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Spider crabs are well-known from modern oceans and are also common in the western part
of the Atlantic Ocean. When spider crabs (Majoidea) appeared in the Western Atlantic in
deep time and when they became diverse, hinges on their fossil record. By reviewing their
fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the
Late Cretaceous, (2) they became common since the Miocene, and (3) most genera are
found in the Caribbean region starting in the Miocene. Furthermore, taxonomic work on
some modern and fossil Mithracinae was conducted. Specifically, Maguimithrax gen. nov.
is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax
cf. D. pleuracanthus is recognized for the first time from the fossil record (late
Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described
from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp.
nov. and Nemausa miocenica sp. nov.). Spurred by a recent revision of the subfamily, two
known species from the same deposits are refigured and transferred to new genera:
Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage
of decapods from these coral-associated limestones underlines the importance of reefs for
the abundance and diversity of decapods in deep time. Finally, we quantitatively show that
these crabs possess allometric growth in that length/width ratios drop as specimens grow,
a factor that is often insufficiently taken into account while describing and comparing
among taxa .

PeerJ reviewing PDF | (2015:07:6092:0:0:CHECK 4 Aug 2015)

Reviewing Manuscript

unknown
Note
Why not Mithracidae? According Windsor & Felder (2014)

doug__000
Realce



1 Spider crabs of the Western Atlantic with special reference to fossil and some modern 

2 Mithracinae

3

4 Adiël A. Klompmaker1,2, Roger W. Portell1, Aaron T. Klier3, Vanessa Prueter3 & Alyssa L. 

5 Tucker2 

6

7

8 1Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 

9 117800, Gainesville, Florida 32611, USA

10 2Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box 

11 112120, Gainesville, Florida 32611, USA

12 3Department of Biology, 220 Bartram Hall, PO Box 118525, Gainesville, Florida 32611, USA

13

14 Corresponding author: Adiël A. Klompmaker, Florida Museum of Natural History, University of 

15 Florida, 1659 Museum Road, PO Box 117800, Gainesville, Florida 32611, USA. Phone: 352 273 

16 1939. Email: adielklompmaker@gmail.com

17

18 Abstract

19

20 Spider crabs are well-known from modern oceans and are also common in the western part of the 

21 Atlantic Ocean. When spider crabs (Majoidea) appeared in the Western Atlantic in deep time and 

22 when they became diverse, hinges on their fossil record. By reviewing their fossil record, we 

23 show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they 
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24 became common since the Miocene, and (3) most genera are found in the Caribbean region 

25 starting in the Miocene. Furthermore, taxonomic work on some modern and fossil Mithracinae 

26 was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant 

27 species Damithrax spinosissimus, while Damithrax cf. D. pleuracanthus is recognized for the 

28 first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, 

29 two new species are described from the lower Miocene coral-associated limestones of Jamaica 

30 (Mithrax arawakum sp. nov. and Nemausa miocenica sp. nov.). Spurred by a recent revision of 

31 the subfamily, two known species from the same deposits are refigured and transferred to new 

32 genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse 

33 assemblage of decapods from these coral-associated limestones underlines the importance of 

34 reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show 

35 that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a 

36 factor that is often insufficiently taken into account while describing and comparing among taxa. 

37

38

39 Introduction

40

41 Modern spider crabs (Majoidea) range in size from a few millimeters to more than a meter in 

42 carapace length. Long, slender legs and a pyriform to triangular shape give many of them a 

43 spider-like appearance. They occur in nearly all oceans (e.g., Griffin, 1966), and many of them 

44 have been found to decorate themselves for camouflage (e.g., Wicksten, 1993; Guinot, Tavares 

45 & Castro, 2013). Today, spider crabs are very diverse with nearly 1000 species worldwide (Ng, 

46 Guinot & Davie, 2008; De Grave et al., 2009). More than 125 species have been found in the 
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47 fossil record (De Grave et al., 2009; Schweitzer et al., 2010), with the oldest species known from 

48 the mid-Cretaceous of Europe (Breton, 2009; Klompmaker, 2013). Collins, Portell & Donovan 

49 (2009) provided an overview of fossil decapods, including majoids, known from the Caribbean 

50 region. Since then, various new fossil majoid occurrences and new fossil species have been 

51 reported for the Western Atlantic (e.g., Collins et al., 2010; Collins & Donovan, 2012; Feldmann 

52 et al., 2013; Franţescu, 2013; Varela, 2013; Collins, Garvie & Mellish, 2014; Stepp, 2014).

53 The Mithracinae (or Mithracidae sensu Windsor & Felder, 2014) are spider crabs that do 

54 not decorate themselves, and are found in (sub)tropical waters from intertidal to 450 m depth, 

55 mainly as reef- and rubble dwellers (Windsor & Felder, 2014). Recently, the family was revised 

56 extensively using morphological and molecular analyses resulting in numerous redefinitions and 

57 the resurrection and erection of four genera (Windsor & Felder, 2014). As for the Western and 

58 Eastern Pacific, the Mithracinae are well-known from the Western Atlantic with over 30 species 

59 (e.g., Rathbun, 1925; Abele & Kim, 1986; Felder et al., 2009; Windsor & Felder, 2014), the 

60 latter authors (p. 154) suggesting it is an “amphi-American” group. Although their fossil record 

61 is decent, with 19 species known from the fossil record (Schweitzer et al., 2010), additional 

62 research is required because representatives of many extant genera have a scarce fossil record.

63 Here, we review the fossil record of spider crabs in the Western Atlantic to elucidate their 

64 occurrences through time and their paleobiogeography. Furthermore, various fossil and modern 

65 members of the Mithracinae are described or reassigned, and growth of these majoids is studied. 

66

67

68 Materials & Methods

69
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70 We compiled data on all fossil majoid occurrences known from the Western Atlantic (defined 

71 here: Argentina to Canada) determined to the genus- and species-levels based on the literature 

72 and previously unreported material from the FLMNH Invertebrate Paleontology Collection. 

73 For the systematics part, the length and width of crab carapaces were measured with 

74 digital calipers accurate to 0.03 mm. Institutional abbreviations for specimens: FSBC: Fish and 

75 Wildlife Research Institute, St. Petersburg, Florida, USA; UF: Florida Museum of Natural 

76 History at the University of Florida, Gainesville, Florida, USA. Modern UF specimens are 

77 housed in Invertebrate Zoology (IZ); fossil specimens in Invertebrate Paleontology (IP).

78 The electronic version of this article in Portable Document Format (PDF) will represent a 

79 published work according to the International Commission on Zoological Nomenclature (ICZN), 

80 and hence the new names contained in the electronic version are effectively published under that 

81 Code from the electronic edition alone. This published work and the nomenclatural acts it 

82 contains have been registered in ZooBank, the online registration system for the ICZN. The 

83 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed 

84 through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The 

85 LSID for this publication is: urn:lsid:zoobank.org:pub:6049E531-ABA7-43EA-8308-

86 EEB5029F667F. The online version of this work is archived and available from the following 

87 digital repositories: PeerJ, PubMed Central and CLOCKSS.

88

89

90 Results

91

92 Spider crab distribution in the Western Atlantic
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93

94 Genera and species known today (15/19 or 79%, 13/31 or 42%, resp.) are well-represented in the 

95 dataset (Table S1) on fossil spider crabs because most taxon occurrences (108/117 or 92%) are 

96 Neogene and Quaternary in age. Spider crabs in this part of the world first appeared the late Late 

97 Cretaceous (Rathbun, 1935; Feldmann et al., 2013), which is younger than the mid-Cretaceous 

98 occurrences in Europe (Breton, 2009; Klompmaker, 2013). They become increasingly better 

99 represented towards the Recent on the genus- and family-levels (Fig. 1). All modern majoid 

100 families (sensu De Grave et al., 2009) are represented except for the Hymenosomatidae that do 

101 not have a fossil record. Most taxa are found in the Caribbean region as opposed to in higher 

102 latitudes (Fig. 2).

103

104

105 Discussion

106

107 All modern majoid families (sensu De Grave et al., 2009) are represented in Figure 1 except for 

108 the Hymenosomatidae that do not have a fossil record. This is likely to be related to their small 

109 size and weakly calcified exoskeleton (e.g., Ng & Jeng, 1999; Guinot, 2011; Tavares & Santana, 

110 2015; note that Guinot argued that the family does not belong to the Majoidea). Conversely, the 

111 Epialtidae and Majidae (especially Mithracinae) are well-represented, being markedly larger and 

112 better calcified, comparatively. The results show that historical diversification of the Mithracinae 

113 in the Americas helps to explain their abundance there today.

114 Although the pattern that most majoid taxa are found in the Caribbean region (Fig. 2) is 

115 consistent with the modern latitudinal diversity gradient for decapods, including Brachyura (e.g., 
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116 Abele, 1982; Steele, 1988), much more research has been done in the (sub)tropical Western 

117 Atlantic region and exposures may be more numerous. However, fossil decapods from the 

118 eastern coast of the USA have received considerable attention (e.g., Rathbun, 1935; Roberts, 

119 1962; Blow & Manning, 1996; Blow, 2003; Feldmann et al., 2013; Franţescu, 2013), but less 

120 research has been done on fossil decapods from Brazil and other South American countries south 

121 of the Caribbean region (e.g., Aguirre-Urreta, 1990; Casadío et al., 2005; Martins-Neto & Dias 

122 Júnior, 2007; Távora, Paixão & Da Silva, 2010). More fossil decapods – including spider crabs – 

123 are expected to be present in those regions. 

124 The spider crabs Mithrax arawakum sp. nov. and Nemausa miocenica sp. nov. erected 

125 below add to the number of species known from the lower Miocene limestones at the Duncans 

126 Quarry in Jamaica. Portell & Collins (2004) reported on 16 decapod species from these 

127 limestones, a unique crab fauna from the Miocene of the Caribbean because 9/14 genera were 

128 unknown until then from that region. As for another diverse decapod assemblage in the 

129 Caribbean (Collins & Morris, 1976), this fauna is also associated with corals. Cenozoic, coral-

130 associated fauna from Europe are also speciose (e.g., Müller, 1984; Jakobsen & Collins, 1997; 

131 Beschin et al., 2007; Gatt & De Angeli, 2010; Beschin, Busulini & Tessier, 2015) as are such 

132 decapod faunas from the Mesozoic (e.g., Collins, Fraaye & Jagt, 1995; Fraaije, 2003; Krobicki & 

133 Zatoń, 2008; Klompmaker, 2013; Klompmaker, Ortiz & Wells, 2013; Robins, Feldmann & 

134 Schweitzer, 2013). Moreover, a significant correlation exists between reef abundance and 

135 decapod diversity throughout the Mesozoic (Klompmaker et al., 2013). The assemblage from the 

136 Duncans Quarry underlines the importance of reefs for the abundance and diversity of decapods 

137 in deep time.

138
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139

140 Systematic Paleontology

141

142 Order Decapoda Latreille, 1802

143 Infraorder Brachyura Linnaeus, 1758

144 Section Eubrachyura De Saint Laurent, 1980

145 Superfamily Majoidea Samouelle, 1819

146 Family Majidae Samouelle, 1819

147 Subfamily Mithracinae MacLeay, 1838

148

149 Maguimithrax gen. nov. 

150

151 Etymology.—Contraction of the family name of Tobey Maguire, the actor in three Spider-Man 

152 movies (2002, 2004, 2007), and Mithrax. 

153

154 Type species.—Maia spinosissimus Lamarck, 1818, by present designation, gender masculine, 

155 extant.

156

157 Species included.—Maguimithrax spinosissimus (Lamarck, 1818).

158

159 Material.—UF 12474 (1♀), 11447 (1♂), 11457 (1♀), 31157 (1♂, 1♀), 11388 (1♂, 1♀), all 

160 FLMNH IZ collection. 

161
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162 Diagnosis.—Carapace slightly longer than wide to about equally wide as long in large specimens 

163 (l/w ratio = ~1.09 – 0.97) (Fig. 3), maximum reported width without spines 167 mm, rounded to 

164 diamond-shaped, without angled transition from antero- to posterolateral margin, covered with 

165 spines laterally and tubercles more axially. Upper orbital margin with four to five spines 

166 including strong outer orbital spine and axialmost spine; four suborbital spines including two 

167 spines on antennal article, axialmost one strongest. Lateral margin bears six spines, anteriormost 

168 ones with accessory spines at anterior bases, fifth and sixth spines weaker. Gastric, cardiac, and 

169 uro-metagastric regions surrounded by pronounced grooves; other regions less delineated. 

170 Chelipeds and other appendages spinose dorsally, less so to smooth ventrally; cheliped propodus 

171 with tubercles or spines on upper margins and two to four tubercles on inner side.

172

173 Remarks.—Verrill (1908), Rathbun (1925), and Wagner (1990) all noted that young specimens 

174 of D. spinosissimus are close to Nemausa acuticornis and N. cornuta. There are indeed many 

175 similarities between Nemausa and D. spinosissimus including the spinose character of the 

176 carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a 

177 longer than wide carapace in younger individuals (Fig. 4), and a similar groove and region 

178 structure of the carapace. Not surprisingly, D. spinosissimus has been placed in Nemausa 

179 (Coelho & Torres, 1990). Several differences exist compared to Nemausa as currently defined. 

180 The carapace is more rounded to diamond-shaped compared to the pyriform carapaces of 

181 Nemausa so that the point of maximum width is reached more anteriorly; D. spinosissimus bears 

182 six lateral spines, whereas Nemausa bears five such spines; and the spine at the lateral angle is 

183 very strong in Nemausa compared to other lateral spines, but it is less prominent than others in 
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184 D. spinosissimus. Molecular phylogenetics support the assertion that D. spinosissimus does not 

185 fit within Nemausa (Windsor & Felder, 2014). 

186 The species has been assigned to Mithrax as well (e.g., Provenzano & Brownell, 1977; 

187 Wagner, 1990). However, Mithrax as currently defined is markedly different in that (1) the third 

188 maxilliped endopod merus distomesial margin has a deep, angular excavation at the articulation 

189 with the palp in D. spinosissimus, whereas this merus exhibits no pronounced concavity in 

190 Mithrax (cf. Windsor & Felder, 2014); (2) the ornamentation on the carapace is more varied in 

191 Mithrax, consisting of more granules; (3) the propodus bears tubercles and spines in the 

192 examined specimens of D. spinosissimus, but it is smooth in Mithrax; and (4) molecular 

193 phylogenetics separates D. spinosissimus from Mithrax (Windsor & Felder, 2014).

194 Most recently, the latter authors assigned the species to Damithrax. However, it should be 

195 noted that D. spinosissimus is much more spinose on the dorsal carapace than other species of 

196 Damithrax (e.g., Desbonne & Schramm, 1867: pl. 8; Rathbun, 1925: pl. 135), including the type 

197 species. Moreover, the propodus is not smooth in D. spinosissimus unlike in other species of the 

198 genus, and specimens across a considerable size range (< 75 mm carapace width) are slightly 

199 longer than wide or about equally wide as long, unlike the diagnosis of the genus. Not 

200 surprisingly, the species plots as a sister taxon to all other modern Damithrax spp. (Windsor & 

201 Felder, 2014: fig. 2); the latter authors also indicated that this taxon “is somewhat the outlier” (p. 

202 155). Finally, all three of the discussed genera possess a lateral angle, whereas this area is much 

203 more rounded in D. spinosissimus. Thus, D. spinosissimus fits better in a new genus: 

204 Maguimithrax gen. nov. 

205 Detailed descriptions of the species and ontogenetic variations were detailed by Rathbun 

206 (1925), Williams (1984), and Wagner (1990) that need no repeat here. Sexual dimorphism is 
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207 evident in that larger males (> ~60 mm carapace width based on the studied material) exhibit a 

208 pronounced tooth on the occlusal surface of the dactylus, whereas females do not bear such a 

209 tooth. 

210

211 Stratigraphic and geographic range.—Extant only, North Carolina – Venezuela (Williams, 

212 1984; Wagner, 1990).

213

214

215 Damithrax Windsor & Felder, 2014

216

217 Type species.—Mithrax pleuracanthus Stimpson, 1871, extant.

218

219 Species included.—Damithrax hispidus (Herbst, 1790) [=Maia spinicincta Lamarck, 1818; 

220 Mithrax laevimanus Desbonne in Desbonne & Schramm, 1867; Mithrax depressus A. Milne-

221 Edwards, 1875 (part); Mithrax caribbaeus Rathbun, 1920; Mithrax carribbaeus, Ng et al., 2008 

222 (incorrect spelling)]; Damithrax pleuracanthus (Stimpson, 1871); Damithrax tortugae (Rathbun, 

223 1920); Damithrax unguis (Portell & Collins, 2004).

224

225 Emended diagnosis.—Carapace wider than long [for large specimens, about equally long as wide 

226 for small specimens], overall shape pyriform; dorsal surface smooth to tuberculate, not obviously 

227 setose; [five] lateral spines or teeth, first two commonly with accessory spine, lateral angle with 

228 single spine; posterior margin tuberculate. Rostral horns blunt, sparsely setose, tips not 

229 converging, not reaching [far] beyond first movable article of antenna. Antenna fused basal 
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230 article very broad, forming floor of orbit, bearing two or three blunt marginal spines or teeth, 

231 anteriormost the largest, decreasing posteriorly (third often very low, or not developed), anterior 

232 two visible in dorsal view. Orbit complete, dorsal margin weakly armed behind strong pre-ocular 

233 tooth, eyestalk protected above by single blunt dorsal tooth or tubercle separated by closed 

234 fissure from two or three blunt post-ocular teeth or tubercles. Third maxilliped endopod merus 

235 distomesial margin deeply, angularly excavated at articulation with palp. Cheliped greater than 

236 or equal to carapace length; merus dorsal surface spinous, spines not laminar; carpus varied from 

237 smooth to rough; propodus smooth; dactylus with enlarged proximal tooth when mature, 

238 opposed margins of fingers otherwise crenulate. Pereiopods two to five (ambulatory legs) 

239 decreasing in size anterior to posterior; articles finely setose; merus dorsal surface bearing large 

240 tubercles and spines, ventral surface with one to six tubercles or spinules; carpus dorsal surface 

241 spinous; propodus without spination; dactylus strong, approximately half length of propodus, 

242 dactylar lock well developed. (adapted after Windsor & Felder, 2014, changes in brackets)

243

244 Remarks.—The diagnosis of Windsor & Felder (2014) mentioned that the carapace is wider than 

245 long. While this generally applies to large specimens, small specimens can be about equally long 

246 as wide or even slightly longer than wide (Fig. 5).

247

248

249 Damithrax unguis (Portell & Collins, 2004)

250 Figures 5, 6

251

252 2004 Mithrax unguis sp. nov.; Portell & Collins, 2004: p. 117, fig. 1.6.
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253

254 Locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -

255 77.5796 WGS 84).

256

257 Stratigraphic horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004; 

258 Portell & Collins, 2004).

259

260 Material.—Holotype: UF 106697; Paratypes: UF 73089, 73165, 103955, 106768, 106772, 

261 111483; Topotypes: UF 112783–112785, 112795, 112942, 112946, 113010, 113011, 113117, 

262 113586, 113587, 113675, 113677, 255051–255054. All internal molds, some RTV silicone 

263 rubber casts of external molds.

264

265 Diagnosis.—Pyriform carapace, l/w ratios vary from ~0.90 for the largest specimens, ~1.00 for 

266 small specimens. Short rostrum with two small spines downturned, slightly longer than axialmost 

267 inner orbital spine. Four usually single spines (second one may have accessory small spine 

268 anteriorly in some specimens) on anterolateral margin excluding outer orbital spine. Forwardly 

269 directed shallow orbit with spines on the upper orbital margin: four upper orbital spines 

270 including outer orbital spine with center two converging; suborbital margin with three spines, 

271 axialmost one strongest. Smaller orbital spines less pronounced in small specimens. Tubercular 

272 gastric and branchial regions. 

273

274 Description.—See Portell & Collins (2004: p. 117). 

275
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276 Measurements.—Table S2.

277

278 Remarks.—Portell & Collins (2004) erected Mithrax unguis based on early Miocene specimens 

279 from the Duncans Quarry, Trelawny Parish, Jamaica. The generic placement was reassessed here 

280 because of the revision of extant Mithracinae by Windsor & Felder (2014). Given the close 

281 similarity to Damithrax hispidus, as was also indicated by Portell & Collins (2004), and a 

282 reasonable fit with the current generic diagnosis of Damithrax, Mithrax unguis is transferred to 

283 Damithrax. The species cannot be retained in Mithrax because of the non-spinose character on 

284 the dorsal carapace not including the lateral margins. The species differs from D. hispidus, D. 

285 pleuracanthus, and D. tortugae in that the rostrum is sharp instead of blunt and the D. unguis 

286 seems to have sharper upper orbital spines. Moreover, the length/width ratios separate D. unguis 

287 from D. hispidus (Fig. 5).

288 Portell & Collins (2004) had a limited number of specimens available and showed 

289 measurements for three of them. With additional collecting, preparation, and identification, many 

290 new specimens became available allowing for the investigation of ontogenetic variation within 

291 the species. As was quantitatively shown for several fossil crab species (e.g., Klompmaker, 

292 Feldmann & Schweitzer, 2012; De Jesús Gómez-Cruz, Bermúdez & Vega, 2015; see below), 

293 width grows faster relative to the length resulting in a decline of length/width ratios (Figs. 5, 6); 

294 similar morphometric results were also obtained for ghost shrimp claws recently (e.g., 

295 Klompmaker et al., 2015). Such allometric growth is especially important for genera of 

296 Mithracinae that are currently diagnosed, in part, based on carapace length/width ratios (Windsor 

297 & Felder, 2014). For D. unguis, one could postulate that width is greater than length for some, 

298 width is (sub)equal to length, and even length is greater than width for the smallest specimens. 
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299 Therefore, providing a range of l/w ratios along with specimen sizes for diagnoses and 

300 descriptions seems even more useful.

301

302 Stratigraphic and geographic range.—lower Miocene, Jamaica.

303

304

305 Damithrax cf. D. pleuracanthus 

306 Figures 7–10

307

308 Locality.—FLMNH-IP SO001: MacAsphalt Shell Pit, Sarasota County, Florida, USA (27.3666, -

309 82.4520 WGS 84).

310

311 Stratigraphic horizon.—late Pliocene–early Pleistocene, spoil.

312

313 Material.—Single carapace (UF 29057), cuticle.

314

315 Diagnosis.—See Williams (1984: p. 334, 335).

316

317 Description.—Carapace pyriform, about as long as wide (l/w ratio = 1.01), maximum width at 

318 ~61% of carapace length, weakly convex longitudinally and moderately so transversely. Rostrum 

319 with two forward projections, only bases preserved; with blunt triangular axial projection 

320 oriented downward and posteriorly, with rims. Orbits directed anterolaterally, about as wide as 

321 tall, deep, with seven spines around orbit: two spines on antennal segment of which the 
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322 axialmost one is strongest, separated by a notch and then followed by weak spine more laterally; 

323 upper orbital margin with four spines including strong outer orbital spine and stronger axialmost 

324 spine; two weak spines in between. Circular antennal holes between axialmost suborbital spine 

325 and rostral spines. Anterolateral margin with four spines (excluding outer orbital spine), third 

326 spine weakest, last spine at transition from antero- to posterolateral margin, oriented laterally. 

327 Posterolateral margin more rounded than anterolateral margin, with single small spine just 

328 posterior to previous spine. Posterior margin with convex protrusion axially, exhibiting row of 

329 tubercles and granules continuing onto posterolateral margin. Frontal region including epigastric 

330 region with double row of tubercles. Hepatic regions small, at lower level compared to gastric 

331 region, with single anterolateral spine. Protogastric regions bulbous, with major tubercle laterally 

332 and less pronounced one axially. Mesogastric region with tubercle on process; base swollen, 

333 divided into three regions, central region oval. Uro- and/or protogastric region small, wider than 

334 long. Cardiac region pentagonal to triangular, with concave margins, about equally long as wide, 

335 tubercular. Branchial regions confluent. Intestinal region not delineated, with two strong 

336 tubercles. Cervical groove moderately deep, with two slits axially, V-shaped overall but rounded 

337 axially, bends more laterally near anterolateral margin. Shallow groove extends from cervical 

338 groove near base hepatic region to below outer orbital spine. Grooves around cardiac and uro- 

339 and/or metagastric regions. Dorsal carapace surface of cuticle with very small pits, armed with 

340 tubercles all over, more granules posteriorly; row of five tubercles midway gastric region. 

341 Ventrolateral sides below anterolateral margins contain small spines. Of hardened parts: most of 

342 ventral surface, abdomen, and appendages lacking. 

343  

344 Measurements.—Excluding spines and rostrum: 13.9 mm long, 13.8 mm wide.
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345

346 Remarks.—The specimen is very well-preserved and is ascribed to Damithrax sp. because of the 

347 close similarity to extant species, notably Damithrax hispidus, D. pleuracanthus, and D. 

348 tortugae. These modern species were synonymized by Wagner (1990), but Windsor & Felder 

349 (2009) resurrected them based on molecular evidence and supported by morphological characters 

350 of the appendages. Ornamentation on the dorsal carapace, as was used by Rathbun (1925), was 

351 rejected by Windsor & Felder (2009) because of ontogenetic variability (accessory spines and 

352 tubercles become more apparent with age), especially within D. pleuracanthus. Ontogenetic 

353 variability of tubercles on the dorsal carapace was also found for D. hispidus in that the largest 

354 specimen (75.4 mm carapace width) exhibits fewer tubercles compared to small specimens (< 

355 ~30 mm carapace width) (pers. obs. AAK). Windsor & Felder (2009) suggested that 

356 ornamentation on the merus and carpus of the cheliped can be used to distinguish between D. 

357 hispidus, D. pleuracanthus, and D. tortugae. The FLMNH IZ collection contained sufficient 

358 specimens of D. hispidus and D. pleuracanthus to verify identifications. Indeed, specimens of D. 

359 pleuracanthus contain more tubercles on the carpus but ornamental differences were difficult to 

360 verify for the merus. While large specimens of D. hispidus (> ~35 mm carapace width) often 

361 contained two spines on the inner side of the merus, smaller specimens (< ~23 mm carapace 

362 width) often contained only a single tubercle, much like similar-sized specimens of D. 

363 pleuracanthus (Table S3). An additional character to distinguish the two species is 

364 ornamentation on the dorsal carapace: tubercles appear better developed on the branchial and 

365 gastric regions of D. pleuracanthus relative to D. hispidus (Figs. 8–10). These differences are 

366 confirmed for slightly larger specimens from Rathbun (1925: pls. 146.1, 150.1), whereas D. 

367 tortugae appears to have even coarser dorsal tubercles (Rathbun, 1925: pl. 147.2). Additionally, 
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368 a row of small tubercles is present along the posterolateral margin in D. pleuracanthus, but is 

369 absent in D. hispidus for the examined size range (Fig. 9). Thus, we argue that ornamentation on 

370 the dorsal carapace can be used to distinguish among modern species for similar-sized 

371 specimens. The fossil specimen conforms best to D. pleuracanthus in terms of coarseness of the 

372 tubercles and the presence of a row of small tubercles along the posterolateral margin. Given the 

373 lack of chelipeds to confirm species placement and some minor differences that may represent 

374 intraspecific variability (e.g., less robust anterolateral spines in the fossil specimen), the 

375 ascription is with some query. Nevertheless, this is the first record of this species in the fossil 

376 record. The results in Windsor & Felder (2009) and herein suggest that the ascription of fossil 

377 specimens to D. hispidus (e.g., Collins & Morris, 1976; Morris, 1993; Collins, Donovan & 

378 Dixon, 1996; Varela & Rojas-Consuegra, 2011) may need to be revisited. 

379

380 Stratigraphic and geographic range.—late Pliocene–early Pleistocene to Recent, North Carolina 

381 – Venezuela – Bermuda (Williams, 1984, see also Tavares & Albuquerque, 1993).

382

383

384 Mithrax A. Milne-Edwards, 1875

385

386 Type species.—Cancer aculeatus Herbst, 1790 (see Windsor & Felder, 2014), extant.

387

388 Species included.—Mithrax aculeatus (Herbst, 1790) [=Cancer spinosus Herbst, 1790; Cancer 

389 aculeatus Fabricius, 1793; Mithrax pilosus Rathbun, 1892; Mithrax verrucosus H. Milne-

390 Edwards, 1832; Mithrax plumosus Rathbun, 1901; Mithrax trispinosus Kingsley, 1879]; Mithrax 
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391 armatus Saussure, 1853 [=Mithrax orcutti Rathbun, 1925]; Mithrax arawakum sp. nov.; Mithrax 

392 bellii Gerstaecker, 1857; Mithrax besnardi Melo, 1990; Mithrax braziliensis Rathbun, 1892; 

393 Mithrax caboverdianus Türkay, 1986; Mithrax clarionensis Garth, 1940; Mithrax hemphilli 

394 Rathbun, 1892; Mithrax leucomelas Desbonne in Desbonne & Schramm, 1867; Mithrax 

395 tuberculatus Stimpson, 1860.

396

397 Diagnosis.—See Windsor & Felder (2014: p. 162, 163). 

398

399

400 Mithrax arawakum sp. nov. 

401 Figure 11

402

403 Etymology.—Named in honor of the Arawak natives, who settled the island of Xaymaca 

404 (Jamaica).

405

406 Type material.—UF 112682 (holotype, internal mold), UF 112941 (paratype, external mold + 

407 cast).

408

409 Type locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -

410 77.5796 WGS 84).

411

412 Type horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004; Portell 

413 & Collins, 2004). 
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414

415 Material.—No material known other than type specimens.

416

417 Diagnosis.—Carapace pyriform, slightly longer than wide (l/w ratio = 1.03 for holotype). Short 

418 rostrum with two small spines downturned. Orbits directed forward, with at least four distinct 

419 spines around orbit: one long spine at angle of suborbital margin near rostral horns, other such 

420 spines not preserved; a slender and long outer orbital spine; a small central upper orbital spine; 

421 and a large projection on upper margin near rostral horns. Anterolateral margin with four strong 

422 spines (excluding outer orbital spine), middle two with small spine at anterior base; last spine at 

423 transition from antero- to posterolateral margin, oriented laterally. Posterolateral margin more 

424 rounded than anterolateral margin, with single small spine just posterior to previous spine. 

425 Frontal region with two longitudinal rims connecting to rostral spines and tubercular epigastric 

426 regions. Cervical groove deep and wide, U-shaped. Branchiocardiac groove strongest around 

427 cardiac region, weaker more laterally. Dorsal carapace surface armed with tubercles, granules, 

428 and spines (especially on branchial regions), not very densely so. 

429

430 Description.—Carapace pyriform, slightly longer than wide (l/w ratio = 1.03 for holotype), 

431 maximum width at ~65% of carapace length, weakly convex longitudinally and moderately so 

432 transversely. Short rostrum with two small spines downturned. Orbits directed forward, wider 

433 than tall, not very deep, at least four distinct spines around orbit: one long spine with a smaller 

434 spine axially at angle of suborbital margin near rostral horns, other such spines not preserved 

435 (may be broken); a slender and long outer orbital spine; a small central upper orbital spine; and a 

436 large projection on upper margin near rostral horns. Single small spine present below orbit. 
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437 Anterolateral margin with four strong spines (excluding outer orbital spine), middle two with 

438 small spine at anterior base; last spine at transition from antero- to posterolateral margin, 

439 oriented laterally. Posterolateral margin with single small spine just posterior to previous spine. 

440 Posterior margin with convex protrusion axially, with row of granules adjacent to convexity. 

441 Frontal region with two longitudinal rims connecting to rostral spines and tubercular epigastric 

442 regions. Hepatic regions small, at lower level compared to gastric region, with single strong 

443 anterolateral spine. Protogastric regions bulbous, with major tubercle laterally and less 

444 pronounced one axially. Mesogastric region with tubercle on process; base swollen, divided into 

445 three regions. Uro- and/or protogastric region small, appears as a laterally elongated tubercle. 

446 Cardiac region pentagonal, about equally long as wide, tubercular. Branchial regions weakly 

447 divided; epi- and mesobranchial regions confluent, tubercular; metabranchial separated from 

448 others, with spines, tubercles, and granules. Intestinal region not delineated, with two strong 

449 tubercles. Cervical groove deep and wide, U-shaped, bends more laterally near anterolateral 

450 margin to continue on ventral carapace, where it bends forward. Short groove extends from 

451 cervical groove near base hepatic region to outer orbital spine. Branchiocardiac groove strongest 

452 around cardiac region, weaker more laterally, not expressed to very weak on ventral carapace. 

453 Dorsal carapace surface armed with tubercles, granules, and spines (especially on branchial 

454 regions), not very densely so; row of five tubercles midway gastric region. Of hardened parts: 

455 most of ventral surface, abdomen, cuticle, and appendages lacking. 

456

457 Measurements.—Excluding spines and rostrum: 14.0 mm long, 13.6 mm wide (UF 112682); 

458 length not measurable, 13.0 mm wide (UF 112941).

459
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460 Remarks.—The species appears to fit best in Mithrax because (a) the carapace being about 

461 equally long as wide (l/w ratio = 1.03); (b) dorsal ornamentation with tubercles, granules, and 

462 spines (although less obvious than in most Mithrax spp.); and (c) orbit weakly produced and with 

463 two spines on upper margin excluding outer orbital spine. 

464 The new species differs from all other congenerics. The carapaces of M. aculeatus, M. 

465 armatus, M. bellii, M. besnardi, and M. hemphilli exhibit a dense cover of granules (Rathbun, 

466 1925: pls. 138.3, 139, 140, 142, 144; Garth, 1946: pl. 66, 1958: pl. 40.2; Melo, 1990; pers. obs. 

467 AAK FLMNH IP collection for M. aculeatus), whereas granules are much less abundant in the 

468 new species. Additionally, M. besnardi has a higher number of spines on the upper orbital 

469 margin (four excluding outer orbital spine instead of two). For M. braziliensis, Rathbun (1892) 

470 mentioned that the regions of this species are weakly defined, unlike the present species. 

471 Moreover, the upper orbital margin bears two small spines, whereas the new species bears one 

472 small and one larger one excluding the outer orbital spine. Although the ornamentation on the 

473 dorsal carapace of M. caboverdianus seems comparable (tubercles and spines with some 

474 interspersed granules) to the new species, the similar-sized holotype in Türkay (1986) (15.3 mm 

475 long) appears somewhat longer than wide (l/w ratio = 1.09) relatively (1.03 for Mithrax 

476 arawakum sp. nov.), but more specimens are needed to confirm this potential difference. Distinct 

477 rostral spines are missing in M. caboverdianus, but are present in Mithrax arawakum sp. nov. 

478 Additionally, the cardiac region in M. caboverdianus appears wider. The upper orbital margin 

479 contains more spines in M. clarionensis and the spines on the lateral margin are less prominent 

480 for a similar-sized specimen (Garth, 1940: pl. 15). Mithrax leucomelas was never figured and the 

481 specimen was already lost when Desbonne & Schramm (1867) erected the species. The 

482 description suggests that this species is different from the new species because M. leucomelas is 
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483 said not to be spinose, the anterolateral margins are only slightly toothed, and the lateral angle 

484 does not bear a spine, unlike the specimens herein. Lastly, the new species is less tubercular than 

485 M. tuberculatus for a similar-sized specimen (Rathbun, 1925: pl. 151.1). Moreover, the rostral 

486 horns of M. tuberculatus are blunt; they are sharp in the new species. 

487 This taxon is of special importance because it constitutes the oldest confirmed record of 

488 fossil Mithrax. The early Miocene record of Mithrax sp. from Cuba (Varela, 2013) is based on a 

489 fixed finger, which may not be sufficient for a genus ascription in the light of the recent revision 

490 (Windsor & Felder, 2014). The same applies to other appendage fragments attributed to Mithrax 

491 sp. as well as incomplete carapaces (see Table S1).

492 The holotype is an internal mold, whereas the paratype is an external mold. Since the size 

493 of the two specimens is similar, the ornamentation can be compared. The cast of the external 

494 mold shows ornamentation that is largely the same to that of the internal mold, but some 

495 granules appear larger (those near the posterior margin). 

496

497 Stratigraphic and geographic range.—lower Miocene, Jamaica.

498

499

500 Nemausa A. Milne-Edwards, 1875

501

502 Type species.—Pisa spinipes Bell, 1836, subsequent designation, extant. 

503

504 Species included.—Nemausa acuticornis (Stimpson, 1871); Nemausa cornuta (Saussure, 1857) 

505 [=Nemausa rostrata A. Milne-Edwards, 1875]; Nemausa donovani (Portell & Collins, 2004); 
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506 Nemausa miocenica sp. nov.; Nemausa sinensis (Rathbun, 1892); Nemausa spinipes (Bell, 1836) 

507 [=Mithrax mexicanus Glassell, 1936].

508

509 Diagnosis.—See Windsor & Felder (2014: p. 163, 164), but note that the now included fossil 

510 species and N. sinensis all have a tubercular rather than spinous character on the dorsal surface.

511

512 Remarks.—Mithrax donovani (Figure 12) is moved to Nemausa because the carapace is longer 

513 than wide in Nemausa, whereas the carapace length is subequal to the width or wider than long 

514 in the diagnosis of Mithrax (see Windsor & Felder, 2014). The small size of the specimen (6.7 

515 mm maximum width, 8.0 mm preserved length excluding rostrum) suggests that not all 

516 characters may have fully developed yet (anterolateral spines, dorsal ornamentation, length/width 

517 trajectory), so the ascription to this genus is preliminary until better preserved material is 

518 discovered.

519 As for other spider crabs studied herein, ontogenetic change in the length/width ratios is 

520 evident for Nemausa as well (Fig. 13). The relationship for the species with the most specimens 

521 available, N. acuticornis, is best explained by a logarithmic trend line, suggesting that 

522 length/width ratios change faster in smaller specimens. 

523

524

525 Nemausa miocenica sp. nov.

526 Figure 13, 14

527

528 Etymology.—After the epoch during which the holotype lived (Miocene).
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529

530 Type material.—Holotype and sole specimen, UF 113651 (internal mold with some cuticle, 

531 external mold + cast).

532

533 Type locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -

534 77.5796 WGS 84).

535

536 Type horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004; Portell 

537 & Collins, 2004). 

538

539 Material.—No material known other than type specimen.

540

541 Diagnosis.—Length/width ratio pyriform carapace = 1.19; orbital margins with seven spines, one 

542 long spine at angle of suborbital margin near rostral horns and two additional, smaller spines on 

543 same margin; anterolateral margin of carapace with four strong spines, anteriormost two with 

544 small spine at anterior base; mesogastric region flattened, anterior part not defined.

545

546 Description.—Carapace pyriform, length/width ratio = 1.19, maximum width at 59% of carapace 

547 length, moderately convex longitudinally and transversely. Rostrum incompletely preserved, but 

548 with bases of two diverging spines. Orbits anterolaterally directed, wider than tall, deepest in 

549 most lateral part, seven spines around orbit: one long spine at angle of suborbital margin near 

550 rostral horns and two additional, smaller spines on same margin, separated by notch that marks 

551 boundary between antennal segment and rest of suborbital structure; one strong outer orbital 
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552 spine with elongated base; three supraorbital spines, one closest to rostrum strongest. 

553 Anterolateral margin with four strong spines (excluding outer orbital spine), anteriormost two 

554 with small spine at anterior base; last strong spine at transition from antero- to posterolateral 

555 margin, directed laterally. Posterolateral margin more rounded than anterolateral margin, with 

556 single spine just posterior to previous spine. Gastric and hepatic regions mostly undifferentiated; 

557 epigastric regions appear as tubercles; base of mesogastric region swollen, anterior part not 

558 defined; uro- and/or metagastric region small, wider than long, sandwiched between mesogastric 

559 and cardiac regions. Cardiac region hexagonal. Branchial and intestinal regions confluent. 

560 Cervical groove deepest axially; curves around base mesogastric region, then becomes shallower 

561 and bends transversely to intersect lateral margin between first and second anterolateral spines. 

562 Branchiocardiac groove only defines lateral parts of cardiac region, does not reach lateral 

563 margin. Dorsal carapace surface armed with larger and smaller tubercles; row of five pronounced 

564 tubercles midway gastric region; other strong tubercles present on epigastric, branchial, and 

565 cardiac regions. Of hardened parts: ventral surface, abdomen, and appendages missing; rostral 

566 spines largely missing. 

567

568 Measurements.—Excluding spines and rostrum: 27.7 mm long, 23.3 mm wide, and 14 mm tall 

569 (as preserved). 

570

571 Remarks.—The anterolateral spines are about equally prominent on the cast and the internal 

572 mold. The bases of the rostral spines and many of the orbital spines are much better visible on 

573 the cast, which is not surprising given the delicate nature of spines, having the tendency to break 

574 easily on the internal mold. Perhaps surprisingly, the small tubercles on the dorsal carapace are 
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575 not as numerous on the cast, yet another example that ornamentation with and without the cuticle 

576 can differ (see Lörenthey & Beurlen, 1929; Klompmaker, Hyžný & Jakobsen, 2015). Here, the 

577 difference can at least in part be explained by the fact that still some cuticle is present near/in 

578 those tubercles in the external mold, leading to the absence or less obvious tubercles on the cast.

579 Nemausa acuticornis is consistently more differentiated in the gastric region (e.g., center 

580 mesogastric region better defined and outlined: Fig. 14; Rathbun, 1925: pl. 136.1; Felder et al., 

581 2014: fig. 7C). Moreover, Figure 15 shows and Rathbun (1925: p. 391) mentioned that the 

582 suborbital margin of N. acuticornis contained only one pronounced spine between the outer 

583 orbital spine and the spines on the antennal segment, whereas this specimen bears two distinct 

584 spines there. Finally, N. acuticornis is relatively wider for specimens of the same size (Fig. 13). 

585 Nemausa cornutus exhibits more spinose ornamentation on the carapace (Rathbun 1925: pl. 

586 137.3 and 137.4) even though the specimens are larger (larger specimens tend to have weaker 

587 ornamentation compared to younger specimens from the same species in the Mithracinae). 

588 Moreover, the specimens in Rathbun (1925: pl. 137.3 and 137.4) are narrower (Fig. 13), although 

589 more specimens are needed to statistically test this difference.

590 Nemausa sinensis has a lower l/w ratio (1.03 [Garth, 1958: pl. 41.1], 1.06 [Rathbun, 1892: pl. 

591 38.2]) compared to N. miocenica sp. nov. (1.19) (Fig. 13). Furthermore, stronger tubercles are 

592 present on N. sinensis. 

593 Very few specimens of N. spinipes are figured, with Rathbun (1925) showing the best image. 

594 Nemausa spinipes has a better defined mesogastric region (Rathbun, 1925: pl. 136.4) and all 

595 anterolateral spines are single and not associated with smaller spines as in the specimen under 

596 study. The same author also showed a very strong tubercle on the posterior part of the 
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597 mesogastric region, not seen in the specimen under study; and two instead of one tubercle are 

598 present around the location where the mesogastric process would be.

599 Nemausa donovani is different in that the mesogastric region is outlined entirely and a 

600 distinct elevation is seen in the center of the posterior part of this region, both unlike in the new 

601 species. This is unlikely related to ontogeny because the mesogastric features appear stable 

602 throughout ontogeny in a congeneric species (Fig. 15). Although anterolateral spines become 

603 more prominent throughout ontogeny in Nemausa (N. acuticornis, Fig. 15), the difference 

604 between N. donovani and N. miocenica sp. nov. is much greater, supporting the hypothesis that 

605 these are two separate species. Furthermore, N. miocenica sp. nov. bears a denser ornamentation 

606 of tubercles, which may only in part be explained by ontogeny (Fig. 15) because even the 

607 smallest specimen of N. acuticornis bears distinct tubercles on the branchial regions, whereas 

608 these regions are nearly smooth in N. donovani, unlike for N. miocenica sp. nov.

609

610 Stratigraphic and geographic range.—lower Miocene, Jamaica.

611
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982 Figure legends

983

984 Figure 1. Stratigraphic ranges of families and genera of spider crabs (Majoidea) in the Western 

985 Atlantic. Grey bars represent probable occurrences based on modern or bracketing fossil 

986 occurrences for that taxon. Chart arranged stratigraphically and by family. The 

987 Hymenosomatidae have no fossil record and the Priscinachidae are only known from Europe 

988 thus far. The ranges of families are derived from genera; genus names that were uncertain (aff., 

989 ?[genus], or “[genus]”) were not used. Timescale produced with TSCreator 6.4 

990 (http://www.tscreator.org).

991

992 Figure 2. Genus-level diversity of spider crabs in the Western Atlantic from older to younger 

993 epochs (A–D). Genus names that were uncertain (aff., ?[genus], or “[genus]”) were not included. 

994 Geographic regions were defined as follows: Atlantic coast North America (here Maine to South 

995 Carolina); Gulf of Mexico (incl. Florida); Caribbean (Cuba to Panama to Barbados); Atlantic 

996 coast South America (here Argentina). The youngest epoch was arbitrarily chosen for genera that 

997 could be either from one epoch or the following. No records are known from the Paleocene and 

998 Oligocene.  

999

1000 Figure 3. Length/width ratio vs log2 width (mm) for extant Maguimithrax spinosissimus 

1001 (Lamarck, 1818). Maximum length was determined without the rostral spines and width was 

1002 measured without the anterolateral spines. Trend line is logarithmic. Data in Table S2.

1003
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1004 Figure 4. Dorsal and ventral views of modern male specimens of Maguimithrax spinosissimus 

1005 that differ in size. (A, B) UF 11447, Florida, USA; (C, D) UF 11388, Florida, USA (largest 

1006 specimen). Note the difference in length/width ratios of the carapace. Scale bar width = 30 mm.

1007

1008 Figure 5. Length/width ratio vs log2 width (mm) for Damithrax unguis (Portell & Collins, 2004) 

1009 from lower Miocene coral-associated limestones of Jamaica and modern Damithrax hispidus 

1010 (Herbst, 1790) from Florida, USA, for comparison. Maximum length was determined without the 

1011 rostral spines and width was measured without the anterolateral spines. Trend lines are 

1012 logarithmic. Data in Table S2.

1013  

1014  Figure 6. Growth series of dorsal carapaces of Damithrax unguis (Portell & Collins, 2004) from 

1015 the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans 

1016 Quarry, Jamaica. (A) = is RTV silicone rubber cast of external mold. (B–K) = internal molds. 

1017 (A) UF 255051; (B) UF 113677; (C) UF 106768 (paratype); (D) UF 255053; (E) UF 112795; (F) 

1018 UF 112783; (G) UF 112784; (H) UF 106697 (holotype); (I) UF 103954; (J, K) frontal and left-

1019 lateral views of UF 113677. Scale bar below (B) applies to (A‒H). Scale bar width = 10.0 mm. 

1020

1021 Figure 7. Damithrax cf. D. pleuracanthus from the late Pliocene–early Pleistocene of the 

1022 MacAsphalt Shell Pit, Sarasota County, Florida, USA (UF 29057). (A) Dorsal view; (B) Ventral 

1023 view; (C) Frontal view; (D) Right-lateral view; (E) Left-lateral view. Scale bar width = 10.0 mm.

1024

1025 Figure 8. Dorsal views of modern specimens and a single fossil specimen of Damithrax spp., all 

1026 from Florida, USA. Upper row from left to right – modern D. hispidus: UF 12475, 11604, 1082, 
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1027 1086; Middle row – modern D. pleuracanthus: UF 3673, 9588 (largest specimen of lot), 7874, 

1028 1052; lower row – fossil Damithrax cf. D. pleuracanthus: UF 29057. Scale bar width = 10.0 mm.

1029

1030 Figure 9. Posterior views of similar-sized, modern specimens and a single fossil specimen of 

1031 Damithrax spp. (A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D. 

1032 pleuracanthus: UF 29057. For specimen sizes see Fig. 8.  

1033

1034 Figure 10. Frontal views of similar-sized, modern specimens and a single fossil specimen of 

1035 Damithrax spp. (A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D. 

1036 pleuracanthus: UF 29057. For specimen sizes see Fig. 8.

1037

1038 Figure 11. Type specimens of Mithrax arawakum sp. nov. from the lower Miocene coral-

1039 associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica. (A, D, E) 

1040 Holotype, UF 112682, in dorsal, frontal, and left-lateral views, resp.; (B) Paratype, external 

1041 mold, UF 112941; (C) Paratype, cast of external mold, UF 112941. Scale bar width = 10.0 mm.

1042

1043 Figure 12. The holotype of Nemausa donovani (Portell & Collins, 2004) from the lower Miocene 

1044 coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF 

1045 103958). (A) Dorsal view; (B) Frontal view; (C) Angled right-lateral view; (D) Upper view of 

1046 rostrum and orbit; (E) Right-lateral view. Scale bar width = 5.0 mm for (A–C, E); 1.5 mm for 

1047 (D).  

1048
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1049 Figure 13. Length/width ratio vs log2 width (mm) for Nemausa spp. Nemausa donovani was not 

1050 included because the total length could not be determined. Maximum length was determined 

1051 without the rostral spines and width was measured without the anterolateral spines. Trend line is 

1052 logarithmic. Data in Table S2.

1053

1054 Figure 14. The holotype of Nemausa miocenica sp. nov. from the lower Miocene coral-

1055 associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF 

1056 113651). (A) Dorsal view (internal mold); (B) Dorsal view (cast of external mold); (C) Frontal 

1057 view; (D) Right-lateral view; (E) External mold; (F) Upper margin left orbit; (G) Cast showing 

1058 bases of rostral horns and various orbital spines in more detail. Arrows in (G) indicate suborbital 

1059 spines and broken outer orbital spine. Scale bar width = 20 mm for (A–E); 2.0 mm for (F); 10 

1060 mm for (G).

1061

1062 Figure 15. Growth series of dorsal carapaces of modern Nemausa acuticornis (Stimpson, 1871) 

1063 from various localities of the Atlantic coast of Florida, USA. Note that specimens become 

1064 relatively wider with age. (A) FSBC I-9758; (B) FSBC I-050561; (C) FSBC I-050562 (note the 

1065 ‘unicorn’ rostrum instead of a double-horned rostrum); (D) FSBC I-050562; (E) FSBC I-050562; 

1066 (F) FSBC I-050561; (G) FSBC I-050562; (H) FSBC I-050562. Scale bar width = 30 mm. 
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1
Stratigraphic ranges of families and genera of spider crabs (Majoidea) in the Western
Atlantic.

Grey bars represent probable occurrences based on modern or bracketing fossil occurrences

for that taxon. Chart arranged stratigraphically and by family. The Hymenosomatidae have

no fossil record and the Priscinachidae are only known from Europe thus far. The ranges of

families are derived from genera; genus names that were uncertain (aff., ?[genus], or

“[genus]”) were not used. Timescale produced with TSCreator 6.4 ( http://www.tscreator.org

).
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2
Genus-level diversity of spider crabs in the Western Atlantic from older to younger
epochs (A–D).

Genus names that were uncertain (aff., ?[genus], or “[genus]”) were not included.

Geographic regions were defined as follows: Atlantic coast North America (here Maine to

South Carolina); Gulf of Mexico (incl. Florida); Caribbean (Cuba to Panama to Barbados);

Atlantic coast South America (here Argentina). The youngest epoch was arbitrarily chosen for

genera that could be either from one epoch or the following. No records are known from the

Paleocene and Oligocene.
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3
Length/width ratio vs log2 width (mm) for extant Maguimithrax spinosissimus (Lamarck,
1818).

Maximum length was determined without the rostral spines and width was measured without

the anterolateral spines. Trend line is logarithmic. Data in Table S2.
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4
Dorsal and ventral views of modern male specimens of Maguimithrax spinosissimus that
differ in size.

(A, B) UF 11447, Florida, USA; (C, D) UF 11388, Florida, USA (largest specimen). Note the

difference in length/width ratios of the carapace. Scale bar width = 30 mm.
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Length/width ratio vs log2 width (mm) for Damithrax unguis (Portell & Collins, 2004)
from the lower Miocene of Jamaica vs modern Damithrax hispidus (Herbst, 1790) from
Florida.

Maximum length was determined without the rostral spines and width was measured without

the anterolateral spines. Trend lines are logarithmic. Data in Table S2.
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6
Growth series of dorsal carapaces of Damithrax unguis (Portell & Collins, 2004) from the
lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans
Quarry, Jamaica.

(A) = is RTV silicone rubber cast of external mold. (B–K) = internal molds. (A) UF 255051; (B)

UF 113677; (C) UF 106768 (paratype); (D) UF 255053; (E) UF 112795; (F) UF 112783; (G) UF

112784; (H) UF 106697 (holotype); (I) UF 103954; (J, K) frontal and left-lateral views of UF

113677. Scale bar below (B) applies to (A‒H). Scale bar width = 10.0 mm.
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Damithrax cf. D. pleuracanthus from the late Pliocene–early Pleistocene of the
MacAsphalt Shell Pit, Sarasota County, Florida, USA (UF 29057).

(A) Dorsal view; (B) Ventral view; (C) Frontal view; (D) Right-lateral view; (E) Left-lateral view.

Scale bar width = 10.0 mm.
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Dorsal views of modern specimens and a single fossil specimen of Damithrax spp., all
from Florida, USA.

Upper row from left to right – modern D. hispidus: UF 12475, 11604, 1082, 1086; Middle row

– modern D. pleuracanthus: UF 3673, 9588 (largest specimen of lot), 7874, 1052; lower row –

fossil Damithrax cf. D. pleuracanthus: UF 29057. Scale bar width = 10.0 mm.
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Posterior views of similar-sized, modern specimens and a single fossil specimen of
Damithrax spp.

(A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D. pleuracanthus:

UF 29057. For specimen sizes see Fig. 8.
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Frontal views of similar-sized, modern specimens and a single fossil specimen of
Damithrax spp.

(A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D. pleuracanthus:

UF 29057. For specimen sizes see Fig. 8.
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11
Type specimens of Mithrax arawakum sp. nov. from the lower Miocene coral-associated
limestones of the Montpelier Formation in the Duncans Quarry, Jamaica.

(A, D, E) Holotype, UF 112682, in dorsal, frontal, and left-lateral views, resp.; (B) Paratype,

external mold, UF 112941; (C) Paratype, cast of external mold, UF 112941. Scale bar width =

10.0 mm.
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The holotype of Nemausa donovani (Portell & Collins, 2004) from the lower Miocene
coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica
(UF 103958).

(A) Dorsal view; (B) Frontal view; (C) Angled right-lateral view; (D) Upper view of rostrum and

orbit; (E) Right-lateral view. Scale bar width = 5.0 mm for (A–C, E); 1.5 mm for (D).
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Length/width ratio vs log2 width (mm) for Nemausa spp.

Nemausa donovani was not included because the total length could not be determined.

Maximum length was determined without the rostral spines and width was measured without

the anterolateral spines. Trend line is logarithmic. Data in Table S2.

PeerJ reviewing PDF | (2015:07:6092:0:0:CHECK 4 Aug 2015)

Reviewing Manuscript

unknown
Note
Introduce the equation of the line. To be able to check the value of constant of growth.



14
The holotype of Nemausa miocenica sp. nov. from the lower Miocene coral-associated
limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF 113651).

(A) Dorsal view (internal mold); (B) Dorsal view (cast of external mold); (C) Frontal view; (D)

Right-lateral view; (E) External mold; (F) Upper margin left orbit; (G) Cast showing bases of

rostral horns and various orbital spines in more detail. Arrows in (G) indicate suborbital

spines and broken outer orbital spine. Scale bar width = 20 mm for (A–E); 2.0 mm for (F); 10

mm for (G).
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Growth series of dorsal carapaces of modern Nemausa acuticornis (Stimpson, 1871)
from various localities of the Atlantic coast of Florida, USA.

Note that specimens become relatively wider with age. (A) FSBC I-9758; (B) FSBC I-050561;

(C) FSBC I-050562 (note the ‘unicorn’ rostrum instead of a double-horned rostrum); (D) FSBC

I-050562; (E) FSBC I-050562; (F) FSBC I-050561; (G) FSBC I-050562; (H) FSBC I-050562. Scale

bar width = 30 mm.
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