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Changes in environmental conditions are likely to have a complex effect on the growth of
plants, their phenology, plant-pollinator interactions, and reproductive success. The
current world is facing an ongoing climate change along with other human-induced
environmental changes. Most research has focused on the impact of increasing
temperature as a major driving force for climate change, but other factors may have
important impacts on plant traits and pollination too and these effects may vary from
season to season. In addition, it is likely that the effects of multiple environmental factors,
such as increasing temperature, water availability, and nitrogen enrichment are not
independent. Therefore, we tested the impact of two key factors – water, and nitrogen
supply – on plant traits, pollination, and seed production in Sinapis alba (Brassicaceae)in
three seasons defined as three temperature conditions with two levels of water and
nitrogen supply in a factorial design. We collected data on multiple vegetative and floral
traits and assessed the response of pollinators in the field. Additionally, we evaluated the
effect of growing conditions on seed set in plants exposed to pollinators and in hand-
pollinated plants. Our results show that water stress impaired vegetative growth,
decreased flower production, and reduced visitation by pollinators and seed set, while high
amount of nitrogen increased nectar production under low water availability in plants
grown in the spring. Temperature modulated the effect of water and nitrogen availability
on vegetative and floral traits and strongly affected flowering phenology and flower
production. We demonstrated that changes in water and nitrogen availability alter plant
vegetative and floral traits, which impacts flower visitation and consequently plant
reproduction. We conclude that ongoing environmental changes such as increasing
temperature, altered precipitation regimes and nitrogen enrichment may thus affect plant-
pollinator interactions with negative consequences for the reproduction of wild plants and
insect-pollinated crops.
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16 Abstract

17

18 Changes in environmental conditions are likely to have a complex effect on the growth of plants, 

19 their phenology, plant-pollinator interactions, and reproductive success. The current world is 

20 facing an ongoing climate change along with other human-induced environmental changes. Most 

21 research has focused on the impact of increasing temperature as a major driving force for climate 

22 change, but other factors may have important impacts on plant traits and pollination too and 

23 these effects may vary from season to season. In addition, it is likely that the effects of multiple 

24 environmental factors, such as increasing temperature, water availability, and nitrogen 

25 enrichment are not independent. Therefore, we tested the impact of two key factors – water, and 

26 nitrogen supply – on plant traits, pollination, and seed production in Sinapis alba 

27 (Brassicaceae)in three seasons defined as three temperature conditions with two levels of water 

28 and nitrogen supply in a factorial design. We collected data on multiple vegetative and floral 

29 traits and assessed the response of pollinators in the field. Additionally, we evaluated the effect 

30 of growing conditions on seed set in plants exposed to pollinators and in hand-pollinated plants. 
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31 Our results show that water stress impaired vegetative growth, decreased flower production, and 

32 reduced visitation by pollinators and seed set, while high amount of nitrogen increased nectar 

33 production under low water availability in plants grown in the spring. Temperature modulated 

34 the effect of water and nitrogen availability on vegetative and floral traits and strongly affected 

35 flowering phenology and flower production. We demonstrated that changes in water and 

36 nitrogen availability alter plant vegetative and floral traits, which impacts flower visitation and 

37 consequently plant reproduction. We conclude that ongoing environmental changes such as 

38 increasing temperature, altered precipitation regimes and nitrogen enrichment may thus affect 

39 plant-pollinator interactions with negative consequences for the reproduction of wild plants and 

40 insect-pollinated crops.

41

42

43 Introduction

44 Ecosystems worldwide are facing accelerating global change characterised by increasing 

45 temperature and changing levels of precipitations, coupled with increasing supply of nitrogen 

46 and other nutrients, biological invasions, and habitat loss (Hoover et al., 2012). Testing the 

47 effects of these environmental changes on plant growth and reproductive fitness are necessary to 

48 understand potential impacts of climate change on the productivity and functioning of natural 

49 and agricultural ecosystems (Rustad, 2008). For pollinator-dependent plants, changes of these 

50 factors may impact their relationship with pollinators and consequently the success of pollination 

51 and plant reproduction (Scaven and Rafferty, 2013; Gérard et al., 2020). Reproductive success of 

52 animal-pollinated plants generally depends on floral traits, which act as an advertisement of 

53 rewards to their pollinators (Hegland and Totland, 2005; Basnett et al., 2019). Despite strong 

54 selection from pollinators, plant populations naturally show significant variation in their 

55 morphological, phenological, and floral traits. A part of this variation results from heritable 

56 genetic differences among individuals, while the rest (phenotypic plasticity) is caused by local 

57 environmental factors (Holtsford and Ellstrand, 1992; Gray and Brady, 2016). Changing 

58 environmental factors may thus alter plant-pollinator interactions as a consequence of changing 

59 plant traits (Carroll et al., 2001; Scaven and Rafferty, 2013, Majetic et al,  2017, Rushman et al,  

60 2019).
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61 Increasing temperature and water stress can have a major effect on the physiological and 

62 phenological development of plants (Schweiger et al., 2010). The global average annual 

63 temperature is rising gradually, with higher increases in the average and minimum temperatures 

64 reported during the winter than the summer months (NOAA, 2021). Consequently, phenological 

65 shifts are visible in many early-flowering plants (Kehrberger and Holzschuh, 2019). Increased 

66 average temperatures may allow them to initiate growth and flowering earlier because of earlier 

67 snowmelt and higher spring temperatures (Fitter and Fitter, 2002; Güsewell et al., 2017). 

68 Water availability is changing in a complex way as many regions of the world are facing 

69 water scarcity and other regions are facing increased precipitation (Christensen et al., 2007). 

70 Although water availability is an important determinant of plant growth, its effect on floral traits 

71 is less clear. Water availability can directly influence the flowering time and duration (Bernal et 

72 al., 2011; Lasky et al., 2016) and plants with adequate water supply may achieve greater height 

73 and floral abundance (Galen, 2000; Carromero and Hamrick, 2005), increased nectar production 

74 (Zimmermann and Pyke, 1988, Carroll et al., 2001), and higher nectar sucrose content (Wyatt et 

75 al., 1992). Water stress may lead to reduced floral resources (Rering et al., 2020) including 

76 impaired pollen and seed development (Barnabás et al., 2008; Hedhly, 2011; Snider and 

77 Oosterhuis, 2011). Changes in water availability can also affect various stages of phenological 

78 growth differently in the same species (Blum, 1996). The consequences of water stress for flower 

79 visitation by insect pollinators are still poorly known, but there is evidence that alteration of 

80 floral rewards by water stress may lead to decreased flower visitation (Descamps et al., 2018).

81 Variation in nitrogen supply is another key driver of local plant diversity (Bobbink et al., 

82 2010). At the global scale, anthropogenic nitrogen deposition increased more than 10 times over 

83 the last century (Galloway et al., 2004; Fowler et al., 2013) and is now around 200 Tg N per year 

84 with a wide range of negative environmental consequences (Battye et al., 2017). In a plant 

85 community, small-scale heterogeneity of soil nitrogen content at the scale of a few meters can 

86 lead to variation in plant size and reproductive success (Scott-Wendt et al., 1988), possibly 

87 including their mutualistic relationship with pollinators. Under the conditions of nitrogen 

88 limitation, increasing nitrogen supply can enhance plant growth and enable plants to produce 

89 floral rewards of higher quality (Gardener and Gillman, 2001; Burkle and Irwin, 2009; Burkle 

90 and Irwin, 2010). In particular, nitrogen enrichment can increase the amount of nectar produced 

91 per flower and alter the concentration and composition of amino acids in nectar, which may 
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92 affect pollinator preferences and foraging behaviour (Pyke, 1981; Baker and Baker, 1983; Inouye 

93 and Waller 1984; Gardener and Gillman, 2002; Hoover et al., 2012).  

94 Changing environmental conditions can alter plant traits and disrupt interactions of plants 

95 with pollinators, but the consequences for pollination and seed production remain poorly known. 

96 Given the pace of ongoing climate change, which alters not only the temperature but also water 

97 availability for plants, and still increasing anthropogenic nitrogen deposition, it is important to 

98 investigate how these factors act interactively. Such interactive effects have been rarely 

99 considered in experimental studies on plant-pollinator interactions (Hoover at al., 2012). To fill 

100 this gap, we examined the interactive impact of water and nitrogen supply on vegetative and 

101 floral traits, pollination, and seed production in Sinapis alba across three different temperature 

102 ranges coupled with seasons. It is an economically important crop, cultivated over a wide 

103 geographic range for oil and fodder and is partly self-incompatible with seed production strongly 

104 dependent on pollination by insects. In our study we aimed to answer the following questions: 1) 

105 What are the interactive effects of water and nitrogen supply on vegetative and floral traits of S. 

106 alba? 2) Are these effects consistent in different temperature ranges? 3) How does intraspecific 

107 trait variation caused by growing conditions affect flower visitation by pollinators, pollination 

108 efficacy, and seed production?

109

110

111 Materials & Methods

112 The experimental plant, Sinapis alba

113 Sinapis alba (white mustard) is a rapidly growing annual plant from the Brassicaceae family with 

114 a short vegetation period. This crop is widely cultivated for seeds, oil, fodder, or as a catch crop. 

115 Flowers are yellow, produced in an elongated raceme, have four petals, four sepals, and 6 

116 stamens, of which four are long and two are short. Fruit is a pod with usually four seeds but can 

117 have up to eight seeds (Jauzein, 2011). A wide range of pollinating insects visit this plant but the 

118 European honey bee (Apis mellifera), bumble bees and solitary bees are the main pollinators in 

119 Europe (Flacher et al., 2020).

120

121 Growing S. alba under variable conditions in the greenhouse
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122 This experiment was conducted in the same greenhouse, where S. alba seedlings were grown in 

123 the spring 2017 (60 plants per treatment), winter 2017-2018 (30 plants per treatment) and 

124 summer 2018 (45 plants per treatment). The number of plants grown in the first batch (spring 

125 2017) was higher as a precaution against possible mortality of the plants and was reduced in next 

126 two batches according to the required number of plants (less plants needed in the winter when we 

127 did no outdoor experiments). Although, the number of plants grown in the greenhouse varied in 

128 different period, but number of plants used for different data collection was not significantly 

129 different. The temperature in the greenhouse fluctuated in a near-natural way and was on average 

130 21°C in the winter 2017-2018, 25°C in the spring 2017, and 29°C in the summer 2018. A 

131 minimum 10 hours of daylight (natural daylight + artificial light) was maintained for all growing 

132 conditions. Plants grown in the winter received 10-12 hours of daylight, plants grown in the 

133 spring received 12-16 hours, and plants grown in the summer received 16 hours of daylight. The 

134 plants were grown in a combination of garden soil: compost soil: sand = 2:2:1 by volume. Seeds 

135 were sown at the same time in germination trays, received the same amount of water, and 

136 seedlings germinated on the same day were transferred to individual pots (11 x 11 x 11 cm) four 

137 days after germination.

138 We divided the seedlings from same temperature range into four treatment groups which 

139 received a different combination of two watering regimes and two levels of nitrogen supply. 

140 Based on the average ca. 700 mm annual precipitation in the Czech Republic (source: Czech 

141 Hydrometeorological Institute, https://www.chmi.cz/), we determined the lower level of water 

142 for one pot as 20 ml and the higher level of water as 40 ml per day. As the minimum N 

143 application recommended for the S. alba is 280 kg N ha-1 with a 560 mm annual precipitation 

144 (Brown et al., 2005) and the N deposition is 100 kg N ha-1 equivalent to the 2 years global 

145 nitrogen deposition level (Vitousek et al., 1997), we applied NPK fertiliser, corresponding to 

146 0.242 g N pot-1 (~200kg N ha-1) as a higher level of application and 0.121 g N pot-1 (~100 kg N 

147 ha-1) as a lower level to ensure the minimum N2 supply to the plants, once a week for 8 weeks 

148 according to. Before conducting the main experiment, we performed a preliminary trial to 

149 determine the described water level, N2 application, and soil mixture to optimize the growth 

150 conditions for S. alba. The position of plants in the greenhouse was altered regularly to avoid any 

151 possible impact of environmental gradients, e.g. the light level, within the greenhouse. Plants 

152 infected with diseases or attacked by aphids were discarded from the experiment. 
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153

154 Assessment of plant morphology, phenology and nectar production

155 We measured several vegetative and floral traits of individual plants in each treatment group 

156 following the standard BBCH scale for oilseed rape (Meier et al., 2009). Plant height was 

157 measured several times throughout the growing period. Top leaves were held up together to 

158 measure the plant height until the inflorescences became taller than that and final height was 

159 taken after the end of flowering by holding up all the main and secondary inflorescence together. 

160 The number of leaves was counted for the main shoot only, as for the low water treatments there 

161 was no side shoot formation. Stem diameter of each plant was measured 20 cm above ground, up 

162 to this point, there was no side shoot formation in any treatment. The onset of flowering was 

163 counted from the day of the seedling transfer to the opening of first flower and the total number 

164 of flowers bloomed were counted until the end of flowering. Nectar was collected from 4 flowers 

165 per plant in each treatment group after one day of flowering by using calibrated 0.5 µl capillary 

166 tubes (Drummond Microcaps®), which allowed us to measure the volume of nectar. Additional 

167 data were collected on the plant fresh weight and dry weight of plants grown in the spring to 

168 determine the effect of different combinations of water and nitrogen availability on plant 

169 biomass. Overall, we collected data on plant height, the number of leaves, and stem diameter 

170 from 11-20 plants, sampled nectar from 15-25 plants, measured the onset of flowering in 15-30 

171 plants, and counted the total number of flowers in 12-15 plants per treatment. All data collected 

172 during the experiments are deposited in Figshare   

173 (https://doi.org/10.6084/m9.figshare.13317686).

174

175 Pollination efficacy treatment and field pollination observations

176 To determine the impact of water and nitrogen supply on the pollination efficacy in S. alba, we 

177 carried out self- and cross-pollination in 6 plants per treatment grown in the winter. For each 

178 treatment, 20-85 flowers were hand pollinated per plant, depending on the number of flowers 

179 produced (see data: https://doi.org/10.6084/m9.figshare.13317686). We marked all the flowers 

180 selected for the experiment, performed cross-pollination by transferring pollen from a different 

181 plant and same flower for self-pollination. We collected data on the number of fruits and seeds 

182 from each plant after three weeks to allow sufficient time for seed development. Plants grown in 
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183 the spring and the summer were brought outside and placed in a sunny location nearby the 

184 Institute to assess the pollinator response and natural pollination efficacy under field conditions. 

185 First part of the pollinator observations was carried out from May 17 – May 31, 2017 and a 

186 second part in from July 26 – July 31, 2018. We always exposed four plants at the same time 

187 (one plant from each of the four water x nitrogen combinations), placed 1 meter apart in a square 

188 configuration. We observed their visitation by naturally occurring pollinators for 30 minutes, 

189 from 9:00 to 14:00 each day. Altogether, we carried out observations of forty-four groups of four 

190 plants, which resulted into a total 22 hours of observation. Pollinators were observed, collected, 

191 and identified in the field. After the end of each observation, the plants were brought back to the 

192 greenhouse, their open flowers were marked, and seed production through the natural pollination 

193 was measured after seed development (data: https://doi.org/10.6084/m9.figshare.13317686).

194

195 Statistical analyses

196 We used generalised linear models (GLM) to assess the individual and interactive impact of 

197 water, N2, and season on the plant vegetative and floral traits. The availability of water, nitrogen, 

198 and the season were used as factors in the analyses. Depending on the type of the response 

199 variable, we specified the GLM with either Gaussian error distribution, overdispersed Poisson 

200 (“quasipossion”, the number of flowers), or Gamma distribution with a log link function (onset 

201 of flowering and nectar volume). We analysed data from the outdoor flower visitation 

202 experiment using GLM with water, nitrogen level, and season as factors, using the overdispersed 

203 Poisson (“quasipossion”) error distribution. We analogously analysed also data on seed set of 

204 plants depending on growing conditions. We always examined the distribution of residuals to 

205 verify that the models fitted the data well. We conducted all analyses in R Version 3.6.3 (R Core 

206 Team 2020). Most plots were created using GraphPad Prism (Version 6.01, for Windows, 

207 GraphPad Software, San Diego, California USA, www.graphpad.com).

208

209

210 Results

211 Vegetative traits
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212 We observed a complex response of the selected vegetative traits of S. alba to differences in the 

213 growing conditions (Table 1, Fig.1). Plant height was affected by the three-way interaction of 

214 water availability, nitrogen supply, and season, i.e. the effect of each variable was dependent on 

215 the values of the other two variables (F = 4.94, P =0.008, Fig. 1A). While higher water 

216 availability made the plants taller, increasing nitrogen availability made the plants shorter. The 

217 magnitude of these effects varied across the three temperature ranges (Fig. 1A). In addition, 

218 plants grown in the highest temperature were almost 50% shorter than those grown in the lowest 

219 temperature. Stem diameter was larger in plants grown under high water availability (F = 40.84, 

220 P < 0.001, Fig. 1B) and varied also depending on nitrogen supply in interaction with the season 

221 (F = 9.51, P < 0.001) – higher nitrogen supplies increased stem diameter in plants grown in the 

222 lowest and highest temperature, but not in the moderate temperature (Fig. 1B).  On the other 

223 hand, the number of leaves was affected only to a limited degree by water availability (F = 16.20, 

224 P < 0.001, Fig. 1C) and the temperature (F = 7.48, P < 0.001), while nitrogen supply had no 

225 measurable effect (F = 0.09, P = 0.768). Finally, dry weight of the plants grown under high 

226 water availability was 2.6 times higher compared to those grown under low water availability, 

227 with a positive effect of nitrogen supply only at high water availability (water x nitrogen 

228 interaction: F = 5.52, P = 0.023, Fig. 1D).

229

230 Phenology and flower resource variation

231 The onset of flowering was significantly delayed in the lowest temperature, by ca. 21 days, 

232 compared to the moderate and highest temperature ranges (F = 69.45, P < 0.001) and also 

233 delayed by high nitrogen supply, but only by on average 3.7 days (F = 6.21, P = 0.013, Table 2, 

234 Fig. 2A). The number of flowers produced over the plants’ flowering period was highly 

235 positively affected by water supply (F = 24.24, P < 0.001) and negatively by nitrogen supply (F 

236 = 6.83, P = 0.010). The effects of these two variables did not vary significantly among the time 

237 periods (Table 2, Fig. 2B). Finally, nectar volume showed a complex dependence on the 

238 interaction of water, nitrogen supply, and temperature (F = 3.56, P = 0.030). Higher water 

239 availability increased nectar volume in the winter, but not in other times, while higher nitrogen 

240 availability increased nectar volume under low water availability in higher temperatures (Fig. 

241 2C).

242
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243 The dependence of flower visitation on growing conditions

244 We observed flower visitation by eight major types of flower-visiting insects in the spring 2017 

245 and summer 2018 which we distinguished as: the honeybee (Apis mellifera, in total 20 

246 individuals), solitary bees (84), wasps (17), bumblebees (4), rapeseed beetles (Brassicogethes 

247 (=Meligethes) sp., 58), other beetles (5), hoverflies (22), and other flies (18). Rapeseed beetles 

248 were the most abundant flower visitors in the spring 2017, followed by honeybees, while solitary 

249 bees were dominant in the summer 2018, followed by hoverflies (data: 

250 https://doi.org/10.6084/m9.figshare.13317686).

251 Plants grown with high amount of water were visited more frequently than the plants 

252 grown with low amount of water (F = 23.57, P < 0.001) and the total number of flower visitors 

253 was higher in the spring than in the summer (F = 14.19, P < 0.001) (Fig. 3A, 3B). Nitrogen 

254 supply under which the plants were grown did not consistently affect their flower visitation (F = 

255 0.26, P = 0.612). Flower visitation was also affected by the number of open flowers (F = 18.92, 

256 P < 0.001, Fig. 3C) and by plant height (F = 8.89, P = 0.003, Fig. 3D), but the effect of water 

257 availability and season remained significant even after accounting for the variation in flower 

258 number and height (GLM, F = 5.46, P = 0.021 for the effect of water and F = 6.58, P = 0.011 for 

259 the effect of the season), i.e. the differences in flower visitation between plants grown under 

260 different conditions could not be explained simply by differences in plant height and flower 

261 number. In addition to differences in total flower visitation, we detected changes in the 

262 composition of the flower visitors observed on plants grown under different water availability 

263 according to a redundancy analysis (RDA) performed separately for observations from the spring 

264 (F = 4.0, P = 0.004) and summer (F = 3.1, P = 0.028), while nitrogen supply did not affect the 

265 composition of flower visitors (F = 0.37, P = 0.869 for the spring data and F = 0.57, P = 0.669 

266 for the summer data). Some flower visitors visited plants grown under high water availability 

267 more frequently, particularly solitary bees and rapeseed beetles, while other flower visitors did 

268 not show a clear preference (Figs. 4 and 5). 

269

270 Pollination efficacy and seed production

271 Our hand pollination experiment confirmed that S. alba is partially self-incompatible. Plants 

272 cross-pollinated by hand using a brush produced ca. 3.9 times higher number of seeds per flower 

273 than the self-pollinated ones; on average 2.9 compared to 0.7 seeds per flower (Fig. 6A). 
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274 However, the seed set depended not only on the mode of pollination (self-pollinated compared to 

275 cross-pollinated) but on its interaction with nitrogen availability (F = 10.64, P = 0.002). 

276 Specifically, higher nitrogen availability increased seed set in self-pollinated plants, but 

277 decreased seed set in cross-pollinated plants. In addition, higher water availability increased seed 

278 set in both self-pollinated and cross-pollinated plants irrespective of the nitrogen level (F = 5.24, 

279 P = 0.028) (Fig. 6B).

280 Plants exposed to natural pollination in the spring and summer produced a variable 

281 number of seeds per flower depending on the interaction of water availability and season (F = 

282 14.74, P = 0.0003). We observed a slightly higher seed production per flower in plants grown 

283 under high water availability in the summer 2018, but no significant difference in the spring 

284 2017. It also seemed that plants grown in spring with high amount of nitrogen produced a lower 

285 number of seeds per flower, while the opposite pattern was apparent in the summer (Fig. 6C), but 

286 the interaction of the nitrogen availability and season was not statistically significant (F = 1.97, P 

287 = 0.166). As we showed above, plants grown under different combinations of water and nitrogen 

288 availability varied in their total production of flowers. Combined with the variation in the 

289 number of seeds produced per flower, this led to differences in the total seed set per plant (Fig. 

290 6D). Specifically, total seed set was higher in plants grown under high water availability, but the 

291 effect was stronger in the summer than in the spring (the interaction between water availability 

292 and season: F = 5.03, P = 0.029).

293

294

295 Discussion

296 The effect of environmental changes on plant traits

297 Our results highlight that water stress is a key factor for both vegetative and floral traits 

298 (Descamps et al., 2018), while changes of nitrogen supply had a more limited impact in our case. 

299 The effects of these factors were mostly interactive and differed between the three time periods 

300 (spring 2017, winter 2017-2018, summer 2018). Higher amount of water positively affected 

301 plant growth, especially in the spring 2017 and summer 2018. Nitrogen enrichment played a 

302 more complex role in the vegetative growth of S. alba and its effect was modulated by water 

303 availability and differed between the three time periods. Interestingly, previous research has 

304 shown that while water deficiency may lead to reduced biomass production and diminished 
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305 nitrogen uptake in plants (Cossani et al., 2012), sufficient nitrogen supply may enhance their 

306 drought tolerance and increase water use efficiency (Quemada and Gabriel, 2016).

307 Flowering phenology, the number of flowers, and nectar production of S. alba were also 

308 affected by growing conditions. In particular, nectar production was affected by a complex 

309 interaction of all three variables, where nectar production increased under high nitrogen 

310 availability when water availability was low in the spring 2017 and summer 2018, but not in 

311 other cases.  Such a complex relationship was not reported by previous studies in other plant 

312 species. Several studies showed that nectar production may decline in response to water 

313 reduction and increased temperature (Keasar et al., 2008; Scaven and Rafferty, 2013; Takkis et 

314 al., 2015). In our case, nectar production did not decrease under these conditions and also 

315 showed an opposite result compared to Hoover et al. (2012), where nectar production of 

316 Cucurbita maxima decreased with higher nitrogen supply and increased with increasing 

317 temperature. The comparison of our results with previous studies thus confirms that the effects of 

318 varying environmental conditions on nectar production are highly species-specific (Lu et al., 

319 2015).

320 Both vegetative and floral traits displayed significant differences among plants grown 

321 under the same water and nitrogen supply levels in the three time periods. In particular, plants 

322 grown in the winter were smaller and their onset of flowering was significantly delayed 

323 compared to the plants grown in the spring and summer. However, we cannot distinguish 

324 whether the differences were caused by different temperature, day length, or other factors.  

325 Generally, the growth rate and reproductive success of plants is the highest within a certain range 

326 of optimal temperatures and decreases rapidly beyond this optimal range (Vasseur et al., 2014, 

327 Hatfield and Prueger, 2015). Phenological shifts in many plants are also closely related to 

328 temperature (Jagadish et al., 2016; Kehrberger and Holzschuh, 2019). Previous studies on 

329 Borago officinalis also showed that increasing temperature may diminish flower production or 

330 lead to flower bud abortion, which may reduce the total number of flowers produced during the 

331 plant’s flowering period (Saavedra et al., 2003; Descamps et al., 2018). Similarly, the total 

332 number of flowers of S. alba significantly dropped in our experiment in the summer 2018 when 

333 the temperature in the greenhouse averaged ca. 29°C. However, the fact that plants produced 

334 more flowers with high amount of water, even during the summer, shows that the impact of 

335 thermal stress on flower production can be reduced by water supplementation (see also Mahan et 
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336 al., 1995; Li et al., 2020). An optimal temperature is also required for the maximum nectar 

337 secretion (Pacini and Nepi, 2007, Lu et al., 2015). In our case, S. alba produced comparatively 

338 higher amount of nectar in the spring when the temperature reached intermediate values (average 

339 ca. 25°C). Apart from the temperature, differences in vegetative and floral traits of our plants in 

340 the three time periods could have been driven also by differences in day length and light intensity.

341

342 Impact on pollination and seed production

343 Our experiments showed that differences in traits among plants grown under different 

344 environmental conditions had a cascading effect on the number and identity of flower visitors of 

345 S. alba and on its reproduction. Flower visitation rate of insect-pollinated plants depends on 

346 visual cues indicating high floral reward such as the number of open flowers (Conner and Rush, 

347 1996; Akter et al., 2017) and the size of floral display (Grindeland et al., 2005; Parachnowitsch 

348 et al., 2010; Biella et al., 2019), and on the amount and quality of nectar and pollen (Cresswell, 

349 1999; Grindeland et al., 2005). Other morphological features can also influence plant detection 

350 by potential pollinators, such as plant height (Junker et al., 2013; Klecka et al., 2018a; 

351 Hernández-Villa et al., 2020), local plant clustering (Elliot and Irwin, 2009; Akter et al., 2017), 

352 and flower colour (Reverté et al., 2016). Measurements of flower visitation with plants grown in 

353 the spring 2017 and plants grown in the summer 2018 revealed that in both cases plants grown 

354 with higher amount of water had a significantly higher number of flower visitors compared to 

355 plants grown under low amount of water irrespective of nitrogen supply. This is likely a 

356 consequence of differences in vegetative and floral traits induced by differences in water 

357 availability. As discussed above, plants grown with high amount of water were taller and 

358 produced more flowers and these characteristics had a positive effect on the visitation of 

359 individual plants as reported in other plant species (e.g. Mitchell et al. 2004; Akter et al., 2017; 

360 Klecka et al., 2018a). However, other modifications of plant traits induced by water stress also 

361 apparently decreased the visitation of plants grown with low amount of water, because the effect 

362 of water availability on the number of flower visitors per plant persisted even after accounting 

363 for differences in the number of open flowers and plant height in our analysis. We believe that 

364 the remaining unexplained variation could be related to nectar chemistry (Petanidou et al., 2006; 

365 Hoover et al., 2012) or flower scent (Farré-Armengol et al., 2020).
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366 Besides having lower flower visitation, plants grown under low amount of water had 

367 different relative abundance of the main flower visitor groups compared to plants grown with 

368 higher amount of water.  In both years, the number of solitary bees, hoverflies, other flies, and 

369 beetles almost doubled for the plants with high amount of water. In the spring 2017, plants 

370 grown with high amount of water received more frequent visits from rapeseed beetles, solitary 

371 bees, and hoverflies than plants grown under low amount of water, while the other flower 

372 visitors, including honeybees and bumblebees, did not discriminate among the plants. The results 

373 were similar in the summer 2018, although rapeseed beetles were almost absent. Although the 

374 number of flower visitors differed between the two years the visitation patterns were similar for 

375 the plants grown under different conditions. Plants which received higher amount of water were 

376 taller and produced higher number of flowers. As a result, they received more flower visitors 

377 than plants grown with lower amount of water, except for honeybees in the summer 2018. 

378 However, the observed differences in the flower visitation between the spring 2017 and the 

379 summer 2018 may be influenced by the differences in overall insect abundance or weather, but 

380 not necessarily by the growing conditions of the plants. For instance, increasing temperature may 

381 affect flower visitation by a number of mechanisms, from differences in plant traits caused by 

382 high temperature stress (Descamps et al., 2018), through phenological shifts of plant flowering 

383 and pollinator emergence (Hegland et al., 2009; Bartomeus et al., 2011), to changes in pollinator 

384 foraging activity caused by their responses to temperature (Corbet et al., 1993; Slamova et al. 

385 2011), and direct and indirect effects of temperature on the fitness and mortality of pollinating 

386 insects (Scaven and Rafferty, 2013). It is also important to note that we are comparing flower 

387 visitation between the spring 2017 and summer 2018, so the differences between these sampling 

388 periods (e.g. the absence of rapeseed beetles in the summer 2018) could be caused either by 

389 seasonality or by inter-annual variation as Gómez et al, 2020 reported that changes in 

390 temperature and photoperiod can alter the floral size and shape and receive a complete different 

391 group of pollinators. However, this has no effect on our conclusions about the effects of the 

392 water availability and nitrogen supply, which were similar in both periods.

393 Finally, seed production of S. alba was also affected by water and nitrogen availability, 

394 apparently both directly through physiological mechanisms and indirectly through changes in 

395 insect pollination. Our hand pollination assessment confirmed that S. alba is a partially self-

396 incompatible plant (Fan et al., 2007). Low water availability reduced seed production per flower 
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397 in both self-pollinated and cross-pollinated plants, which is consistent with previous studies 

398 suggesting that water stress may lead to seed or pod abortion (e.g. New et al., 1994; Behboudian 

399 et al., 2001). However, we also observed an intriguing effect of nitrogen availability on seed set: 

400 increased nitrogen availability increased seed set in self-pollinated plants, but decreased seed set 

401 in cross-pollinated plants. We are not aware of any studies which would show that high nitrogen 

402 supply can cause seed abortion.

403 Seed count per flower from the naturally pollinated plants in the spring 2017 also showed 

404 a similar trend as in plants cross-pollinated by hand, where the number of seeds per flower 

405 increased in plants grown with high water availability but decreased with high nitrogen 

406 availability. In contrast, in experiments done in the summer 2018, the number of seeds per flower 

407 was not affected by nitrogen availability and decreased in plants grown with high amount of 

408 water. Total seed set per plant was unaffected by nitrogen availability and increased in plants 

409 grown under high water availability – moderately in the spring 2017 but much more in the 

410 summer 2018. This may stem from differences in the composition of the flower visitor 

411 community between plants grown under low and high water availability and from the higher total 

412 visitation rate in the spring 2017 compared to summer 2018. The level of pollen limitation 

413 (Knight et al., 2005) was thus higher in the summer 2018, which likely explains why the number 

414 of seeds per flower was lower and was more strongly reduced in plants grown with low amount 

415 of water.

416

417 Conclusions

418 We have shown that multiple drivers of environmental change have a complex and interactive 

419 impact on plant traits, visitation by pollinators, and seed production. Our model species, S. alba, 

420 is an important crop and a close relative to many other economically important crops and 

421 vegetables from the Brassicaceae family, hence our experiment shows how different climatic 

422 drivers may affect both vegetative growth and crop yield in plants form this family in the future 

423 extreme climatic events. We conclude that not only increasing temperature, but also reduced 

424 precipitation and nitrogen enrichment, may impact plant-pollinator interactions with negative 

425 consequences for the reproduction of wild plants as well as insect-pollinated crops.

426

427
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Figure 1
The impact of water and nitrogen supply on vegetative traits of S. alba across three
seasons.

Four vegetative traits were measured: A) plant height, B) plant diameter, C) the number of
leaves, and D) dry weight. The boxplots show the median and interquartile range. The results
of statistical tests are summarised in Table 1.
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Figure 2
The impact of water and nitrogen supply on floral traits of S. alba across three seasons.

A) the onset of flowering (the day of the opening of the first flower), B) the number of flowers
produced per plant, and C) nectar production (median and interquartile range is shown). The
results of statistical tests are summarised in Table 2.
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Figure 3
Flower visitation of plants grown under varying water and nitrogen availability.

The number of flower visitors per plant per 30 minutes during two observation periods are
shown: A) spring 2017 and B) summer 2018 (median and interquartile range is shown).
Flower visitation also varied depending on the number of open flowers (C) and plant height
(D).
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Figure 4
The composition of the flower visitor community varied depending on water availability
under which the plants were grown.

The results of RDA show the effect of water availability and the lack of an effect of nitrogen
supply during the plant growth period on the composition of the flower visitor community in
the spring 2017 (A) and the summer 2018 (B).
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Figure 5
Flower visitation by major flower visitor groups.

A) plants grown in the spring 2017, and B) in summer 2018. The number of visitors per 30
min. is shown (mean ± SE).
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Figure 6
Seed production of S. alba grown under different growing conditions.

Seed production in plants subjected to self-pollination and cross-pollination by hand: A) seed
production per flower and B) seed production per pod (median and interquartile range is
shown). Seed production of plants subjected to natural pollination in the spring 2017 and the
summer 2018: C) the number of seeds per flower, and D) the total seed set per plant
(median and interquartile range is shown).
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Table 1(on next page)

The effects of water availability, nitrogen supply, and season on selected vegetative
traits of S. alba. F and P values for individual variables and their interactions estimated
by generalised linear models (see Methods) are shown.
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Variable Plant height Stem diameter Number of leaves Dry weight

F P F P F P F P

Water 57.63 <0.001 40.84 <0.001 16.20 <0.001 105.72 <0.001

Nitrogen 13.44 <0.001 2.51 0.115 0.09 0.768 0.22 0.643

Season 62.95 <0.001 30.13 <0.001 7.48 <0.001 - -

Water x Nitrogen 9.64 0.002 0.20 0.660 0.48 0.491 5.52 0.023

Water x Season 2.359 0.098 1.47 0.234 1.30 0.275 - -

Nitrogen x Season 0.457 0.634 9.51 <0.001 0.10 0.913 - -

Water x Nitrogen x Season 4.94 0.008 0.63 0.532 0.05 0.951 - -

1
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Table 2(on next page)

The effects of water availability, nitrogen supply, and season on floral traits of S. alba. F
and P values for individual variables and their interactions estimated by generalised
linear models (see Methods) are shown.
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Variable Day of first flower Number of flowers Nectar volume

F P F P F P

Water
0.40 0.528 24.24 <0.001 0.06 0.802

Nitrogen
6.21 0.013 6.83 0.010 53.86 <0.001

Season
69.45 <0.001 16.12 <0.001 10.74 <0.001

Water x Nitrogen
0.07 0.790 3.60 0.060 21.95 <0.001

Water x Season
0.23 0.792 1.92 0.150 1.15 0.318

Nitrogen x Season
0.90 0.401 0.85 0.431 8.75 <0.001

Water x Nitrogen x Season
0.052 0.950 1.25 0.288 3.56 0.030
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