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The recorded variation in egg and clutch traits among amniotes has led to the idea that
selection towards an “optimal egg strategy” is based on trade-offs. Here we report results
of analyses on egg and clutch characteristics across all large clades of living turtles,
including at least one representative of each extant turtle genus. Our goals were to
investigate whether egg and clutch size follow the predictions of egg size theory, if there is
convergence regarding reproductive strategies among turtles, and to identify factors that
influence clutch and egg traits in this amniote clade. We hypothesized that egg and clutch
characteristics are influenced by a number of factors, including ecological constrains, and
that reproductive traits in Testudines evolved independently several times in distantly-
related clades. We find evidence for incomplete convergent evolution based on egg and
clutch traits. Diet and climatic zone play important roles in the selection towards optimal
reproductive strategies in different species.

PeerJ reviewing PDF | (2020:12:56489:1:0:NEW 21 Apr 2021)

Manuscript to be reviewed



1 The evolution of reproductive strategies in turtles

2

3 Gabriel Jorgewich-Cohen¹, Rafael dos Santos Henrique², Pedro Henrique Dias³, Marcelo R. 

4 Sanchez-Villagra¹

5 1 Paläontologisches Institut und Museum, Universität Zürich. Zürich, Zürich, Switzerland. 

6 2 Laboratório de Anfíbios, Instituto de Biociências, Universidade de São Paulo. São Paulo, São Paulo, SP, Brazil 

7 3 Departamento de Zoologia, Universidade Federal do Paraná. Curitiba, Paraná, Brazil.  

8 Corresponding Author: Gabriel Jorgewich-Cohen

9 Karl-Schmid-Strasse 4, Zürich, Zürich, 8006, Switzerland.

10 Email address: gabriel.jorgewichcohen@pim.uzh.ch

PeerJ reviewing PDF | (2020:12:56489:1:0:NEW 21 Apr 2021)

Manuscript to be reviewed



11 Abstract

12 The recorded variation in egg and clutch traits among amniotes has led to the idea that selection 

13 towards an “optimal egg strategy” is based on trade-offs. Here we report results of analyses on 

14 egg and clutch characteristics across all large clades of living turtles, including at least one 

15 representative of each extant turtle genus. Our goals were to investigate whether egg and clutch 

16 size follow the predictions of egg size theory, if there is convergence regarding reproductive 

17 strategies among turtles, and to identify factors that influence clutch and egg traits in this 

18 amniote clade. We hypothesized that egg and clutch characteristics are influenced by a number 

19 of factors, including ecological constrains, and that reproductive traits in Testudines evolved 

20 independently several times in distantly-related clades. We find evidence for incomplete 

21 convergent evolution based on egg and clutch traits. Diet and climatic zone play important roles 

22 in the selection towards optimal reproductive strategies in different species. 

23 Introduction

24 The macroevolutionary patterns in amniote reproduction (Battistella et al., 2019; Murray et al., 

25 2020) can be investigated based on the diversity of traits in the egg and clutch (e.g., Kaplan and 

26 Salthe 1979; Deeming and Birchard, 2007; Jetz et al., 2008; Deeming and Ruta, 2014). The idea 

27 of an “optimal” correlation between egg and clutch size, based on trade-offs, and similar to K/r 

28 strategies, has led to several inconclusive discussions (Congdon and Gibbons 1987; Elgar and 

29 Heaphy 1989; Godfray et al., 1991; Kuchling, 1999; Li et al., 2017; Yu and Deng, 2020). 

30 Optimal egg/clutch size theory assumes that changes to the egg and clutch are driven by 

31 selection, resulting in adjustments for the largest possible production of offspring with the 

32 highest fitness, at the lowest resource cost to their progenitors (Brockelman, 1975; Congdon and 

33 Gibbons, 1987, Janzen and Warner, 2009).

34 Turtles offer a rich subject of investigation given the ecological diversity of the group. Studies 

35 focused on turtles have tested many correlations between egg size and both morphological and 

36 ecological traits in an effort to explain the variation among species (Elgar and Heaphy, 1989; 

37 Iverson, 1992; Iverson et al., 1993, 2019; Rowe, 1994; Rachmansah et al., 2020). Some authors 

38 have argued that the “optimum” egg size is determined by adult body size (Gibbons, 1982), 
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39 pelvic aperture morphology (Congdon and Gibbons, 1987; Kuchling, 1999; Clark et al., 2001; 

40 Hofmeyr et al., 2005), environmental factors (Hofmeyr et al., 2005; Macip-Ríos et al., 2013) 

41 and/or physiology (Bowden et al., 2004). These hypotheses, largely based on studies of trait 

42 correlations (Gibbons, 1982), can be tested by methods that consider phylogeny, as they reduce 

43 the variance of estimated regressions (Rohle, 2006).

44 Available evidence supports the idea that large-bodied animals tend to produce larger clutches 

45 with relatively small and round eggs (Fig. 1A), while smaller species produce small clutches 

46 with relatively large and elongated eggs (Fig. 1B). Elgar and Heaphy (1989) proposed that 

47 spherical eggs are less susceptible to desiccation as the surface-volume ratio is smaller in 

48 comparison to elongated eggs. In contrast, Pritchard (1979) suggested that small species tend to 

49 produce bigger, elongated eggs because a small spherical egg would not be capable of producing 

50 a functional hatchling due to a lack of space, and that adult body size is a constraint for the egg 

51 width. Moll (1979) argued that spherical eggs occupy space more efficiently, thereby allowing 

52 for larger clutches. 

53 Although general trends have been identified (e.g., Iverson et al., 2019; Rachmansah et al., 

54 2020), a comprehensive analysis exploring egg and clutch characteristics across all genera of 

55 living turtles is still missing. We present analyses based on data from the literature for at least 

56 one representative of all extant turtle genera, in order to identify trends of their reproductive 

57 strategies and investigate potential factors that influence clutch and egg traits in this clade. We 

58 addressed the following questions: 1) Are reproductive traits (such as egg size, egg shape, and 

59 clutch size) correlated as predicted by egg size theory? 2) Are there “optimal” egg strategies on 

60 which distantly related species converge? 3) Do ecological factors influence egg/clutch 

61 characteristics? We hypothesized that egg and clutch characteristics follow the predictions of egg 

62 size theory and that they are influenced by several factors, including ecological and phylogenetic 

63 constraints. Furthermore, we hypothesize that reproductive traits in Testudines evolved 

64 independently several times across clades that are not directly related, which can be considered 

65 evidence of convergence on optimal reproductive strategies. 

66 Materials and Methods
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67 We collected morphological, ecological and reproductive data for at least one species of each 

68 turtle genus (Table 1; Supplemental Information, Appendix S1) using available literature 

69 (Supplemental Information, Appendix S2). The search was conducted following PRISMA 

70 (Moher et al., 2011) guidelines. All statistical and exploratory analyses were conducted in the R 

71 statistical environment (v.4.0.4) (R Core Team 2016; scripts and input files available in 

72 Supplemental Information, Appendix S3).

73 Exploratory analysis

74 In order to explore the distribution of reproductive parameters (egg width, egg length, adult body 

75 size, clutch size and number of clutches per year) commonly explored in previous works with 

76 smaller datasets (Elgar and Heaphy, 1989; Iverson, 1992; Iverson et al., 1993; Rowe, 1994), we 

77 performed a phylogenetic principal component analysis (pPCA) using the function phyl.pca() 

78 (package phytools; Revell, 2012) and the phylogeny proposed by Pereira et al. (2017). We used 

79 the first two axes of the pPCA as source information to plot the tree in morphospace, which can 

80 be defined as the multidimensional distribution of an organism’s phenotype (Lloyd, 2018). The 

81 incorporation of phylogenetic information (tree topology) provides not only information on 

82 phenotypes disparities, but also on the transformation from ancestral to derived conditions, 

83 leading to a phylomorphospace (Gerber, 2019). We used the function phylomorphospace(), also 

84 from the phytools package (Ravell, 2012).

85 We used the contMap() function of the phytools package (Revell, 2012) to map the reproductive 

86 trait characters in turtles. This analysis was run three times, using respectively the following 

87 characters: 1) Egg size (ESI): egg length/carapace length; 2) Egg “shape” (ESH): egg length/egg 

88 width; and 3) Fecundity (FEC): maximum number of eggs in a clutch, times the mean number of 

89 clutches per year. Although the function is useful for reconstructing ancestral characters, our 

90 primary goal was to use its visual capabilities for tree mapping to facilitate the visualization of 

91 state distribution on the tips. For that reason, we chose to use a more inclusive topology that 

92 allows a broader visualization of trait distribution. The tree was informally reconstructed in 

93 Mesquite v. 3.51 (Maddison & Maddison, 2019), with no information on branch lengths. We 

94 used the tree from Pereira et al. (2017) for the backbone of our tree and grafted other species 

95 based on other phylogenetic hypotheses: Pelomedusidae (Fritz et al., 2011); Podocnemididae 
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96 (Vargas-Ramirez et al., 2008; Guillon et al., 2012); Chelidae (Georges et al., 2002; Vargas-

97 Ramirez et al., 2012; Le et al., 2013; Zhang et al., 2017); Geoemydidae (Le et al., 2007; Guillon 

98 et al., 2012; Pereira et al., 2017); Testudinidae (Pereira et al., 2017); Emydidae (Fritz et al., 2012; 

99 Pereira et al., 2017; Thomson et al., 2018); and Kinosternidae (Iverson et al., 2013). 

100 Explanatory analysis

101 To test the hypothesis of convergence on reproductive traits of turtles, we ran a series of 

102 evolutionary model-fitting analysis (process-based test) using the mvMORPH R package (Clavel 

103 et al., 2015). We tested the fit of seven different multiple optimum Ornstein–Uhlenbeck process 

104 models (OUM, Table 1), using a single-regime Brownian motion model (BM1), a multiple mean 

105 Brownian motion model (BMM) and a simple Ornstein–Uhlenbeck process model (OU1) as null 

106 hypotheses (rejection of convergence). Each OUM represents a hypothesis of regimes with two 

107 or more convergent peaks caused by different selective pressures, represented as “optima” (θ, 

108 Hansen, 1997; Butler and King, 2004). To test the fitting of multiple regime models, we assigned 

109 ancestral traits to the trees by using the make.simmap() function from the phytools R package 

110 (Revell, 2012). For this analysis we also used the tree proposed by Pereira et al. (2017). Trait-

111 assigned trees can be found in supplemental material (Figure 1; Supplemental Information, 

112 Appendix S4). Model fitness was evaluated using Akaike information criterion (AIC) values 

113 (Akaike, 1974). 

114 Complementarily, we ran a MANOVA to test the significance of the correlations between the 

115 regimes of the selected model and the traits of eggs and clutches. We used the functions mvgls() 

116 and manova.gls() from the package mvMORPH (Clavel et al., 2015).

117 In order to estimate the relationship among reproductive traits and ecological factors considering 

118 the phylogenetic relationships among Testudines, we ran two different phylogenetic generalized 

119 least square (PGLS) models. In the first analysis, we used ESI (egg size) as the dependent 

120 variable to test how the different independent variables (climatic zone, diet and the log clutch 

121 mean, Table 2) predicted the size of the egg among species. We log-transformed the mean 

122 number of eggs per clutch (clutch mean) to avoid skewed distribution of the predictor. In the 

123 second analysis, we used the maximum number of eggs laid in one clutch times the mean 

124 number of clutches per year as a proxy for fecundity, to test how the selected independent 
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125 variables (climatic zone, diet and egg size, Table 3) predicted the fecundity of turtle species. We 

126 log-transformed the fecundity variable in order to achieve homoscedasticity and normality of 

127 residuals in the model.

128 In both analyses we used the tree from Pereira et al. (2017) and included a total of 160 species 

129 (Supplemental Information, Appendix S3). We removed Pyxis arachnoides and Amyda 

130 cartilagina from the analyses to guarantee the homoscedasticity and normality of the model, as 

131 they presented high residual values, worsening the model fit. Habitat and zoogeographic zones 

132 were not used due to the lack of cross-observations with other variables and collinearity with the 

133 variable climatic zone. We used maximum likelihood and Brownian motion correlation to fit 

134 both PGLS, using the function gls() of the package nmle (Pinheiro and Bates, 2020).

135 For model inference we used a Full-Null Model Comparison approach. We calculated the 

136 percentage of variance on the dependent variable that is explained by the model based on the 

137 likelihood of observing the data (R2 lik), and tested for each predictor’s significance and 

138 confidence intervals.

139 Results

140 Exploratory analysis

141 The contMap analysis (Fig. 2A, B and C) allows easy visualization of character distribution 

142 throughout the tips of the phylogenetic tree. By comparing plotted trees, it is possible to correlate 

143 small and round eggs to species that produce bigger clutches. Such traits evolved independently 

144 in several distant-related families (e.g., Podocnemididae, Cheloniidae, Dermochelyidae, 

145 Chelydridae) or only in larger-bodied representatives of certain families (e.g., Testudinidae, 

146 Trionychidae).

147 The morphospace analysis (Fig. 2D) provides a holistic view of trait distribution in the 

148 phylogeny. Most species occupy two main regions of the multivariate morphospace. Species 

149 distributed towards higher values of PC1 have larger body size and tend to produce bigger 

150 clutches with relatively smaller eggs compared to species distributed on the opposite quadrant of 
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151 the morphospace (follow the R script on supplementary material, Appendix S3, to add tip names 

152 to the plot).

153 Explanatory analysis

154 The model-fitting analysis recovered diet (OUM) as the best fitted model (Table 1) with over 

155 96% Akaike weight (AICw). The only other model with AICw values over 0.01 was habitat 

156 (OUM). The MANOVA test among diet regimes and reproductive traits was non-significant 

157 (p=0.371).

158 All the independent variables (climatic zone, diet and clutch mean) were significant in predicting 

159 egg size in turtle species in the first PGLS analysis (Table 2; Fig. 3). The model explained (R2 

160 lik) 38% of the variation in the egg size. Diet and the size of the egg predicted fecundity in 

161 turtles, but climatic zone was not significant (Table 3; Fig. 4). The model explained (R2 lik) 33% 

162 of the variation in fecundity.

163 Discussion

164 The evolutionary history of turtles is marked by a complex pattern of character evolution 

165 regarding their reproductive strategies (e.g., changes in egg size, egg shape and clutch size). Our 

166 analyses support the interpretation of repeated changes in these characters over the evolutionary 

167 history of different turtle groups. Furthermore, the hypothesis that large-bodied turtles tend to 

168 produce larger clutches with comparatively smaller and rounder eggs, while small-bodied species 

169 produce small clutches with larger and more elongated eggs seems to be supported by general 

170 patterns described in both the analyses here as well as those in previous literature (Elgar and 

171 Heaphy, 1989; Iverson, 1992; Iverson et al., 1993, 2019; Rowe, 1994; Rachmansah et al., 2020).

172 Our exploratory analyses show results consistent with the egg size theory. In the contMap 

173 analyses, traits (evidenced by different colors) tend to interact with each other, suggesting a 

174 correlation between the tested characters. This pattern is partially recovered in the 

175 phylomorphospace. Two main clusters can be separated based on their distribution in different 

176 PC regions, correlated with the species’ reproductive characters, although subjected to personal 

177 interpretation. In any case, based on the distribution of characters along the tree, we can assert 

178 that these patterns evolved independently and recurrently along the diversification of turtles. This 
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179 shows that during their evolutionary history, turtles explored different reproductive strategies, 

180 with several instances of convergent evolution.

181 However, correlation does not imply causation and the interpretation of observed patterns as an 

182 example of evolutionary convergence is not straightforward ((Kluge 2005; Stayton, 2015b). To 

183 be able to make inferences about evolutionary patterns, we used quantitative measures and 

184 falsified our hypotheses with null models (Popper, 1982; Stayton, 2015b). Among all 

185 evolutionary models tested, the distribution of groups categorized according to diet (herbivores, 

186 omnivores and carnivores) showed the best fit, suggesting that there are three reproductive 

187 strategies to which turtles converge. This also supports the hypothesis that ecological factors, in 

188 this case diet regimens, have an important role in the tested reproductive traits, although the 

189 MANOVA results were not significant. 

190 Concordantly with the model-fitting analysis, diet was the only factor to partially explain the 

191 correlations in both PGLS analyses. Herbivores have relatively smaller eggs while carnivores 

192 have relatively higher fecundity. Climatic zone was also an influential factor on egg and clutch 

193 size. Tropical species have smaller eggs and a higher mean number of eggs per clutch compared 

194 to species from temperate areas. These results might be influenced by the broad availability of 

195 resources in tropical areas, which enables larger-bodied taxa that can produce more eggs 

196 (Rachmansah et al., 2020). It might also play a role in egg nutrition (Craven et al., 2008) and in 

197 favoring earlier hatching, as tropical areas have higher mean temperatures throughout the year, 

198 which increases metabolism in embryos (Spencer and Janzen, 2011).

199 Aside from the importance of ecological factors in egg and clutch characteristics, the PGLS 

200 analyses also support our exploratory analyses. There is a negative correlation between relative 

201 egg size and fecundity, demonstrating that reproductive traits are correlated as predicted by egg 

202 size theory.

203 Based on these results, we advocate that there are major trends in reproductive strategies to 

204 which turtles converge. These trends seem to be somewhat relaxed as all reproductive characters 

205 used are continuous, without any clear breaks in patterns, and most species show average values 

206 clustered together in the morphospace analysis. The lack of significance in the MANOVA results 

207 after the evolutionary model-fitting analysis, together with the lack of obvious converging 
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208 subgroups in the morphospace analysis can be considered as indications of a case of incomplete 

209 convergence. Such cases have been reported before in other vertebrate clades (such as in 

210 mammals. e.g., Meloro et al., 2015; Grossnickle et al., 2020).

211 Clades that represent cases of incomplete convergence can be described as being similar – or 

212 more similar than their ancestors – but presenting distinctive phenotypes (Herrel et al., 2004; 

213 2015a; Losos, 2011). In addition to the characters tested in the present work, other factors might 

214 play important roles in egg and clutch strategies of turtles and could be responsible for shaping 

215 the patterns found in our analyses. Adaptations within specific niches are worth mentioning and 

216 should be taken into account when interpreting this complex scenario (see Kluge 2005 and Losos 

217 2011 for a review of the role of convergent evolution in inferring adaptations).

218 Little is known about many of the aspects that influence the reproductive characteristics within 

219 Testudines, which include specific environmental pressures (as suggested by Hofmeyr et al., 

220 2005 for Homophus signatus; and by Hedrick et al., 2018 for Chelydra serpentina, the last case 

221 within annual changes over the same population), patterns of reproductive allocation within and 

222 among species (Wilkinson and Gibbons, 2005), conflicts in parent-offspring size (Janzen and 

223 Warner, 2009), anti-predatory strategies (Santos et al., 2016), maternal effects and parental care 

224 (Hughes and Brooks, 2006; Warner et al., 2010).

225 As Nussbaum (1987: 38) stated: “The safe harbor hypothesis includes the suggestion that 

226 parental care causes the embryonic stage to be the safest harbor, and, therefore, egg size will 

227 increase in populations with parental care to decrease the duration of subsequent, higher risk 

228 stages”. Testudinidae is the turtle clade with the largest number of species known to care for 

229 their eggs (Agha et al., 2013). Although still an uncommon behavior within this clade, it makes 

230 the safe harbor hypothesis a possible explanation for the comparatively larger eggs and, 

231 consequently, smaller clutches in most species of this clade.

232 Although other turtle clades have historically been considered to lack any form of parental care, 

233 there is now evidence to the contrary (Ferrara et al., 2013). The Arrau turtle (Podocnemis 

234 expansa) is the biggest South American freshwater turtle, and produces many small round eggs 

235 in a clutch. In this case, the only described parental care behavior starts after the eggs hatch, 

236 providing the safe harbor hypothesis with only weak explanatory power. Other factors probably 
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237 have a bigger influence in this case, such as the proposition that round eggs suffer less from 

238 desiccation (Elgar and Heaphy, 1989; Hofmeyr et al., 2005).

239 As noticed by Elgar and Heaphy (1989: 137), “Terrestrial species lay fewer and larger eggs for 

240 their size than freshwater or marine species, but this association is statistically confounded by the 

241 fact that chelonian families form ecological groups”. The convergent distribution of reproductive 

242 traits and the different modifications of these traits across families that occupy unique niches—

243 such as Testudinidae that live on land and Cheloniidae/Dermochelyidae that live in the ocean—

244 could be considered evidence for the adaptation of specific clades to an “optimal” reproductive 

245 strategy in a specific environment or under a specific constraint. 

246 The fact that the evolution of these strategies is correlated with the colonization of new 

247 environments provides strong support for a heuristic assumption of adaptive value (Kluge 2005; 

248 Losos, 2011). At the same time, asserting the adaptive value of some of these traits can be 

249 difficult (see Kluge, 2005), and the correlation between specific traits and families that form 

250 ecological groups prevents the postulation of statistically supported tests, which makes 

251 hypotheses based on niche adaptations greatly speculative (Popper, 1982; Stayton, 2015b).

252 Conclusions

253 We conclude that reproductive traits in Testudines evolved independently several times across 

254 non-directly related clades. This can be considered evidence of convergence and an endorsement 

255 of the existence of adaptive evolution and constraints in reproductive biology, frequently referred 

256 to as “optimum” reproductive constraints. Many different aspects may play important roles in the 

257 selection of specific “optimum” reproductive strategies in Testudines, preventing species from 

258 fully reaching convergence. 

259 Egg and clutch characteristics follow the trade-offs predicted by egg size theory and are 

260 influenced by ecological factors. Both diet and climatic zone play important roles in the 

261 distribution of reproductive characteristics among turtle clades. 
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Figure 1
Egg and clutch strategies

Examples of different strategies are shown: nest of the giant Amazon river turtle
(Podocnemis expansa) with many small round eggs (A); small clutch with big and elongated
eggs of the South American wood turtle (Rhinoclemmys punctularia) (B). The adult? carapace
length of these two species reaches over one meter and 25cm long, respectively.
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Figure 2
Exploratory analyses of the phylogenetic distribution of Testudines reproductive traits

ContMap analyses (A-C) allow the visualization of character distribution along the three. A)
Egg size (ESI); B) Fecundity (FEC); and C) Egg shape (ESH). Colors represent size
measurements, with red, orange and yellow indicating small egg size, low fecundity and
rounder eggs (starting from 0.025 cm, 1 unit and 0.025 cm, respectively) and blue
representing large eggs, high fecundity and elongated eggs (with maximum values of 0.395
cm, 168 units and 2.611, respectively). See bars on the bottom of each tree for color
reference. D) Phylomorphospace based on the first two PCs of turtle traits PCA. Each color
represents one different family, following the combinations available on figure 2C.
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Figure 3
Phylogenetic Generalized Least Squares model of variables predicting egg size in turtles

The model predicts the relationship of relative egg size (egg length/carapace length) to log
mean clutch size (mean number of eggs laid per clutch) for turtle species that occupy
different climatic zones and have different diet types
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Figure 4
Phylogenetic Generalized Least Squares model of variables predicting fecundity in
turtles

The model predicts the relationship of log fecundity (maximum number of eggs laid per
clutch times the mean number of eggs laid per clutch) to relative egg size (egg
length/carapace length) for turtle species that have different diet types. We do not report
climatic zone in this figure due to the non-significance of the predictor
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Table 1(on next page)

Fitting scores of multivariate evolutionary models to egg and clutch data

Model details and respective ancestral state tree reconstructions are available on
supplementary information (Figure S1). Diet (OUM, in bold) is the best-fitted model. BM1,
simple Brownian motion model. BMM, Multiple mean Brownian motion model. OU1, simple
Ornstein–Uhlenbeck process model. OUM, Multiple optimum Ornstein–Uhlenbeck process
models. LogLik, The log-likelihood of the optimal model. AIC, Akaike Information Criterion for
the optimal model. AICc, Sample size-corrected AIC. Diff, AIC difference with the best fit
model. Wi, absolute Akaike weights. AICw, relative Akaike weights
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System θ Model LogLik AIC AICc diff wi AICw

Control 1 BM1 -335.662 689 689.6996 192 0 0

Control 1 BMM -297.689 649 652.6572 152 0 0

Control 1 OU1 -236.065 508 509.5853 10.8 0.00455 0.004388

Clima 2 OUM -233.335 509 510.649 11.3 0.00347 0.003349

Diet 3 OUM -224.672 497 499.9301 0 1 0.964863

Habitat 3 OUM -228.372 505 507.3297 7.4 0.02473 0.023859

Zoogeography 7 OUM -220.528 513 518.95 15.7 0.00039 0.000374

Body size 2 OUM -235.905 514 515.7892 16.5 0.00027 0.000256

Body size 3 OUM -233.303 515 517.1922 17.3 0.00018 0.000172

Body size 4 OUM -227.537 509 512.3532 11.7 0.00284 0.002738

1
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Table 2(on next page)

Phylogenetic Generalized Least Squares scores of variables predicting egg size in turtles

Climatic zone, diet and clutch mean predict the size of the egg in turtle species. SE, standard
errors. CI, confidence intervals
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1

Predictor Coefficient SE Lower CI Upper CI p value

CLIMATIC ZONE 0.022

- Temperate 0.299 0.063 0.176 0.422

- Tropical 0.271 0.072 0.130 0.412

DIET 0.018

- Carnivore 0.299 0.063 0.176 0.422

- Herbivore 0.312 0.078 0.160 0.464

- Omnivore 0.304 0.076 0.156 0.452

CLUTCH MEAN -0.054 0.005 -0.063 -0.045 < 0.001

2
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Table 3(on next page)

Phylogenetic Generalized Least Squares scores of variables predicting fecundity in
turtles

Diet and egg size predict fecundity in turtle species. SE, standard errors. CI, confidence
intervals
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Predictor Coefficient SE Lower CI Upper CI p value

CLIMATIC ZONE 0.531

- Temperate 5.235 0.969 3.337 7.134

- Tropical 4.888 1.111 2.712 7.065

DIET < 0.001

- Carnivore 5.235 0.969 3.337 7.134

- Herbivore 4.815 1.199 2.466 7.165

- Omnivore 4.413 1.165 2.131 6.695

EGG SIZE -9.525 0.901 -11.291 -7.760 < 0.001

1
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