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Cipangopaludina chinensis is a high economic value aquaculture species, and has the
potential to be developed as an anti-cancer drug. The gut microbes of aquatic animals
plays a vital role in food digestion and nutrient absorption. Herein, we aimed at high-
throughput sequencing of the V3-V4 region of 16S rRNA to further investigate whether
there were differences in the diversity and composition of the gut microbes of adult and
juvenile C. chinensis snails, as well as sediments. This study found that the microbial
diversity of the sediment was significantly higher than that of the snails gut (P <0.001),
but there was no significant difference between the gut flora of adult and juvenile snails (P
> 0.05). A total of 47 phyla and 644 genera were identified from all samples.
Proteobacteria and Verrucomicrobia were the two dominant phyla in all samples, and
overall relative abundances was 48.2% and 14.2%, respectively. Moreover, the relative
abundances of Aeromonas and Luteolibacter in the gut of juvenile snails (30.8%, 11.8%)
were higher than those of adults (27.7%, 10.6%) at the genus level (P>0.05). Then, four
indicator genera were found, namely Flavobacterium, Silanimonas, Geobacter and
Zavarzinella, and they abundance in the gut of juvenile snails was significantly higher than
that of adults (P <0.05). This results imply the potential development of Silanimonas as a
bait for juvenile snail openings. And we observed that Aeromonas was the primary
biomarker of the snail gut and sediments (P <0.001), and it may be a cellulose-degrading
bacteria. Function prediction revealed significantly better biochemical function in the snail
gut than sediments (P <0.001), but no significant differences in adult and juvenile snail (P
> 0.05). In conclusion, studies show that the snail gut and sediment microbial composition
differ, but the two were very similar. The microbial composition of the snail gut was
relatively stable and has similar biological functions. These findings provide valuable
information for in-depth understanding of the relationship between snails and
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environmental microorganisms.
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19 Abstract：

20 Cipangopaludina chinensis is an important economic value snail species with high medicinal value. The 

21 gut microbes of aquatic animals plays a vital role in food digestion and nutrient absorption. Herein, we aimed 

22 at high-throughput sequencing of 16S rRNA to further investigate whether there were differences in the 

23 composition and function of gut microbes of adult and juvenile C. chinensis snails, as well as sediments. This 

24 study found that the microbial diversity of the sediment was significantly higher than that of the snails gut (P 

25 ＜0.001), but there was no significant difference between the gut flora of adult and juvenile snails (P ＞ 0.05). 

26 A total of 47 phyla and 644 genera were identified from all samples. Proteobacteria and Verrucomicrobia were 

27 the two dominant phyla in all samples, and overall relative abundances was 48.2% and 14.2%, respectively. 

28 Moreover, the relative abundances of Aeromonas and Luteolibacter in the gut of juvenile snails (30.8%, 11.8%) 

29 were higher than those of adults (27.7%, 10.6%) at the genus level (P＞0.05). Then, four indicator genera were 

30 found, namely Flavobacterium, Silanimonas, Geobacter and Zavarzinella, and they abundance in the gut of 

31 juvenile snails was significantly higher than that of adults (P ＜0.05). This results imply the potential 

32 development of Silanimonas as a bait for juvenile snail openings. And we observed that Aeromonas was the 

33 primary biomarker of the snail gut and sediments (P ＜0.001), and it may be a cellulose-degrading bacteria. 

34 Function prediction revealed significantly better biochemical function in the snail gut than sediments (P ＜

35 0.001), but no significant differences in adult and juvenile snail (P ＞ 0.05). In conclusion, studies show that 

36 the snail gut and sediment microbial composition differ, but the two were very similar. The microbial 

37 composition of the snail gut was relatively stable and has similar biological functions. These findings provide 

38 valuable information for in-depth understanding of the relationship between snails and environmental 

39 microorganisms.

40 Key words：Cipangopaludina chinensis, Gut microbes, Rice snail system, 16S rRNA 

41

42 Introduction

43 Cipangopaludina chinensis is one of the most common large freshwater snails and is widely distributed in 

44 Asian countries (Lu et al. 2014). This variety has delicious meat and high nutritional value (e g. protein 

45 exceeds 12%, fat is only about 0.6%, and it is rich in more than 40% of umami amino acids), and is favored by 

46 consumers and farmers in China (Zhou et al. 2021; Luo et al. 2021). The annual output value of using C. 

47 chinensis as a food material exceeds billions in the catering industry alone. In addition, studies have found that 

48 polysaccharides from C. chinensis (CCPS) has a variety of biological activities (Xiong et al. 2013; Xiong et al. 

49 2019). In terms of anti-cancer, Liu et al., used the 2.2.15 cell line of human hepatoma cells (HepG2) cloned 

50 and transfected with HBV-DNA as an in vitro experimental model to prove that the CCPS has obvious anti-

51 HBV effect (Liu et al. 2013). Then, Zhu et al., confirmed the anti-tumor effect of CCPS by using human 

52 cervical cancer cell line (Hela) and human colorectal cancer cell line (HCT-8) as in vitro experimental models 

53 (Zhu et al. 2016). Moreover, studies have reported that it also plays an important role in heptoprotective. Fan et 

54 al., demonstrated through an alcohol-induced liver injury model that CCPS can reduce ALT, AST activity and 

55 MDA content, increase SOD activity, increase GSH content, revealing that it has a protective effect on 

56 alcohol-induced liver injury (Fan et al. 2014). The results of Jiang et al., showed that CCPS has a significant 

57 protective effect on BCG/LPS-induced immune liver injury through combined in vitro and in vivo experiments 

58 (Jiang et al. 2013). Therefore, C. chinensis can not only be used as food, but also have great potential in 

59 human disease prevention and treatment.
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60 Gut microbes have been proved to play an important role in nutrient absorption, physiological metabolism 

61 and immune defense, and are essential factors for maintaining the health of aquatic animals (Mitev & Taleski 

62 2019; Yadav & Jha 2019). There may also be a similar effect in C. chinensis. Currently, the composition and 

63 function of the gut microbiota in insects, fish and mammals have been well studied, but the gut microbiota of 

64 snails has not been systematically and deeply studied. Additionally, we have observed differences in food 

65 preferences between juvenile and adult C. chinensis in actual production, which may be caused by differences 

66 in the gut microbiota (Zhou et al. 2021). Herein, it is necessary to systematically understand the dynamic 

67 changes of intestinal microflora of C. chinensis so as to develop the best diet for snails. 16S rRNA is 

68 ubiquitous in prokaryotic cells, and has the advantages of good stability, high sequence conservation, large 

69 amount of information, and easy extraction, so it is widely used as an ideal material for the study of animal 

70 intestinal flora (Langille et al. 2013; Hu et al. 2018; Li et al. 2019). In this study, we performed high-

71 throughput sequencing of 16S rRNA gene to study the function and composition of intestinal microbiota in 

72 adult and juvenile C. chinensis under artificial habitat. This result provides insight into the reasons for 

73 differences in feeding behavior and food preferences between juvenile and adult snails. In this way, it can 

74 guide the production of the snail industry more scientifically and effectively, and provide scientific materials 

75 for promoting the development of snail commercial feed.

76

77 Materials and Methods

78 Ethics statement

79 All animal experiments were conducted in accordance with the guidelines and approval of the Institutional 

80 Animal Care and Use Committee of Guangxi Academy (CGA-00927); the protocol complied with the standard 

81 code for the care and use of laboratory animals in China. This research project did not involve endangered or 

82 protected species.

83 Sample collection and DNA extraction

84 The adult snails, juvenile snails, and sediment samples were collected from the rice snail breeding 

85 demonstration base in Ligao Village (23.37°N, 111.29°E), Liujiang District, Liuzhou City, Guangxi, China. 

86 The snails were starved for 24 hours before dissection to minimize partially digested food in the intestine (D. J. 

87 Van Horn & Takacs-Vesbach 2012). Then 30 healthy and undamaged juvenile (3 months old, shell height 

88 28.76±0.44 mm, weight 5.78±0.27 g) and adult snails (1 year old, shell height 43.98±0.91 mm, weight 

89 17.26±0.86 g) were randomly selected from the snails collected in the same habitat (with three biological 

90 replicates in each group, and 10 snails in each replicate). Under aseptic conditions, the shells were wiped with 

91 75% ethanol before being removed from each snail and then rinsed with sterile water three times. Each snail 

92 was dissected, using sterile tools, on ice in a sterile petri dish. First, the intestines were separated and excess 

93 intestinal contents were removed by washing with sterile water three times, then they were homogenized using 

94 a Tissuelyser-LT (QIAGEN, Shanghai, China) in a sterile centrifuge tube. In addition, farmland sediment 

95 (within 5 cm of the surface mud) was collected from the rice snail system, and then immediately placed into 

96 100 ml sterile frozen tubes and flash frozen with liquid nitrogen. Genomic DNA from all samples was 

97 extracted using the HiPure Soil DNA kit (Magen, Guangzhou, China) following the manufacturer’s protocol. 

98 All extracted DNA samples were stored at ˗80°C prior to library construction. In order to avoid the influence 

99 of individual differences in snails, this study took the same amount of DNA samples from 10 individuals in the 

100 parallel group and pooled them as sequencing samples.
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101 Library construction and sequencing

102 The V3–V4 region of 16s rRNA gene was amplified by PCR using universal primers 341F: 

103 CCTACGGGNGGCWGCAG and 806R: GGACTACHVGGGTATCTAAT (Guo et al. 2017). PCR 

104 amplification was performed using high-fidelity KOD polymerase (NEB, Ipswich, UK). PCR reactions were 

105 performed in triplicate using 50-μL mixtures containing 5 μL of 10 × KOD buffer, 5 μL of 2 mM dNTPs, 3 μL 

106 of 25 mM MgSO4, 1.5 μL of each primer (10 μM), 1 μL of KOD polymerase, and 100 ng of template DNA. 

107 PCR reagents were obtained from TOYOBO, Japan. PCR conditions were 94 °C for 2 min, followed by 30 

108 cycles at 98 °C for 10 s, 62 °C for 30 s, and 68 °C for 30 s and a final extension at 68 °C for 5 min. The 

109 amplicons were pooled, purified, and then quantified using the QuantiFluor fluorometer (Promega, Beijing, 

110 China). Finally, the amplicons were sequenced using the paired-end strategy (PE250) on the Illumina HiSeq 

111 2500 platform, following standard protocols. The raw reads were deposited into the NCBI Sequence Read 

112 Archive database (PRJNA778015).

113 Quality control and read assembly 

114 To obtain high-quality clean reads, raw reads containing more than 10% of unknown nucleotides (N), or 

115 containing less than 50% of bases with a quality (Q-value) >20, were removed using FASTP (Chen et al. 

116 2018a). Paired-end clean reads were merged as raw tags using FLASH (V.1.2.11) with a minimum overlap of 

117 10 bp and mismatch error rate of 2% (Salzberg 2011). Noisy sequences of raw tags were filtered by the QIIME 

118 (V.1.9.1) pipeline under specific filtering conditions to obtain high-quality clean tags (Caporaso et al. 2010). 

119 Briefly, raw tags were broken from the first low-quality base site where the number of bases in the continuous 

120 low-quality value (the default quality threshold is ≤ 3) reaches the set length (the default length is 3), and filter 

121 tags whose continuous high-quality base length is less than 75% of the tag length. Then, clean tags were 

122 searched against the reference database (http://drive5.com/uchime/uchime_download.html) to perform 

123 reference-based chimaera checking using the UCHIME algorithm (Knight 2011). All chimaeric tags were 

124 removed to obtain effective tags for further analysis. 

125 Statistical analysis 

126 The effective tags were clustered into operational taxonomic units (OTUs) of ≥ 97% similarity using the 

127 UPARSE (version 9.2.64) pipeline (Edgar 2013). The tag sequence with the highest abundance was selected as 

128 the representative sequence within each cluster. Between groups, Venn analysis was performed using the R 

129 project Venn Diagram package (version 1.6.16) and an upset plot was performed in the R project UpSetR 

130 package (version 1.3.3) to identify unique and common OTUs (Chen & Boutros 2011; Conway et al. 2017). 

131 The representative sequences were classified into organisms by a naive Bayesian model using RDP classifier 

132 (V.2.2) based on the SILVA database, with a confidence threshold value of 0.8 (Elmar et al. 2007). The 

133 abundance statistics of each taxonomy were visualized using Krona (version 2.6) (Ondov et al. 2011). The 

134 stacked bar plot of the community composition was visualized in the R project ggplot2 package (version 2.2.1) 

135 (Wickham & Chang 2008). A ternary plot of species abundance was plotted using the R ggtern package 

136 (version 3.1.0) (Hamilton & Ferry 2018).

137 For α-diversity analysis, Chao1, Simpson, and all other α-diversity indices were calculated using QIIME 

138 (Caporaso et al. 2010). An OTU rarefaction curve and rank abundance curves were plotted using the R project 

139 ggplot2 package (version 2.2.1) (Wickham & Chang 2008). The α-index comparison between groups was 

140 calculated using Welch’s t-test in the R project Vegan package (version 2.5.3) (Neogi et al. 2011). Differences 

141 in α-index among the three groups were assessed with the Kruskal–Wallis H test and Tukey HSD test. For β-
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142 diversity analysis, principal coordinates analysis (PCoA) of the Bray–Curtis distances was generated in the R 

143 project Vegan package (Neogi et al. 2011). The Adonis (also called Permanova) test in the Vegan R package 

144 was employed for statistical comparisons of β-diversity among groups. For indicator species analysis, species 

145 comparisons between groups was performed using Welch's t-test in the R project Vegan package (version 2.5.3) 

146 (Neogi et al. 2011). Biomarker features in each group were screened by the labdsv package (version2.0-1) in R 

147 project (Roberts & Roberts 2016). KEGG pathway analysis of the OTUs was inferred using PICRUSt (version 

148 2.1.4) (Langille et al. 2013). 

149

150 Results 

151 Bacterial complexity in the sediment and gut microbiome

152 To study species diversity among the samples, a total of 1,079,092 effective tags were obtained from all 

153 samples using Uparse software, and a total of 46,011 valid OTUs were obtained with 97% identity. Evaluating 

154 the coverage of the sequencing across all taxa, we found that the rareaction curve tended to asymptote 

155 (Additional file 1: Fig. S1), which indicated that the sequencing depth covered most of the species richness in 

156 the sample.

157 When analyzed by group, it was found that the number of OTUs in the sediment sample (5,901.2 ± 182.9) 

158 was significantly higher than that in the juvenile (2,606.0 ± 121.7) and adult (2,895.7 ± 171.3) snail intestine 

159 samples. Among the 6,233 OTUs, 1,452 (23.3%) were shared by three groups, and 434 (7.0%), 355 (5.7%), 

160 and 2,785 (44.7%) were unique in the adult and juvenile snail guts, and the sediment samples, respectively 

161 (Fig. 1-a).

162 The α-diversity analysis results differed between the three groups. In general, the bacterial diversity in the 

163 sediment samples was significantly higher than that in the snail guts (P<0.001), and there was no significant 

164 difference in the diversity of the gut flora of adult and juvenile snails (P>0.05), as assessed by the Sobs, 

165 Shannon, Chao, and ACE indices (Fig. 1-b). This result indicated that the diversity of the gut flora of adult and 

166 juvenile snails was similar, but differed from the flora in the sediment.

167 Similarity between the sediment and gut microbiomes

168 PCoA analysis based on the Bray–Curtis distance revealed that the intergroup distance was higher than the 

169 intragroup distance (Fig. 1-c). In particular, the distance between the gut and sediment samples was the furthest. 

170 The Adonis results also showed that the intragroup and intergroup similarity differed for each sample, and the 

171 microbial composition of the gut and sediment was different (R2=0.7923, P=0.003, Fig. 1-c).

172 Taxonomic composition of the sediment and gut microbiomes

173 Among the 6,233 OTUs, the phylum and genus levels accounted for 98.2% and 51.8%, respectively. A total 

174 of 47 phyla and 644 genera were identified from all samples in this study.

175 Proteobacteria and Verrucomicrobia were the two dominant phyla in all samples, with overall relative 

176 abundances of 48.2% and 14.2%, respectively (Fig. 2-a). The overall abundance of Proteobacteria in the gut of 

177 snails (57.0%) was higher than that in the sediment (30.9%), while the overall abundance of Verrucomicrobia 

178 in the gut (13.5%) was lower than that in the sediment (15.6%, Fig. 2-a). In addition, the relative abundance of 

179 Proteobacteria and Verrucomicrobia in the gut of juvenile snails (58.8%, 14.0%) was higher than that of adult 

180 snails (55.1%, 13.0%, Fig. 2-a). At the genus level, Aeromonas dominated (overall abundance: 29.2%) in the 

181 gut of snails, followed by Luteolibacter (11.2%, Fig. 2-b). However, in sediment, Luteolibacter was the 

182 dominant flora (12.0%), while the abundance of Aeromonas was only 0.7%, which differed significantly from 
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183 the gut (P<0.01, Fig. 2-b). Moreover, the relative abundances of Aeromonas and Luteolibacter in the gut of 

184 juvenile snails (30.8%, 11.8%) were also higher than those of adults (27.7%, 10.6%, Fig. 2-b). Hence, we 

185 speculate that Aeromonas in the gut of snails may originate from the water environment rather than from the 

186 sediment.

187 Indicating species of the gut of adult and juvenile C. chinensis snails

188 Welch's t-test was used to analyze differences in the gut microbial composition between adult and juvenile 

189 snails, as well as between gut and sediment samples (genus level, filtering the species whose sum of abundance 

190 was less than 0.1% in all samples). As shown in Fig. 3-b, Aeromonas was the most abundant genus in the gut 

191 of snails, followed by Cetobacterium, Pseudomonas, and Bacteroides, which were all significantly more 

192 abundant than in the sediment (P<0.05). Conversely, Dechloromonas, Sh765B-TzT-35, Defluviicoccus, SH-

193 PL14, and ADurbBin063-1 were all significantly less abundant in the snail gut than in the sediment. Four 

194 indicator genera were found, namely Flavobacterium, Silanimonas, Geobacter, and Zavarzinella, which were 

195 significantly more abundant in the gut of juvenile snails than in the gut of adult snails (P<0.05, Fig. 3-a). This 

196 suggested that these genera were more active at an early age. 

197 Functional prediction of the sediment and gut microbiomes

198 The function prediction software PICRUSt was used for analysis (Fig. 4). The results showed that the 

199 abundance of microbes of all functions was significantly lower in the sediment than in the gut (P<0.05). 

200 Representative functions included metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate 

201 metabolism, and fatty acid metabolism. There was no statistical difference in the gut microbial function 

202 between adult and juvenile snails (P>0.05), which implied that the nutrients required during the growth and 

203 development of snails were consistent.

204

205 Discussion

206  In snails, the gut is the main site for nutrient absorption and utilization (Pawar et al. 2012, Dar et al. 2017). 

207 Currently, little is known about the structure and function of the gut flora of C. chinensis. Previously, we found 

208 that the utilization of protein and carbohydrates by juvenile snails was higher than that of adult snails (Zhou et 

209 al. 2021). There are conflicting reports regarding changes to the microbiota with age, with some studies 

210 reporting that microbial communities differ from birth to adulthood, and others showing relatively consistent 

211 gut microbiota in adult and juvenile animals (Stephens et al. 2016; Xue et al. 2015). Our research found no 

212 statistical difference in the number of OTUs or α-diversity between adult and juvenile snails. Our PCoA results 

213 confirmed clustering of these two groups, which indicated that the intestinal flora of C. chinensis was 

214 relatively stable during the growth process.

215 The colonization of the gut flora of aquatic animals is a complex process affected by many factors such as 

216 the sediment, water environment, and bait (Romero & Navarrete 2006). Previous studies have found that C. 

217 chinensis, a type of bottom-breathing organism, contains a lot of humus and sediment in the gut (Zhou 1986). 

218 To date, few studies have analyzed the difference in microbiota composition between aquatic animal guts and 

219 the sediment in an ecosystem. In our research, the number of OTUs (5901.2) in the sediment was about twice 

220 that of the C. chinensis gut (mean 2750.9), and the microbial diversity of the sediment was significantly 

221 different to that of the snail gut. In aquaculture, the sediment is in an open environment, rich in organic matter 

222 and microorganisms, and plays an important role in supplying fertilizer and regulating water quality (Gilbride 

223 et al. 2006). The diversity of bacterial communities has been reported to contribute to biochemical reactions 
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224 within the ecosystems of sediments (Gilbride et al. 2006). By contrast, the gut of a snail is a relatively closed 

225 environment, and the richness and diversity of the microbial community is predominantly affected by food 

226 intake, water quality, and sediment, which was consistent with our findings. 

227 In our study, we found the gut microbiota composition of adult and juvenile snails to be similar, with the 

228 main phyla being Proteobacteria and Verrucomicrobia, and the main genera being Aeromonas and 

229 Luteolibacter. In addition to Proteobacteria, the gut microbiotas of vertebrates have previously been reported 

230 to be enriched in Firmicutes, Bacteroidetes, and Fusobacteria. In the gut of Radix auricularia snails, 

231 Mycoplasmataceae and Chloroflexaceae were the dominant bacteria (Hu et al. 2018), and Aeromonadaceae, 

232 Sediminibacterium, and Cloacibacterium were the most abundant genera in the gut of Pomacea canaliculata 

233 snails (Li et al. 2019). The composition of the intestinal microbial communities reflects natural selection 

234 between the host  and microorganism, thereby promoting the functional stability of the intestinal 

235 microecosystem (O'Hara & Shanahan 2006). The different compositions of the gut microbiotas of different 

236 aquatic species may be attributed to differences in habitat, season, and genetic characteristics (Nicolai et al. 

237 2015).

238 In our study, Proteobacteria as identified as one of the main bacterial phyla in sediment, which was 

239 consistent with a previous report that Proteobacteria was the most abundant flora in rice field sediment (Su et 

240 al. 2012; Zhao et al. 2017). At the genus level, we found that the abundance of Aeromonas in the gut was 

241 significantly higher than that in the sediment. Aeromonas is ubiquitous in aquatic environments (e.g., water, 

242 food, and sediment), and the detection rate in shellfish aquatic products reaches 61.29% (Fei 2017). Recently, 

243 healthy animals have also been found to carry this bacterium along with changes in habitat. One study found 

244 that Aeromonas was the main intestinal bacterium in the microbiotas of three planorbid snails (Bulinus 

245 africanus, Biomphalaria pfeifferi, and Helisoma duryi) (D. J. Van Horn & Takacs-Vesbach 2012). Similar 

246 results were also observed in the intestines of P. canaliculata snails. Furthermore, Hu et al. suggested that 

247 Aeromonas may play a prominent role in the degradation of cellulose in R. auricularia snails (Hu et al. 2018). 

248 We also detected the presence of Aeromonas in the gut of healthy snails in this study, speculating that this 

249 potentially cellulose-degrading bacterium is common in aquatic animals. 

250 To explore the potential indicator flora of the adult and juvenile snails gut , indicator species analysis was 

251 performed using the OmicShare tools based on 16rRNA data. The abundance of four index species 

252 (Flavobacterium, Silanimonas, Geobacter, and Zavarzinella) was significantly higher in the gut of juvenile 

253 snails compared with adult snails. Flavobacterium is a Gram-negative bacillus widely found in sediment and 

254 water (Chen et al. 2018b; Kim & Yu 2020). Geobacter is an important Fe3+-reducing dissimilating bacterium, 

255 which has a significant impact on the community structure of iron-reducing dissimilating microorganisms in 

256 paddy field soil (Chen et al. 2019). Therefore, Flavobacterium and Geobacter in the snail gut likely originate 

257 from the sediment. Compared with adult snails, juvenile snails are small caliber with weak feeding ability and 

258 are therefore unable to eat large phytoplankton. Instead, they ingest a large amount of humus from the 

259 sediment to provide nutrition. It was a surprising result that Silanimonas was one of the indicator species for 

260 the two growth stages of snails, suggesting that this bacterium may be an important source of nutrients in the 

261 early development of snails. Hence, Silanimonas has the potential to be developed into open bait for the early 

262 growth of snails.

263 Our findings also revealed that the phyla Proteobacteria, Fusobacteria, and Tenericutes were significantly 

264 more abundant in the snail gut than in sediment. Previous studies have also shown that these phyla are 
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265 predominant in the gut of aquatic animals (Fei 2017). In particular, Proteobacteria has been reported to be a 

266 microbial indicator of a gut flora imbalance (Shin et al. 2015). This implied that the gut microenvironment of 

267 the snail is in a relatively stable state. Interestingly, we found cyanobacteria in the gut of the snail, a bacterium 

268 known to be widely distributed throughout aquatic environments. This finding confirmed that C. chinensis can 

269 ingest cyanobacteria, which provides possibilities for water purification and bloom control in the future. We 

270 also detected the unique microbial communities present in the sediments of paddy fields (e.g., Acidobacteria, 

271 Actinobacteria, Chloroflexi, and Nitrospirae). Lin et al. used high-throughput sequencing to identify 

272 Nitrospirae and Acidobacteria as the dominant flora in paddy fields (Lin et al. 2020), and Singh et al. reported 

273 that Nitrospirae, Actinobacteria, and Acidobacteria were widespread in acidic water systems (Singh et al. 

274 2019). Therefore, we suspect that the residual water-soaked rice stalks in paddy fields produce acidic 

275 substances through microbial fermentation, which lowers the pH of the water, producing an acidic water 

276 system, which promotes the colonization and development of these acidophilic bacteria.

277 We explored the functional differences between the bacterial communities in snail guts and sediment using 

278 PICRUSt. As shown in Fig. 4, the functional classification of microorganisms in the gut and sediments were 

279 similar, but there were differences at the level of gene expression. In particular, microorganisms involved in 

280 metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate metabolism, and lipid metabolism 

281 were significantly more abundant in the gut microbiota than in the sediment. Studies have confirmed that C. 

282 chinensis snails mainly feed on algae (green alga, cyanobacteria, Silanimonas) (Zhou 1986). To degrade plant 

283 fiber, the expression of specific functional genes in the gut flora may be needed, such as genes associated with 

284 fatty acids, amino acids, vitamins and cofactors (Cardoso et al. 2012). This may be one of the reasons for the 

285 functional differences in microbial gene expression in the snail gut compared with the sediment. There was no 

286 difference in the function of the gut microbes between adult and juvenile snails, indicating that there is no 

287 significant change in the nutrient requirements or composition required during the growth of C. chinensis. 

288 Conclusion 

289 The development of sequencing technology has provided a new way to study the microbial communities of 

290 lower mollusks. Our work explored the microbiotas of adult and juvenile snail guts, as well as comparing the 

291 microbiotas between snail guts and sediment in the same habitat. Our findings revealed that the microbial 

292 profiles of snail guts and sediments differed, but their microbial communities were closely related, indicating 

293 that changes in the composition of snail gut microbes were tightly associated with the sediment in the same 

294 ecosystem. This provides guidance for future studies on the interaction between the gut flora of snails and their 

295 environment. The growth and development of the snails did not greatly affect the composition of the gut flora, 

296 and the functions of the gut flora at different developmental stages were similar, suggesting that the gut 

297 microecological environment of the snails was relatively stable. This study found that Silanimonas may be 

298 used as an open food for juvenile snails in culture. Our findings provide valuable insight into the relationship 

299 between snails and environmental microorganisms.
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Figure 1
Fig.1 Number of OTUs (a) , α diversity (b) and β diversity analysis (c) of microbiome
from gut of Cipangopaludina chinensis and sediment

OTUs: operational taxonomic units. a, b: the group of different letters indicate

significant differences (P ＜ 0.01).
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Figure 2
Fig.2 Composition of the bacterial community in Cipangopaludina chinensis gut and
sediment at the phylum level (a); at the genus level (b).

A1-A3: adult snails gut samples. B1-B3: juvenile snails gut samples. C1-C5:

sediment samples.
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Figure 3
Fig.3 The biomarker features in Cipangopaludina chinensis gut and sediment at the
genus level using Welch's t-test.

Figure a is an analysis of gut biomarker features of the adult and juvenile snails.

Figure b is an analysis of the biomarker features between the sediment and the

snail gut. The histogram shows the relative abundance of different species in the

two groups; the coordinates of the point right figure were the abundance

difference, and the error bar shows the fluctuation range of the difference in the

95% confidence interval, and the P value on the far right.
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Figure 4
Fig.4 Functional prediction of sediment and Cipangopaludina chinensis gut microbial
communities using PICRUSt.

***: represents an extremely significant difference (P< 0.01). ns: indicates no significant
difference (P> 0.05).
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