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The variation in egg and clutch among amniotes has led to the idea that selection towards
an “optimal egqg strategy” is based on trade-offs. Here we report results of analyses on egg
and clutch characteristics across all clades of living turtles, including at least one
representative of each extant turtle genus. Our goals were to investigate whether egg and
clutch size follow the predictions of egg size theory, if there is convergence regarding
reproductive strategies among turtles, and to identify factors that influence clutch and egg
traits. We hypothesized that egg and clutch characteristics are influenced by a number of
factors, including physiological and ecological constrains, and that reproductive traits in
Testudines evolved independently several times in distantly-related clades. We find
evidence that turtles explored different reproductive strategies, with several instances of
convergent evolution, based on egg and clutch traits. Diet and climatic zone play
important roles in the selection towards optimal reproductive strategies in different
species.
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Abstract

Optimal egg size theory assumes that changes in the egg and clutch are driven by selection,
resulting in adjustments for the largest possible production of offspring with the highest fitness.
Turtles offer a rich subject of investigation, given the ecological diversity of the group. Evidence
supports the idea that large-bodied turtles tend to produce larger clutches with small and round
eggs, while smaller species produce small clutches with large and elongated eggs. Trends in egg
and clutch characteristics also seem to be influenced by ecological factors. Until now, a
comprehensive analysis exploring reproductive characteristics across all genera of living turtles
was missing. Our goals were to investigate whether egg and clutch size follow the predictions of
egg size theory, if there are convergent reproductive strategies, and identify ecological factors
that influence clutch and egg traits. Here, we report results of analyses on reproductive
characteristics across all clades of living turtles, including at least one representative of each
extant turtle genus. Using phylogenetic methods, we tested the covariance among reproductive
traits and if they are convergent among different turtle lineages. We also estimated which
ecological factors influence these traits. Our analyses are consistent with the optimal egg size
theory, with evidences for convergent evolution. We also verified that diet and geographical
distribution influence the size of eggs and clutches. We conclude that egg and clutch traits in
Testudines evolved independently several times across non-directly related clades that converged

to similar reproductive strategies.

Introduction

Macroevolutionary patterns in amniote reproduction (Battistella et al., 2019; Murray et al., 2020,
Starck et al., 2021) can be investigated based on the diversity of traits in egg and clutch (e.g.,
Kaplan and Salthe 1979; Deeming and Birchard, 2007; Jetz et al., 2008; Deeming and Ruta,
2014). The idea of an “optimal” correlation between egg and clutch size, based on trade-offs
associated to K/r strategies, has led to several discussions without a consensus about the
distribution or reasons of such correlations (Smith and Fretwell, 1974; Congdon and Gibbons
1987; Wilbur and Morin, 1988; Elgar and Heaphy 1989; Godfray et al., 1991; Kuchling, 1999;
Lietal., 2017; Yu and Deng, 2020). Optimal egg/clutch size theory assumes that changes in the

egg and clutch are driven by selection, resulting in adjustments for the largest possible
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40 production of offspring with the highest fitness, at the lowest cost to their progenitors
41  (Brockelman, 1975; Congdon and Gibbons, 1987, Janzen and Warner, 2009).

42 Turtles offer a rich subject of investigation, given the ecological diversity of the group. Studies
43 focused on turtles have tested many correlations between egg size and both morphological and
44  ecological traits in an effort to explain the variation among species (Elgar and Heaphy, 1989;
45 Iverson, 1992; Iverson et al., 1993, 2019; Rowe, 1994; Rachmansah et al., 2020). Some authors
46 have argued that the “optimum” egg size is determined by adult body size (Gibbons, 1982),

47 pelvic aperture morphology (Congdon and Gibbons, 1987; Kuchling, 1999; Clark et al., 2001;
48 Hofmeyr et al., 2005), environmental factors, such as resource availability and temperature

49 influenced by habitat and biogeography (Hofmeyr et al., 2005; Macip-Rios et al., 2012, 2013),
50 phylogenetic distribution and/or physiology (Bowden et al., 2004, Cordero, 2021).

51  Evidence supports the idea that large-bodied turtles tend to produce larger clutches with

52 relatively small and round eggs (Fig. 1A), while smaller species produce small clutches with
53 relatively large and elongated eggs (Fig. 1B). Elgar and Heaphy (1989) proposed that spherical
54  eggs are less susceptible to desiccation as the surface-volume ratio is smaller in comparison to
55 elongated eggs — therefore being more suitable for warmer areas. In contrast, Pritchard (1979)
56 suggested that small species tend to produce bigger, elongated eggs because a small spherical
57 egg would not be capable of producing a functional hatchling due to a lack of space, and that
58 adult body size is a constraint for egg width. Moll (1979) argued that spherical eggs occupy

59 space more efficiently than elongated eggs, thereby allowing the fit of larger clutches in the

60 abdominal cavity.

61 Many trends in egg and clutch characteristics also seem to be influenced by ecological factors.

62 Rachmansah et al., (2020) suggested that the broad access to resources in tropical areas, supports
63 larger-bodied taxa to produce more eggs. Craven et al., (2008) proposed that resource availability
64 and type of diet might play a role in egg nutrition (Craven et al., 2008). Spencer and Janzen

65 (2011), advocate that higher mean temperature of tropical areas may influence embryo

66 metabolism and favor earlier hatching — favoring the production of more clutches per year.

67  Although general trends have been identified (e.g., Iverson et al., 2019; Rachmansah et al.,

68 2020), a comprehensive analysis exploring egg and clutch characteristics across all genera of
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living turtles is still missing. We present analyses based on data from the literature for at least
one representative of each extant turtle genus, in order to identify trends in reproductive
strategies and investigate potential factors that influence clutch and egg traits. We addressed the
following questions: 1) Are reproductive traits (such as egg size, egg shape, and clutch size)
correlated as predicted by egg size theory? 2) Are turtle species from different clades converging
in their reproductive strategies? 3) Do ecological factors (such as distribution, and diet) influence
egg/clutch characteristics? We hypothesize that reproductive traits in turtles evolved

independently several times, w

Furthermore, we hypothesize that egg and clutch characteristics follow the predictions of egg
size theory. Such characteristics are influenced by several ecological factors (e.g., carnivores

tend to produce bigger eggs and tropical species tend to produce bigger clutches).

Materials and Methods

We collected morphological (carapace size), ecological (climatic zone and diet) and reproductive
data (egg size, clutch size, and number of clutches per year) for at least one species of each turtle
genus (Table 1; Supplemental Information, Appendix S1) using available literature. We used
Google scholar database to perform an electronic search using different combinations of the key

29 ¢ 9% ¢ 2 ¢

words “Egg size”, “turtle reproduction”, “breeding”, “nest”,

9% ¢

clutch size”, “egg width”. Studies
from all dates were considered, as evolutionary characteristics of species do not usually change
within the relevant time for a literature search. Only full-text reports in English, Spanish and
Portuguese were considered. Study eligibility was assessed by one investigator. A secondary
search was conducted on the reference list of these publications as well as on the list of
publications that have cited the previous accessed one. The search continued until the limit of
four articles containing information on the same ecological data for each species. The search was
conducted following PRISMA (Moher et al., 2011) guidelines (Supplemental Information,
Appendix S2).

Data used was based on a combination of the information available (e.g., smallest and biggest
clutch sizes reported, even if from different sources) or based on the most common attribution
for each species (e.g., species that are found both in land and water but most commonly in water

were addressed with this kind of habitat). Data from captivity was considered as the
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characteristics of interest are mostly supposed to be inheritable and we considered possible bias

to be irrelevant.

All statistical and exploratory analyses were conducted in the R statistical environment (v.4.0.4)
(R Core Team 20165 scripts and input files available in Supplemental Information, Appendix
S3). We pruned the phylogeny proposed by Pereira et al. (2017) to match our dataset
(Supplemental Information, Appendix S1) and used it in all the following analyses. Although
this is not the most recent phylogeny available, it was the one with the biggest overlap with our

dataset.
Are reproductive traits correlated as predicted by egg size theory?

In order to explore the correlation ef reproductive parameters (egg width, egg length, and clutch
size) commonly explored in previous works with smaller datasets (Elgar and Heaphy, 1989;
Iverson, 1992; Iverson et al., 1993; Rowe, 1994), we used the function evolvev.lite() from the R

package Phytools (Revell, 2012). This function fits different covariance matrices to a tree to test

if thereis-an-evolutionary tendency for two traits to co-evolve, affected by two or more regimes
assigned-to-the tree. (Revell et al., 2021).

We mapped the phylogeny through ancestral state reconstruction using traits-based-on-clutch size
(Fig. 2A), and the function make.simmap() from phytools R package: A. from 1 to 4 eggs, B.
from 5 to 29 eggs, and C. 30 or more eggs. These groupings were arbitrarily chosen based-on
what-weunderstand to best reflect the biological meaning of the data, and represent discrete

traits of maximal clutch size among turtles. As continuously valued traits, we used egg
length/carapace as a proxy for relative egg size (ESI) and egg length/egg width as a proxy for

egg “shape” (ESH). The choice for the model that better explains our analysis was based on
likelihood ratio test (Log-L), and Akaike information criterion (AIC; Akaike, 1974). We also
plotted the data in a phylomorphospace, to support visualization (Fig. 2B).

Do turtles have convergent reproductive strategies?

To test the hypothesis of convergence on reproductive traits among turtles, we used the function

search.conv(), from the R package RRphylo (Castiglione et al., 2019).
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Species at the tree terminals are represented by a vector based on multivariate phenotypic data.
This function calculates the angle between them (computed as the inverse cosine of the ratio
product, and the product of vectors sizes), which represents the correlation coefficient between
the two vectors to represent a measure of phenotypic resemblance. Small angles between vectors
imply similar phenotypes, while angles around 90° and 180° represent dissimilar and opposing
phenotypes, respectively (Castiglione et al., 2019). To verify convergence, we test if the
differences between groups are smaller than expected considering their phylogenetic distance.
The function can be used to test convergence either in entire clades or among species assigned
under, different estates; Considering that our hypothesis of convergence includes species
scattered along the phylogeny in a complex evolutionary history, a search without predetermined
groups would have to compare the angles of phenotypic divergency between all species
combinations (oppositely to comparisons among clades with higher taxonomic level such as
families). Therefore, we decided for-assigning states based on clutch size (Supplemental
Information, Appendix S1) to ensure computational viability. This decision also follows the
methodology implemented in the previous question (ftraitscorrelate following the egg size
theory), and is based on the observations that turtles with larger clutches tend to produce smaller
and rounder eggs, and possess large body size, while turtles that produce small clutches tend to

show larger, elongated eggs, and have a small body size.

We first ran the analysis by testing if cryptodirans and pleurodirans converge in their
reproductive strategies. To do that, we assigned each species to one of six different states:
pleurodirans that produce clutches containing A. bellow 5 eggs, B. from 5 to 29 eggs, and C. 30
or more eggs; or cryptodirans that produce clutches containing C. bellow 5 eggs, D. from 5 to 29
eggs, and E. 30 or more eggs. We divided the same characters into two different states based on
suborder (A and D, B and E, and C and F) in order to follow the analysis requirements. As it
tests the convergence of groups distantly related, character states must be considered different.
We used the suborders Cryptodira and Pleurodira to assign different characters as they are the
most comprehensive taxonomic levels among turtles. By doing this, we tested if species in
between these suborders are converging among three different states based on clutch size (small,
medium and large). The convergence test between different traits in different clades represent the

null models (they are not expected to converge).
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Later, we ran a second analysis, without any separation among turtles, to test if species with
small clutches (up to four eggs) and large clutches (over 30 eggs) diverge in their reproductive
traits. The divergency test is nothing more than another convergence test, but opposing the
reproductive traits hypothesized to diverge, which also works as our null model (lack of
convergence). Both tests were simulated 1000 times and tips under the focal states were

randomly removed until clustering remained with only three tips.
Do ecological factors influence egg/clutch characteristics?

In order to estimate which ecological factors influence reproductive traits, we ran two different
phylogenetic generalized least square (PGLS) models (Grafen, 1989; Rehlf, 2001; Martins and
Housworth, 2002). In the first analysis, we tested how climatic zone, diet and the log'clutch
mean predict egg size. We log-transformed the mean number of eggs per clutch (clutch mean) to
avoid skewed distribution of the predictor. In the second analysis, we used the maximum number
of eggs laid per clutch times the mean number of clutches per year as a proxy for fecundity, to
test how the selected independent variables (climatic zone, diet and egg size) predicted the
fecundity in turtles. We log-transformed the fecundity variable in order to achieve

homoscedasticity and normality of residuals (Mundry, 2014).

Multicollinearity between categorical predictors was tested using chi-squared tests (Mundry,
2014; R Core Team, 2020). We used maximum likelihood and Pagel’s lambda model (Pagel,
1997; 1999) to control for phylogenetic signal when fitting both PGLS. We used the function
gls() of the package nmle (Pinheiro and Bates, 2020).

For model inference, we compared each selected PGLS with its null model and tested for each
predictor’s significance (Symonds and Blomber, 2014; Mundry, 2014). We calculated each
predictor's coefficient and its 95% confidence intervals using the PGLS scores table and the

function confint(), respectively (R Core Team, 2020). @
Results

The best fitting among all models used to test correlation among reproductive traits (highest log-

likelihood scores, table 1) was the “different rates, common correlation” model. Egg traits (ESH
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and ESI) coevolve and correlate in the same way with the regimes of traits mapped in the tree
(number of eggs per clutch; R=0.567), although with different evolutionary rates. Different

regimes of clutch size occupy different regions of the morphospace (Fig. 2B).

The first convergence analysis revealed significative results in tests performed against same
characters between different pleurodirans and cryptodirans (p = 0.001, Table 2, in-green).
Additionally, the analysis also indicated significative results for convergence tests between
medium sized clutches (B and E) and other size clutches (A, C, D, and F), although only between
different suborders (p = 0.001, Table 2, in-beld). The divergency test failed to find any signs of

convergence (p = 1.0) between turtles with small and large clutches.

In our test of the influence of ecological factor over egg/clutch characteristics, all the
independent variables (climatic zone, diet and clutch mean) were significant in predicting egg
size in turtle species in the first PGLS analysis (Table 3; Fig. 3). Egg size and climatic zone were

significant predictors of fecundity in turtles (Table 4; Fig. 4).

Discussion

The evolutionary history of turtles is marked by a complex pattern of character evolution
regarding their reproductive strategies (e.g., changes in egg size, egg shape and clutch size). Our
analyses support the interpretation of repeated changes in these characters over evolutionary
history. The hypothesis that large-bodied turtles tend to produce larger clutches with
comparatively smaller and rounder eggs, while small-bodied species produce small clutches with
larger and more elongated eggs seems to be supported by general patterns described in both the
analyses here as well as those in previous literature (Elgar and Heaphy, 1989; Iverson, 1992;

Iverson et al., 1993, 2019; Rowe, 1994; Rachmansah et al., 2020).

The results of our analysis are consistent with the predictions of the egg size theory. The selected
model reflects a tendency for the traits “egg size” and “egg shape” to positively coevolve, while
both are inversely correlated to “clutch size”. Moreover, based on the distribution of characters
along the tree and in the phylomorphospace, we-can-assert-that these patterns evolved
independently and recurrently along the diversification of turtles. During their evolutionary
history, turtles explored different reproductive strategies with several instances of convergent

evolution.
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search-conv()-(Castiglione-et-al2019). Turtles of the Pleurodira and Cryptodira converge in all

three different reproductive strategies tested.

Because all traits used in the convergence tests are continuous, without any clear break in the
patterns, we also recovered significative results among medium size clutches and small or big
size clutches between different “suborders”. The fact that the same results were not recovered
within suborders, is an indication that this result is a type I error. Because “suborder” is a highly
inclusive taxonomic rank, the phenotypic differences between groups are considered smaller than
expected considering their evolutionary distance. When the same traits are tested within the same
“suborder”, their differences are not less than expected and, therefore, are not pointed as

convergent.

The divergence test between small and large clutches among all turtles indicated these traits are
indeed divergent, independently of the taxonomic rank. Therefore, evidence indicates that turtles
are converging to at least two — most probably three — different egg and clutch strategies, with
continuous traits that prevent a clear differentiation among them. Nevertheless, these traits

follow the egg/clutch size theory.

Although our analyses provided evidence for convergence among different turtle clades, they do

not explain the reasons for such convergence, namely-thepressures-selecting similar behaviors-in
groups-with-distant evolutionary-origins. With the PGLS analyses, we were able to specify some

of the ecological pressures affecting egg and clutch characteristics. Climatic zone is the only
factor to partially explain the correlations in both analyses. Egg size is also influenced by diet
with herbivores producing relatively smaller eggs. Tropical species have smaller eggs and a
higher mean number of eggs per clutch compared to species from temperate areas (similar results
have been reported for specific turtle clades in previous works, see Macip-Rios et al. (2017) for
an example in Kinosternidae). Additionally, high protein intake seems to stimulate egg

production in turtles and other animals (Watanabe et al., 1984; Bjorndal, 1985). These results
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240 might be influenced by the broad availability of resources in tropical areas, enabling larger-

241  bodied taxa that can produce more eggs (Rachmansah et al., 2020). It might also play a role in
242  egg nutrition (Craven et al., 2008) and in favoring earlier hatching, as tropical areas have higher
243 mean temperatures throughout the year, which increases metabolism in embryos (Spencer and

244  Janzen, 2011).

245  Since many turtle families are spread across different geographic areas, in different climatic
246  zones and with specific available resources (e.g., Emydidae across the Americas), close related
247  species are subjected to extremely different ecological pressures. Sympatric distant related
248 species, however, suffer similar ecological pressures and, therefore, tend to occupy similar

249 ecological niches despite their intrinsic phylogenetic distance.

251  ana 3 § § analysi 3 ations. There is a negative
252 correlation between relative egg size and clutch size, demonstrating that reproductive traits are

253 correlated as predicted by egg size theory.

254 Based on these results, we conclude that there are major trends in reproductive strategies to

255  which turtles converge.

258 In addition to the traits tested in the present study, other factors may play important roles in egg
259 and clutch strategies of turtles, and could contribute to shaping the patterns found in our

260 analyses. Adaptations within specific niches are worth mentioning and sheuldn’t be forgotten

261 when interpreting this complex scenario (see Kluge, 2005 and Losos, 2011 for a review of the
262 role of convergent evolution in inferring adaptations). For instance, little is known about many of
263 the aspects that influence the reproductive characteristics within Testudines. These include

264 specific environmental pressures (as suggested by Hofmeyr et al., 2005 for Homophus signatus;
265 and by Hedrick et al., 2018 for Chelydra serpentina, the last case within annual changes over the
266 same population), patterns of reproductive allocation within and among species (Wilkinson and

267  Gibbons, 2005), morphological constraints (Lovich et al., 2012), conflicts in parent-offspring
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size (Janzen and Warner, 2009), anti-predatory strategies (Santos et al., 2016), maternal effects

and parental care (Hughes and Brooks, 2006; Warner et al., 2010).

As mentioned by Nussbaum (1987), the safe harbor hypothesis suggests that parental care makes
the embryonic stage the safest harbor, favoring egg size to increase in species with parental care,
and consequently decreasing the duration of sequential stages with higher risk. Testudinidae is
the turtle clade with the largest number of species known to care for their eggs (Agha et al.,
2013). Although still an uncommon behavior within Testudinidae, it makes the safe harbor
hypothesis a possible explanation for the comparatively larger eggs and, consequently, smaller

clutches in most species of this clade.

Although other turtle clades have historically been considered to lack any form of parental care,
there is now evidence to the contrary (Ferrara et al., 2013). The Arrau turtle (Podocnemis
expansa) is the biggest South American freshwater turtle, and produces many small round eggs
in a clutch. In this case, the only described parental care behavior starts after the eggs hatch,
providing the safe harbor hypothesis with only weak explanatory power. Other factors probably
have a bigger influence in this case, such as the proposition that round eggs suffer less from

desiccation (Elgar and Heaphy, 1989; Hofmeyr et al., 2005).

As noticed by Elgar and Heaphy (1989), terrestrial species lay larger eggs in smaller clutches
compared to freshwater or marine species, but this is a statistically confounded association
because of the fact that turtle families represent ecological groups. The convergent distribution of
reproductive traits and the different modifications of these traits across families that occupy
unique niches—such as Testudinidae that live on land and Cheloniidae/Dermochelyidae that live
in the ocean—could be considered evidence for the adaptation of specific clades to an “optimal”

reproductive strategy in a specific environment or under a specific constraint.

The fact that the distribution of these strategies is associated with groups that colonized new
environments provides strong support for a heuristic assumption of adaptive value (Kluge 2005;
Losos, 2011, Thompson et al., 2021). At the same time, asserting the adaptive value of some of
these traits can be difficult (see Kluge, 2005), and the correlation between specific traits and

families that form ecological groups prevents the postulation of statistically supported tests,
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which makes hypotheses based on niche adaptations greatly speculative (Popper, 1982; Stayton,
2015b).

Conclusions

We conclude that egg and clutch traits in Testudines evolved independently several times across

non-directly related clades that converged to similar reproductive strategies.

Egg and clutch characteristics follow the trade-offs predicted by egg size theory and are
influenced by ecological factors. Climatic zone plays an important role in the distribution of

reproductive characteristics among turtles, and diet influences egg size.
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Figure 1

Egg and clutch strategies.

Examples of different strategies: nest of the giant Arrau turtle (Podocnemis expansa) with
many small round eggs (A); small clutch with big and elongated eggs of the South American

wood turtle (Rhinoclemmys punctularia) (B). The adult carapace length of these two species

reaches over one meter and 25cm long, respectively.
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Figure 2

Distribution of egg and clutch traits in the turtle phylogeny.

Different clutch sizes were assigned to three different regimes (small, medium, and large)
and mapped to the tree (A); Turtle phylogeny was plotted in a morphospace based on egg

size and shape (B).
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Figure 3

Phylogenetic Generalized Least Squares model of variables predicting egg size in
turtles.

The model predicts the relationship of relative egg size (egg length/carapace length) to log
mean clutch size (mean number of eggs laid per clutch) for turtle species that occupy
different climatic zones (temperate or tropical) and have different diet types (carnivore,

herbivore, or omnivore).
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Figure 4

Phylogenetic Generalized Least Squares model of variables predicting fecundity in
turtles.

The model predicts the relationship of log fecundity (maximum number of eggs laid per
clutch times the mean number of eggs laid per clutch) to relative egg size (egg

length/carapace length) for turtle species that occupy different climatic zones (temperate or

tropical).
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Table 1(on next page)
Hierarchical models of evolutionary correlation among reproductive traits in turtles.

Model description, rates of correlation between egg size and three different clutch size
groups (o 2 1,x), rates of correlation between egg shpe and three different clutch size groups
(0 2 2,x), correlation between egg size and egg shape, affected by different regimes of clutch
size (R), log-likelihood (Log-L), and Akaike information criterion (AIC) for four multivariate
Brownian evolution model fits to egg and clutch data. The best-supported model is

highlighted in bold.
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Model 021,1 021,2 62%1,3 6221 0222 0223 R1 R2 R3 Log(L) Al
common rates, common 0.002 - - 0.0001 - - 0.519 - - 199.12 -388
correlation
different rates, common | 0.0043 | 0.0015 | 0.0007 | 0.0002 | 0.0001 0 0.567 - - 222.99 -427.
correlation
common rates, different | 0.0021 - - 0.0001 - - 0.356 | 0.599 | 0.958 209.02 -404.
correlation
No common structure 0.004 0.0015 0.001 0.0002 0.0001 0 0.458 0.586 0.829 22411 -426.

1

2
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Table 2(on next page)
Tests of convergence among different reproductive strategies in turtles.

Letters represent traits based in different clutch sizes: small (bellow 5 eggs), medium (from 5
to 29 eggs), and large (30 or more eggs), for pleurodirans (A, B, and C, respectively), and
cryptodirans (D, E, and F, respectively). Tests that presented significative results for

convergence (P=0.001) are in bold. Tests between same traits and between same suborders

are in green.

Peer] reviewing PDF | (2020:12:56489:3:0:NEW 13 Jan 2022)



PeerJ

State 1

State 2

P value

|w)

m

1

1

0.001

0.001

0.482

0.703

0.001

0.001

0.001

0.229

0.001

0.001

0.195

0.754

@I |>|M(MMfmMmimMm|mMm|mMm|0O|0O|0O|CO

OO |® (>0 |>TM0|w|> |7

0.133

Peer] reviewing PDF | (2020:12:56489:3:0:NEW 13 Jan 2022)

Manuscript to be reviewed



Peer]

Table 3(on next page)

Phylogenetic Generalized Least Squares scores of variables predicting egg size in
turtles.

Climatic zone, diet and clutch mean predict the size of the egg in turtle species. SE, standard

errors. Cl, confidence intervals.
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Predictor Coefficient SE Lower CI Upper Cl  pvalue
CLIMATIC ZONE 0.002
- Temperate 0.296 0.019 0.259 0.333
- Tropical 0.288 0.028 0.234 0.342
DIET < 0.001
- Carnivore 0.296 0.019 0.259 0.333
- Herbivore 0.278 0.031 0.217 0.340
- Omnivore 0.306 0.031 0.245 0.367
CLUTCH MEAN -0.056 0.004 -0.064 -0.049 < 0.001
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Table 4(on next page)

Phylogenetic Generalized Least Squares scores of variables predicting fecundity in
turtles.

Climatic zone and eqgg size predict fecundity in turtle species. SE, standard errors. Cl,

confidence intervals.
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Predictor Coefficient SE Lower CI Upper Cl  pvalue
CLIMATIC ZONE 0.005

- Temperate 5.104 0.353 4.413 5.796

- Tropical 5.247 0.503 4.263 6.232

DIET 0.378

- Carnivore 5.104 0.353 4.413 5.796

- Herbivore 4.970 0.569 3.856 6.085

- Omnivore 5.255 0.564 4.150 6.360

EGG SIZE -11.426 0.907  -13.203 -9.649 < 0.001
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