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Background. Magnetic resonance imaging (MRI) is used extensively to quantify myelin content,
however computational bottlenecks remain challenging for advanced imaging techniques in clinical
settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer
derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation,
including the myelin-sensitive macromolecular pool size ratio (PSR). Significant progress has been made
in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation
from the resulting data remains computationally expensive. To overcome this computational limitation,
we developed a computationally efficient, open-source toolkit implemented in the Julia language.

Methods. To test the accuracy of this toolkit, we simulated SIR images with varying PSR and spin-lattice
relaxation time of the free water pool (R1f) over a physiologically meaningful scale from 5 to 20% and 0.5
to 1.5 s-1, respectively. Rician noise was then added, and the parameter maps were estimated using our
Julia toolkit. Probability density histogram plots and Lin's concordance correlation coefficients (LCCC)
were used to assess accuracy and precision of the fits to our known simulation data. To further mimic
biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with
concentrations that ranged from 1.25 to 20%. The phantoms were imaged at 3T using SIR, and data were
fit to estimate PSR and R1f. Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps
were estimated to demonstrate the reduced computational time for a real-world clinical example.

Results. Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC>
0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases,
SIR parameter estimates were consistent with published values using MATLAB. However, compared to
earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational
time.

Conclusions. Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI
using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical
settings.
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16 Abstract

17 Background. Magnetic resonance imaging (MRI) is increasingly used to quantify myelin 

18 content; however, many of these advanced methods require long computation times that are 

19 challenging to deploy in clinical settings. To overcome this challenge, we developed a fast, open-

20 source toolkit for processing quantitative magnetization transfer derived from selective inversion 

21 recovery (SIR) acquisitions. While significant progress has been made in reducing SIR 

22 acquisition times, parameter map estimation (e.g., the myelin specific macromolecular pool size 

23 ratio, PSR) from the resulting data remains computationally expensive. To overcome this 

24 computational limitation, we developed an efficient, open-source toolkit implemented in the 

25 Julia language.

26 Methods. To test the accuracy of this toolkit, we simulated SIR images with varying PSR and 

27 spin-lattice relaxation time of the free water pool (R1f) over a physiologically meaningful range 

28 from 5 to 20% and 0.5 to 1.5 s-1, respectively. Rician noise was then added, and the parameter 

29 maps were estimated using our Julia toolkit. Probability density histogram plots and Lin's 

30 concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the 

31 fits to our known simulation data. To further mimic biological tissue, we generated five cross-

32 linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25 to 

33 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate PSR and R1f. 

34 Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to 

35 demonstrate the reduced computational time for a clinical whole-brain scan. 

36 Results. Estimated SIR parameter maps from our Julia toolkit agreed with simulated values 

37 (LCCC> 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 

38 3T. In both cases, SIR parameter estimates were consistent with published values using 

39 MATLAB. However, compared to earlier implementation using MATLAB, our Julia toolkit 

40 provided an approximate 20-fold reduction in computational time.

41 Conclusions. We developed a fast, open-source, toolkit for rapid and accurate SIR parameter 

42 mapping using Julia. The reduction in computational cost should allow SIR parameters to be 

43 accessible in clinical settings. 
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44 Introduction

45 Conventional magnetic resonance imaging (MRI) techniques are exquisitely sensitive to 

46 pathology such as demyelination, edema, and axonal loss; however, they generally lack 

47 pathological specificity and are dependent on numerous acquisition parameters. As a result, there 

48 has been increased interest in quantitative MRI methods (Tabelow et al., 2019; Mancini et al., 

49 2020) to derive indices with improved pathological specificity and reduced sensitivity to 

50 experimental parameters. In general, this requires the acquisition of multiple images with 

51 different experimental parameters. The signal in each voxel of the image series is then fit with 

52 the appropriate model — often via nonlinear least-squares methods — to estimate quantitative 

53 MRI parameters. Unfortunately, this process can be computationally expensive for high-

54 resolution or large field-of-view applications such as whole-brain scanning. 

55 One such MRI method is quantitative magnetization transfer (qMT) imaging, which provides 

56 indices (macromolecular pool size ratio or PSR) related to total myelin content in white matter 

57 (Mancini et al., 2020; van der Weijden et al., 2021). Despite the promise of quantitative myelin 

58 measurements, conventional qMT methods require specialized sequences and complicated 

59 analyses that are unavailable at most sites, limiting widespread adoption. We recently overcame 

60 the first of these limitations by developing a novel qMT method called selective inversion 

61 recovery (SIR), which uses inversion recovery sequences that are available on most clinical MRI 

62 scanners. We demonstrated that the resulting PSR values are repeatable across scans and relate to 

63 myelin content, as well as disease duration and disability in multiple sclerosis (MS) (Dortch et 

64 al., 2011, 2013; Bagnato et al., 2020). We later optimized SIR sampling schemes and acquisition 

65 readouts to ensure clinical applicability (Dortch et al., 2018; Cronin et al., 2020). Together, these 

66 studies demonstrated that whole-brain SIR data could be acquired in under 10 minutes. 

PeerJ reviewing PDF | (2021:09:66229:1:2:NEW 29 Dec 2021)

Manuscript to be reviewed



67 Despite these methodological improvements in acquisition, widespread SIR adoption is currently 

68 hindered by long computation times required to estimate model parameters, which can take on 

69 the order of tens of minutes (depending on the specifics of the hardware) for whole-brain 

70 acquisitions using our current MATLAB implementation. These long computation times stem  

71 from the requirement to fit each voxel to the biexponential SIR signal model using nonlinear 

72 regression methods, which can be computationally expensive. This is exacerbated in whole-brain 

73 scans, where the fit is performed for each voxel independently, resulting in >100,000 total 

74 regressions to estimate whole-brain parametric maps. As a result, faster computational 

75 techniques are needed to foster widespread clinical adoption of SIR. In addition, techniques that 

76 are composable, dynamic, general-purpose, reproducible, and open-sourced would further 

77 minimize barriers related to code sharing and adoption. 

78 A relatively new language named Julia fits all these requirements. Julia works on all major 

79 operating systems — Windows, MacOS, and Linux — and has quickly situated itself as a 

80 computational tool capable of reaching petaFLOPS performance (Claster, 2017). As such, it has 

81 been used in diverse computationally intensive fields ranging from earth astronomical cataloging 

82 (Regier et al., 2018) to quantitative MRI (Smith et al., 2015; Doucette, Kames & Rauscher, 

83 2020). Currently, many MRI processing tools are developed using MATLAB (Ashburner et al., 

84 2013) and Python (Smith et al., 2004; Gorgolewski et al., 2011), which have well-known 

85 limitations shared by other interpreted languages, most notably longer execution times. Julia has 

86 an intuitive user interface, is similarly portable and readable to MATLAB and Python, and 

87 retains most of the functionalities and syntax their users recognize (Perkel, 2019). However, 

88 since Julia is compiled at run time, it has inherent qualities that make it more computationally 

89 efficient, thus allowing it to approach C/C++-like speeds (Bezanson et al., 2017, 2018). In other 
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90 words, Julia strikes a balance between syntax that looks like an interpreted language, e.g., 

91 Python, R, MATLAB, etc., but runs with computational efficiency like a compiled language. 

92 The goal of this work was to develop and validate an open source, free, fast, flexible, and simple 

93 Julia toolkit for estimating SIR parameter maps. More specifically, we developed a Julia-based 

94 toolkit for rapid SIR parameter estimation that resulted in a 20-fold reduction in computational 

95 time over our previous MATLAB implementation. We evaluated this toolkit on simulated SIR 

96 images and high-resolution images collected from tissue-model phantoms and a healthy 

97 volunteer. Since our code is freely available and easily portable, we anticipate this toolbox will 

98 be widely accessible to researchers and clinicians to efficiently and accurately obtain SIR 

99 parameters. In addition, the toolkit is developed in a modular nature, allowing it to be easily 

100 extended to other nonlinear regression problems common in quantitative MRI applications.

101 Methods

102 Theory

103 Selective inversion recovery (SIR) imaging (Edzes & Samulski, 1977; Gochberg & Gore, 2003, 

104 2007) is based on a low-power, on-resonance inversion pulse that inverts free-pool longitudinal 

105 magnetization (Mzf) of free water protons with minimal perturbation of magnetization (Mzm) for 

106 protons in the macromolecular pool. Whereas traditional inversion recovery sequences use a pre-

107 delay time tD = 5×T1  (defined as the time from the center of the last spin echo in the readout 

108 until the next inversion pulse) to ensure full recovery before each inversion, SIR methods often 

109 use reduced tD to yield gains in efficiency, based on the assumption that both pools are saturated 

110 at tD = 0 (Gochberg & Gore, 2007; Cronin et al., 2020). Mathematically, we can describe the 
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111 resulting time evolution of the longitudinal magnetization vector (Dortch et al., 𝐌𝑧 = [𝑀zf 𝑀zm]𝑇
112 2013, 2018) as

113 𝐌z(𝑡I,𝑡D) = [𝑒𝐀t
I
 𝐒(𝐈 ‒ 𝑒𝐀𝑡𝐷) + (𝐈 ‒ 𝑒𝐀𝑡I)]𝐌0,#(1)

114 where tI is the inversion time,   accounts for the inversion pulse effect on each 𝐒 = 𝑑𝑖𝑎𝑔(𝑆f,𝑆m)

115 pool (Sf = -1 and Sm = 1 indicate complete Mzf inversion and no Mzm saturation, respectively), I is 

116 the identity matrix,  is the equilibrium magnetization vector, and A is a matrix 𝐌0 = [𝑀0f𝑀0m]𝑇
117 with components

118 Here R1f,m are the spin-lattice relaxation times of each 𝐀 = [ ‒ (𝑅1f + 𝑘fm) 𝑘mf𝑘fm ‒ (𝑅1m + 𝑘mf)] .#(2)

119 pool and kmf is the exchange rate from the macromolecular to free pool. Given dynamic 

120 equilibrium and static compartment sizes, the exchange rate in reverse direction can be stated as 

121 . For free water protons, the observed SIR signal is directly proportional to the 𝑘𝑓𝑚 = 𝑃𝑆𝑅 × 𝑘𝑚𝑓
122 Mzf component in Eq. 1, which can written algebraically as a biexponential function with respect 

123 to tI (Dortch et al., 2011).

124 This results in a model with seven independent parameters: PSR, R1f, R1m, Sf, Sm, M0f, and kmf. 

125 Several assumptions can be made to reduce model parameters during fitting. Sm can be 

126 numerically estimated as Sm = 0.83 ± 0.07, assuming a 1-ms hard inversion pulse, Gaussian 

127 lineshape, and T2m = 10–20 µs (Dortch et al., 2011). In addition, the SIR signal is relatively 

128 insensitive to R1m; therefore, it is often assumed that R1m = R1f (Li et al., 2010). Furthermore, kmf 

129 was shown to be relatively consistent within normal (kmf = 12.5 s-1
 for human brain) and diseased 

130 neural tissue, and optimized SIR acquisitions have been developed to minimize bias in other 
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131 parameters estimates (e.g., PSR, R1f) when an assumed kmf values is used (Dortch et al., 2011, 

132 2018). This results in a model with four independent parameters (PSR, R1f, Sf, and M0f), which 

133 can be estimated via nonlinear regression of SIR data acquired at four (or more) different tI 

134 and/or tD values with the biexponential function shown in Eq. 1

135 Julia Implementation

136 For our Julia implementation, nonlinear regression was performed using curve_fit from the 

137 LsqFit.jl package, which is an implementation of the efficient Levenberg-Marquardt 

138 algorithm. The only non-default parameter for our fitting routine was the use of automatic 

139 forward differentiation rather than the default central differencing, which has been shown to 

140 speed up Jacobian estimation at little cost to parameter estimation accuracy (Revels, Lubin & 

141 Papamarkou, 2016).

142 Julia has several unique features that were exploited to maximize both the efficiency and 

143 usability of our toolkit. First, multithreading is supported by Julia and is easily implemented by 

144 appending the @threads macro to any for-loop call. In our toolkit, this was appended to the for-

145 loop used to loop over regressions for each voxel. In contrast to MATLAB, for-loops are 

146 generally encouraged in Julia rather than using vectorized code, as the former often yields highly 

147 efficient  machine code. In the present implementation, we provided the option to either define 

148 certain parameters (e.g., Sm and R1m) or use a default value if no argument is passed. Finally, the 

149 dispatch of methods in Julia can be associated with multiple input variable types, which yields 

150 code that is simultaneously flexible and efficient. In our case, this allowed for the dispatch of 

151 different SIR fitting models simply based on whether kmf was provided as an input (assumed kmf) 

152 or not (estimated kmf). 

PeerJ reviewing PDF | (2021:09:66229:1:2:NEW 29 Dec 2021)

Manuscript to be reviewed



153 Simulation Studies

154 To evaluate the SIR Julia toolkit, SIR data were simulated using pulse sequence parameters (tI: 

155 15, 15, 278, and 1007 ms and tD: 648, 4171, 2730, and 10 ms) that correspond to the optimized 

156 experimental parameters (Dortch et al., 2018) used in our phantom and whole-brain scans. 

157 Simulated PSR and R1f values were linearly varied from 5-25% and 0.5-1.5 s-1, respectively, over 

158 a 128x128 grid to cover the full range of values observed in human white matter at 3.0 T. Sf and 

159 M0f were held constant at -1 and 1, respectively, since these parameters are not biologically 

160 relevant. Rician noise was added to the image at each  and  to generate noisy data with a 𝑡I 𝑡D

161 signal-to-noise ratio (SNR) of 250 relative to M0f. This produced a final simulated dataset with 

162 128×128×4 matrix dimensions, where the final dimension represents the data acquired at each 

163 combination of tI and tD.

164 Fits for each simulated voxel were then performed using our Julia toolkit on a Dell Precision® 

165 Mobile Workstation 7750 with Intel® Comet Lake Core™ i9-10885H vPRO™ @ 2.4 GHz CPU 

166 with Hyper-threading® enabled, and 16 GB non-ECC DDR4 RAM at 2933 MHz using Ubuntu 

167 20.04.2 LTS through Windows Subsystem Linux. The code generated here was additionally 

168 evaluated on Windows 10 (Dell Precision detailed above) and an iMac (Intel® Kaby Lake™ i7-

169 7700K @ 4.2 GHz CPU with Hyper-threading® enabled, 32 GB non-ECC DDR4 RAM at 2400 

170 MHz, running MacOS Catalina 10.15.7). The code was tested on Julia 1.5.2 and Julia 1.6.2, and 

171 both versions completed without error.

172 Phantom Studies

173 Bovine serum albumin (BSA, Sigma-Aldrich) phantoms were created in 50 mL conical vials by 

174 first solubilizing BSA in 15 mL of ddH2O (18.2 MΩ.cm at 25 °C, double-distilled water) until 
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175 fully dissolved, followed by adding ddH2O up to a final volume of 30 mL after accounting for 

176 glutaraldehyde (Electron Microscopy Science) volume for final BSA concentrations equal to 20, 

177 10, 5, 2.5, and 1.25% (w/v). The vials were centrifuged at 3500×g for 10 min to reduce bubbles 

178 before the crosslinking reaction. Glutaraldehyde was added to a concentration of 12% from a 

179 50% glutaraldehyde stock in ddH2O. Once the glutaraldehyde was added, the mixture was gently 

180 mixed to avoid bubble formation, centrifuged again with the same settings as above, and allowed 

181 to react overnight at 4 °C. To more directly investigate the relationship between BSA 

182 concentration and our SIR measures, we converted PSR to reflect the fraction of macromolecular 

183 to free water magnetization using the following expression:  𝑓 =
𝑀0𝑚𝑀0𝑚 + 𝑀0𝑓 =

𝑃𝑆𝑅
1 + 𝑃𝑆𝑅.

184 MRI was performed using a 3.0T Ingenia™ (Philips®) scanner with a dedicated 32-channel head 

185 coil. The phantoms were placed in a plastic 50 mL conical tube holder and positioned in the 

186 center of the RF coil. The same tI and tD used for simulations were used for phantom scanning. 

187 SIR data were collected at bore temperature with an inversion recovery prepared 3D turbo spin-

188 echo (TSE) sequence. The field of view (FOV) was set to 120×120×30 mm3, with 0.5×0.5×3.0 

189 mm3 resolution, matrix size of 240×240×10, echo time (TE): 96 ms, TSE factor of 22, and 

190 compressed sensing acceleration factor of 8 (Wang, Sisco & Dortch, 2021). The resulting data 

191 were fit using our Julia toolkit as described above for the simulated data using a fixed kmf = 35.0 

192 s-1 based on previous SIR experiments in BSA phantoms (Dortch et al., 2018).

193 Whole Brain Human Studies

194 To test the clinical applicability of our code, analogous SIR data were collected, and parameter 

195 maps estimated performed in a healthy volunteer (36-year-old, male). All scanning parameters 

196 were identical to the phantom scans except: FOV of 210×210×90 mm3, acquired isotropic 
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197 resolution of 2.25 mm3, with reconstructed matrix size of 224×224×40 and reconstructed 

198 resolution of 0.94×0.94×2.25 mm3, and TE: 65 ms. Preprocessing of the human SIR data was 

199 performed with FSL (https://fsl.fmrib.ox.ac.uk/fsl/) (Smith, 2002) and included rigid registration 

200 using FLIRT to correct for motion and brain extraction using BET. During fitting, kmf was fixed 

201 to the mean value reported in healthy human brain at 3.0 T (kmf = 12.5 s-1). This study was 

202 performed per the St. Joseph's Hospital Institutional Review Board and Medical Center initial 

203 reference number 039093 including written consent.

204 Statistical Analysis

205 We evaluated the accuracy and precision of the parameter estimates (PSR and R1f) generated by 

206 our Julia toolkit relative to the simulated values via histogram analyses and Lin’s concordance 

207 correlation coefficients (LCCC). All statistical analyses were performed using R, and the R 

208 package epiR (Stevenson & Sergeant, 2021) was used for LCCC estimation. 

209 Code Usage Examples

210 To encourage the use of the Julia toolkit, we provide easy-to-use bash-shell code that can be 

211 copied line by line and used within a Linux-like command line or saved as a script for execution 

212 in our GitHub repository ((https://github.com/nicksisco1932/The_SIR-qMT_toolbox).. 

213 Additional documentation and source code can is also provided in this repository.  Required 

214 input parameters include the SIR images in either NIfTI or MATLAB’s MAT format along with 

215 arrays for inversion and predelay times. Optional parameters can also be defined for kmf, Sm, and 

216 R1m, depending on the application; otherwise, the default values listed above are used. 

217 Alternatively, the toolkit can be implemented as a shell script in bash or can be incorporated into 

218 Python and MATLAB pipelines. Finally, we supply a Jupyter notebook tutorial written for Julia 
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219 to create and evaluate the simulation data shown in this manuscript. This notebook, along with 

220 code snippets needed to run our Julia toolkit via Python, MATLAB, bash scripts, or the 

221 command line, can all be found at our code repository.

222 A separate challenge that is common in quantitagive neuroimaging analysis relates to image 

223 format and data loading. To provide flexibility for other imaging formats (aside from NIfTI and 

224 MAT files), a code branch called using_pycall_import was developed to enable the usage of 

225 the Python package nibabel, which imports nibabel software (Brett et al., 2020) to read in various 

226 types of medical images, such as DICOM and PARREC (Philips format), as well as NifTI. 

227 However, as this branch implementation requires a Python environment with nibabel installed, it 

228 was implemented separately to simplify usage for end users.

229 Results

230 In Figure 1, we show the simulated and fit R1f (Fig. 1A) and PSR (Fig. 1B) values for each pixel, 

231 along with the residuals from the simulated and fit data for R1f (Fig. 1C) and PSR (Fig. 1D). The 

232 difference between simulated and estimated R1f (Fig. 1C) and PSR (Fig. 1D) showed no 

233 systematic differences. Quantitatively, these data are nearly identical to the known values (Fig. 

234 2A,B) with LCCC = 0.99/0.99 and RMSE = 2.2%/9.2% for R1f/PSR shown in Fig. 2C and D. 

235 Figures 1 and 2 support the accuracy of the Julia toolkit over a range of biologically realistic 

236 values in the presence of experimental noise.

237 Next, we performed real-world SIR experiments to test our Julia toolkit in samples with well-

238 characterized PSR and R1f values using BSA phantoms. The values from the fit are displayed in 

239 Fig. 3 and correspond to within 10% margin of error of published values of similar phantoms 

240 (Dortch et al., 2018). Fig. 3A and 3B show the PSR and R1f values, respectively. The 
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241 arrangement and percentage labels of BSA are depicted in Fig. 3C. The linear relationship 

242 between the SIR-derived f values and BSA concentration is shown in Fig. 3D with an intercept 

243 close to zero (0.003) and slope of 0.64 (standard error 0.002 and 0.019, respectively). 

244 Lastly, we tested our Julia code using whole-brain data from a healthy volunteer, as shown in 

245 Fig. 4. Fig. 4A shows the raw image at tI,tD = 278,2730 ms; Fig. 4B shows the expected contrast 

246 from PSR maps with higher values in white matter; Fig. 4C is the R1f map with higher values in 

247 the white matter; and Fig. 4D reflects inversion efficiency, which is characteristically flat 

248 (average Sf = -0.86 ± 0.14 for whole brain) and accounts for nonideal inversions of the water 

249 signal. 

250 For comparison, we evaluated the same whole brain with our original code written in MATLAB 

251 and generated identical maps with a significant reduction in computation time. More specifically, 

252 using the Core™ i9 laptop listed the Methods section and single threaded operations, MATLAB 

253 and Julia fit the entire brain (596,389 voxels within the brain mask) in 1,254 s (MATLAB) and 

254 14 s (Julia); corresponding to an ~90× reduction in computation time for Julia. Using MATLAB 

255 parallel processing (parfor) improved performance for MATLAB to 224 s, but this was still 

256 approximately 16×slower than Julia single threaded operations and requires significant overhead 

257 related to initiating separate MATLAB processes. The Julia multi-threading macro requires 

258 significantly less overhead than MATLAB; however, it did not significantly reduce computation 

259 times over single-threaded operations for our current implementation, suggesting that memory 

260 allocation may be the rate limiting factor in our Julia code. A more intuitive way to compare 

261 computational times is to measure how many voxels were fit per second, which was 46,319 and 

262 2,662 voxels per second for Julia’s and MATLAB’s fastest times, respectively. 
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263

264 Discussion

265 We present an efficient implementation of SIR parameter estimation using the Levenberg-

266 Marquardt algorithm via the Julia language. We used this toolkit to estimate SIR parameters on 

267 simulated data, BSA phantoms, and whole-brain human data. We then tested the run time of our 

268 toolkit to fit whole-brain SIR images resulting in PSR maps fit in 14 s for using Julia, which took 

269 MATLAB 224 s (using parallel processing), amounting to a nearly 16-fold decrease in 

270 computational time. Additionally, we note that the entire script, including reading and writing 

271 files, as well as fitting, takes only 29 s to complete. The robustness of the fit was evaluated using 

272 the simulated data with Rician noise added (Fig. 1A and B). After fitting, the residuals from the 

273 known data were characteristic of the noise encoded in the simulated image (Fig. 1C and D) with 

274 very high correlation according to LCCC, i.e., the fit recovered the data with high precision and 

275 accuracy (Fig. 2). Next, we acquired SIR data on a 3T scanner using phantoms made with BSA, 

276 and the estimated PSR and R1f parameters agreed with previously published data (Dortch et al., 

277 2018) (Fig. 3). The linear relationship between f and BSA, shown in Fig. 3D, along with the near 

278 zero offset provides good evidence that the phantoms were consistent, and that the fitting code 

279 performs well with real-world data. Finally, we acquired whole-brain data on a healthy volunteer 

280 at 3T, which showed that SIR parameters were consistent with expectations. More specifically, 

281 the PSR values (Fig. 4B) and R1f  (Fig. 4C) were higher for white matter and consistent with 

282 published values (Dortch et al., 2018) that used our previous MATLAB implementation, while Sf 

283 was relatively flat (Fig. 4D). 
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284 Due to its computational efficiency, Julia has become an increasingly popular tool for use in 

285 MRI data analysis. For example, it has been used for fitting dynamic contrast-enhanced MRI 

286 (DCEMRI.jl) data in less than a second (Smith et al., 2015) and myelin water imaging (MWI) 

287 with Decomposition and Component Analysis of Exponential Signals (DECAES.jl) that showed 

288 50-fold improvement in computational time (Doucette, Kames & Rauscher, 2020). We should 

289 note that numerous other MRI computational packages exist for quantitative analysis, including 

290 QUIT (QUantitative Imaging Tools, C Wood, 2018) and qMRLab  (Quantitative MRI analysis, 

291 under one umbrella, Karakuzu et al., 2020), with the former written predominately in C++ and 

292 Python and the latter written in MATLAB. In particular, qMRLab has a large array of tools for 

293 processing MT data, including a SIR-FSE fitting routine that is similar to our previous 

294 MATLAB implementation.  

295 In the present study, our toolkit showed whole-brain SIR data can be fit with a biexponential 

296 model in clinically feasible time of less than half a minute using a high-end laptop with a 

297 virtualized Linux operating system within the Windows 10 system and on the same laptop using 

298 Windows 10 version of Julia. Additionally, the toolkit was equally efficient on a standard 

299 desktop computer running MacOS. Given that our toolkit is highly efficient on all operating 

300 systems, easy to use, lightweight, and open source, we believe this opens the possibility of 

301 incorporating this toolset on any scanner operating system to significantly expand the clinical use 

302 for SIR. As the computational steps represented a barrier to the clinical implementation, we 

303 anticipate that the Julia-based implementation of SIR fitting is a critical step toward broader 

304 clinical use. 

305 The implementation of Julia shown here is also a steppingstone for more comprehensive Julia 

306 computational implementation within the magnetic resonance research community. The fast and 
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307 composable nature of our Julia toolkit allows additional model functions to be added with little 

308 effort. For example, we anticipate using our basic code design in other non-linear fitting models, 

309 such as for rapidly estimating T1, T2
*, and T2 in other applications. Overall, a robust, easily 

310 adaptable, and fast computational tool would be a welcome addition to the field.

311 One limitation to the adoption of Julia stems from the fact that it is a relatively new language and 

312 is continuously being updated. This novelty can make the developed packages obsolete relatively 

313 quickly; however, the upside is that Julia versions greater than 1.0 are increasingly stable and are 

314 constantly improving with a dedicated and vibrant community of developers. For example, we 

315 chose to use established tools (FSL) for preprocessing steps (registration, segmentation) rather 

316 than develop them natively in Julia. We anticipate future work will focus on porting these tools 

317 into Julia, which would alleviate potential dependencies issues that can arise from using multiple 

318 software packages within a processing pipeline. Furthermore, GPU accelerated computing is 

319 continually expanding in Julia with the JuliaGPU.jl package (Besard et al., 2019), which does not 

320 require a specific brand of graphics card and could make GPU acceleration more accessible and 

321 fits even faster. We assessed the code presented here with two different versions of Julia and 

322 found no bugs or code failures in anticipation of this deprecation issue. Julia is highly flexible 

323 and can be easily adapted to suit the function of the user. Although we focused on standard 

324 model assumptions (fixed kmf, R1m = R1f), the flexibility of our Julia implementation allows one 

325 to alter these assumptions for each specific application. For example. kmf may be altered 

326 inflammation (Harrison et al., 2015). Furthermore, increasing evidence suggests that R1m values 

327 are much slower than previously assumed, and these incorrect assumptions may bias R1f 

328 estimates  (Wang et al., 2020).  We believe that the combined flexibility and efficiency our 
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329 toolkit will allow investigators to systematically evaluate the impact of these model assumptions 

330 on estimated SIR parameters and, ultimately, deploy SIR as clinical myelin biomarker. 

331 Conclusions

332 We developed a fast, open-source toolkit for SIR MRI analysis using Julia. This toolkit was 

333 validated using simulations, phantoms, and healthy volunteer images. More specifically, myelin-

334 related SIR parameters were estimated in simulated images with high accuracy and precision, 

335 agreeing with published values in tissue-mimicking phantoms. Whole-brain SIR myelin maps 

336 further demonstrated with a 20-fold reduction in computational time, providing evidence that this 

337 toolkit would be instrumental in a clinical setting. 
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Figure 1
Simulated and Fit SIR images.

The simulated images were generated with constant inversion times of 15, 15, 278, and 1007
ms and delay times of 648, 4171, 2730, and 10 ms with PSR and R1f changing per pixel in a

128×128 matrix and Rician noise added, depicted in the A and B. We fit the simulated image
to the SIR-qMT model, resulting in the central panel parameter map for A and B. The
difference between the simulated image and the parameter map is depicted in C and D.
Qualitatively, C and D show that R1f and PSR were estimated with high accuracy relative to

the simulated values with LCCC = 0.99/0.99 and RMSE = 2.2%/9.2% for R1f/PSR (the

distribution of the differences is assessed in Fig. 2 A,B.).
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Figure 2
Probability density histograms and Lin’s Concordance Correlation Coefficient plots.

Simulated phantoms were fit with high agreement and precision. Percent differences
between the fit and known data for R1f values (A) and PSR values (B) have small, differences

which is explained by Gaussian noise as expected. In C and D, the PSR and R1f show high

agreement between the fit and simulated values with LCCC = 0.99 and 0.98, respectively,
while the solid line for unity and dotted correlation fit are nearly overlapped. These data give
us confidence that our Julia code is fitting the data to the expected values.
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Figure 3
Tissue model phantom images.

Five BSA phantoms were used to assess the Julia model fitting shown here. BSA
concentrations ranged from 1.25 to 20% (w/v). In A, PSR values were 0.9±0.7, 1.9±1.5,
3.9±1.1, 6.5±1.1, and 13.2±2.9 as a function of BSA concentration. R1f shown in B values

were 0.41±0.01, 0.46±0.03, 0.51±0.02, 0.63±0.002, and 0.83±0.05 per BSA concentration.
The BSA concentrations are depicted in C showing the arrangement of the phantom tubes
when in the scanner. A black box marks the slice location that was that can be seen visually
after a rotation. The values fit in these phantoms are like those found in literature using SIR
within a 10% margin of error. Additionally, when PSR is converted to a fraction of
macromolecular pool to free water, see Methods, it correlates well with BSA concentration
with a near 0 offset, as expected. Deviations are likely due to scanner differences and minor
phantom preparation method differences. The macromolecular to free rate constant (kmf) was

held constant at 35.0 s-1 for phantom fitting.
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Figure 4
Representative SIR on a healthy volunteer.

Panel A represents the first data point corresponding to tI,tD =278,2730 ms. B, C, and D are

maps from the fit parameters pool size ratio, R1f, and Sf (B1 inhomogeneity), respectively.

These images are consistent with published parameters, white matter have the highest
relative PSR and R1f, while Sf remains relatively flat at 3T with slight increases near the

posterior of this map.
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