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ABSTRACT
Pathogen accumulation after introduction is unavoidable for exotic plants over a long
period of time. Therefore, it is important to understand whether plant invasion
promotes novel pathogen emergence and increases the risk of pathogen movement
among agricultural, horticultural, and wild native plants. In this study, we used
multiple gene analysis to characterize the species composition of 104 isolates of
Alternaria obtained from the invasive plant Ageratina adenophora and native plants
from Yunnan, Hubei, Guizhou, Sichuan, and Guangxi in China. Phylogenetically,
these strains were from A. alternata (88.5%), A. gossypina (10.6%) and A. steviae
(0.9%). There was a high amount of sharing between strains associated with
A. adenophora and with local plants. Pathogenicity tests indicated that most of these
Alternaria strains are generalists; the isolates with a wider host range were more
virulent to the plant. Woody plants were more resistant to these strains than
herbaceous plants and vines. However, the invasive plant A. adenophora was highly
sensitive to these strains. Our data are valuable for understanding how A. adenophora
invasion impacts the Alternaria species composition of the native plant and
whether A. adenophora invasion causes potential disease risks in invaded ecosystems.

Subjects Agricultural Science, Ecology, Microbiology, Mycology, Plant Science
Keywords Invasive plant, Ageratina adenophora, Native plant, Alternaria, Leaf spot disease,
Ecological risk

INTRODUCTION
Biological invasion has been increasingly viewed as an issue of national security due to its
great socioeconomic threats to agriculture, forestry and human health (Ricciardi, Palmer &
Yan, 2011; Richardson & Ricciardi, 2013). Many hypotheses have been developed to
explain why invasive plants succeed in introduced ranges (Jeschke, 2014), such as the biotic
resistance hypothesis (Levine & D’Antonio, 1999), evolution of increased competitive
ability hypothesis (Blossey & Notzold, 1995) and novel weapon hypothesis (He et al., 2009).
The enemy release hypothesis (ERH) suggests that invasive plants outcompete native
species partially due to the lack of specific natural enemies, especially pathogens, in the
invaded areas (Keane & Crawley, 2002). For example, a previous study of 473 plant species
introduced from Europe to the United States showed that 84% fewer fungi and 24% fewer
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virus species had infected each plant species in its naturalized range than in its native range
on average (Mitchell & Power, 2003). One of the reasons for Silene latifolia invasion
into North America is that two specialists (seed predator and anther smut fungus)
occurring in Europe are scarce or lacking in North America (Wolfe, 2003). Halbritter et al.
(2011) found that two specific pathogens for Brachypodium sylvatcum were more common
in the native range than in the invaded range.

Nonetheless, pathogen accumulation after the introduction of exotic plants is
unavoidable. In some cases, pathogen accumulation can hold the spread of invasive plants
(Bohl Stricker et al., 2016). However, the accumulated pathogens are predicted to affect
native susceptible hosts if pathogens transmit in invaded ecosystems. Such dynamics are
termed ‘spillover’ when the pathogens are nonnative and introduced with the invader and
‘spillback’ when an invasive species hosts native pathogens (Flory, Clay & Thrall, 2013).
Both processes may indirectly exacerbate the effect of invasions if pathogens reduce the
performance and competitive inhibition of co-occurring native species (Kelly et al., 2009;
Zhang et al., 2014). Therefore, the hypothesis of ‘accumulation of local pathogens’ believes
that pathogens accumulated on invasive alien plants may spread to native plants and
indirectly enhance the competitive advantage in cases where alien species are more tolerant
to pathogens than native plants (Eppinga et al., 2006).

On the other hand, these processes may also promote novel pathogen emergence and
amplification and increase disease risk in native species. Currently, many examples of the
acquisition of a native parasite by exotic species spillbacks and spillovers to natives
have been recorded. For example, of the 40 animal nonindigenous species, 70% acquired
≥4 native parasites, and 15% acquired >10 native parasites (Kelly et al., 2009). Gray
squirrels (Scurius carolinensus) from North America threaten the replacement of native
red squirrels (Scurius vulgaris) in the UK, in part due to the transmission of a parapoxvirus
that is lethal to red but not to gray squirrels (Strauss, White & Boots, 2012). Nonetheless,
these studies have focused on animals, and the invisible threat driven by invasive hosts
is expected to be common in wild plant communities in the invaded range but has received
less attention.

Ageratina adenophora is a perennial herbaceous plant of the Compositae native to
Central America and has been introduced into Yunnan Province, China, from
Myanmar since the 1940s; currently, A. adenophora is distributed in southwestern and
central China and is one of the 18 most harmful alien invasive plants in China (Wang &
Wang, 2006). Previously, A. adenophora was reported to host diverse fungal endophytes
(Mei et al., 2013) and leaf spot pathogenic fungi, such as Passalora ageratinae and
Baeodromus eupatorii (Sharma Poudel et al., 2019). In particular, when quantifying the
sharing of foliar fungal pathogens by the invasive plant A. adenophora and its neighbors,
our team found that many Alternaria spp. can be isolated from healthy leaves and diseased
spots of A. adenophora, as well as from diseased spots of native plants; pathogenicity
tests further verified that some Alternaria strains can cause disease on most native
plants (Chen et al., 2020). Alternaria is widely distributed and commonly occurs as
saprophytes, endophytes and pathogens (Nishikawa & Nakashima, 2020). More than 95%
of Alternaria species have a wide range of plant pathogens that can cause a variety of
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diseases in many economically important crops or ornamental plants, e.g., early blight
in potato and tomato (Kokaeva et al., 2017), black spot and leaf spot in wheat (Vergnes
et al., 2006), and leaf spot in cruciferous (Al-Lami, You & Barbetti, 2018), Solanaceae
(Liu et al., 2019) and Asteraceae (Wu & Wu, 2018). Therefore, caution should be taken
regarding the possible ecological risk in disease transmission on local plants driven by
A. adenophora invasion. Addressing this issue depends on determining whether there is a
sharing between Alternaria strains from invasive plants and from local plants, as well as
their pathogenicity and host range.

A previous study indicated that most Alternaria, occurring as both endophytes and
pathogens on A. adenophora, as well as co-occurring local native plants, had the same
internal transcribed spacer (ITS) genotype (Chen et al., 2020). Because there are few
intraspecies and even interspecies variation in the ITS gene for discriminating fungal
species (Yamamoto & Bibby, 2014), it is necessary to use an analysis of multigene
fragments to determine the phylogenetic position of these Alternaria strains to judge
whether fungal genotypes of Alternaria could potentially jump between the invasive plant
A. adenophora and local host plants. In this study, the phylogenetic positions of Alternaria
strains isolated from healthy and diseased leaves of A. adenophora from Southwest
China, as well as diseased leaves of surrounding plants, were determined by Alt a1 and
calmodulin gene segments, which are commonly used in the identification of Alternaria
alternate (Lawrence et al., 2013); then, the pathogenicity of these Alternaria strains on
the invasive plant A. adenophora, as well as on native plants, was tested. Our study is
valuable for understanding the impact of A. adenophora invasion on the Alternaria species
composition of native plants and the potential disease risks. It can also provide evidence
that Alternaria can be candidates for the development of biocontrol fungi for
A. adenophora invasion.

MATERIALS AND METHODS
Isolation of fungi
The Alternaria strains used in this study were isolated from healthy leaves of
A. adenophora, diseased leaves of A. adenophora and native plants. Leaf samples were
collected from Yunnan, Guizhou, Guangxi and Hubei Provinces in China. Some strains
from Yunnan were previously reported in our team work (Chen et al., 2020). The samples
were packed in plastic bags, labeled, and transported to the laboratory. The foliar fungi
were isolated and cultured according to the method described by Arnold & Lutzoni
(2007). The leaves were rinsed with tap water and then surface sterilized (2% sodium
hypochlorite for 30 s and 75% ethanol for 2 min and rinsed with sterile water three times).
Healthy leaf tissue or diseased tissue was cut into ~6 mm2 fragments, and then fragments
were subsequently plated onto potato dextrose agar (PDA) and cultured in a constant
temperature incubator at 28 �C for 3–5 days. When fungi grew out from the tissue
segment, hyphal fragments were picked up and transferred to PDA and cultured at 28 �C.
All fungi were maintained as pure cultures at Yunnan University (Kunming, China).
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Molecular identification
Fungal genomic DNA was extracted from the isolated fungi according to the method of
Zolan & Pukkila (1986) and used as a template for PCR. Alt a1 is a specific gene fragment
of Alternaria spp., which can be used to identify Alternaria spp. Therefore, Alt a1
fragments of each isolate were first amplified and sequenced, and Alt-4for and Alt-4rev
were used for Alt a1 amplification (Alt-4for; 5′-ATGCAGTTCACCACCATCGCYTC-3′
and Alt-4rev; 5′-ACGAGGGTGAYGTAGGCGTCRG-3′) (Lawrence, Park & Pryor, 2012).
PCR was performed in a 50 mL reaction volume, which included 1 mL template DNA,
25 mL of 2 × PCR Master Mix (TsingKe, Beijing, China), 1 mL of each forward and reverse
primer, and 22 mL of ddH2O. They were subjected to thermal cycling on a gradient PCR
machine (Thermo Fisher, Waltham, MA, USA). Amplification products were detected
using gel electrophoresis, and the PCR products were sent to the Shanghai Sangon Biotech
Company for DNA sequencing. The Alt a1 sequences generated in this study were used
as queries to search similar DNA sequences in GenBank of the National Center for
Biotechnology Information (NCBI) using the basic local alignment search tool (BLAST).
The isolates that were confirmed to be Alternaria spp. were then amplified and the
calmodulin gene fragment was amplified and sequenced, and primers CALDF1 and
CALDR1 (CALDF1; 5′-AGCAAGTCTCCGAGTTCAAGG-3′ and CALDR1; 5′-CTTC
TGCATCATCAYCTGGACG-3′) were used for calmodulin amplification (Lawrence et al.,
2013). All nucleotide sequences generated were used for alignment and correction by
SeqMan version 7.0.0 (DNAstar 5.0) and were adjusted and redundant sequences were cut
out using BioEdit version 7.0 (Hall, 1999). The BLAST function was used to compare the
Alt a1 and calmodulin sequence data generated in this study with available sequence
data information for type or representative isolates in GenBank of the NCBI (Al-Lami, You
& Barbetti, 2018). All gene nucleotide sequences reported in this study were deposited at
GenBank under the accession numbers OK584830–OK584936 for Alt a-1 and
OK584937–OK585043 for calmodulin (also see Supplemental File S1).

Phylogenetic analysis
These two gene fragments were spliced into a multigene joint dataset in the order of
Alt a1-calmodulin. According to previous reports, Alternaria spp. sequences of the two
gene fragments were downloaded from the GenBank database and were adjusted and cut
by the same method described above (Bertels et al., 2014). The reference sequence
information used is shown in Table 1.

Bayesian inference (BI) and the maximum-likelihood (ML) method were used to
construct the phylogenetic tree, and Alternaria consortialis (CBS201.67) was used as the
outer group for phylogenetic analysis. BI analyses were performed on MrBayes version
3.2.1 (Ronquist et al., 2012). jModelTest was used to calculate the most suitable nucleotide
substitution model for the experimental data. Metropolis-coupled Markov chain Monte
Carlo (MCMCMC) searches were run for 4,000,000 generations, sampling every 100th
generation, and until the mean standard deviation of splitting frequency dropped below
0.01. The initial 25% of the generations of MCMCMC sampling were discarded as burn-in.
The refinement of the phylogenetic tree was used to estimate BI posterior probability
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values. The tree was viewed in FigTree version 1.4. ML analysis was computed with the
PHY files generated with Clustal X version 2.1 (Thompson et al., 1998), performed on
MEGA X (Kumar et al., 2018) and using the GTR-GAMMA model. ML bootstrap
proportions were computed with 1,000 replicates.

Morphological characteristics
According to the phylogenetic tree, the representative isolates were randomly selected for
culture on PDA and potato carrot agar (PCA) for observation of conidia and colony
morphology. These strains were incubated at 28 �C in a constant temperature incubator
for 7 days, and each isolate had five repeats. After 7 days, the diameter of the colony was
measured. Then, the isolate was inoculated in V8 Juice by the trisection method and
cultured at room temperature for 14 days. The surface of the colonies was gently scraped
with cover glass slides and placed on slides dripped with oil and sterilized deionized
water for observation of conidia under a microscope. The spore length, width, number of
septa and mediastinum, and beaks were measured from 50 conidia that were randomly
selected.

Pathogenicity tests
The pathogenicity of these Alternaria strains on A. adenophora and native plants was
tested by previously described methods (Gilbert & Webb, 2007). The field site was located
in Xishan Forest Park, Kunming, at an altitude of 2,214 m, latitude of 24�58024″N and
longitude of 102�37017″E. Briefly, the selected isolates were drilled with a sterilized

Table 1 The reference sequences used for phylogenetic analyses in this study.

Species Sourcea Locality, host GenBank accessionb

Alt a1 Calmodulin

Alternaria alternata CBS 102603 Israel, Minneola tangelo KP123882 MH168346

CBS 106.24 USA, Malus sylvestris KP123847 MH168350

CBS 106.34 Unknown, Linum usitatissimum KP123853 JQ646197

CBS 118811 USA, Brassica oleracea KP123904 MH107302

CBS 118812 USA, Daucus carota KP123905 MH175184

CBS 119543 USA, Citrus paradisi KP123911 MH107304

CBS 121454 USA, Cuscuta gronovii JQ646402 MH175186

CBS 121456 China, Sanguisorba officinalis KP123917 MH168352

CBS 127671 USA, Stanleya pinnata KP123929 MH137286

CBS 194.86 USA, Quercus sp. KP123869 MH168351

CBS 595.93 Japan, Pyrus pyrifolia JQ646399 JQ646204

Alternaria gossypina CBS 100.23 Unknown, Malus domestica KP123977 JQ646201

CBS 104.32 Zimbabwe, Gossypium sp. JQ646395 JQ646202

Alternaria steviae CBS 632.88 Japan, Stevia rebaudiana JQ646423 JQ646240

Alternaria consortialis CBS 201.67 npb FJ266509 JQ646173

Notes:
a CBS, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8,3584 CT
Utrecht, Netherlands.
b np: no product.
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perforator with a diameter of ~6 mm to make a PDA agar disc with fungal mycelium.
The mature and healthy leaves of the tested plants were punctured on the underside using
a sterile puncher, and the inoculum agar was pressed against the wound on the underside
of the leaf using Scotch tape, which was then clipped in place with a bent hair clip.
Each isolate was repeatedly inoculated with five leaves, and the PDA agar disc without
fungal mycelium was used as a control. Seven days after inoculation, the tested leaves were
cut and placed in a sterile plastic bag and transported to the laboratory for observation
and measurement. The tested plants included the invasive plant A. adenophora, as well as
nine local common plants in Kunming, including woody plants: Cyclobalanopsis
glaucoides, Celtis tetrandra, and Lindera communis; herbaceous plants: Arthraxon hispidu,
Hypoestes triflora, and Urena lobate; and vine plants: Fallopia multiflora, Argyreia
pierreana, and Ampelopsis bodinieri.

Data analysis
One-way ANOVA was used to compare the growth of isolates in different culture media,
as well as the pathogenicity of Alternaria spp. against A. adenophora and native
plants. Both Duncan’s test and Tukey’s test were used for pairwise comparison of the
pathogenicity across different groups of Alternaria within the same category of plant
(e.g., within A. adenophora or within native plants). A regression analysis between average
spot size and number of hosts was performed to test whether fungal virulence is related to
the host range. The calculated relative size based on the pathogenicity was used to
show the pathogenicity of Alternaria on the invasive plant and local plants using a bubble
plot.

RESULTS
Fungal isolates and phylogenetic analysis
In total, 104 isolates of Alternaria spp. were obtained from A. adenophora and native
plants from Yunnan (60 isolates), Hubei (17 isolates), Guizhou (18 isolates), Sichuan
(8 isolates), and Guangxi (1 isolate). Among them, 32 isolates were from A. adenophora
(five from healthy leaves and the rest were isolated from leaf spots) and 72 isolates were
from leaf spots of native plants (see Table S1 for details).

In the phylogenetic tree of the Alt a1-calmodulin gene, the isolates were divided into
four groups: two groups from A. alternata (88.5%) and two from A. gossypina (10.6%) and
A. steviae (0.9%) (Fig. 1). Both single-gene phylogenetic trees of Alt a1 and calmodulin
showed that isolates belonging to the A. alternata section were also divided into two
groups (including 92 isolates); however, there were differences in the composition of
the isolates in each group (Figs. S1 and S2; Table S1). Regardless of the single- or
double-gene tree, the isolates from A. adenophora and native plants were grouped together,
and many strains showed the same sequence. Interestingly, Alternaria alternata was
mainly obtained from A. adenophora, but those from A. gossypinawere mainly from native
plants (Fig. 1).
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Figure 1 Phylogenetic tree derived from Bayesian analysis based on combined Alt a1 and
Calmodulin sequences of 119 strains representing species in Alternaria. The numbers above bran-
ches represent Bayesian posterior probabilities and maximum-likelihood bootstrap percentages (PP/ML).
Only bootstrap percentages over 50% and significant Bayesian posterior probability (0.8) are shown on
the branches. The geographic location and plant source for each strain are shown in parentheses fol-
lowing the strain number. The numbers in bold are isolates from A. adenophora. Geographic location:
CY-Cangyuan, DB-Debao, DY-Duyun, ES-Eshan, JC-Jianchuan, KM-Kunming, LC-Lancang, MD-
Midu, NC-Nanchong, NY-Nayong, PE-Puer, PT-Pingtang, WS-Weishan, YJ-Yuanjiang, YL-Yiliang, YX-
Yunxian, ZX-Zhenxiong; plant source: Aa-Ageratina adenophora, An-Alnus nepalensis, Ap-Amygdalus
persica, Ba-BetuLa alnoides, Bp-Brassica pekinensis, Ca-Capsicum annuum, Co-Cynanchum otophyllum,
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Morphological analysis
The representative morphology of conidia and colonies for these Alternaria strains are
shown in Fig. S3. The conidia were brown to black and inverted rod-shaped, ovoid or
nearly elliptical, with 3–6 transverse septa and 0–3 longitudinal septa, and were always
beakless or pseudorostrate. Whether on PDA or PCA, the colonies were round and fluffy,
without pigment production, with the exception of DB94 (belonging to A. steviae),
which produced orange pigments. The colony color varied greatly among strains between
groups, as well as within groups. The colony diameters on different media were marginally
different, but there was no difference on the same media for different groups (Fig. 2).

Pathogenicity analysis
In total, 52 isolates were randomly selected to test pathogenicity on A. adenophora and
native plants. For A. adenophora, 35 of 42 tested A. alternata strains were pathogenic,
without a difference between those from Groups 1 and 3; and 4 of 9 tested isolates
belonging to A. gossypina were pathogenic (Fig. 3). In general, A. alternata strains
(particularly Group 3) were more virulent than A. gossypina (Fig. 4A; Table 2).

For nine tested native plants, most of these Alternaria strains are generalists, and each
isolate was pathogenic to at least one native plant. Only three isolates were pathogenic to
only one native plant (Fig. 3). The plant Hypoestes triflora was the most sensitive host,

Figure 1 (continued)
Cs-Camellia sinensis, Ds-Dioscorea subcalva, Em-Euphorbia milii, Fm-Fallopia muLtiflora, Gh-Gonos-
tegia hirta, Ic-Imperata cylindrica, Ls-Lactuca sativa, Mn-Musa nana, Nt-Nicotiana tabacum, Pv-Pha-
seolus vulgaris, Ri-Reinwardtia indica, Sm-Solanum melongena, Zm-Zehneria maysorensis. The tree was
rooted to A. consortialis (CBS201.67). The right side of each group shows the percentage of strains
isolated from invasive plants (Aa, A. adenophora) and native plants (np, native plant) in this group.

Full-size DOI: 10.7717/peerj.13012/fig-1

Figure 2 Growth diameter of isolates on different culture media. The same letter indicates that there is
no significant difference for different groups on PDA or PCA. One-way ANOVA was used to compare
the growth of isolates in different culture media (F = 4.070, P = 0.055). Identical lowercase or uppercase
letters indicate nonsignificant differences. “�” indicates marginally significant (P < 0.10).

Full-size DOI: 10.7717/peerj.13012/fig-2
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resisting only one isolate, while Lindera communis was the least sensitive host, resisting
38 isolates (Fig. 3). In general, the isolates with a wider host range were more virulent to the
plant (Fig. 4C) (see Table S3 for the spot area data after infection).

Figure 3 Bubble plot for the pathogenicity of Alternaria on the invasive plant and local plants. Aa,
A. adenophora, Ht, Hypoestes trifloral, Ah, Arthraxon hispidu, Ul, Urena lobata, Ab, Ampelopsis bodi-
nieri, Ap, Argyreia pierreana, Fm, Fallopia multiflora, Ct, Celtis tetrandra, Cg, Cyclobalanopsis glaucoides,
Lc, Lindera communis. The bubble area is the calculated relative size based on the pathogenicity.

Full-size DOI: 10.7717/peerj.13012/fig-3
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DISCUSSION
Our study is the first to determine the phylogenetics and pathogenicity of Alternaria
associated with an invasive plant and native plants. In total, 104 Alternaria strains were
divided into four groups, phylogenetically belonging to A. alternata, A. gossypina, and
A. steviae (Fig. 1), using previously described genes in the identification of Alternaria,
including Alternaria major allergen (ALT) and calmodulin (Lawrence et al., 2013). Some
strains belonging to Alternaria alternata were different in the calmodulin and Alt a1
phylogenetic trees (Fig. 1; Figs. S1 and S2), suggesting that the section Alternaria alternata
harbors more diverse genetic variation than A. gossypina.

Again, our multiple gene analysis indicated that there was still great sharing between the
isolates from A. adenophora and from native plants (Fig. 1), supporting a previous report
revealed by ITS gene (Chen et al., 2020). Such a sharing indirectly suggests a high
possibility for these Alternaria of host jumps between invasive plants and surrounding
native plants. This is common for fungal pathogens of hosts to jump (Silva et al., 2012;
Slippers, Stenlid & Wingfield, 2005). As an invading host becomes more abundant in the
community, it can increase the frequency of those pathogen genotypes most able to infect

Figure 4 Comparison of the pathogenicity (A) and host range (B) of three groups of Alternaria spp.
on A. adenophora and native plants and correlation analysis of host range and pathogenicity (C). The
error bar represents the standard error. One-way ANOVA was used to compare the pathogenicity of
Alternaria spp. against A. adenophora and native plants (F = 18.940, P < 0.001), and Duncan’s test and
Tukey’s test were used for pairwise comparison of different groups of Alternaria within the same category
of plants (e.g., within A. adenophora or within native plants). This figure shows the results of Tukey’s test.
Different lowercase letters indicate that the difference was significant, and identical lowercase or
uppercase letters indicate nonsignificant differences. Asterisks (���) indicates extremely significant
(P < 0.001). The equation for the regression of average spot size and number of hosts was Y = 3.312 � X –
4.578 (R2 = 0.677, P < 0.001). Full-size DOI: 10.7717/peerj.13012/fig-4

Table 2 Results of one-way ANOVA with different test methods.

Genotype Average spot size/mm2 (Aa)a Average spot size/mm2 (np)a

Duncan Tuckey Duncan Tuckey

A. a (group1) 31.00 ± 24.51ab 31.00 ± 24.51ab 13.87 ± 8.82AB 13.87 ± 8.82A

A. g (group2) 13.93 ± 17.83b 13.93 ± 17.8b 7.55 ± 6.68B 7.55 ± 6.68A

A. a (group3) 38.83 ± 25.00a 38.83 ± 25.00a 16.62 ± 15.02A 16.62 ± 15.02A

Note:
aAa, A. adenophora; np, native plant.
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and reproduce on the dominant host species (Gilbert & Parker, 2010). For example, the
ability of fungal generalists to undergo range expansion is probably due to their capacity to
infect novel hosts (Brown & Hovmøller, 2002; Evangelista et al., 2008). Nonetheless,
whether these Alternaria strains exhibit host jumps requires further evidence, including
the dynamics of these Alternaria on A. adenophora since their introduction in Yunnan, as
well as a comparison of Alternaria isolated from A. adenophora in its native and
invaded ranges. Interestingly, most of our strains (~88%) are from Section Alternaria
alternata (Fig. 1), which is well known to be widely distributed and an important pathogen
for many plant species (Woudenberg et al., 2015). Therefore, there is a great ecological risk
in disease transmission on local plants driven by A. adenophora invasion if these
Alternaria can cause disease in co-occurring local plants.

Indeed, our pathogenicity test further verified that most strains of A. alternata are
not only virulent to A. adenophora but also commonly to native plants (Fig. 3). Therefore,
the disease risk to neighboring native plants caused by these shared Alternaria fungi
should be met with caution. Relative to native plants, invasive exotic species often grow
monocultures, are high-density, are poorly defended (Blumenthal, 2006; van Kleunen,
Weber & Fischer, 2009) and are expected to be ideal pathogen reservoirs (Cronin et al.,
2010). Recently, several examples have been examined in the context of wild plant
communities. For example, spillover of barley yellow mosaic virus from a highly
susceptible invasive grass decreased the abundance of two native grasses through
pathogen-mediated apparent competition (Power & Mitchell, 2004). Invasive cheatgrass
(Bromus tectorum) serves as a reservoir for the native seed pathogen Pyrenophora
semeniperda, which causes significantly greater death of native seeds in invaded areas
(Beckstead et al., 2010). In the UK, the invasive Rhododendron ponticum is a key foliar
reservoir host for both Phytophthora ramorum and P. kernoviae (Purse et al., 2012).
Thus, it can be expected that diverse Alternaria associated with A. adenophora may be
potential pathogen sources for co-occurring local plants in the invaded ecosystem.
Our current pathogenicity test was performed only in one geographic location under
natural conditions (see ‘Materials and Methods’). The Alternaria spp. isolates in this
study were collected from a wide range of geographic locations; thus, caution should be
taken when explaining the pathogenicity of Alternaria spp. isolates because pathogen
virulence varies with environmental conditions such as temperature and humidity.

The hypothesis of ‘accumulation of local pathogens’ indicates that pathogens
accumulated on invasive alien plants may spread to native plants and produce a
disadvantage in competition with alien species when alien species are more tolerant to
pathogens (Eppinga et al., 2006). For example, the invasive Chromolaena odorata can
accumulate high concentrations of the generalist soil-borne fungal pathogen Fusarium
semitectum in their invaded range, thereby creating a negative response in native plant
species (Mangla & Callaway, 2007). However, both species and abundance of pathogens
accumulated by invasive plants are highly dynamic along with the expansion range and
time (Mitchell et al., 2010), it is difficult to evaluate the realized impacts of a given pathogen
on introduced host population. In this case, our results showed that such an indirect
advantage is a low possible event for A. adenophora over native plants through these
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Alternaria species because A. alternata in general is more virulent to A. adenophora
than to native plants (Fig. 3). Therefore, it is not possible for the disease-mediated invasion
of A. adenophora by Alternaria to act as ‘biological weapons’ from invaders (Strauss, White
& Boots, 2012). Nonetheless, whether these Alternaira strains can act as ‘biological
weapons’ from invaders depends on which local competitors are selected for evaluation.
For example, woody plants, e.g., Lindera communis was more resistant to these fungi
than the other plants; in particular, the herbaceous plant H. triflora was sensitive to
51 strains (Fig. 3). It is therefore expected that H. triflora has a disadvantage when
competing with A. adenophora due to a disease weapon (Alternaria).

CONCLUSIONS
Our study verifies that abundant fungi belonging to A. alternata, A. gossypina and
A. steviae inhabit the healthy and diseased leaves of A. adenophora, as well as diseased
leaves of surrounding local plants. Pathogenicity tests indicated that these Alternaria
species are generalists and are virulent to A. adenophora and common native plants.
Therefore, Alternaria associated with A. adenophora can be a potential disease source for
local native plants. Nonetheless, A. alternata can cause leaf spot and other diseases in a
variety of crops (Gao et al., 2020; Kgatle et al., 2018). The spillback of these Alternaira
strains and potential risk to crops remain to be verified. In addition, previous efforts have
attempted to develop Alternaira as a biocontrol method on A. adenophora (Zhou et al.,
2010). Our data indicated that Alternaria with more virulence commonly had a wider
range of hosts (Fig. 4). Therefore, it is nearly impossible to obtain a biocontrol strain of
Alternaria alternata with high virulence and host specificity unless genetic modification is
used.
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