skilled users can benefit
from extra, but optional, commands and options that they can provide during the course of
the analysis). Therefore, we claim that our NanoForms server, in combination with Oxford
Nanopore technology, has ultimately made NGS available for all, including both biologists
and bioinformaticians, as specialized skills are no longer needed to perform certain NGS
tasks and analyses. On the server website, after logging in, there are several toy datasets
already provided to the user. Users can use these datasets for quality tests or data assembly
using the respective forms provided in NanoForms, such as Bacillus subtilis SRX6978160.

DISCUSSION
We performed a detailed analysis and comparison of similar services available for
researchers. The first service to be tested was the CGE (Larsen et al., 2017) server. We
checked and tested this service at the very beginning of this project and at that time, it
was an up-to-date and convenient service, and easy to use for biologists without technical
knowledge. Shortly before drafting this manuscript, the part of the server dedicated to
genome assembly went offline, so the only input is the contigs in FASTA (Pearson, 1990)
format. The rest of the tools tested are free to use, but as standalone programs, they are
not interconnected with the comprehensive pipeline. In addition, no figures are generated,
which makes the qualitative analyses more difficult.

The Enterobase server (Zhou et al., 2020) is aimed at wgMLST analyses. This server is
mainly designed for genotyping isolates. Users can screen the database against specific
STRs etc., and the service can also generate phylogenetic trees. Enterobase is dedicated to
analyses of gut bacteria and supports Illumina or PacBio reads. The user only needs to
provide the FASTQ (Cock et al., 2010) files, which need to be compressed by the gzip tool
and also, manually curated, before running the service. The figures can be generated or
plotted, however this requires additional manual user intervention. The Enterobase server
does not accept nanopore data.

Another interesting tool, though with significantly diminished accessibility, is the
Galaxy Tools service (Cock et al., 2013). Our experience testing this service suggests that
the stand-alone version of the server needs to be installed and run locally for optimal
use, but for smaller analysis it can be also run on the public server. The server provides
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Figure 2 An example histogram for read length vs. the read quality, as the output from the NanoPlot
tool. Based on this information on the server website, the user can decide if the quality of the data is good
enough to continue the analysis and thus, save time of the project or decide to which extent to crop the
data to exclude low-quality short reads.

Full-size DOI: 10.7717/peerj.13056/fig-2

workflows (though only an empty set, for the novel user) which the user can adjust upon
request. The tool supports both Illumina and long read (nanopore, PacBio) data input.
It is worth noting that both the CGE and Galaxy Tools offer additional applications for
practical genome analysis such as: resistance, serotype or virulence, and maintains the
updated databases of these genetic targets.

While preparing and programming our tool, a software report was published about
the new toolkit, NanoGalaxy, dedicated to the nanopore data processing (De Koning et
al., 2020). NanoGalaxy is an extension of the aforementioned Galaxy Tools, in the area
of support for nanopore data. In some ways NanoForms and NanoGalaxy seems to have
similar features and functionalities. Similar to standard Galaxy Tools, NanoGalaxy seems
to be more powerful but on the other hand it is aimed at more advanced user with more
bioinformatics skills. In our subjective opinion NanoForms is easier to use for non-
bioinformatics users but on the other hand can be treated as a quite bordered ‘‘black box’’.
NanoGalaxy is more complex and has more functionalities, but getting familiar with the
numerous available algorithms requires some bioinformatics experience. NanoGalaxy and
NanoSPC (Xu et al., 2020) deliver similar results and has similar capabilities as our server.
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Figure 3 An example of a circular sequence, being assembled at the end, as visualized by the Bandage
tool. Sometimes the long-read nanopore data gives a few separate genome fragments as sequencing out-
put (contigs), so the hybrid assembly option, provided by NanoForms, can often resolve these ambiguities.
This image is normally the last stage of NanoForms sequencing protocol, however all figures and statistics
that arose on the course of sequencing, are delivered to the user as a report.

Full-size DOI: 10.7717/peerj.13056/fig-3

NanoSPC is focused only on Nanopore data and as a result it is not possible to perform
e.g., hybrid assembly there. It is also focused mostly on metagenomics, identification of
pathogens and variant calling, but it seems to be easy to use also for users with limited
dry-lab knowledge.

Another tool we tested was Patric (Gillespie et al., 2011). This platform provides
bioinformatics analyses of all bacteria, with special focus on pathogens. It supports
hybrid genome assembly in the formula of short + long reads (PacBio and nanopore
are supported). Table 1 provides the comprehensive summary of the features about the
quoted services, compared based on NanoForms functionality, in terms of nanopore data
processing. We decided not to include ‘‘demultiplexing reads support’’ in our table as the
most current version of MinKnow software (the native software to Oxford Nanopore)
supports this feature already.

As we were pursuing this project in mid-2020, Oxford Nanopore announced the
availability of their EPI2ME (http://epi2me.nanoporetech.com/,requireslogin) cloud-based
workflow to process raw nanopore data. The platform’s intended use is only nanopore
data analysis, without options for sequence assembly or trimming. After performing the
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Table 1 NanoForms server vs. other services: the comparison.Our service successfully fills in the gap for NGS genome assembly, in regard to the
fully automated (but interactive) pipelined nanopore data processing.

Feature CGE Enterobase Galaxy
tools

EPI2ME NanoPipe Patric Nano
galaxy

NanoSPC NanoForms

Raw data processing + + + + + + + + +

Interactive interface + + + + + + + + +

QA, reports + + + + + + + + +

Free for academics + + + + + + + + +

Sequence assembly − + + − +
a

+ + + +

Qualitative analyses: images − + + + + + + + +

Nanopore data processing + − + + + + + + +

Tools connected into the
pipeline

− + +/−b
− - +/−b

+ + +

Hybrid assembly:
nanopore+ Illumina

− − + − - + + - +

Special nanopore visualization
tools

− − + + - − + + +

Summary report generated − − − − + − − + +

Ease of usec + +/− +/− + + + + + +

Dry-lab knowledge unnecessaryc + + − − + − − + +

Notes.
aBut not the novo assembly.
bThere are no automatic pipelines, but users can develop them themselves.
cSubjective assessments of the authors.

base calling, reads are uploaded to the server via the EPI2ME Agent, which is a stand-alone
program. The user can pick one of the several workflows (ie. microbiological classification
or human genome analysis) which are triggered and executed in real time. Also in the table,
the reader might find the characteristics of the last tool we reviewed: NanoPipe (Shabardina
et al., 2019).

CONCLUSIONS
In summary, our NanoForms server, freely available for all academics, bridges the high-
speed of prokaryotic genome assembly with an intuitive, interactive interface. According
to the Oxford Nanopore MinION specification product page, it is sufficient for the user to
have a mid-range laptop and the device to obtain the sequence of the sample. No further
resources are needed and the user can continue the genomic analyses after a short break in
sequencing with the use of NanoForms service.
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