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ABSTRACT
Background: Interorgan cross-talk describes the phenomenon in which a primarily
injured organ causes secondary damage to a distant organ. This cross-talk is well
known between the lung and brain. One theory suggests that the release and systemic
distribution of cytokines via the bloodstream from the primarily affected organ sets
in motion proinflammatory cascades in distant organs. In this study, we analysed
the role of the systemic distribution of cytokines via the bloodstream in a porcine
ARDS model for organ cross-talk and possible inflammatory changes in the brain.
Methods: After approval of the State and Institutional Animal Care Committee,
acute respiratory distress syndrome (ARDS) induction with oleic acid injection
was performed in seven animals. Eight hours after ARDS induction, blood
(35–40 ml kg–1) was taken from these seven ‘ARDS donor’ pigs. The collected ‘ARDS
donor’ blood was transfused into seven healthy ‘ARDS-recipient’ pigs. Three animals
served as a control group, and blood from these animals was transfused into three
healthy pigs after an appropriate ventilation period. All animals were monitored
for 8 h using advanced cardiorespiratory monitoring. Postmortem assessment
included cerebral (hippocampal and cortex) mediators of early inflammatory
response (IL-6, TNF-alpha, iNOS, sLCN-2), wet-to-dry ratio and lung histology.
TNF-alpha serum concentration was measured in all groups.
Results: ARDS was successfully induced in the ‘ARDS donor’ group, and serum
TNF-alpha levels were elevated compared with the ‘ARDS-recipient’ group. In the
‘ARDS-recipient’ group, neither significant ARDS alterations nor upregulation of
inflammatory mediators in the brain tissue were detected after high-volume random
allogenic ‘ARDS-blood’ transfusion. The role of the systemic distribution of
inflammatory cytokines from one affected organ to another could not be confirmed
in this study.
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INTRODUCTION
Brain and lung injuries are some of the most common causes of patient admission to the
intensive care unit (Pelosi & Rocco, 2011; Brower et al., 2000). The management of these
patients is complex, and high rates of morbidity and mortality are associated with these
illnesses. Injuries to the brain or lung result in inflammatory responses, which frequently
lead to secondary injuries in remote organs. This phenomenon is referred to as organ
cross-talk, and it describes the interactions between a primary affected organ and a
secondarily injured remote organ. Interorgan signalling networks are not only described
for brain–lung cross-talk, but for other organ pairs as well. The dysregulations of these
interorgan communication networks are also known in renal and metabolic diseases
(Ologunde et al., 2014; Priest & Tontonoz, 2019). The remote organ is primed and more
sensitive to other stimuli that can cause organ damage (e.g., infections). The progression of
brain injury to acute lung injury because of the excessive release of cytokines and other
neurohumoral factors is often explained as a ‘double hit’ (Mrozek, Constantin & Geeraerts,
2015). Patients who have survived ARDS often develop some degree of cognitive
deterioration, which has long-term effects on the brain because of the intensive therapy
required (Hopkins & Jackson, 2006). A common theory is that there is a systemic
distribution of inflammatory mediators released from the affected organ and transmitted
via the bloodstream to other organs, such as the brain (Mrozek, Constantin & Geeraerts,
2015; Ziebart et al., 2019; Klein et al., 2016; Hegeman et al., 2009). Three transmission
pathways of lung–brain cross-talk have been described: a humoural, a cellular and a
neuronal pathway (López-Aguilar et al., 2013). Furthermore, dysregulations of the
hypothalamo-pituitary-adrenal axis contribute to changes in the stress and inflammatory
response after lung injury (Munford & Pugin, 2001). At the very least, alterations in
blood–brain barrier’s (BBB) function contribute to a local inflammatory response in the
central nervous system (CNS) (Varatharaj & Galea, 2017). In the past, little attention has
been paid to brain–lung cross-talk (Pelosi & Rocco, 2011). Hence, the present study
investigates the role of the systemic distribution of cytokines via the bloodstream in a
porcine ARDS model for organ cross-talk and possible inflammatory changes in the brain.

MATERIALS AND METHODS
Anaesthesia and instrumentation
This prospective randomised animal study was conducted after approval by the State and
Institutional Animal Care Committee (Landesuntersuchungsamt Rheinland-Pfalz,
Mainzer Straße 112, 56068 Koblenz, Germany; reference number: 23 177-07/G 14-1-084),
here in accordance with the ARRIVE guidelines (Kilkenny et al., 2010).

The anaesthesia and instrumentation are highly standardized in our group and were
previously reported (Ziebart et al., 2019; Kamuf et al., 2018). To minimise stress, the
animals (Sus scrofa domestica) stayed in their familiar environment for as long as possible.
A local breeder took care of their general condition. After intramuscular injection of
ketamine (8 mg kg–1) and midazolam (0.2 mg kg–1) the sedated animals were delivered to
the laboratory. After supine positioning, fentanyl (4 µg kg–1) and propofol (4 mg kg–1)
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were injected intravenously to induce general anaesthesia. Throughout the entire
experiment, anaesthesia was maintained through the continuous infusion of fentanyl
(0.1–0.2 µg kg–1 h–1) and propofol (8–12 mg kg–1 h–1). A single dose of atracurium
(0.5 mg kg–1) was administered to facilitate endotracheal intubation. The animals were
ventilated in volume-controlled mode (AVEA; CareFusion, San Diego, CA, USA): tidal
volume 8 ml kg–1; positive end-expiratory pressure (PEEP) 5 cm H2O, fraction of inspired
oxygen (FiO2) 0.6, inspiration to expiration ratio 1:2 and variable respiration rate to
achieve an end-tidal PCO2 < 6 kPa. Under ultrasound guidance, four femoral vascular
catheters were placed as follows: central venous line (drug administration); pulse
contour cardiac output system (PiCCO; Pulsion Medical Systems, Munich, Germany);
arterial line (blood withdrawal); and large-bore venous introducer (fluid resuscitation).
The haemodynamic and spirometric parameters were permanently measured and
recorded (S5; GE Healthcare, Chicago, IL, USA). The transpulmonary thermodilution
technique with single indicators was used to measure cardiac output, global end-diastolic
volume and extravascular lung water. To analyse the regional ventilation distribution,
we used an electrical impedance tomography device (EIT; Goe-MF II, CareFusion,
San Diego, CA, USA), which records thoracic bioimpedance variations associated with
tidal ventilation. Electrodes were placed on a transverse lung section just below the axilla.
Regional ventilation distribution was examined for the nondependent, central and
dependent lung areas (Levels L1–L3) as a percentage of the global tidal amplitude.

Experimental design
The experimental protocol is displayed in Fig. 1. After instrumentation and a 30 min
consolidation, baseline measurements were documented, and the ARDS was induced with
oleic acid injection (0.1 ml kg–1, Applichem GmbH, Darmstadt, Germany) until the partial
pressure of oxygen/fraction of inspired oxygen ratio (PaO2/FiO2) was below 200. This is
a common ARDS model in pigs, as reported by Kamuf et al. (2018) Blood samples, EIT
measurements and spirometric parameters were taken at baseline and after ARDS
induction at 4 and 8 h. After 8 h, blood sampling was performed (35–40 ml kg–1) in seven
animals (Group 1, ‘ARDS donor’, n = 7). Blood was collected from the donor animals via
the arterial catheter for allogeneic blood transfusion. Whole blood was collected in a
specific collector bag system (Composelect; Fresenius-Kabi AG, Homburg, Germany).
These bags contained 63 ml CPD 100 ml–1 SAG-M-RCC (Citrate phosphate dextrose,
erythrocyte storage in hypertonic conservation medium). After collection in a primary bag,
the blood was drained through a leucocyte-depleting filter into a second bag containing the
anticoagulants. Finally, the whole blood was collected into a bag with a port for a
transfusion system. The collected blood was stored cool and protected from light at 4 �C
for 12 h. At the end of observation, the animals were euthanised during deep general
anaesthesia by central venous administration of propofol and potassium chloride.
The organs were removed from the dead animal for further examination. The following
day, the recipient animal was prepared as described above, and the collected stored blood
was transfused after 30 min of baseline time at 0 h. Blood samples, EIT measurements
and spirometric parameters were also taken at baseline, after blood transfusion, after 4 h
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and after 8 h. These animals were also euthanised during deep general anaesthesia by
central venous administration of propofol and potassium chloride. The organs were
removed from the dead animal for further examination. The animals in Group 2
(donor (s) = donor-sham, common blood transfusion, n = 3) were prepared as the animals
in the group without the induction of an ARDS with oleic acid. After 8 h of the experiment,
blood withdrawal was performed, as described above, and transfused on the following
day (receiver (s) = receiver-sham, n = 3).

Postmortem analysis
Repeatedly collected serum blood samples were used to determine the serum levels of
tumor necrosis factor-alpha (TNF-alpha) enzyme-linked immunosorbent assays (Porcine
Quantikine ELISA Kits; R/D Systems, Wiesbaden, Germany). At the end of the protocol,
the lung and brain were each removed en-bloc. Cortex and hippocampus samples were
cryopreserved for an mRNA expression analysis of inflammatory mediators like
interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), inducible nitric oxide
synthase (iNOS) and soluble lipocalin-2 (sLCN-2) by real-time polymerase chain reaction
(rt-PCR; Lightcycler 480 PCR System; Roche Applied Science, Penzberg, Germany), as
described in detail by Ziebart et al. (2019) mRNA expression was used to better compare
the results with previous studies and normalised to peptidylprolyl isomerase A (PPIA)
(Ziebart et al., 2019). To determine the lung damage, we used a standardised scoring
system, as described in detail from our group previously (Ziebart et al., 2014).
Furthermore, the lung water content was determined through the tissue wet-to-dry ratio.
For this procedure, the weight of the removed left lung tissue sample was determined
directly and after 2 d of complete drying.

Statistics
Group size was adjusted comparably with recently published studies (Ziebart et al., 2019;
Hartmann et al., 2014). The values are displayed as the mean and standard deviation (SD)

Figure 1 Timeline. H, hours; EIT, electrical impedance tomography; ARDS, acute respiratory distress
syndrome. Full-size DOI: 10.7717/peerj.13024/fig-1
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or violin plots (median and interquartile range). To analyse the effect between the
three groups over time, we performed a two-way analysis of variance (ANOVA) with pairwise
multiple comparison correction using the Holm-Sidak method. The Mann–Whitney U-test
was used to analyse the postmortem parameters. A p-value less than 0.05 was accepted
as significant. Statistical analysis was performed with the SigmaPlot 12.5 software package
(Systat Software, Chicago, IL, USA) and GraphPad Prism 9.3.1 (GraphPad Software,
San Diego, CA, USA).

RESULTS
All animals survived the 8 h experimental period (donor n = 7; receiver n = 7; donor-sham
n = 3; receiver-sham n = 3). ARDS induction with oleic acid infusion was successfully
performed in all animals (donors), with no observed adverse events. The PaO2/FiO2-ratio
was significantly reduced after ARDS induction (donor group 0 h vs. baseline healthy
(BLH): 436 ± 35 vs. 180 ± 19; p < 0.001). Furthermore, a significant intergroup difference
was observed between the PaO2/FiO2 ratio at 0 h (donor vs. donor-sham/receiver/receiver-
sham: 180 ± 19 vs. 455 ± 35/423 ± 90/410 ± 119; p < 0.001). Figure 2 illustrates the
PaO2/FiO2 ratio. In the donor and receiver groups, the mean pulmonary arterial pressure
increased after ARDS induction and blood transfusion without being significant.
No further significant alterations in the other groups were measured. The key
hemodynamic data set is summarized in Table 1 and documents comparable conditions in
all groups throughout the trial. The end-diastolic lung water index (ELWI) increased
significantly in the donor group after ARDS induction (0 h vs. BLH: 12 ± 3 vs. 14 ± 3;
p < 0.035). Furthermore, a demonstrably increased ELWI was measured in the receiver
group (8 h vs. BLH: 15 ± 4 vs. 11 ± 2; p < 0.001). As summarized in Table 2, spirometry data
showed no intergroup differences. The distribution of regional ventilation showed no

Figure 2 PaO2/FiO2-ratio. +p < 0.001 donor group 0 h vs. BLH, �p < 0.001 donor vs. recipient/donor
(S)/recipient (S) at 0 h. h, hours; BLH, baseline healthy; (S), sham.

Full-size DOI: 10.7717/peerj.13024/fig-2
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Table 1 Hemodynamic parameters.

Parameter Group BLH 0 h 4 h 8 h
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Donor 71 (10) 73 (7) 66 (6) 64 (3)

MAP Donor (S) 61 (3) 61 (3) 66 (2) 65 (5)

[mmHg] Receiver 64 (5) 97 (13) 80 (12) 74 (14)

Receiver (S) 64 (5) 97 (13) 80 (6) 74 (6)

Donor 79 (12) 137 (38) 169 (43) 135 (28)

HR Donor (S) 82 (18) 82 (18) 105 (22) 98 (15)

[min–1] Receiver 76 (10) 87 (14) 91 (7) 87 (12)

Receiver (S) 80 (16) 96 (11) 87 (11) 88 (15)

Donor 17 (2) 32 (7) 20 (5) 16 (6)

PAP Donor (S) 14 (3) 14 (3) 17 (2) 16 (3)

[mmHg] Receiver 12 (4) 27 (11) 16 (4) 15 (4)

Receiver (S) 19 (7) 38 (10) 26 (8) 24 (7)

Donor 3 (0) 4 (1) 4 (1) 5 (1)

CO Donor (S) 3 (0) 3 (0) 3 (0) 4 (1)

[l min–1] Receiver 3 (1) 3 (1) 3 (1) 3 (1)

Receiver (S) 3 (0) 3 (1) 3 (0) 2 (0)

Donor 468 (78) 459 (95) 435 (84) 458 (85)

GEDI Donor (S) 396 (85) 396 (85) 386 (82) 378 (66)

[ml kg–1] Receiver 466 (72) 497 (93) 472 (72) 464 (84)

Receiver (S) 380 (55) 370 (37) 488 (117) 373 (76)

Donor 12 (3) 14 (3)* 14 (2) 14 (2)

ELWI Donor (S) 10 (1) 10 (1) 10 (1) 12 (2)

[ml kg–1] Receiver 11 (2) 10 (2) 13 (1) 15 (4)*

Receiver (S) 15 (8) 15 (8) 17 (10) 18 (9)

Donor 36 (66) 6 (1) 6 (2) 19 (28)

CVP Donor (S) 6 (2) 6 (2) 6 (2) 6 (2)

[mmHg] Receiver 7 (2) 13 (4) 12 (8) 8 (1)

Receiver (S) 8 (2) 15 (1) 10 (1) 10 (1)

Donor 99 (1) 93 (7) 97 (2) 97 (3)

SpO2 Donor (S) 98 (1) 98 (1) 99 (1) 99 (1)

[%] Receiver 99 (1) 98 (2) 99 (1) 98 (2)

Receiver (S) 98 (3) 98 (1) 99 (1) 99 (1)

Notes:
MAP, mean arterial pressure; HR, heart rate; PAP, mean arterial pulmonary pressure; CO, cardiac output; GEDI, global
endiastolic volumen index; ELWI, entdiastolic lung water index; CVP, central venous pressure; SpO2, oxygen saturation;
(S), sham; BLH, baseline healthy; h, hours.
* p < 0.05 vs. baseline value.
# p < 0.05 in intergroup comparison.
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Table 2 Spirometric parameters.

Parameter Group BLH 0 h 4 h 8 h
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Donor 40 (3) 43 (3) 40 (3) 38 (2)

etCO2 Donor (S) 39 (3) 39 (3) 39 (2) 39 (1)

[mmHg] Receiver 40 (3) 39 (2) 41 (2) 38 (2)

Receiver (S) 42 (1) 44 (1) 38 (1) 36 (1)

Donor 41 (1) 41 (3) 41 (4) 42 (3)

FiO2 Donor (S) 40 (0) 40 (0) 40 (0) 40 (0)

[%] Receiver 40 (0) 40 (1) 40 (0) 40 (0)

Receiver (S) 40 (0) 40 (0) 40 (0) 41 (1)

Donor 436 (35) 180 (19)*,# 256 (70) 232 (54)

PaO2/FiO2 Donor (S) 451 (30) 455 (35) 453 (24) 358 (46)

Receiver 488 (58) 423 (90) 356 (54) 302 (67)

Receiver (S) 415 (54) 410 (119) 321 (89) 281 (78)

Donor 18 (2) 14 (1) 15 (1) 15 (1)

Cp Donor (S) 20 (1) 20 (1) 17 (1) 16 (1)

[ml cmH2O
–1] Receiver 19 (2) 15 (3) 15 (2) 14 (2)

Receiver (S) 19 (1) 16 (3) 15 (2) 15 (2)

Donor 14 (2) 15 (2) 14 (1) 14 (1)

RAW Donor (S) 15 (2) 15 (2) 15 (3) 15 (3)

[kPA l–1 s–1] Receiver 12 (1) 13 (1) 13 (1) 13 (1)

Receiver (S) 14 (1) 15 (3) 14 (2) 15 (2)

Donor 726 (115) 622 (93) 662 (123) 649 (83)

FRC Donor (S) 716 (368) 716 (368) 636 (314) 670 (346)

[ml] Receiver 753 (215) 641 (188) 588 (180) 613 (186)

Receiver (S) 920 (156) 807 (35) 579 (211) 571 (154)

Donor 7 (1) 8 (1) 8 (1) 8 (2)

MV Donor (S) 7 (1) 7 (1) 8 (1) 8 (1)

[l min–1] Receiver 7 (1) 7 (1) 7 (1) 7 (1)

Receiver (S) 7 (1) 8 (0) 8 (1) 8 (1)

Donor 30 (14) 41 (9) 40 (8) 28 (12)

TV Donor (S) 37 (7) 37 (7) 40 (10) 41 (12)

[ml kg–1] Receiver 34 (9) 18 (8) 22 (8) 28 (6)

Receiver (S) 30 (7) 15 (1) 24 (2) 24 (3)

(Continued)
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intergroup differences. Leukocyte count was significantly increased in the donor group
after ARDS induction (4 h/8 h vs. BLH: 18.5 ± 8.9/18.1 ± 5.9 vs. 10.6 ± 3.4; p < 0.001). After
the blood transfusion, significantly higher haemoglobin and haematocrit counts were
measured in the receiver group (a.e. haemoglobin 4 h vs. BLH: 11.1 ± 0.9 vs. 9.2 ± 0.5;
p < 0.05). Further, a significant higher intergroup difference between the receiver and
donor group was detected for haemoglobin (4 h/8 h: 11.1 ± 0.9/10.5 ± 0.8 vs. 10.2 ± 0.7/
9.5 ± 0.7; p < 0.001). Table 3 highlights all the haematological parameters. After ARDS
induction, increased serum levels of TNF-alpha were measured for the donor group
without being significant (Fig. 3). Lactate levels between the donor and receiver groups
were elevated (0 h: 3.0 ± 1.6 vs. 1.3 ± 0.2; p < 0.001). Furthermore, significant differences in
lactate levels over time were observed in both groups (p < 0.001 donor group 0 h vs. BLH/4
h/8 h; p < 0.05 receiver group 8 h vs. 0 h/BLH; Table 4). Table 4 summarizes the blood
gas analysis. The diffuse alveolar damage (DAD) score showed significantly higher levels
in the ARDS donor group compared with all other groups (p < 0.001 donor group
29.35 ± 6.38 vs. receiver 19.50 ± 5.79/donor-sham 18.66 ± 4.75/receiver sham 18.91 ±
5.12). The lung wet-to-dry ratio showed no intergroup differences. Hippocampal mRNA
expression for inflammatory response showed minimal increased levels for IL-6, iNOS and
sLCN-2 in the receiver group compared to the donor group without being significant
(IL-6: 1.77e-05 ± 6.69e-06 vs. 2.89e-06 ± 1.09e-06; iNOS: 2.28e-04 ± 8.61e-05 vs. 1.91e-04 ±
7.20e-05; sLCN-2: 2.27e-02 ± 2.41e-02 vs. 1.49e-02 ± 1.01e-02; p > 0.05; Fig. 4).
No increased receiver hippocampal mRNA expression for TNF-alpha was measured

Table 2 (continued)

Parameter Group BLH 0 h 4 h 8 h
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Donor 18 (1) 24 (3) 22 (1) 23 (2)

Ppeak Donor (S) 17 (2) 17 (2) 19 (2) 20 (2)

[cm H2O] Receiver 17 (1) 20 (4) 20 (2) 22 (2)

Receiver (S) 18 (1) 20 (2) 20 (1) 21 (2)

Donor 9 (0) 12 (2) 11 (1) 11 (2)

Pmean Donor (S) 9 (1) 9 (1) 9 (0) 10 (0)

[cm H2O] Receiver 9 (1) 10 (1) 10 (1) 10 (1)

Receiver (S) 9 (0) 10 (1) 10 (0) 10 (0)

Donor 4 (0) 5 (2) 5 (1) 5 (2)

Peep Donor (S) 4 (0) 4 (0) 4 (0) 4 (0)

[cm H2O] Receiver 4 (0) 4 (0) 4 (0) 4 (0)

Receiver (S) 4 (0) 4 (0) 4 (0) 4 (0)

Notes:
SpO2, oxygen saturation; ex.CO2, expiratory carbon dioxide; FiO2, fraction of inspired oxygen; PaO2/FiO2, oxygen index;
Cp, pulmonary compliance; RAW, airway resistance; FRC, fraction of inspired oxygen; MV, minute volume; TV, tidal
volume; Ppeak, peak inspiratory pressure; Pmean, mean airway pressure; PEEP, positive end-expiratory pressure; BLH,
baseline healthy; h, hours; (S), sham.
* p < 0.05 vs. baseline value.
# p < 0.05 in intergroup comparison.
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Figure 3 TNF-alpha serum concentration. BLH, baseline healthy; h, hours; (S), sham.
Full-size DOI: 10.7717/peerj.13024/fig-3

Table 3 Haematological parameters.

Parameter Group BLH 4 h 8 h
Mean (SD) Mean (SD) Mean (SD)

Donor 10.6 (3.4) 18.5 (8.9)* 18.1 (5.9)*

Leukocytes Donor (S) 13.8 (5.9) 14.3 (5.8) 13.8 (4.2)

[µl–1] Receiver 17.5 (4.6) 15.2 (5.5) 14.2 (3.9)

Receiver (S) 17.7 (4.3) 15.8 (1.3) 13.7 (0.6)

Donor 9.5 (0.6) 10.2 (0.7)* 9.5 (0.7)

Hemoglobine Donor (S) 9.7 (0.4) 9.3 (0.4) 9.0 (0.6)

[mg dl–1] Receiver 9.2 (0.5) 11.1 (0.9)* 10.5 (0.8)

Receiver (S) 9.1 (0.6) 10.7 (0.7) 10.2 (0.7)

Donor 29.6 (2.1) 31.6 (2.4) 29.4 (2.1)

Hematocrit Donor (S) 30.7 (1.1) 29.1 (1.3) 28.1 (2.3)

[%] Receiver 28.8 (1.7) 33.6 (2.6)* 32.5 (2.6)*

Receiver (S) 28.5 (1.6) 32.7 (0.7) 31.1 (1.9)

Donor 319 (58) 230 (76) 224 (82)

Thrombocytes Donor (S) 388 (32) 333 (39) 318 (28)

[µl–1] Receiver 388 (55) 268 (57) 261 (52)

Receiver (S) 432 (51) 337 (32) 316 (17)

Notes:
BLH, baseline healthy; h, hours; (S), sham.
* p < 0.05 vs. baseline value.
# p < 0.05 in intergroup comparison.
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compared to the donor group. Higher mRNA expression of sLCN-2 in the cortex was
measured without being significant (receiver vs. donor: 6.00e-03 ± 2.27e-03 vs. 3.97e-02 ±
1.50e-02; p > 0.05; Fig. 5). The other inflammatory markers in the cortex (IL-6, TNF-alpha,

Table 4 Blood gas analysis.

Parameter Group BLH 0 h 4 h 8 h
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Donor 4 (0.2) 4.4 (0.2) 4.9 (0.6) 5 (0.7)

Potasium Donor (S) 3.9 (0.2) 3.9 (0.2) 5.1 (0.5) 4.3 (0.2)

[mmol l–1] Receiver 3.9 (0.2) 3.9 (0.2) 4.4 (0.2) 3.8 (0.2)

Receiver (S) 4.1 (0.5) 4.1 (0.4) 4.6 (0.1) 4.3 (0.1)

Donor 0.9 (0.3) 3 (1.6) *,#,+ 1.6 (1) 1.1 (0.6)

Lactat Donor (S) 1 (0.4) 1 (0.4) 0.7 (0.2) 0.6 (0.2)

[mmol l–1] Receiver 1.3 (0.3) 1.3 (0.2) 0.6 (0.1) 0.4 (0.1)*

Receiver (S) 1.1 (0.3) 2.6 (1) 0.8 (0.1) 0.5 (0)

Donor 41 (3) 50 (7) 43 (6) 42 (4)

artCO2 Donor (S) 41 (2) 41 (2) 37 (1) 37 (2)

[mmHg] Receiver 42 (3) 39 (6) 40 (3) 39 (2)

Receiver (S) 43 (3) 47 (4) 37 (2) 37 (1)

Donor 174 (14) 75 (8) 105 (26) 95 (19)

PaO2 Donor (S) 177 (9) 177 (9) 179 (10) 141 (17)

[mmHg] Receiver 195 (23) 169 (36) 142 (22) 121 (27)

Receiver (S) 171 (27) 150 (46) 129 (36) 110 (28)

Donor 7.47 (0) 7.35 (0) 7.46 (0) 7.47 (0)

pH Donor (S) 7.48 (0) 7.48 (0) 7.54 (0) 7.53 (0)

Receiver 7.47 (0) 7.43 (0) 7.52 (0) 7.52 (0)

Receiver (S) 7.48 (0) 7.4 (0) 7.57 (0) 7.55 (0)

Donor 4.5 (6.1) 1.9 (3.2) 6.1 (3.1) 6.5 (3.0)

BE Donor (S) 6.3 (2.0) 6.3 (2.1) 8.6 (1.9) 7.5 (1.5)

[mmol l–1] Receiver 6.2 (1.7) 4.2 (2.8) 9.1 (1.9) 7.9 (1.6)

Receiver (S) 7.7 (0.6) 4.5 (2.1) 10.6 (0.5) 9.8 (0.7)

Donor 57 (5) 50 (20) 56 (14) 59 (4)

SvO2 Donor (S) 58 (10) 58 (10) 54 (10) 53 (8)

[%] Receiver 57 (7) 65 (7) 59 (8) 62 (4)

Receiver (S) 60 (15) 65 (14) 63 (11) 63 (9)

Notes:
SvO2, central venous oxygen saturation; BE, base excess; art.CO2, arterial carbon dioxide; PaO2, arterial oxygen; (S),
sham; BLH, baseline healthy; h, hours.
* p < 0.05 vs. baseline value.
+ p < 0.05 vs. 4/8 h.
# p < 0.05 in intergroup comparison.
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iNOS) showed no increased mRNA expression in the receiver group compared to the
donor group (Fig. 5). There were no significant changes in the associated sham groups.

DISCUSSION
The present study investigated the roll of cytokine distribution after ARDS induction and
the influence of the cerebral inflammatory response in a presumed interorgan cross-talk
(Pelosi & Rocco, 2011; Mrozek, Constantin & Geeraerts, 2015). We found that blood
sampling from ARDS donors in healthy pigs did not affect lung function or induce an
inflammatory response in the brain or systemic circulation.

ARDS induction with oleic acid is a common model for the induction of pulmonary
inflammatory response with consecutive pulmonary dysfunction. This model is highly
standardised in our group. Kamuf et al. (2018) described the protocol and main advantages
and disadvantages of ARDS induction with oleic acid. In the present study, ARDS was
induced in the donor group in a sustained manner (Fig. 2). A minimal increase in
TNF-alpha was measured as an early cytokine response marker of ARDS (Herzum & Renz,

Figure 4 Tissue sample analyses hippocampus. Inflammatory marker expressions of interleukin-6
(IL-6), tumour necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS) and soluble
lipocalin-2 (sLCN-2) in hippocampal tissue relative to PPIA expression. (S), sham.

Full-size DOI: 10.7717/peerj.13024/fig-4
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2008; Butt, Kurdowska & Allen, 2016). As a result of the inflammatory response, the
alveolocapillary unit lost its integrity. First, the extra lung water index in the donor group
increased significantly over time. Second, the postmortem analysis of the lung tissue
confirmed lung damage in the ARDS donor group. These changes are known to occur
early in the pathophysiological ARDS cascade and underscore the practicality of the ARDS
model with oleic acid (Butt, Kurdowska & Allen, 2016; Deja et al., 2008). The ‘transfusion
of ARDS’ to the receiver group was not as severe as might be expected and was not
comparable to the extent seen in the donor group. At the postmortem analysis, no tissue
changes were noted in the presumed ARDS blood receiver group.

Blood transfusions can be associated with serious consequences and, in the worst case,
can lead to patient death (Marik & Corwin, 2008; Goodnough, 2003). The main causes
behind this are the transfusion of incompatible blood, allergenic reaction,
transfusion-related acute lung injury (TRALI) or transfusion-associated circulatory
overload (TACO). Compared with human blood, porcine blood offers several advantages

Figure 5 Tissue sample analyses cortex. Inflammatory marker expressions of interleukin-6 (IL-6),
tumour necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS) and soluble lipocalin-2
(sLCN-2) in cortical tissue relative to PPIA expression. (S), sham.

Full-size DOI: 10.7717/peerj.13024/fig-5
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(Ziebart et al., 2019; Smith et al., 2006). Ziebart et al. (2019) demonstrated that random
allogenic blood transfusion in pigs was not associated with adverse effects of
incompatibility, upregulation of systemic and local (brain/lung) inflammatory markers
and did not affect lung function. Comparable to previous studies, there were no other
differences in additionally measured parameters (Ziebart et al., 2019; Bodenstein et al.,
2012). Allogenic blood transfusion in pigs is a safe approach to investigate the
blood-bound transmission in remote organ injury, as claimed in our study.

The communication between the lung and brain is a complex structure. Three
communication pathways have been described in the literature: a humoural, a cellular and
a neural pathway (López-Aguilar et al., 2013). However, the descriptions of these pathways
are not unambiguous. The activation of vagus nerve afferents in the neural pathway
acts rapidly; other communication pathways are more time-consuming in this regard.
Anti- and pro-inflammatory effects in the brain have been described (Pavlov & Tracey,
2012; Tracey, 2002). This is also known as ‘inflammatory reflex’. A major stimulus is the
activation of pulmonary mechanoreceptors during mechanical ventilation (López-Aguilar
et al., 2013; Quilez et al., 2011). In the present study, this influence can be reduced by
observing lung protective ventilation settings across the experiment. The cellular pathway
is a medium-acting pathway. In particular, TNF-alpha increases monocyte chemotactic
protein-1 (MCP-1) expression in the brain via the activation of TNF receptor 1 at the
surface of microglia. The crossing of immune cells across the BBB is facilitated and
multiplies the immune response in the brain (D’Mello, Le & Swain, 2009). The BBB plays a
key role in the slow-acting humoural signalling pathway. The lung and brain share the
same inflammatory markers as TNF-alpha. Once released by monocytes and macrophages
in the primary affected organ (i.e., lung), they can reach the brain and vice versa.
As mentioned above, borderline elevated TNF-alpha levels were observed in the ARDS
donor group in our study. Unfortunately, we did not see any significant cerebral
inflammatory changes. This could be due the short duration of the experiment. At first, the
BBB, as a protective firewall to maintain homeostasis for optimal brain function, is
impermeable for many molecules, such as inflammatory cytokines and immune cells
(Quan & Banks, 2007; Quan, 2006). The complex structure of this neurovascular unit
enables unique functions: low exposure to systemic toxins and reduced traffic of
inflammatory cells minimise local neuronal inflammatory damage (Varatharaj & Galea,
2017).

However, systemic inflammation causes changes in the BBB. A lipopolysaccharide
(LPS) model of inflammation demonstrates that tight junction modification, glycocalyx
degradation and astrocyte modulations cause BBB loss of function (Minami et al., 1998).
High blood TNF-alpha levels have also been shown to reduce tight junction expression and
contribute to BBB anatomic changes (Tsao et al., 2001; Clausen et al., 2014). This CNS
effect occurs 12 h after Streptococcus pneumonia is injected into the bloodstream.
Interestingly, this contrasts with the results of another LPS model. Intraperitoneally
injected LPS causes a significant upregulation of IL-1ß and TNF-alpha in the hippocampus
3 h after injection (Skelly et al., 2013). Slow transmission through the circumventricular
organs and choroid plexus has been described and is one way to bypass the BBB (Dantzer,
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2001; Konsman, Parnet & Dantzer, 2002). The initiated upregulation of cortical and
hippocampal inflammatory markers early in the process in this study could be interpreted
as the nonsignificant minimally elevated levels of iNOS, IL-6 and sLCN-2. This
upregulation of inflammatory markers contributes to the neurocognitive deficits observed
in critically ill patients. After ARDS, patients have been found to have short-term
confusion syndromes and long-term cognitive and memory impairments (Hopkins &
Jackson, 2006; Quilez et al., 2011; Hopkins & Brett, 2005). A crucial key role is played by
hypoxic and inflammatory changes in the area of the hippocampus (Neves, Cooke &
Bliss, 2008).

Lipocalin-2 (LCN-2) is a protein that plays a role in various diseases and inflammatory
cascades. LCN-2 is involved in the acute stress response, with multiple innate immune
functions in a retinal degeneration model (Parmar et al., 2018). The protein initiates
pro-survival pathways in the retina. Furthermore, LCN-2 is secreted by astrocytes under
inflammatory conditions and acts as a chemokine inducer and promoter of the classical
pro-inflammatory cascade (Lee, Jha & Suk, 2015). Upregulated expression of LCN-2 is
also observed in mice with obesity and is responsible for neurological degeneration
(Jin et al., 2020). Similar results have been reported in a rodent model. Increasing LCN-2
production is associated with decreased cognitive performance (Pinyopornpanish,
Chattipakorn & Chattipakorn, 2019). In LPS-induced acute lung injury in mice, one of the
most overexpressed genes in a serial gene analysis is LCN-2 (Sun et al., 2005). Comparable
results have been reported for sepsis-related ARDS in humans. LCN-2 is a key
mediator of the initial neutrophil response to the infection (Kangelaris et al., 2015).
Therefore, our chosen study design should be able to mimic similar pathological stages and
induce overexpression of LCN-2. One possible explanation why this is not the case could
be that the role of LCN-2 during RBC transfusion has not yet been studied. LCN-2
plays an important role in iron homeostasis and as an antioxidant agent (Xiao, Yeoh &
Vijay-Kumar, 2017; Yamada et al., 2016). Further studies that investigate the proposed
pro- and anti-inflammatory effects of LCN-2 during transfusion are needed.

The present study has several limitations. First, the changes in cytokine activity and
blood concentration in cold-stored red blood cells over 24 h remain unclear. There are no
studies addressing this issue. It could be possible that the plasma concentration of donor
cytokines shows fluctuations and inhibits the systemic distribution of ARDS in the
recipient group. Due to local regulations, we couldn’t do two attempts at 1 day, so the
blood had to be stored. Second, as reported above for sepsis-related neurological changes
after bacterial injection, the observation time in the present study may have been too short.
CNS changes occur 12 h after the injection of Streptococcus pneumonia injections.
We probably observed the first hours of the inflammatory cascade with the initiation of
inflammatory gene expression. At the end of the experiment, we observed pulmonary
deteriorations in the recipient group. This could be interpreted as a sufficient initiation of
the proposed inflammatory cascade with signs of an acute lung dysfunction because of the
‘ARDS transplantation’ from the donor group. CNS changes were not seen at this time
because of the shortness of the observation period.
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CONCLUSIONS
In conclusion, the chosen model of random allogenic red blood cell transfusion in pigs is
feasible and reproducible without serious adverse events, as reported by Ziebart et al.
(2019). ARDS induction with oleic acid is a well-known method and was performed in the
present study with success. Unfortunately, no ARDS-like alterations were seen in the
recipient group, and CNS inflammation could not be detected. The role of the systemic
distribution of inflammatory cytokines from one affected organ to another could not be
confirmed beyond a doubt in the current study. Nevertheless, the circulation of cytokines
in the bloodstream plays a major role in the process of organ cross-talk. In subsequent
investigations, the observation period needs to be expanded. Furthermore, the role of
cytokine transmission over the BBB and the other reported routes as a key mediator of
CNS inflammation must be more clearly addressed.
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