Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracinae

Adiel Klompmaker, Roger W. Portell, Aaron T. Klier, Vanessa Prueter, Alyssa L. Tucker

Spider crabs are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs (Majoidea) appeared in the Western Atlantic in deep time and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most genera are found in the Caribbean region starting in the Miocene. Furthermore, taxonomic work on some modern and fossil Mithracinae was conducted. Specifically, *Maguimithrax* gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. D. pleuracanthus is recognized for the first time from the fossil record (late Pliocene-early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa miocenica sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is often insufficiently taken into account while describing and comparing among taxa.

1	Spider crabs of the Western Atlantic with special reference to fossil and some modern
2	Mithracinae
3	
4	Adiël A. Klompmaker ^{1,2} , Roger W. Portell ¹ , Aaron T. Klier ³ , Vanessa Prueter ³ & Alyssa L.
5	Tucker ²
6	
7	
8	¹ Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box
9	117800, Gainesville, Florida 32611, USA
0	² Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box
1	112120, Gainesville, Florida 32611, USA
2	³ Department of Biology, 220 Bartram Hall, PO Box 118525, Gainesville, Florida 32611, USA
3	
4	Corresponding author: Adiël A. Klompmaker, Florida Museum of Natural History, University of
.5	Florida, 1659 Museum Road, PO Box 117800, Gainesville, Florida 32611, USA. Phone: 352 273
6	1939. Email: adielklompmaker@gmail.com
7	
8	Abstract
9	
20	Spider crabs are well-known from modern oceans and are also common in the western part of the
21	Atlantic Ocean. When spider crabs (Majoidea) appeared in the Western Atlantic in deep time and
22	when they became diverse, hinges on their fossil record. By reviewing their fossil record, we
23	show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they

became common since the Miocene, and (3) most genera are found in the Caribbean region
starting in the Miocene. Furthermore, taxonomic work on some modern and fossil Mithracinae
was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant
species Damithrax spinosissimus, while Damithrax cf. D. pleuracanthus is recognized for the
first time from the fossil record (late Pliocene-early Pleistocene, Florida, USA). Furthermore,
two new species are described from the lower Miocene coral-associated limestones of Jamaica
(Mithrax arawakum sp. nov. and Nemausa miocenica sp. nov.). Spurred by a recent revision of
the subfamily, two known species from the same deposits are refigured and transferred to new
genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse
assemblage of decapods from these coral-associated limestones underlines the importance of
reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show
that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a
factor that is often insufficiently taken into account while describing and comparing among taxa

Introduction

Modern spider crabs (Majoidea) range in size from a few millimeters to more than a meter in carapace length, Long, slender legs and a pyriform to triangular shape give many of them a spider-like appearance. They occur in nearly all oceans (e.g., Griffin, 1966), and many of them have been found to decorate themselves for camouflage (e.g., Wicksten, 1993; Guinot, Tavares & Castro, 2013). Today, spider crabs are very diverse with nearly 1000 species worldwide (Ng, Guinot & Davie, 2008; De Grave et al., 2009). More than 125 species have been found in the

47	fossil record (De Grave et al., 2009; Schweitzer et al., 2010), with the oldest species known from
48	the mid-Cretaceous of Europe (Breton, 2009; Klompmaker, 2013). Collins, Portell & Donovan
49	(2009) provided an overview of fossil decapods, including majoids, known from the Caribbean
50	region. Since then, various new fossil majoid occurrences and new fossil species have been
51	reported for the Western Atlantic (e.g., Collins et al., 2010; Collins & Donovan, 2012; Feldmann
52	et al., 2013; Franțescu, 2013; Varela, 2013; Collins, Garvie & Mellish, 2014; Stepp, 2014).
53	The Mithracinae (or Mithracidae sensu Windsor & Felder, 2014) are spider crabs that do
54	not decorate themselves, and are found in (sub)tropical waters from intertidal to 450 m depth,
55	mainly as reef- and rubble dwellers (Windsor & Felder, 2014). Recently, the family was revised
56	extensively using morphological and molecular analyses resulting in numerous redefinitions and
57	the resurrection and erection of four genera (Windsor & Felder, 2014). As for the Western and
58	Eastern Pacific, the Mithracinae are well-known from the Western Atlantic with over 30 species
59	(e.g., Rathbun, 1925; Abele & Kim, 1986; Felder et al., 2009; Windsor & Felder, 2014), the
60	latter authors (p. 154) suggesting it is an "amphi-American" group. Although their fossil record
61	is decent, with 19 species known from the fossil record (Schweitzer et al., 2010), additional
62	research is required because representatives of many extant genera have a scarce fossil record.
63	Here, we review the fossil record of spider crabs in the Western Atlantic to elucidate their
64	occurrences through time and their paleobiogeography. Furthermore, various fossil and modern
65	members of the Mithracinae are described or reassigned, and growth of these majoids is studied.
66	
67	
68	Materials & Methods

PeerJ reviewing PDF | (2015:07:6092:0:0:CHECK 4 Aug 2015)

69

70	We compiled data on all fossil majoid occurrences known from the Western Atlantic (defined
71	here: Argentina to Canada) determined to the genus- and species-levels based on the literature
72	and previously unreported material from the FLMNH Invertebrate Paleontology Collection.
73	For the systematics part, the length and width of crab carapaces were measured with
74	digital calipers accurate to 0.03 mm. Institutional abbreviations for specimens: FSBC: Fish and
75	Wildlife Research Institute, St. Petersburg, Florida, USA; UF: Florida Museum of Natural
76	History at the University of Florida, Gainesville, Florida, USA. Modern UF specimens are
77	housed in Invertebrate Zoology (IZ); fossil specimens in Invertebrate Paleontology (IP)
78	The electronic version of this article in Portable Document Format (PDF) will represent a
79	published work according to the International Commission on Zoological Nomenclature (ICZN),
80	and hence the new names contained in the electronic version are effectively published under that
81	Code from the electronic edition alone. This published work and the nomenclatural acts it
82	contains have been registered in ZooBank, the online registration system for the ICZN. The
83	ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
84	through any standard web browser by appending the LSID to the prefix http://zoobank.org/ . The
85	LSID for this publication is: urn:lsid:zoobank.org:pub:6049E531-ABA7-43EA-8308-
86	EEB5029F667F. The online version of this work is archived and available from the following
87	digital repositories: PeerJ, PubMed Central and CLOCKSS.
88	
89	
90	Results
91	
92	Spider crab distribution in the Western Atlantic

Genera and species known today (15/19 or 79%, 13/31 or 42%, resp.) are well-represented in the dataset (Table S1) on fossil spider crabs because most taxon occurrences (108/117 or 92%) are Neogene and Quaternary in age. Spider crabs in this part of the world first appeared the late Late Cretaceous (Rathbun, 1935; Feldmann et al., 2013), which is younger than the mid-Cretaceous occurrences in Europe (Breton, 2009; Klompmaker, 2013). They become increasingly better represented towards the Recent on the genus- and family-levels (Fig. 1). All modern majoid families (sensu De Grave et al., 2009) are represented except for the Hymenosomatidae that do not have a fossil record. Most taxa are found in the Caribbean region as opposed to in higher latitudes (Fig. 2).

Discussion

All modern majoid families (sensu De Grave et al., 2009) are represented in Figure 1 except for the Hymenosomatidae that do not have a fossil record. This is likely to be related to their small size and weakly calcified exoskeleton (e.g., Ng & Jeng, 1999; Guinot, 2011; Tavares & Santana, 2015; note that Guinot argued that the family does not belong to the Majoidea). Conversely, the Epialtidae and Majidae (especially Mithracinae) are well-represented, being markedly larger and better calcified, eomparatively. The results show that historical diversification of the Mithracinae in the Americas helps to explain their abundance there today.

Although the pattern that most majoid taxa are found in the Caribbean region (Fig. 2) is consistent with the modern latitudinal diversity gradient for decapods, including Brachyura (e.g.,

116	Abele, 1982; Steele, 1988), much more research has been done in the (sub)tropical Western
117	Atlantic region and exposures may be more numerous. However, fossil decapods from the
118	eastern coast of the USA have received considerable attention (e.g., Rathbun, 1935; Roberts,
119	1962; Blow & Manning, 1996; Blow, 2003; Feldmann et al., 2013; Franțescu, 2013), but less
120	research has been done on fossil decapods from Brazil and other South American countries south
121	of the Caribbean region (e.g., Aguirre-Urreta, 1990; Casadío et al., 2005; Martins-Neto & Dias
122	Júnior, 2007; Távora, Paixão & Da Silva, 2010). More fossil decapods – including spider crabs –
123	are expected to be present in those regions.
124	The spider crabs Mithrax arawakum sp. nov. and Nemausa miocenica sp. nov. erected
125	below add to the number of species known from the lower Miocene limestones at the Duncans
126	Quarry in Jamaica. Portell & Collins (2004) reported on 16 decapod species from these
127	limestones, a unique crab fauna from the Miocene of the Caribbean because 9/14 genera were
128	unknown until then from that region. As for another diverse decapod assemblage in the
129	Caribbean (Collins & Morris, 1976), this fauna is also associated with corals. phozoic, coral-
130	associated fauna from Europe are also speciose (e.g., Müller, 1984; Jakobsen & Collins, 1997;
131	Beschin et al., 2007; Gatt & De Angeli, 2010; Beschin, Busulini & Tessier, 2015) as are such
132	decapod faunas from the Mesozoic (e.g., Collins, Fraaye & Jagt, 1995; Fraaije, 2003; Krobicki &
133	Zatoń, 2008; Klompmaker, 2013; Klompmaker, Ortiz & Wells, 2013; Robins, Feldmann &
134	Schweitzer, 2013). Moreover, a significant correlation exists between reef abundance and
135	decapod diversity throughout the Mesozoic (Klompmaker et al., 2013). The assemblage from the
136	Duncans Quarry underlines the importance of reefs for the abundance and diversity of decapods
137	in deep time.

138

139	
140	Systematic Paleontology
141	
142	Order Decapoda Latreille, 1802
143	Infraorder Brachyura Linnaeus, 1758
144	Section Eubrachyura De Saint Laurent, 1980
145	Superfamily Majoidea Samouelle, 1819
146	Family Majidae Samouelle, 1819
147	Subfamily Mithracinae MacLeay, 1838
148	
149	Maguimithrax gen. nov.
150	
151	Etymology.—Contraction of the family name of Tobey Maguire, the actor in three Spider-Mar
152	movies (2002, 2004, 2007), and Mithrax.
153	
154	Type species.—Maia spinosissimus Lamarck, 1818, by present designation, gender masculine
155	extant.
156	
157	Species included.—Maguimithrax spinosissimus (Lamarck, 1818).
158	
159	<i>Material.</i> —UF 12474 (1♀), 11447 (1♂), 11457 (1♀), 31157 (1♂, 1♀), 11388 (1♂, 1♀), all
160	FLMNH IZ collection.
161	

Diagnosis.—Carapace slightly longer than wide to about equally wide as long in large specimens
$(l/w ratio = \sim 1.09 - 0.97)$ (Fig. 3), maximum reported width without spines 167 mm, rounded to
diamond-shaped, without angled transition from antero- to posterolateral margin, covered with
spines laterally and tubercles more axially. Upper orbital margin with four to five spines
including strong outer orbital spine and axialmost spine; four suborbital spines including two
spines on antennal article, axialmost one strongest. Lateral margin bears six spines, anteriormost
ones with accessory spines at anterior bases, fifth and sixth spines weaker. Gastric, cardiac, and
uro-metagastric regions surrounded by pronounced grooves; other regions less delineated.
Chelipeds and other appendages spinose dorsally, less so to smooth ventrally; cheliped propodus
with tubercles or spines on upper margins and two to four tubercles on inner side.
Remarks.—Verrill (1908), Rathbun (1925), and Wagner (1990) all noted that young specimens
Remarks.—Verrill (1908), Rathbun (1925), and Wagner (1990) all noted that young specimens of D. spinosissimus are close to Nemausa acuticornis and N. cornuta. There are indeed many
of D. spinosissimus are close to Nemausa acuticornis and N. cornuta. There are indeed many
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a longer than wide carapace in younger individuals (Fig. 4), and a similar groove and region
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a longer than wide carapace in younger individuals (Fig. 4), and a similar groove and region structure of the carapace. Not surprisingly, <i>D. spinosissimus</i> has been placed in <i>Nemausa</i>
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a longer than wide carapace in younger individuals (Fig. 4), and a similar groove and region structure of the carapace. Not surprisingly, <i>D. spinosissimus</i> has been placed in <i>Nemausa</i> (Coelho & Torres, 1990). Several differences exist compared to <i>Nemausa</i> as currently defined.
of <i>D. spinosissimus</i> are close to <i>Nemausa acuticornis</i> and <i>N. cornuta</i> . There are indeed many similarities between <i>Nemausa</i> and <i>D. spinosissimus</i> including the spinose character of the carapace and appendages, a comparable third maxilliped (see Windsor & Felder, 2014: fig. 4), a longer than wide carapace in younger individuals (Fig. 4), and a similar groove and region structure of the carapace. Not surprisingly, <i>D. spinosissimus</i> has been placed in <i>Nemausa</i> (Coelho & Torres, 1990). Several differences exist compared to <i>Nemausa</i> as currently defined. The carapace is more rounded to diamond-shaped compared to the pyriform carapaces of

184	D. spinosissimus. Moleculai phylogenetics support the assertion that D. spinosissimus does not
185	fit within Nemausa (Windsor & Felder, 2014).
186	The species has been assigned to <i>Mithrax</i> as well (e.g., Provenzano & Brownell, 1977;
187	Wagner, 1990). However, <i>Mithrax</i> as currently defined is markedly different in that (1) the third
188	maxilliped endopod merus distomesial margin has a deep, angular excavation at the articulation
189	with the palp in D. spinosissimus, whereas this merus exhibits no pronounced concavity in
190	Mithrax (cf. Windsor & Felder, 2014); (2) the ornamentation on the carapace is more varied in
191	Mithrax, consisting of more granules; (3) the propodus bears tubercles and spines in the
192	examined specimens of <i>D. spinosissimus</i> , but it is smooth in <i>Mithrax</i> ; and (4) molecular
193	phylogenetics separates <i>D. spinosissimus</i> from <i>Mithrax</i> (Windsor & Felder, 2014).
194	Most recently, the latter authors assigned the species to Damithrax. However, it should be
195	noted that D. spinosissimus is much more spinose on the dorsal carapace than other species of
196	Damithrax (e.g., Desbonne & Schramm, 1867: pl. 8; Rathbun, 1925: pl. 135), including the type
197	species. Moreover, the propodus is not smooth in <i>D. spinosissimus</i> unlike in other species of the
198	genus, and specimens across a considerable size range (< 75 mm carapace width) are slightly
199	longer than wide or about equally wide as long, unlike the diagnosis of the genus. Not
200	surprisingly, the species plots as a sister taxon to all other modern <i>Damithrax</i> spp. (Windsor &
201	Felder, 2014: fig. 2); the latter authors also indicated that this taxon "is somewhat the outlier" (p.
202	155). Finally, all three of the discussed genera possess a lateral angle, whereas this area is much
203	more rounded in D. spinosissimus. Thus, D. spinosissimus fits better in a new genus:
204	Maguimithrax gen. nov.
205	Detailed descriptions of the species and ontogenetic variations were detailed by Rathbun
206	(1925), Williams (1984), and Wagner (1990) that need no repeat here. Sexual dimorphism is

207	evident in that larger males (> ~60 mm carapace width based on the studied material) exhibit a
208	pronounced tooth on the occlusal surface of the dactylus, whereas females do not bear such a
209	tooth.
210	
211	Stratigraphic and geographic range.—Extant only, North Carolina – Venezuela (Williams,
212	1984; Wagner, 1990).
213	
214	
215	Damithrax Windsor & Felder, 2014
216	
217	Type species.—Mithrax pleuracanthus Stimpson, 1871, extant.
218	
219	Species included.—Damithrax hispidus (Herbst, 1790) [=Maia spinicincta Lamarck, 1818;
220	Mithrax laevimanus Desbonne in Desbonne & Schramm, 1867; Mithrax depressus A. Milne-
221	Edwards, 1875 (part); Mithrax caribbaeus Rathbun, 1920; Mithrax carribbaeus, Ng et al., 2008
222	(incorrect spelling)]; Damithrax pleuracanthus (Stimpson, 1871); Damithrax tortugae (Rathbun,
223	1920); Damithrax unguis (Portell & Collins, 2004).
224	
225	Emended diagnosis.—Carapace wider than long [for large specimens, about equally long as wide
226	for small specimens], overall shape pyriform; dorsal surface smooth to tuberculate, not obviously
227	setose; [five] lateral spines or teeth, first two commonly with accessory spine, lateral angle with
228	single spine; posterior margin tuberculate. Rostral horns blunt, sparsely setose, tips not
229	converging, not reaching [far] beyond first movable article of antenna. Antenna fused basal

article very broad, forming floor of orbit, bearing two or three blunt marginal spines or teeth,
anteriormost the largest, decreasing posteriorly (third often very low, or not developed), anterior
two visible in dorsal view. Orbit complete, dorsal margin weakly armed behind strong pre-ocular
tooth, eyestalk protected above by single blunt dorsal tooth or tubercle separated by closed
fissure from two or three blunt post-ocular teeth or tubercles. Third maxilliped endopod merus
distomesial margin deeply, angularly excavated at articulation with palp. Cheliped greater than
or equal to carapace length; merus dorsal surface spinous, spines not laminar; carpus varied from
smooth to rough; propodus smooth; dactylus with enlarged proximal tooth when mature,
opposed margins of fingers otherwise crenulate. Pereiopods two to five (ambulatory legs)
decreasing in size anterior to posterior; articles finely setose; merus dorsal surface bearing large
tubercles and spines, ventral surface with one to six tubercles or spinules; carpus dorsal surface
spinous; propodus without spination; dactylus strong, approximately half length of propodus,
dactylar lock well developed. (adapted after Windsor & Felder, 2014, changes in brackets)
Remarks.—The diagnosis of Windsor & Felder (2014) mentioned that the carapace is wider than
long. While this generally applies to large specimens, small specimens can be about equally long
as wide or even slightly longer than wide (Fig. 5).
Damithrax unguis (Portell & Collins, 2004)
Figures 5, 6
2004 Mithrax unguis sp. nov.: Portell & Collins, 2004; p. 117, fig. 1.6.

253	
254	Locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -
255	77.5796 WGS 84).
256	
257	Stratigraphic horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004)
258	Portell & Collins, 2004).
259	
260	Material.—Holotype: UF 106697; Paratypes: UF 73089, 73165, 103955, 106768, 106772,
261	111483; Topotypes: UF 112783–112785, 112795, 112942, 112946, 113010, 113011, 113117,
262	113586, 113587, 113675, 113677, 255051–255054. All internal molds, some RTV silicone
263	rubber casts of external molds.
264	
265	Diagnosis.—Pyriform carapace, l/w ratios vary from ~0.90 for the largest specimens, ~1.00 for
266	small specimens. Short rostrum with two small spines downturned, slightly longer than axialmost
267	inner orbital spine. Four usually single spines (second one may have accessory small spine
268	anteriorly in some specimens) on anterolateral margin excluding outer orbital spine. Forwardly
269	directed shallow orbit with spines on the upper orbital margin: four upper orbital spines
270	including outer orbital spine with center two converging; suborbital margin with three spines,
271	axialmost one strongest. Smaller orbital spines less pronounced in small specimens. Tubercular
272	gastric and branchial regions.
273	
274	Description.—See Portell & Collins (2004: p. 117).
275	

276

Measurements.—Table S2. 277 278 Remarks.—Portell & Collins (2004) erected Mithrax unguis based on early Miocene specimens from the Duncans Quarry, Trelawny Parish, Jamaica. The generic placement was reassessed here 279 because of the revision of extant Mithracinae by Windsor & Felder (2014). Given the close 280 281 similarity to Damithrax hispidus, as was also indicated by Portell & Collins (2004), and a 282 reasonable fit with the current generic diagnosis of Damithrax, Mithrax unguis is transferred to 283 Damithrax. The species cannot be retained in Mithrax because of the non-spinose character on 284 the dorsal carapace not including the lateral margins. The species differs from D. hispidus, D. pleuracanthus, and D. tortugae in that the rostrum is sharp instead of blunt and the D. unguis 285 seems to have sharper upper orbital spines. Moreover, the length/width ratios separate D. unguis 286 287 from *D. hispidus* (Fig. 5). 288 Portell & Collins (2004) had a limited number of specimens available and showed 289 measurements for three of them. With additional collecting, preparation, and identification, many new specimens became available allowing for the investigation of ontogenetic variation within 290 the species. As was quantitatively shown for several fossil crab species (e.g., Klompmaker, 291 292 Feldmann & Schweitzer, 2012; De Jesús Gómez-Cruz, Bermúdez & Vega, 2015; see below), 293 width grows faster relative to the length resulting in a decline of length/width ratios (Figs. 5, 6); 294 similar morphometric results were also obtained for ghost shrimp claws recently (e.g., 295 Klompmaker et al., 2015). Such allometric growth is especially important for genera of 296 Mithracinae that are currently diagnosed, in part, based on carapace length/width ratios (Windsor 297 & Felder, 2014). For *D. unguis*, one could postulate that width is greater than length for some, 298 width is (sub)equal to length, and even length is greater than width for the smallest specimens.

299	Therefore, providing a range of I/w ratios along with specimen sizes for diagnoses and
800	descriptions seems even more useful.
301	
302	Stratigraphic and geographic range.—lower Miocene, Jamaica.
303	
304	
305	Damithrax cf. D. pleuracanthus
306	Figures 7–10
307	
308	Locality.—FLMNH-IP SO001: MacAsphalt Shell Pit, Sarasota County, Florida, USA (27.3666, -
309	82.4520 WGS 84).
310	
311	Stratigraphic horizon.—late Pliocene–early Pleistocene, spoil.
312	
313	Material.—Single carapace (UF 29057), cuticle.
314	
315	<i>Diagnosis.</i> —See Williams (1984: p. 334, 335).
316	
317	Description.—Carapace pyriform, about as long as wide (l/w ratio = 1.01), maximum width at
318	~61% of carapace length, weakly convex longitudinally and moderately so transversely. Rostrum
319	with two forward projections, only bases preserved; with blunt triangular axial projection
320	oriented downward and posteriorly, with rims. Orbits directed anterolaterally, about as wide as
321	tall, deep, with seven spines around orbit: two spines on antennal segment of which the

axialmost one is strongest, separated by a notch and then followed by weak spine more laterally;
upper orbital margin with four spines including strong outer orbital spine and stronger axialmost
spine; two weak spines in between. Circular antennal holes between axialmost suborbital spine
and rostral spines. Anterolateral margin with four spines (excluding outer orbital spine), third
spine weakest, last spine at transition from antero- to posterolateral margin, oriented laterally.
Posterolateral margin more rounded than anterolateral margin, with single small spine just
posterior to previous spine. Posterior margin with convex protrusion axially, exhibiting row of
tubercles and granules continuing onto posterolateral margin. Frontal region including epigastric
region with double row of tubercles. Hepatic regions small, at lower level compared to gastric
region, with single anterolateral spine. Protogastric regions bulbous, with major tubercle laterally
and less pronounced one axially. Mesogastric region with tubercle on process; base swollen,
divided into three regions, central region oval. Uro- and/or protogastric region small, wider than
long. Cardiac region pentagonal to triangular, with concave margins, about equally long as wide,
tubercular. Branchial regions confluent. Intestinal region not delineated, with two strong
tubercles. Cervical groove moderately deep, with two slits axially, V-shaped overall but rounded
axially, bends more laterally near anterolateral margin. Shallow groove extends from cervical
groove near base hepatic region to below outer orbital spine. Grooves around cardiac and uro-
and/or metagastric regions. Dorsal carapace surface of cuticle with very small pits, armed with
tubercles all over, more granules posteriorly; row of five tubercles midway gastric region.
Ventrolateral sides below anterolateral margins contain small spines. Of hardened parts: most of
ventral surface, abdomen, and appendages lacking.

Measurements.—Excluding spines and rostrum: 13.9 mm long, 13.8 mm wide.

345	
346	Remarks.—The specimen is very well-preserved and is ascribed to Damithrax sp. because of the
347	close similarity to extant species, notably Damithrax hispidus, D. pleuracanthus, and D.
348	tortugae. These modern species were synonymized by Wagner (1990), but Windsor & Felder
349	(2009) resurrected them based on molecular evidence and supported by morphological character
350	of the appendages. Ornamentation on the dorsal carapace, as was used by Rathbun (1925), was
351	rejected by Windsor & Felder (2009) because of ontogenetic variability (accessory spines and
352	tubercles become more apparent with age), especially within D. pleuracanthus. Ontogenetic
353	variability of tubercles on the dorsal carapace was also found for D. hispidus in that the largest
354	specimen (75.4 mm carapace width) exhibits fewer tubercles compared to small specimens (<
355	~30 mm carapace width) (pers. obs. AAK). Windsor & Felder (2009) suggested that
356	ornamentation on the merus and carpus of the cheliped can be used to distinguish between D .
357	hispidus, D. pleuracanthus, and D. tortugae. The FLMNH IZ collection contained sufficient
358	specimens of D. hispidus and D. pleuracanthus to verify identifications. Indeed, specimens of D.
359	pleuracanthus contain more tubercles on the carpus but ornamental differences were difficult to
360	verify for the merus. While large specimens of D . hispidus (> ~35 mm carapace width) often
361	contained two spines on the inner side of the merus, smaller specimens (< ~23 mm carapace
362	width) often contained only a single tubercle, much like similar-sized specimens of D .
363	pleuracanthus (Table S3). An additional character to distinguish the two species is
364	ornamentation on the dorsal carapace: tubercles appear better developed on the branchial and
365	gastric regions of D. pleuracanthus relative to D. hispidus (Figs. 8–10). These differences are
366	confirmed for slightly larger specimens from Rathbun (1925: pls. 146.1, 150.1), whereas D.
367	tortugae appears to have even coarser dorsal tubercles (Rathbun, 1925: pl. 147.2). Additionally,

368	a row of small tubercles is present along the posterolateral margin in D. pleuracanthus, but is
369	absent in D. hispidus for the examined size range (Fig. 9). Thus, we argue that ornamentation on
370	the dorsal carapace can be used to distinguish among modern species for similar-sized
371	specimens. The fossil specimen conforms best to D. pleuracanthus in terms of coarseness of the
372	tubercles and the presence of a row of small tubercles along the posterolateral margin. Given the
373	lack of chelipeds to confirm species placement and some minor differences that may represent
374	intraspecific variability (e.g., less robust anterolateral spines in the fossil specimen), the
375	ascription is with some query. Nevertheless, this is the first record of this species in the fossil
376	record. The results in Windsor & Felder (2009) and herein suggest that the ascription of fossil
377	specimens to D. hispidus (e.g., Collins & Morris, 1976; Morris, 1993; Collins, Donovan &
378	Dixon, 1996; Varela & Rojas-Consuegra, 2011) may need to be revisited.
379	
380	Stratigraphic and geographic range.—late Pliocene-early Pleistocene to Recent, North Carolina
381	- Venezuela - Bermuda (Williams, 1984, see also Tavares & Albuquerque, 1993).
382	
383	
384	Mithrax A. Milne-Edwards, 1875
385	
386	Type species.—Cancer aculeatus Herbst, 1790 (see Windsor & Felder, 2014), extant.
387	
388	Species included.—Mithrax aculeatus (Herbst, 1790) [=Cancer spinosus Herbst, 1790; Cancer
389	aculeatus Fabricius, 1793; Mithrax pilosus Rathbun, 1892; Mithrax verrucosus H. Milne-
390	Edwards, 1832; Mithrax plumosus Rathbun, 1901; Mithrax trispinosus Kingsley, 1879]; Mithrax

```
391
      armatus Saussure, 1853 [=Mithrax orcutti Rathbun, 1925]; Mithrax arawakum sp. nov.; Mithrax
392
      bellii Gerstaecker, 1857; Mithrax besnardi Melo, 1990; Mithrax braziliensis Rathbun, 1892;
      Mithrax caboverdianus Türkay, 1986; Mithrax clarionensis Garth, 1940; Mithrax hemphilli
393
394
      Rathbun, 1892; Mithrax leucomelas Desbonne in Desbonne & Schramm, 1867; Mithrax
      tuberculatus Stimpson, 1860.
395
396
      Diagnosis.—See Windsor & Felder (2014: p. 162, 163).
397
398
399
      Mithrax arawakum sp. nov.
400
401
      Figure 11
402
      Etymology.—Named in honor of the Arawak natives, who settled the island of Xaymaca
403
      (Jamaica).
404
405
      Type material.—UF 112682 (holotype, internal mold), UF 112941 (paratype, external mold +
406
407
      cast).
408
      Type locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -
409
      77.5796 WGS 84).
410
411
      Type horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004; Portell
412
413
      & Collins, 2004).
```

114	
115	Material.—No material known other than type specimens.
116	
117	Diagnosis.—Carapace pyriform, slightly longer than wide (l/w ratio = 1.03 for holotype). Short
118	rostrum with two small spines downturned. Orbits directed forward, with at least four distinct
119	spines around orbit: one long spine at angle of suborbital margin near rostral horns, other such
120	spines not preserved; a slender and long outer orbital spine; a small central upper orbital spine;
121	and a large projection on upper margin near rostral horns. Anterolateral margin with four strong
122	spines (excluding outer orbital spine), middle two with small spine at anterior base; last spine at
123	transition from antero- to posterolateral margin, oriented laterally. Posterolateral margin more
124	rounded than anterolateral margin, with single small spine just posterior to previous spine.
125	Frontal region with two longitudinal rims connecting to rostral spines and tubercular epigastric
126	regions. Cervical groove deep and wide, U-shaped. Branchiocardiac groove strongest around
127	cardiac region, weaker more laterally. Dorsal carapace surface armed with tubercles, granules,
128	and spines (especially on branchial regions), not very densely so.
129	
130	Description.—Carapace pyriform, slightly longer than wide (l/w ratio = 1.03 for holotype),
131	maximum width at ~65% of carapace length, weakly convex longitudinally and moderately so
132	transversely. Short rostrum with two small spines downturned. Orbits directed forward, wider
133	than tall, not very deep, at least four distinct spines around orbit: one long spine with a smaller
134	spine axially at angle of suborbital margin near rostral horns, other such spines not preserved
135	(may be broken); a slender and long outer orbital spine; a small central upper orbital spine; and a
136	large projection on upper margin near rostral horns. Single small spine present below orbit.

437	Anterolateral margin with four strong spines (excluding outer orbital spine), middle two with
438	small spine at anterior base; last spine at transition from antero- to posterolateral margin,
439	oriented laterally. Posterolateral margin with single small spine just posterior to previous spine.
440	Posterior margin with convex protrusion axially, with row of granules adjacent to convexity.
441	Frontal region with two longitudinal rims connecting to rostral spines and tubercular epigastric
442	regions. Hepatic regions small, at lower level compared to gastric region, with single strong
443	anterolateral spine. Protogastric regions bulbous, with major tubercle laterally and less
<u>444</u>	pronounced one axially. Mesogastric region with tubercle on process; base swollen, divided into
445	three regions. Uro- and/or protogastric region small, appears as a laterally elongated tubercle.
446	Cardiac region pentagonal, about equally long as wide, tubercular. Branchial regions weakly
447	divided; epi- and mesobranchial regions confluent, tubercular; metabranchial separated from
448	others, with spines, tubercles, and granules. Intestinal region not delineated, with two strong
449	tubercles. Cervical groove deep and wide, U-shaped, bends more laterally near anterolateral
450	margin to continue on ventral carapace, where it bends forward. Short groove extends from
451	cervical groove near base hepatic region to outer orbital spine. Branchiocardiac groove strongest
452	around cardiac region, weaker more laterally, not expressed to very weak on ventral carapace.
453	Dorsal carapace surface armed with tubercles, granules, and spines (especially on branchial
454	regions), not very densely so; row of five tubercles <u>midway gastric region</u> . Of hardened parts:
455	most of ventral surface, abdomen, cuticle, and appendages lacking.
456	
457	Measurements.—Excluding spines and rostrum: 14.0 mm long, 13.6 mm wide (UF 112682);
458	length not measurable, 13.0 mm wide (UF 112941).
459	

460	Remarks.—The species appears to fit best in Mithrax because (a) the carapace being about
461	equally long as wide (l/w ratio = 1.03); (b) dorsal ornamentation with tubercles, granules, and
462	spines (although less obvious than in most Mithrax spp.); and (c) orbit weakly produced and with
463	two spines on upper margin excluding outer orbital spine.
464	The new species differs from all other congenerics. The carapaces of M. aculeatus, M.
465	armatus, M. bellii, M. besnardi, and M. hemphilli exhibit a dense cover of granules (Rathbun,
466	1925: pls. 138.3, 139, 140, 142, 144; Garth, 1946: pl. 66, 1958: pl. 40.2; Melo, 1990; pers. obs.
467	AAK FLMNH IP collection for M. aculeatus), whereas granules are much less abundant in the
468	new species. Additionally, M. besnardi has a higher number of spines on the upper orbital
469	margin (four excluding outer orbital spine instead of two). For M. braziliensis, Rathbun (1892)
470	mentioned that the regions of this species are weakly defined, unlike the present species.
471	Moreover, the upper orbital margin bears two small spines, whereas the new species bears one
472	small and one larger one excluding the outer orbital spine. Although the ornamentation on the
473	dorsal carapace of M. caboverdianus seems comparable (tubercles and spines with some
474	interspersed granules) to the new species, the similar-sized holotype in Türkay (1986) (15.3 mm
475	long) appears somewhat longer than wide (l/w ratio = 1.09) relatively (1.03 for <i>Mithrax</i>
476	arawakum sp. nov.), but more specimens are needed to confirm this potential difference. Distinct
477	rostral spines are missing in M. caboverdianus, but are present in Mithrax arawakum sp. nov.
478	Additionally, the cardiac region in M. caboverdianus appears wider. The upper orbital margin
479	contains more spines in M. clarionensis and the spines on the lateral margin are less prominent
480	for a similar-sized specimen (Garth, 1940: pl. 15). Mithrax leucomelas was never figured and the
481	specimen was already lost when Desbonne & Schramm (1867) erected the species. The
482	description suggests that this species is different from the new species because M. leucomelas is

483	said not to be spinose, the anterolateral margins are only slightly toothed, and the lateral angle
484	does not bear a spine, unlike the specimens herein. Lastly, the new species is less tubercular than
485	M. tuberculatus for a similar-sized specimen (Rathbun, 1925: pl. 151.1). Moreover, the rostral
486	horns of <i>M. tuberculatus</i> are blunt; they are sharp in the new species.
487	This taxon is of special importance because it constitutes the oldest confirmed record of
488	fossil Mithrax. The early Miocene record of Mithrax sp. from Cuba (Varela, 2013) is based on a
489	fixed finger, which may not be sufficient for a genus ascription in the light of the recent revision
490	(Windsor & Felder, 2014). The same applies to other appendage fragments attributed to <i>Mithrax</i>
491	sp. as well as incomplete carapaces (see Table S1).
492	The holotype is an internal mold, whereas the paratype is an external mold. Since the size
493	of the two specimens is similar, the ornamentation can be compared. The cast of the external
494	mold shows ornamentation that is largely the same to that of the internal mold, but some
495	granules appear larger (those near the posterior margin).
496	
497	Stratigraphic and geographic range.—lower Miocene, Jamaica.
498	
499	
500	Nemausa A. Milne-Edwards, 1875
501	
502	Type species.—Pisa spinipes Bell, 1836, subsequent designation, extant.
503	
504	Species included.—Nemausa acuticornis (Stimpson, 1871); Nemausa cornuta (Saussure, 1857)
505	[=Nemausa rostrata A. Milne-Edwards, 1875]; Nemausa donovani (Portell & Collins, 2004);

506	Nemausa miocenica sp. nov.; Nemausa sinensis (Rathbun, 1892); Nemausa spinipes (Bell, 1836)
507	[=Mithrax mexicanus Glassell, 1936].
508	
509	Diagnosis.—See Windsor & Felder (2014: p. 163, 164), but note that the now included fossil
510	species and N. sinensis all have a tubercular rather than spinous character on the dorsal surface.
511	
512	Remarks.—Mithrax donovani (Figure 12) is moved to Nemausa because the carapace is longer
513	than wide in Nemausa, whereas the carapace length is subequal to the width or wider than long
514	in the diagnosis of <i>Mithrax</i> (see Windsor & Felder, 2014). The small size of the specimen (6.7
515	mm maximum width, 8.0 mm preserved length excluding rostrum) suggests that not all
516	characters may have fully developed yet (anterolateral spines, dorsal ornamentation, length/width
517	trajectory), so the ascription to this genus is preliminary until better preserved material is
518	discovered.
519	As for other spider crabs studied herein, ontogenetic change in the length/width ratios is
520	evident for <i>Nemausa</i> as well (Fig. 13). The relationship for the species with the most specimens
521	available, N. acuticornis, is best explained by a logarithmic trend line, suggesting that
522	length/width ratios change faster in smaller specimens.
523	
524	
525	Nemausa miocenica sp. nov.
526	Figure 13, 14
527	
528	Etymology.—After the epoch during which the holotype lived (Miocene).

529	
530	Type material.—Holotype and sole specimen, UF 113651 (internal mold with some cuticle,
531	external mold + cast).
532	
533	Type locality.—FLMNH-IP XJ015: Duncans Quarry 01, Trelawny Parish, Jamaica (18.4710, -
534	77.5796 WGS 84).
535	
536	Type horizon.—lower Miocene, Montpelier Formation (uppermost unit) (Mitchell, 2004; Portell
537	& Collins, 2004).
538	
539	Material.—No material known other than type specimen.
540	
541	Diagnosis.—Length/width ratio pyriform carapace = 1.19; orbital margins with seven spines, one
542	long spine at angle of suborbital margin near rostral horns and two additional, smaller spines on
543	same margin; anterolateral margin of carapace with four strong spines, anteriormost two with
544	small spine at anterior base; mesogastric region flattened, anterior part not defined.
545	
546	Description.—Carapace pyriform, length/width ratio = 1.19, maximum width at 59% of carapace
547	length, moderately convex longitudinally and transversely. Rostrum incompletely preserved, but
548	with bases of two diverging spines. Orbits anterolaterally directed, wider than tall, deepest in
549	most lateral part, seven spines around orbit: one long spine at angle of suborbital margin near
550	rostral horns and two additional, smaller spines on same margin, separated by notch that marks
551	boundary between antennal segment and rest of suborbital structure; one strong outer orbital

spine with elongated base; three supraorbital spines, one closest to rostrum strongest.
Anterolateral margin with four strong spines (excluding outer orbital spine), anteriormost two
with small spine at anterior base; last strong spine at transition from antero- to posterolateral
margin, directed laterally. Posterolateral margin more rounded than anterolateral margin, with
single spine just posterior to previous spine. Gastric and hepatic regions mostly undifferentiated;
epigastric regions appear as tubercles; base of mesogastric region swollen, anterior part not
defined; uro- and/or metagastric region small, wider than long, sandwiched between mesogastric
and cardiac regions. Cardiac region hexagonal. Branchial and intestinal regions confluent.
Cervical groove deepest axially; curves around base mesogastric region, then becomes shallower
and bends transversely to intersect lateral margin between first and second anterolateral spines.
Branchiocardiac groove only defines lateral parts of cardiac region, does not reach lateral
margin. Dorsal carapace surface armed with larger and smaller tubercles; row of five pronounced
tubercles midway gastric region; other strong tubercles present on epigastric, branchial, and
cardiac regions. Of hardened parts: ventral surface, abdomen, and appendages missing; rostral
spines largely missing.
Measurements.—Excluding spines and rostrum: 27.7 mm long, 23.3 mm wide, and 14 mm tall
(as preserved).
Remarks.—The anterolateral spines are about equally prominent on the cast and the internal
mold. The bases of the rostral spines and many of the orbital spines are much better visible on
the cast, which is not surprising given the delicate nature of spines, having the tendency to break
easily on the internal mold. Perhaps surprisingly, the small tubercles on the dorsal carapace are

575	not as numerous on the cast, yet another example that ornamentation with and without the cuticle
576	can differ (see Lörenthey & Beurlen, 1929; Klompmaker, Hyžný & Jakobsen, 2015). Here, the
577	difference can at least in part be explained by the fact that still some cuticle is present near/in
578	those tubercles in the external mold, leading to the absence or less obvious tubercles on the cast.
579	Nemausa acuticornis is consistently more differentiated in the gastric region (e.g., center
580	mesogastric region better defined and outlined: Fig. 14; Rathbun, 1925: pl. 136.1; Felder et al.,
581	2014: fig. 7C). Moreover, Figure 15 shows and Rathbun (1925: p. 391) mentioned that the
582	suborbital margin of N. acuticornis contained only one pronounced spine between the outer
583	orbital spine and the spines on the antennal segment, whereas this specimen bears two distinct
584	spines there. Finally, <i>N. acuticornis</i> is relatively wider for specimens of the same size (Fig. 13).
585	Nemausa cornutus exhibits more spinose ornamentation on the carapace (Rathbun 1925: pl.
586	137.3 and 137.4) even though the specimens are larger (larger specimens tend to have weaker
587	ornamentation compared to younger specimens from the same species in the Mithracinae).
588	Moreover, the specimens in Rathbun (1925: pl. 137.3 and 137.4) are narrower (Fig. 13), although
589	more specimens are needed to statistically test this difference.
590	Nemausa sinensis has a lower l/w ratio (1.03 [Garth, 1958: pl. 41.1], 1.06 [Rathbun, 1892: pl.
591	38.2]) compared to <i>N. miocenica</i> sp. nov. (1.19) (Fig. 13). Furthermore, stronger tubercles are
592	present on N. sinensis.
593	Very few specimens of <i>N. spinipes</i> are figured, with Rathbun (1925) showing the best image.
594	Nemausa spinipes has a better defined mesogastric region (Rathbun, 1925: pl. 136.4) and all
595	anterolateral spines are single and not associated with smaller spines as in the specimen under
596	study. The same author also showed a very strong tubercle on the posterior part of the

mesogastric region, not seen in the specimen under study; and two instead of one tubercle are present around the location where the mesogastric process would be.

Nemausa donovani is different in that the mesogastric region is outlined entirely and a distinct elevation is seen in the center of the posterior part of this region, both unlike in the new species. This is unlikely related to ontogeny because the mesogastric features appear stable throughout ontogeny in a congeneric species (Fig. 15). Although anterolateral spines become more prominent throughout ontogeny in Nemausa (N. acuticornis, Fig. 15), the difference between N. donovani and N. miocenica sp. nov. is much greater, supporting the hypothesis that these are two separate species. Furthermore, N. miocenica sp. nov. bears a denser ornamentation of tubercles, which may only in part be explained by ontogeny (Fig. 15) because even the smallest specimen of N. acuticornis bears distinct tubercles on the branchial regions, whereas these regions are nearly smooth in N. donovani, unlike for N. miocenica sp. nov.

Stratigraphic and geographic range.—lower Miocene, Jamaica.

Acknowledgements

We are grateful to: Chad Walter and Rafael Lemaitre (USNM) for allowing examination of collections under their care; B. Alex Kittle and Sean Roberts (both FLMNH) for assistance in the collections at the USNM and FLMNH; Laura Wiggins, Robert Lasley, and Joan Herrera (Florida Fish and Wildlife Institute) for loan of *N. acuticornis* specimens used in this study; Douglas Jones and George Hecht (both FLMNH), the late Reed Toomey, and Julie Thaler for collecting

520	assistance at Duncans Quarry; Amanda Windsor provided additional information on her papers;
521	Marcos Tavares (Museu de Zoologia, Universidade de São Paulo) provided items of literature;
522	Cristina Robins (FLMNH) for inspiration for a taxon name; and the FLMNH Division of
523	Invertebrate Zoology for access to modern spider crab specimens. The project was initiated
524	during the course Paleontology (Fall 2015), University of Florida, Department of Geological
525	Sciences. This is University of Florida Contribution to Paleobiology 694.
526	
527	
528	Supplemental Information
529	
530	Tables S1–S3 can be found at
531	
532	
533	References
534	
535	Abele LG. 1982. Biogeography. In: Abele LG, ed. The Biology of Crustacea 1; Systematics, the
536	Fossil Record, and Biogeography. New York: Academic Press, 241–304.
537	
538	Abele LG, Kim W. 1986. An illustrated guide to the marine decapod crustaceans of Florida.
539	State of Florida, Department of Environmental Regulation, Technical Series 8 (1), Parts 1 &
540	2:1–760.
541	

542	Aguirre-Urreta MB. 1990. Nuevos crustáceos decápodos (Brachyura y Anomura) en el
543	Terciario de Patagonia, Argentina. V Congreso Argentino de Paleontología y Bioestratigrafía,
544	Tacumán, 1990, Actas I: 149–154.
545	
546	Bell T. 1836. Some account of the Crustacea of the coasts of South America, with descriptions of
547	new genera and species; founded principally on the collections obtained by Mr Cuming and Mr
548	Miller. The Transactions of the Zoological Society of London 2(1):1–86, pls. 1–17.
549	DOI: 10.1111/j.1469-7998.1839.tb00007.x.
550	
551	Beschin C, Busulini A, De Angeli A, Tessier G. 2007. I Decapodi dell'Eocene inferiore di
552	Contrada Gecchelina (Vicenza - Italia settentrionale) (Anomura e Brachyura). Museo di
553	Archeologia e Scienze Naturali "G. Zannato", Montecchio Maggiore (Vicenza) 2007:5–76.
554	
555	Beschin C, Busulini A, Tessier G. 2015. Nuova segnalazione di crostacei associati a coralli
556	nell'Eocene inferiore dei Lessini orientali (Vestenanova – Verona). Lavori Società Veneziana di
557	Scienze Naturali 40:47–109.
558	
559	Blow WC. 2003. New brachyuran crabs (Crustacea: Decapoda) from the Upper Pliocene
660	Yorktown Formation of southeastern Virginia. Proceedings of the Biological Society of
661	Washington 116:168–189.
662	
663	Blow WC, Manning RB. 1996. Preliminary description of 25 new decapod crustaceans from the
664	middle Eocene of the Carolinas, U.S.A. <i>Tulane Studies in Geology and Paleontology</i> 29:1–26.

665	
666	Breton G. 2009. Description of <i>Priscinachus elongatus</i> n. gen., n. sp., and Priscinachidae n. fam.
667	for the earliest spider crab (Crustacea, Decapoda, Majoidea), from the French Cretaceous
668	(Cenomanian). Geodiversitas 31:509–523. DOI: 10.5252/g2009n3a2.
669	
670	Casadío S, Feldmann RM, Parras A, Schweitzer CE. 2005. Miocene fossil Decapoda (Crustacea:
671	Brachyura) from Patagonia, Argentina, and their paleoecological setting. Annals of Carnegie
672	Museum 74:151–188.
673	
674	Coelho PA, Torres MFA. 1990. Revisão das espécies do gênero Mithraculus White na costa
675	Atlântica da América do Sul (Crustacea, Decapoda, Majidae). Anais Sociedade Norestina de
676	Zoologica 3:63–92.
677	
678	Collins JSH, Morris SF. 1976. Tertiary and Pleistocene crabs from Barbados and
679	Trinidad. Palaeontology 19:107–131.
680	
681	Collins JSH, Donovan SK. 2012. Pleistocene decapod crustaceans of eastern Jamaica. Caribbean
682	Journal of Science 46:133–142.
683	
684	Collins JSH, Fraaye RHB, Jagt JWM. 1995. Late Cretaceous anomurans and brachyurans from
685	the Maastrichtian type area. <i>Acta Palaeontologica Polonica</i> 40:165–210.
686	

687	Collins JSH, Donovan SK, Dixon HL. 1996. Crabs and barnacles (Crustacea: Decapoda and
688	Cirripedia) from the Late Pleistocene Port Morant Formation of southeast Jamaica. Bulletin of
689	the Mizunami Fossil Museum 23:51–63, pls. 12–19.
690	
691	Collins JSH, Portell RW, Donovan SK. 2009. Decapod crustaceans from the Neogene of the
692	Caribbean: diversity, distribution and prospectus. <i>Scripta Geologica</i> 138:55–111.
693	
694	Collins JSH, Donovan SK, Stemann TA, Blissett DJ. 2010. Crustaceans of the upper Miocene
695	August Town Formation of southeastern Jamaica. Scripta Geologica, Special Issue 7:177–183.
696	
697	Collins JSH, Garvie CL, Mellish CJT. 2014. Some decapods (Crustacea; Brachyura and
698	Stomatopoda) from the Pleistocene Beaumont Formation of Galveston, Texas. Scripta Geologica
699	147:309–329.
700	
701	De Grave S, Pentcheff ND, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL,
702	Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL,
703	Schweitzer CE, Tan SH, Tshudy D, Wetzer R. 2009. A classification of living and fossil genera
704	of decapods crustaceans. Raffles Bulletin of Zoology 21 (Supplement):1–109.
705	
706	De Jesús Gómez-Cruz A, Bermúdez HD, Vega FJ. 2015. A new species of <i>Diaulax</i> Bell, 1863
707	(Brachyura: Dialucidae) in the Early Cretaceous of the Rosablanca Formation, Colombia. <i>Boletin</i>
708	de la Sociedad Geológica Mexicana 67:103–112.
709	

710	De Saint Laurent M. 1980. Sur la classification et la phylogénie des Crustacés Décapodes
711	Brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus
712	Hebdomadaires des Séances de l'Académie des Sciences, Paris, (D) 290:1265–1268.
713	
714	De Saussure MH. 1853. Description de quelques crustacés nouveaux de la côte occidentale du
715	Mexique. Revue et Magasin de Zoologie pure et appliquée, (série 2) 5:354–368.
716	
717	De Saussure MH. 1857. Diagnoses de quelques crustacés nouveaux de l'Amérique tropicale.
718	Revue et Magasin de Zoologie pure et appliquée (série 2) 9:501–505.
719	
720	Desbonne I, Schramm A. 1867. Brachyures. In: Crustacés de la Guadeloupe d'aprés un
721	Manuscrit du Docteur Isis Desbonne compare avec les Échantillons de Crustacés de sa
722	Collection et les Derniéres Publications de M.M. Henri de Saussure et William Stimpson.
723	Premiere partie. Basse-Terre: Imprimerie du Gouvernement, 1–60, pls. 1–8.
724	
725	Fabricius JC. 1793. Entomologiae systematica emendata et aucta, secundum Classes, Ordines,
726	Genera, Species, adjectis Synonimis, Locis, Observationibus, Descriptionibus, vol. 2. Hafniae: C
727	G. Proft et Storch.
728	
729	Felder DL, Álvarez F, Goy JW, Lemaitre R. 2009. Decapoda (Crustacea) of the Gulf of Mexico,
730	with comments on the Amphionidacea. In: Felder DL, Camp DK, eds. Gulf of Mexico: Origin,
731	Waters, and Biota. College Station: Texas A&M Press, 1019–1104.
732	

733	Felder DL, Thoma BP, Schmidt WE, Sauvage T, Self-Krayesky SL, Chistoserdov A, Bracken-
734	Grissom HD, Fredericq S. 2014. Seaweeds and decapod crustaceans on Gulf deep banks after the
735	Macondo oil spill. BioScience 64:808–819. DOI: 10.1093/biosci/biu119.
736	
737	Feldmann RM, Schweitzer CE, Baltzly LM, Bennett OA, Jones AR, Mathias FF, Weaver KL,
738	Yost SL. 2013. New and previously known decapod crustaceans from the Late Cretaceous of
739	New Jersey and Delaware, USA. Bulletin of the Mizunami Fossil Museum 39:7–37.
740	
741	Fraaije RHB. 2003. Evolution of reef-associated decapod crustaceans through time, with
742	particular reference to the Maastrichtian type area. Contributions to Zoology 72:119–130.
743	
744	Franțescu AL. 2013. Comparative study of the Eocene fossil decapod crustaceans of the North
745	American Atlantic coast and European Tethyan provinces. D. Phil. Thesis, Kent State
746	University, Ohio, USA.
747	
748	Garth JS. 1940. Some new species of brachyuran crabs from Mexico and the Central and South
749	American mainland. Allan Hancock Pacific Expeditions 5(3):53–127.
750	
751	Garth JS. 1946. Littoral brachyuran fauna of the Galapagos Islands. Allan Hancock Pacific
752	Expeditions 5(10):341–601.
753	
754	Garth JS. 1958. Brachyura of the Pacific coast of America: Oxyrhyncha. Allan Hancock Pacific
755	Expeditions 21(1):1–499.

756	
757	Gatt M, De Angeli A. 2010 A new coral-associated decapod assemblage from the Upper
758	Miocene (Messinian) Upper Coralline Limestone of Malta (Central
759	Mediterranean). <i>Palaeontology</i> 53:1315–1348. DOI: 10.1111/j.1475-4983.2010.01008.x.
760	
761	Gerstaecker A. 1857. Carcinologishes beiträge. <i>Archiv für Naturgeschichte</i> 22:101–162, pls. 4–6.
762	
763	Glassell SA. 1936. The Templeton Crocker Expedition. I. Six new brachyuran crabs from the
764	Gulf of California. Zoologica; Scientific Contributions of the New York Zoological Society
765	21:213–218.
766	
767	Griffin DJG. 1966. A review of the Australian majid spider crabs (Crustacea, Brachyura).
768	Australian Zoologist 13:259–298, pls. 15–17.
769	
770	Guinot D. 2011. The position of the Hymenosomatidae MacLeay, 1838, within the Brachyura
771	(Crustacea, Decapoda). Zootaxa 2890:40-52.
772	
773	Guinot D, Tavares M, Castro P. 2013. Significance of the sexual openings and supplementary
774	structures on the phylogeny of brachyuran crabs (Crustacea, Decapoda, Brachyura), with new
775	nomina for higher-ranked podotreme taxa. Zootaxa 3665:1–414. DOI:
776	10.11646/zootaxa.3665.1.1.
777	

778	Herbst JFW. 1782–1804. Versuch einer Naturgeschichte der Krabben und Krebse, Nebst Einer
779	Systematischen Beschreibung ihrer Verschiedenen Arten, vol. 1–3. Berlin and Stralsund: Gottlieb
780	August Lange.
781	
782	Jakobsen SL, Collins JSH. 1997. New middle Danian species of anomurans and brachyuran
783	crabs from Fakse, Denmark. Bulletin of the Geological Society of Denmark 44:89–100.
784	
785	Kingsley JS. 1879. On a collection of Crustacea from Virginia, North Carolina, and Florida, with
786	a revision of the genera of Crangonidae and Palaemonidae. Proceedings of the Academy of
787	Natural Sciences of Philadelphia 1879:383–427.
788	
789	Klompmaker AA. 2013. Extreme diversity of decapod crustaceans from the mid-Cretaceous (late
790	Albian) of Spain: implications for Cretaceous decapod paleoecology. Cretaceous
791	Research 41:150–185. DOI: 10.1016/j.cretres.2012.12.003.
792	
793	Klompmaker AA, Feldmann RM, Schweitzer CE. 2012. A hotspot for Cretaceous
794	goniodromitids (Decapoda: Brachyura) from reef associated strata in Spain. Journal of
795	Crustacean Biology 32:780–801. DOI: 10.1163/193724012X635340.
796	
797	Klompmaker AA, Ortiz JD, Wells NA. 2013. How to explain a decapod crustacean diversity
798	hotspot in a mid-Cretaceous coral reef. Palaeogeography, Palaeoclimatology,
799	Palaeoecology 374:256–273. DOI: 10.1016/j.palaeo.2013.01.024.
800	

301	Klompmaker AA, Schweitzer CE, Feldmann RM, Kowalewski M. 2013. The influence of reefs
302	on the rise of Mesozoic marine crustaceans. <i>Geology</i> 41:1179–1182. DOI: 10.1130/G34768.1.
303	
304	Klompmaker AA, Hyžný M, Portell RW, Kowalewski M. 2015. Growth, inter-and intraspecific
305	variation, palaeobiogeography, taphonomy and systematics of the Cenozoic ghost shrimp
306	Glypturus. Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2015.1009505.
307	
808	Klompmaker AA, Hyžný M, Jakobsen SL. 2015. Taphonomy of decapod crustacean cuticle and
309	its effect on the appearance as exemplified by new and known taxa from the Cretaceous-Danian
310	crab Caloxanthus. Cretaceous Research 55:141–151. DOI: 10.1016/j.cretres.2014.11.011.
311	
312	Krobicki M, Zatoń M. 2008. Middle and Late Jurassic roots of brachyuran crabs:
313	Palaeoenvironmental distribution during their early evolution. Palaeogeography,
314	Palaeoclimatology, Palaeoecology 263:30–43. DOI: 10.1016/j.palaeo.2008.01.025.
315	
316	Lamarck JBPA. 1818. Histoire naturelle des animaux sans vertèbres, présentant les caractères
317	généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs
818	genres et la citation des principales espèces qui s'y rapportent; précédé d'une introduction
319	offrant la détermination des caractères essentiels de l'animal, sa distinction du végétal et des
320	autres corps naturels, enfin l'exposition des principes fondamentaux de la zoologie 5:1–612.
321	
322	Latreille PA. 1802–1803. Histoire naturelle, générale et particulière des crustacés et des insects,
323	vol. 3. Paris: F. Dufart.

824	
825	Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera,
826	species, cum characteribus, differentiis, synonymis locis, vol. 1. Edition 10. Holmiae: Laurentius
827	Salvius.
828	
829	Lőrenthey E, Beurlen K. 1929. Die fossilen Dekapoden der Länder der Ungarischen Krone.
830	Geologica Hungarica, Series Palaeontologica 3:1–421.
831	
832	MacLeay WS. 1838. On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith
833	In: Smith A, ed. Illustrations of the Zoology of South Africa; Consisting Chiefly of Figures and
834	Descriptions of the Objects of Natural History Collected During an Expedition into the Interior
835	of South Africa, in the Years 1834, 1835, and 1836; Fitted out by 'The Cape of Good Hope
836	Association for Exploring Central Africa': Together with a Summary of African Zoology, and an
837	Inquiry into the Geographical Ranges of Species in that Quarter of the Globe, Invertebratae.
838	London: Smith, Elder & Co, 53–71.
839	
840	Martins-Neto RG, Dias Júnior SC. 2007. The Brazilian paleodecapod fauna: state of the
841	knowledge. In: Garassino A, Feldmann RM, Teruzzi G, eds. 3rd Symposium on Mesozoic and
842	Cenozoic Decapod Crustaceans - Museo di Storia Naturale di Milano, May 23-25, 2007.
843	Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di
844	Milano 35(2):76–78.
845	

846	Melo GASD. 1990. Descrição de Mithrax (Mithrax) besnardi, sp.n., Espécie abissalbêntica de
847	ãguas meridionais da América do Sul (Crustacea, Brachyura, Majidae). <i>Atlantica</i> 12:19–26.
848	
849	Milne-Edwards A. 1873–1880. Études sur les Xiphosures et les Crustacés de la région
850	Mexicaine, mission scientifique au Mexique et dans l'Amerique centrale. Recherches
851	zoologiques a l'histoire de la faune de l'Amerique Centrale et du Mexique, part 5. Paris:
852	Imprimerie Nationale.
853	
854	Milne-Edwards H. 1832. Observations sur les crustacés du genre Mithrax. Magasin de Zoologie
855	2 (class 7), 16 pp (unpaginated), pls. 1–5.
856	
857	Mitchell SF. 2004. Lithostratigraphy and palaeogeography of the White Limestone Group.
858	Cainozoic Research 3:5–29.
859	
860	Morris SF. 1993. The fossil arthropods of Jamaica. In: Wright RM, Robinson E, eds.
861	Biostratigraphy of Jamaica. Geological Society of America Memoir 182:115–124.
862	
863	Müller P. 1984. Decapod Crustacea of the Badenian. Geologica Hungarica, Series
864	Palaeontologica 42:3–317.
865	
866	Ng PK, Jeng MS. 1999. The Hymenosomatidae (Decapoda, Brachyura) of Taiwan. Crustaceana
867	72:531–534.
868	

869	Ng PKL, Guinot D, Davie PJF. 2008. Systema Brachyurorum: Part 1. An annotated checklist of
870	extant brachyuran crabs of the world. Raffles Bulletin of Zoology 17 (Supplement):1–286.
871	
872	Portell RW, Collins JSH. 2004. Decapod crustaceans of the Lower Miocene Montpelier
873	Formation, White Limestone Group of Jamaica. Cainozoic Research 3:109–126.
874	
875	Provenzano AJ, Brownell WN. 1977. Larval and early post-larval stages of the West Indian
876	spider crab, Mithrax spinosissimus (Lamarck) (Decapoda: Majidae). Proceedings of the
877	Biological Society of Washington 90:735–752.
878	
879	Rathbun MJ. 1892. Catalogue of the crabs of the family Periceridae in the U.S. National
880	Museum. Proceedings of the United States National Museum 15:231–277, pls. 28–40.
881	
882	Rathbun MJ. 1901. The Brachyura and Macrura of Porto Rico. Bulletin of the United States Fish
883	Commission [for 1900] 20:1–127.
884	
885	Rathbun MJ. 1920. New species of spider crabs from the Straits of Florida and Caribbean Sea.
886	Proceedings of the Biological Society of Washington 33:23–24.
887	
888	Rathbun MJ. 1925. The spider crabs of America. Bulletin of the United States National Museum
889	129:1–613.
890	

891	Rathbun MJ. 1935. Fossil Crustacea of the Atlantic and Gulf Coastal Plain. Geological Society of
892	America, (special paper) 2:i–viii, 1–160.
893	
894	Roberts HB. 1962. The Upper Cretaceous decapod crustaceans of New Jersey and Delaware. In:
895	Richards HG, ed. The Cretaceous fossils of New Jersey. Bulletin of the New Jersey Division of
896	Geology 61:163–192.
897	
898	Robins CM, Feldmann RM, Schweitzer CE. 2013. Nine new genera and 24 new species of the
899	Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of
900	Austria, and notes on fossil munidopsid classification. Annalen des Naturhistorischen Museums
901	in Wien, Serie A, 115:167–251.
902	
903	Samouelle G. 1819. The entomologist's useful compendium, or an introduction to the British
904	insects, etc. London: T. Boys.
905	
906	Schweitzer CE, Feldmann RM, Garassino A, Karasawa H, Schweigert G. 2010. Systematic list
907	of fossil decapod crustacean species. Crustaceana Monographs 10:1-222.
908	
909	Steele DH. 1988. Latitudinal variations in body size and species diversity in marine decapod
910	crustaceans of the continental shelf. Internationale Revue der gesamten Hydrobiologie und
911	Hydrographie 73:235–246. DOI: 10.1002/iroh.19880730209.
912	

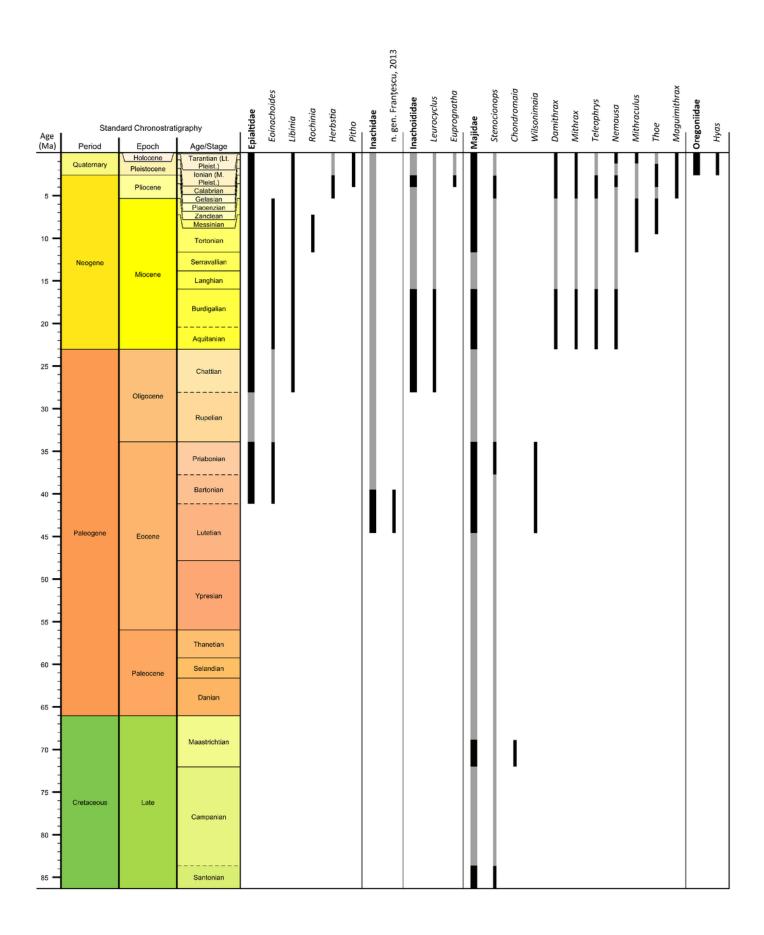
913	Stepp AM. 2014. Descriptions and biodiversity of decapods in the Seroe Domi Formation of
914	Curaçao. M.S. Thesis, Kent State University, Ohio, USA.
915	
916	Stimpson W. 1860. Notes on North American Crustacea, in the Museum of the Smithsonian
917	Institution, No. 2. Annals of the Lyceum of Natural History of New York 7:176–246.
918	DOI: 10.1111/j.1749-6632.1862.tb00153.x.
919	
920	Stimpson W. 1871. Preliminary report on the Crustacea dredged in the Gulf Stream in the Straits
921	of Florida by L. F. de Pourtalés, Assist. United States Coast Survey. Part I. Brachyura. <i>Bulletin</i>
922	of the Museum of Comparative Zoology at Harvard College 2:109–160.
923	
924	Tavares MS, Albuquerque EF. 1993. On the occurrence of Mithrax (Mithrax) tortugae Rathbun
925	(Crustacea: Brachyura: Majidae) on the Brazilian continental shelf. Boletín del Instituto
926	Oceanográfico de Venezuela 27(1–2):37–39.
927	
928	Tavares M, Santana W. 2015. A new genus and two new species of hymenosomatid crabs
929	(Crustacea: Brachyura: Hymenosomatidae) from the southwestern Atlantic and eastern
930	Australia. Zootaxa 3905:91–106. DOI: 10.11646/zootaxa.3905.1.5.
931	
932	Távora VA, Paixão GMC, Da Silva FA. 2010. Considerações filogenéticas e biogeografia
933	histórica dos malacostráceos (decápodes e isópodes) cenozóicos do Brasil. Revista Brasileira de
934	Geociências 40:47–58.
935	

936	Türkay M. 1986. Mithrax caboverdianus n. sp., eine neue Seespinnen-Art von den
937	Kapverdischen Inseln (Crustacea: Decapoda: Brachyura: Majidae). Courier Forschungsinstitut
938	Senckenberg 81:7–11.
939	
940	Varela C. 2013. Nuevos datos sobre los crustáceos fósiles (Decapoda: Brachyura) de Cuba.
941	Solenodon 11:1–5.
942	
943	Varela C, Rojas Consuegra R. 2011. El registro fósil de los crustáceos decápodos (Arthropoda,
944	Crustacea) marinos de Cuba. IX Congreso Cubano de Geologia (Geologia 2011). Estratigrafía y
945	Paleontología, 10 pp.
946	
947	Verrill AE. 1908. Decapod Crustacea of Bermuda; I. Brachyura and Anomura. Their
948	distribution, variations and habits. Transactions of the Connecticut Academy of Arts and Sciences.
949	13:299–474, pls. 9–28.
950	
951	Wagner HP. 1990. The genera Mithrax Latreille, 1818 and Mithraculus White, 1847 (Crustacea:
952	Brachyura: Majidae) in the Western Atlantic Ocean. Zoologische Verhandelingen 264:1–65.
953	
954	Wicksten MK. 1993. A review and a model of decorating behavior in spider crabs (Decapoda,
955	Brachyura, Majidae). Crustaceana 64:314–325.
956	
957	Williams AB. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United
958	States, Maine to Florida. Washington, DC: Smithsonian Institution Press.

959	
960	Windsor AM, Felder DL. 2009. Re-evaluation of species allied to Mithrax hispidus (Decapoda:
961	Brachyura: Majoidea: Mithracidae) based on three mitochondrial genes. <i>Zootaxa</i> 2302:61–68.
962	
963	Windsor AM, Felder DL. 2014. Molecular phylogenetics and taxonomic reanalysis of the family
964	Mithracidae Macleay (Decapoda: Brachyua: Majoidea). <i>Invertebrate Systematics</i> 28:73–145.
965	DOI: 10.1071/IS13011.
966	
967	
968	
969	
970	
971	
972	
973	
974	
975	
976	
977	
978	
979	
980	
981	

982	Figure legends
983	
984	Figure 1. Stratigraphic ranges of families and genera of spider crabs (Majoidea) in the Western
985	Atlantic. Grey bars represent probable occurrences based on modern or bracketing fossil
986	occurrences for that taxon. Chart arranged stratigraphically and by family. The
987	Hymenosomatidae have no fossil record and the Priscinachidae are only known from Europe
988	thus far. The ranges of families are derived from genera; genus names that were uncertain (aff.,
989	?[genus], or "[genus]") were not used. Timescale produced with TSCreator 6.4
990	(<u>http://www.tscreator.org</u>).
991	
992	Figure 2. Genus-level diversity of spider crabs in the Western Atlantic from older to younger
993	epochs (A–D). Genus names that were uncertain (aff., ?[genus], or "[genus]") were not included.
994	Geographic regions were defined as follows: Atlantic coast North America (here Maine to South
995	Carolina); Gulf of Mexico (incl. Florida); Caribbean (Cuba to Panama to Barbados); Atlantic
996	coast South America (here Argentina). The youngest epoch was arbitrarily chosen for genera that
997	could be either from one epoch or the following. No records are known from the Paleocene and
998	Oligocene.
999	
1000	Figure 3. Length/width ratio vs log ₂ width (mm) for extant Maguimithrax spinosissimus
1001	(Lamarck, 1818). Maximum length was determined without the rostral spines and width was
1002	measured without the anterolateral spines. Trend line is logarithmic. Data in Table S2.
1003	

1004	Figure 4. Dorsal and ventral views of modern male specimens of <i>Maguimithrax spinosissimus</i>
1005	that differ in size. (A, B) UF 11447, Florida, USA; (C, D) UF 11388, Florida, USA (largest
1006	specimen). Note the difference in length/width ratios of the carapace. Scale bar width = 30 mm.
1007	
1008	Figure 5. Length/width ratio vs log ₂ width (mm) for <i>Damithrax unguis</i> (Portell & Collins, 2004)
1009	from lower Miocene coral-associated limestones of Jamaica and modern Damithrax hispidus
1010	(Herbst, 1790) from Florida, USA, for comparison. Maximum length was determined without the
1011	rostral spines and width was measured without the anterolateral spines. Trend lines are
1012	logarithmic. Data in Table S2.
1013	
1014	Figure 6. Growth series of dorsal carapaces of Damithrax unguis (Portell & Collins, 2004) from
1015	the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans
1016	Quarry, Jamaica. (A) = is RTV silicone rubber cast of external mold. (B–K) = internal molds.
1017	(A) UF 255051; (B) UF 113677; (C) UF 106768 (paratype); (D) UF 255053; (E) UF 112795; (F)
1018	UF 112783; (G) UF 112784; (H) UF 106697 (holotype); (I) UF 103954; (J, K) frontal and left-
1019	lateral views of UF 113677. Scale bar below (B) applies to (A–H). Scale bar width = 10.0 mm.
1020	
1021	Figure 7. Damithrax cf. D. pleuracanthus from the late Pliocene-early Pleistocene of the
1022	MacAsphalt Shell Pit, Sarasota County, Florida, USA (UF 29057). (A) Dorsal view; (B) Ventral
1023	view; (C) Frontal view; (D) Right-lateral view; (E) Left-lateral view. Scale bar width = 10.0 mm.
1024	
1025	Figure 8. Dorsal views of modern specimens and a single fossil specimen of <i>Damithrax</i> spp., all
1026	from Florida, USA. Upper row from left to right – modern D. hispidus: UF 12475, 11604, 1082,

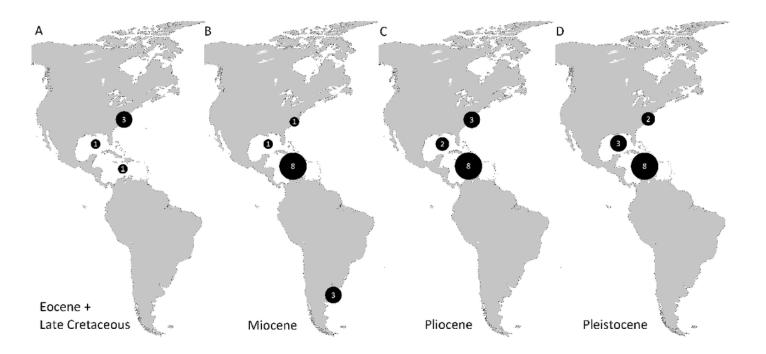

1027	1086; Middle row – modern D. pleuracanthus: UF 3673, 9588 (largest specimen of lot), 7874,
1028	1052; lower row – fossil <i>Damithrax</i> cf. <i>D. pleuracanthus</i> : UF 29057. Scale bar width = 10.0 mm.
1029	
1030	Figure 9. Posterior views of similar-sized, modern specimens and a single fossil specimen of
1031	Damithrax spp. (A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D.
1032	pleuracanthus: UF 29057. For specimen sizes see Fig. 8.
1033	
1034	Figure 10. Frontal views of similar-sized, modern specimens and a single fossil specimen of
1035	Damithrax spp. (A) D. hispidus: UF 1082; (B) D. pleuracanthus: UF 7874; (C) Damithrax cf. D.
1036	pleuracanthus: UF 29057. For specimen sizes see Fig. 8.
1037	
1038	Figure 11. Type specimens of Mithrax arawakum sp. nov. from the lower Miocene coral-
1039	associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica. (A, D, E)
1040	Holotype, UF 112682, in dorsal, frontal, and left-lateral views, resp.; (B) Paratype, external
1041	mold, UF 112941; (C) Paratype, cast of external mold, UF 112941. Scale bar width = 10.0 mm.
1042	
1043	Figure 12. The holotype of <i>Nemausa donovani</i> (Portell & Collins, 2004) from the lower Miocene
1044	coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF
1045	103958). (A) Dorsal view; (B) Frontal view; (C) Angled right-lateral view; (D) Upper view of
1046	rostrum and orbit; (E) Right-lateral view. Scale bar width = 5.0 mm for (A–C, E); 1.5 mm for
1047	(D).
1048	

1049	Figure 13. Length/width ratio vs log ₂ width (mm) for <i>Nemausa</i> spp. <i>Nemausa donovani</i> was not
1050	included because the total length could not be determined. Maximum length was determined
1051	without the rostral spines and width was measured without the anterolateral spines. Trend line is
1052	logarithmic. Data in Table S2.
1053	
1054	Figure 14. The holotype of Nemausa miocenica sp. nov. from the lower Miocene coral-
1055	associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF
1056	113651). (A) Dorsal view (internal mold); (B) Dorsal view (cast of external mold); (C) Frontal
1057	view; (D) Right-lateral view; (E) External mold; (F) Upper margin left orbit; (G) Cast showing
1058	bases of rostral horns and various orbital spines in more detail. Arrows in (G) indicate suborbital
1059	spines and broken outer orbital spine. Scale bar width = 20 mm for (A–E); 2.0 mm for (F); 10
1060	mm for (G).
1061	
1062	Figure 15. Growth series of dorsal carapaces of modern <i>Nemausa acuticornis</i> (Stimpson, 1871)
1063	from various localities of the Atlantic coast of Florida, USA. Note that specimens become
1064	relatively wider with age. (A) FSBC I-9758; (B) FSBC I-050561; (C) FSBC I-050562 (note the
1065	'unicorn' rostrum instead of a double-horned rostrum); (D) FSBC I-050562; (E) FSBC I-050562;
1066	(F) FSBC I-050561; (G) FSBC I-050562; (H) FSBC I-050562. Scale bar width = 30 mm.

1

Stratigraphic ranges of families and genera of spider crabs (Majoidea) in the Western Atlantic.

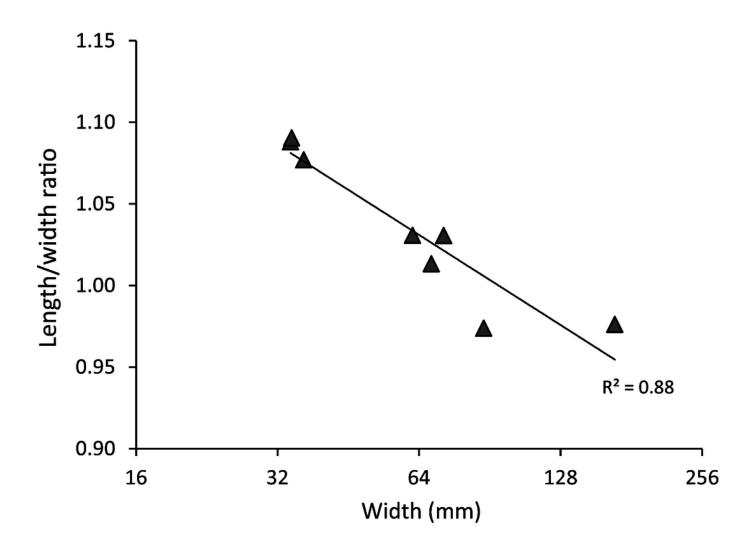
Grey bars represent probable occurrences based on modern or bracketing fossil occurrences for that taxon. Chart arranged stratigraphically and by family. The Hymenosomatidae have no fossil record and the Priscinachidae are only known from Europe thus far. The ranges of families are derived from genera; genus names that were uncertain (aff., ?[genus], or "[genus]") were not used. Timescale produced with TSCreator 6.4 (http://www.tscreator.org).


2

Genus-level diversity of spider crabs in the Western Atlantic from older to younger epochs (A–D).

Genus names that were uncertain (aff., ?[genus], or "[genus]") were not included.

Geographic regions were defined as follows: Atlantic coast North America (here Maine to South Carolina); Gulf of Mexico (incl. Florida); Caribbean (Cuba to Panama to Barbados);


Atlantic coast South America (here Argentina). The youngest epoch was arbitrarily chosen for genera that could be either from one epoch or the following. No records are known from the Paleocene and Oligocene.

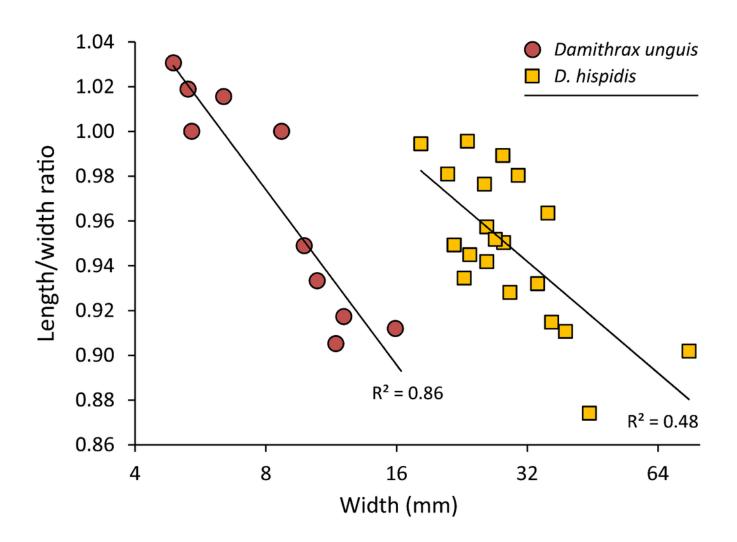
3

Length/width ratio vs log₂ width (mm) for extant *Maguimithrax spinosissimus* (Lamarck, 1818).


Maximum length was determined without the rostral spines and width was measured without the anterolateral spines. Trend line is logarithmic. Data in Table S2.

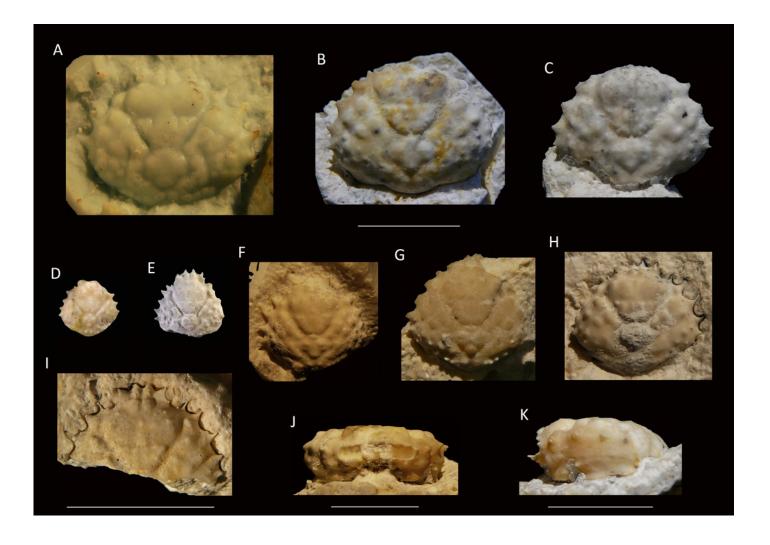
4

Dorsal and ventral views of modern male specimens of *Maguimithrax spinosissimus* that differ in size.


(A, B) UF 11447, Florida, USA; (C, D) UF 11388, Florida, USA (largest specimen). Note the difference in length/width ratios of the carapace. Scale bar width = 30 mm.

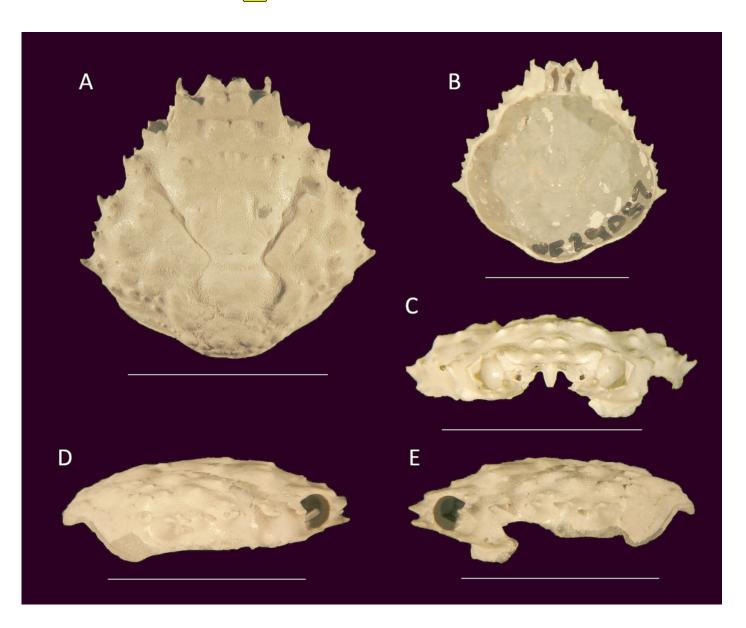
5

Length/width ratio vs log₂ width (mm) for *Damithrax unguis* (Portell & Collins, 2004) from the lower Miocene of Jamaica vs modern *Damithrax hispidus* (Herbst, 1790) from Florida.


Maximum length was determined without the rostral spines and width was measured without the anterolateral spines. Trend lines are logarithmic. Data in Table S2.

6

Growth series of dorsal carapaces of *Damithrax unguis* (Portell & Collins, 2004) from the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica.


(A) = is RTV silicone rubber cast of external mold. (B-K) = internal molds. (A) UF 255051; (B) UF 113677; (C) UF 106768 (paratype); (D) UF 255053; (E) UF 112795; (F) UF 112783; (G) UF 112784; (H) UF 106697 (holotype); (I) UF 103954; (J, K) frontal and left-lateral views of UF 113677. Scale bar below (B) applies to (A-H). Scale bar width = 10.0 mm.

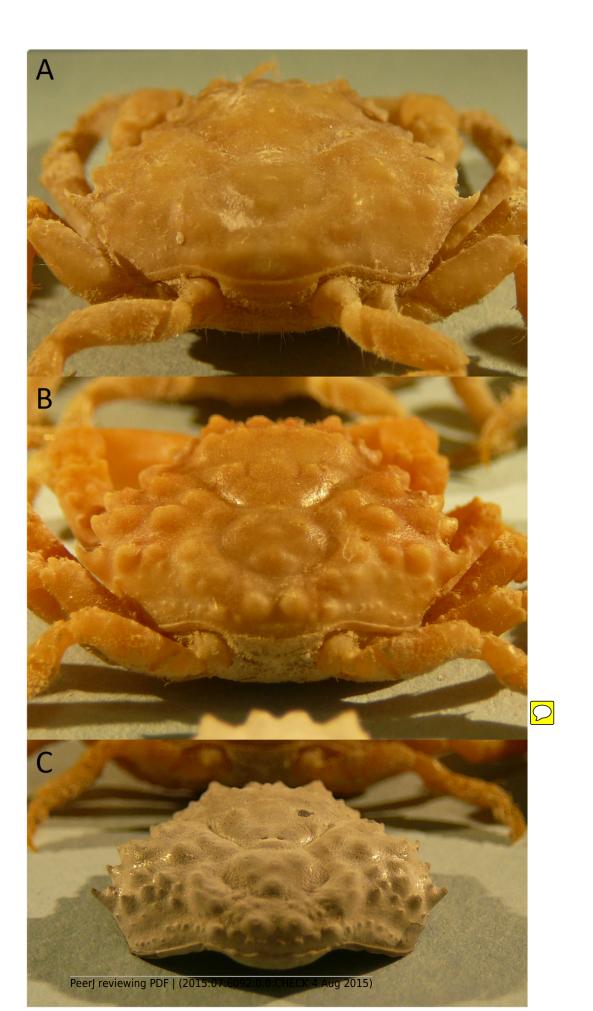
7

Damithrax cf. D. pleuracanthus from the late Pliocene-early Pleistocene of the MacAsphalt Shell Pit, Sarasota County, Florida, USA (UF 29057).

(A) Dorsal view; (B) Ventral view; (C) Frontal view; (D) Right-lateral view; (E) Left-lateral view. Scale bar width = 10.0 mm.

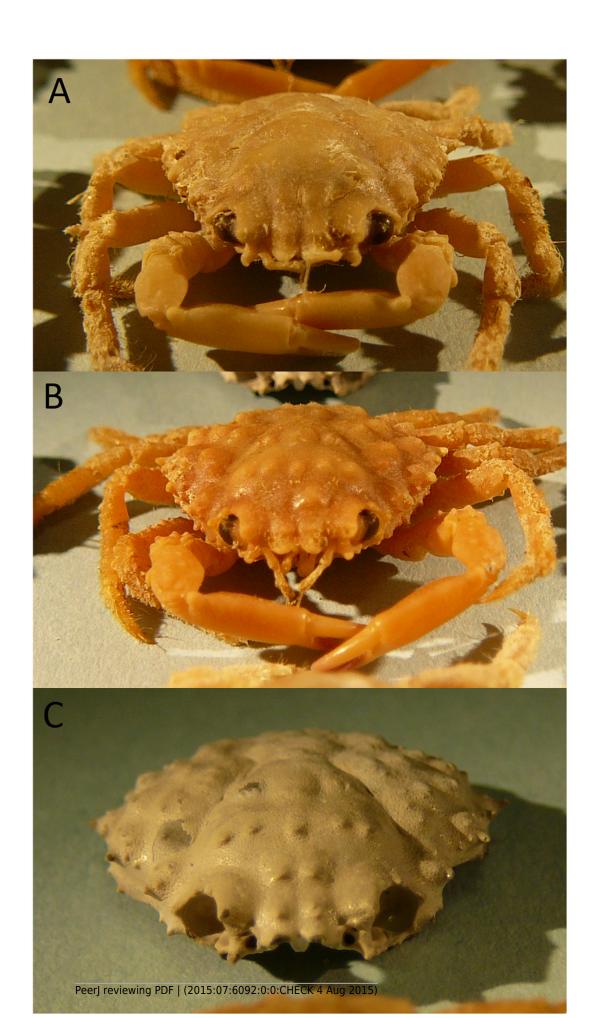
8

Dorsal views of modern specimens and a single fossil specimen of *Damithrax* spp., all from Florida, USA.


Upper row from left to right – modern *D. hispidus*: UF 12475, 11604, 1082, 1086; Middle row – modern *D. pleuracanthus*: UF 3673, 9588 (largest specimen of lot), 7874, 1052; lower row – fossil *Damithrax* cf. *D. pleuracanthus*: UF 29057. Scale bar width = 10.0 mm.

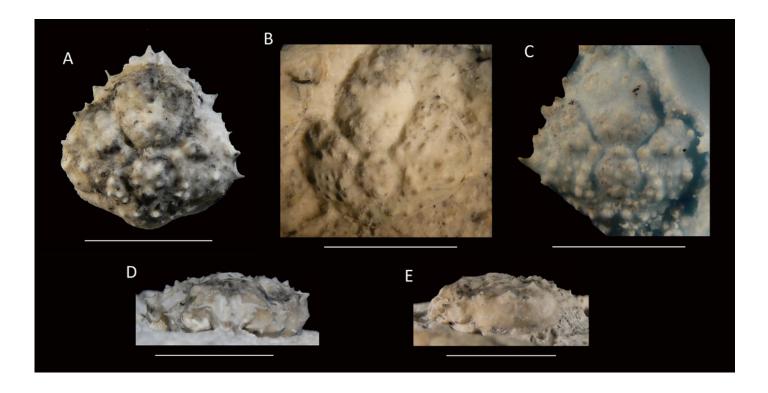
9

Posterior views of similar-sized, modern specimens and a single fossil specimen of *Damithrax* spp.


(A) *D. hispidus*: UF 1082; (B) *D. pleuracanthus*: UF 7874; (C) *Damithrax* cf. *D. pleuracanthus*: UF 29057. For specimen sizes see Fig. 8.

10

Frontal views of similar-sized, modern specimens and a single fossil specimen of *Damithrax* spp.


(A) *D. hispidus*: UF 1082; (B) *D. pleuracanthus*: UF 7874; (C) *Damithrax* cf. *D. pleuracanthus*: UF 29057. For specimen sizes see Fig. 8.

11

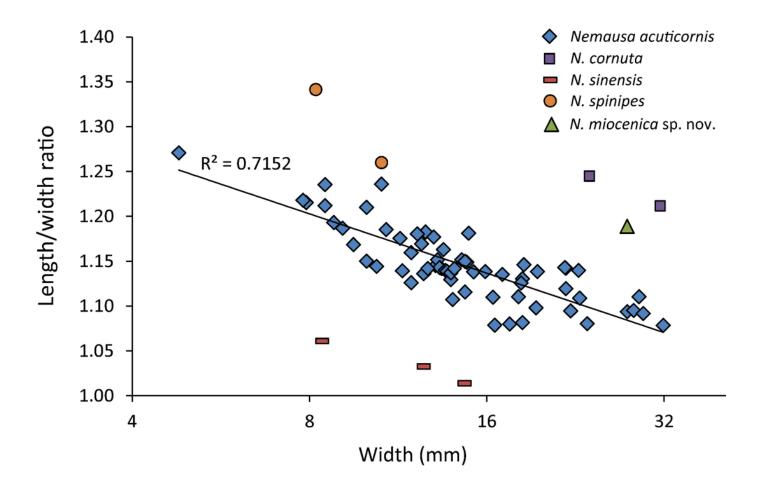
Type specimens of *Mithrax arawakum* sp. nov. from the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica.

(A, D, E) Holotype, UF 112682, in dorsal, frontal, and left-lateral views, resp.; (B) Paratype, external mold, UF 112941; (C) Paratype, cast of external mold, UF 112941. Scale bar width = 10.0 mm.

12

The holotype of *Nemausa donovani* (Portell & Collins, 2004) from the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF 103958).

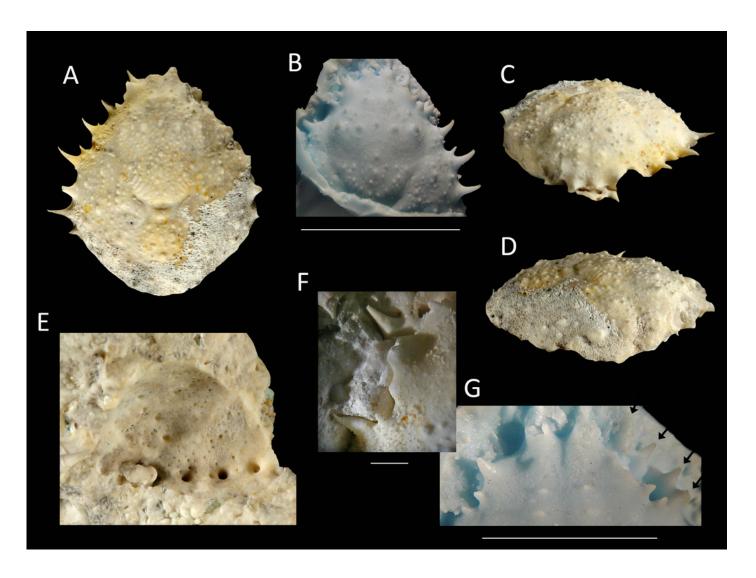
(A) Dorsal view; (B) Frontal view; (C) Angled right-lateral view; (D) Upper view of rostrum and orbit; (E) Right-lateral view. Scale bar width = 5.0 mm for (A-C, E); 1.5 mm for (D).



13

Length/width ratio vs log₂ width (mm) for *Nemausa* spp.

Nemausa donovani was not included because the total length could not be determined.


Maximum length was determined without the rostral spines and width was measured without the anterolateral spines. Trend line is logarithmic. Data in Table S2.

14

The holotype of *Nemausa miocenica* sp. nov. from the lower Miocene coral-associated limestones of the Montpelier Formation in the Duncans Quarry, Jamaica (UF 113651).

(A) Dorsal view (internal mold); (B) Dorsal view (cast of external mold); (C) Frontal view; (D) Right-lateral view; (E) External mold; (F) Upper margin left orbit; (G) Cast showing bases of rostral horns and various orbital spines in more detail. Arrows in (G) indicate suborbital spines and broken outer orbital spine. Scale bar width = 20 mm for (A-E); 2.0 mm for (F); 10 mm for (G).

15

Growth series of dorsal carapaces of modern *Nemausa acuticornis* (Stimpson, 1871) from various localities of the Atlantic coast of Florida, USA.

Note that specimens become relatively wider with age. (A) FSBC I-9758; (B) FSBC I-050561; (C) FSBC I-050562 (note the 'unicorn' rostrum instead of a double-horned rostrum); (D) FSBC I-050562; (E) FSBC I-050562; (F) FSBC I-050561; (G) FSBC I-050562; (H) FSBC I-050562. Scale bar width = 30 mm.

