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ABSTRACT
Background. Clostridium perfringens (C. perfringens) type C is the principal pathogenic
clostridia of swine, frequently causing hemorrhagic diarrhea, even necrotic enteritis in
piglets, leading to severe economic loss for swine industr ies worldwide. However, there
are no specific and effective prevention measures. Therefore, clarifying the molecular
mechanisms of hosts against pathogenesis infection is very important to reduce the
incidence of C. perfringens type C infected piglet diarrhea disease.
Methods.We performed an TMT labeling-based quantitative spleen proteomic analysis
of the control group (SC), tolerance group (SR) and susceptible group (SS) to identify
the differentially expressed proteins (DEPs), and screened potential molecular markers
of piglet spleen tissues in response to C. perfringens type C infection.
Results. In this study, a total of 115, 176 and 83 DEPs were identified in SR vs SC, SS
vs SC, and SR vs SC, respectively, which may play the important regulatory roles in the
process of piglet spleens in response toC. perfringens type C-infected diarrhea diseases.
GO enrichment analysis revealed that the DEPs were mostly significantly enriched in
acute inflammatory response, defense response, antimicrobial response, transporter
activity, cellular metabolic process and so on, and KEGG pathway enrichment analysis
showed that the significantly enriched immune related pathways of the PPAR signaling
pathway, IL-17 signaling pathway, antigen processing and presentation, which hints at
the immune defense process of piglet spleen against C. perfringens infection. This study
helps to elucidate the protein expressional pattern of piglet spleen against C. perfringens
type C-infected diarrhea disease, which can contribute to the prevention and control
for pig diarrhea disease and the further development of diarrhea resistant pig breeding.

Subjects Agricultural Science, Genomics, Microbiology, Molecular Biology
Keywords TMT labeling, Proteome, Clostridium perfringens type C, Piglet diarrhea, Immune
Response, Spleen

INTRODUCTION
Clostridium perfringens (C. perfringens) is the most widespread of pathogenic bacteria
in environment (Labbe & Vijay, 2017), which commonly caused several diseases, such
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as diarrhea, intestinal inflammation and necrotic enteritis in domestic animals and
humans (Shrestha, Uzal & McClane, 2018; Uzal et al., 2014). Statistically, C. perfringens
is the important reason of food poisoning, and causes nearly 1 million cases of human
foodborne illness with symptoms of abdominal cramps and diarrhea yearly in the United
States (Grass, Gould & Mahon, 2013; Miyamoto & Nagahama, 2016).

Usually, C. perfringens has been divided into seven subtypes, designated A, B, C,
D, E, F and G (Rood et al., 2018). C. perfringens type C is a dominant factor of piglet
diarrhea, mainly for piglets under 7-day age, with extremely high morbidity (60∼80%) and
mortality (80∼100%), resulting in great economic loss for pig industries (Park et al., 2016).
C. perfringens type C can produce variety lethal toxins in the intestines of piglets, and these
toxins are transferred to the spleen and other organs causing systemic damage through
blood and lymph circulation (Uzal et al., 2015). Studies have reported that C. perfringens
type C infection causes systemic immune and inflammatory disease, with the obvious
clinical symptoms of acute hemorrhagic diarrhea, slow growth and death in piglets (Huang
et al., 2019). C. perfringens type C is increasingly considered to the pathogenic bacteria of
pig source for high morbidity in neonatal piglet diarrhea (Songer, 2010; Chan et al., 2012).

Currently, although some progress has beenmade inmolecular epidemiology, diagnosis,
prevention and treatment for C. perfringens infection (Smits et al., 2016), much more is
urgent to illustrate the comprehensive gene-encoding protein function at the omics level,
to explore the mechanism of immune regulation and potential activated signaling pathway,
and to find better ways of prognosis and treatment for C. perfringens infection.

Comparative proteomics is a powerful approach to screen proteomic difference
comprehensively, which can identify and quantify thousands of proteins simultaneously
(Chen et al., 2019). By differentiating the differential protein expression between two
experiment groups or more, it can discover the function of proteins, the potential
interactions between proteins and the mining of new proteins from protein expression
changes, which is critical to explore and understand protein kinetics and mechanism
of biological function at the molecular level (Ruiz et al., 2016a; Ruiz et al., 2016b; Su et
al., 2017). Li et al. (2016) had studied the pathogenesis mechanism of pigs infected by
porcine epidemic diarrhea virus (PEDV) YN13/YN144 by iTRAQ labeling and LC-MS/MS,
and identified the differently expressed proteins (DEPs) proposed heterogeneous nuclear
ribonucleoprotein A1 (hnRNPA1), eukaryotic initiation factor 4G1 (eIF4G1), and heat
shock protein (HSP) family could be responsible for the pathogenicity differences in piglets
after infection (Li, et al. 2016).

Zhang et al. (2013) had studied the protein expressions of porcine transmissible
gastroenteritis virus (TGEV) infected pig testicle ST cells by wo-dimensional difference gel
electrophoresis, and found that 33 DEPs (23 upregulation and 10 downregulation) were
involved in the regulation processes by cellular structure and integrity, RNA processing,
protein biosynthesis and modification, vesicle transport, signal transduction, and the
mitochondrial pathway (Zhang et al. 2013). Ma et al. (2014) used iTRAQ and LC-MS/MS
techniques to study the proteomic of ST cells with infected and uninfected TGEV, and a
total of 146 DEPs and 219 DEPs were identified in TGEV infected ST cells 48 h and 64 h,

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13006 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.13006


respectively, suggesting the longer infection time, the more significant changes of protein
expressions in ST cells (Ma et al., 2014).

However, there is no study to evaluate the regulatory mechanism of protein level in
piglet diarrhea caused by C. perfringens type C infection.

Spleen is the important immune organ for the vital role in capturing and destroying
pathogens, and inducing body adaptive immune responses in host immune response system
(Mebius & Kraal, 2005; Truong, Hong & Lillehoj, 2015). Moreover, spleen includes the rich
immune cells, such as macrophages, dendritic cells (DCs) and monocytes, which can not
only recognize pathogens and cell stress, remove dead cells and foreign materials, but
also regulate tissue homeostasis and inflammatory responses to form adaptive immunity
(Lewis, 2019). Research has also provided the certain protection against to C. perfringens
infection by modulating innate and adaptive immunity (Hong et al., 2012).

Our previous work had been reported that C. perfringens type C infection caused to the
significantly differential expression of immune genes (TLR4,TNF-α andNF- κB), cytokines
and proinflammatory factors (IFN- γ , IL-6 and IL-12) and serum immunoglobulin (Shi et
al., 2019), and the abnormal obviously histological damage of spleens and small intestines
of piglets, such as inflammatory cell and neutrophile granulocytes infiltration (Yan et al.,
2018; Yan et al., 2019), these all demonstrated that C. perfringens type C infection caused to
the significantly immune and inflammatory responses of piglets during bacterial infected
diarrhea. Therefore, in this study, we adopted TMT-labeled LC-MS/MS to profile global
spleen proteome of tolerance and susceptibility piglet spleen tissues of C. perfringens type
C infection, screening differentially expressed proteins, discussing functional protein of
mediating C. perfringens type C -infected piglet diarrhea, which may contribute to further
study on the prevention and control for pig diarrhea disease and the further development
of diarrhea resistant pig breeding.

MATERIALS & METHODS
Ethics statement
This study was carried out in accordance with the recommendations of Institutional
Animal Care andUse Committee (IACUC) of Gansu Research Center for Swine Production
Engineering and Technology. The protocol was approved by the College of Animal Science
and Technology, Gansu Agricultural University.

Animal infection experiment and sample collection
The animal experiment progress was consistent as the description of Huang et al. (2019),
the detail was as following: thirty healthy 7-day-old piglets (Landrace × Yorkshire, Xitai
breeding co., LTD. Gansu Province) were chosen with detected serum antibodies negatively
for E. coli (enterotoxin and K88), Salmonella (typhimurium, typhisuis and choleraesuis)
and C. perfringens type C β toxin antibodies by enzyme-linked immunosorbent assay
(ELISA).

The C. perfringens type C strain (CVCC 2032, China Veterinary Culture Collection
Center) was shaking cultured 16 h at 37 ◦C in the bouillon culture-medium (HopeBio,
Qingdao, China) before used for infection. The colony-forming units (CFUs) of
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C. perfringens type C was determined by plate colony counting method, and finally an
expected concentration of 1×109 CFU/mL C. perfringens type C medium was used to
inoculate piglets.

Twenty-five piglets were randomly selected to suffer oral inoculate administration
of 1×109 CFU/mL C. perfringens type C medium, the remaining 5 piglets were orally
inoculated sterile medium as control group (SC), the experiment lasted for 5 days for the
research report (Songer & Uzal, 2005) and the result of our pre-experiment. During the
5-day experimental period, all piglets were housed separately by special environmental
control equipment, bodyweight, mental state, shape and color of feces and degree of
diarrhea for each piglet were detailly observed and recorded detailly in every day. The
degree of diarrhea was evaluated according to the diarrhea scoring standard of piglets
(Huang et al., 2019): 0 point for strip or granular feces; one point for soft forming; two
points for thick and unformed feces; three points for liquid and watery excrement.

At the end of the test, the total diarrhea scores of each piglet were calculated by adding
each defecation score of each piglet during the test period. Finally, 3 piglets with the
highest and lowest total diarrhea scores were considered as the susceptible group (SS) and
t the tolerance group (SR) (Fig. S1). In general, SS represents in sensitive to C. perfringens
infection with serious diarrhea, and SR represents which resistant toC. perfringens infection
with mild diarrhea.

Finally, nine piglet spleen tissues of SS, SR and SC groups were rapidly collected without
RNA enzyme and washed with PBS buffer frozen by liquid nitrogen and transferred to
−80 ◦C for storage.

Protein extraction
Spleen samples were added and mixed by lysis buffer (8 M urea, 1% Protease Inhibitor
Cocktail) for standing still for 30 min, then followed by sonication on ice three times
using a high-intensity ultrasonic processor (Scientz). After fully lysing on ice 30 min, the
remaining precipitated debris was removed by centrifugation at 12,000 g at 4 ◦C for 10
min. The supernatant was collected and protein concentration was determined by BCA kit
(Beyotime biotechnology, Shanghai, China).

Trypsin digestion
Protein solution was reduced with 5 mM dithiothreitol for 30 min at 56 ◦C and then
alkylated with 11 mM iodoacetamide for 15 min. Then, the protein sample was diluted
by adding 100 mM TEAB to urea concentration less than 2 M for trypsin digestion with
first digestion of 1:50 trypsin-to-protein ratio overnight and the 4 h second digestion of
1:100 ratios. Approximately 100 µg protein for each sample was used for the following
experiments.

TMT labeling
After trypsin digestion, the peptidewas desalted by Strata XC18 SPE column (Phenomenex)
and vacuum-dried. Briefly, peptide was reconstituted in 0.5M TEAB and processed
according to the manufacturer’s protocol for TMT kit (Thermo Fisher Scientific, Waltham,
Massachusetts). Then, one unit of TMT reagent (defined as the amount of reagent required
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to label 100 µg of protein) was thawed and reconstituted in 24 µL ACN. Finally, peptide
mixtures were incubated for 2 h at 37 ◦C, following desalting and drying by vacuum
centrifugation.

Peptide fractionation by high-performance liquid chromatography
(HPLC)
The tryptic peptides were fractionated by high pH reverse-phase HPLC using C18 column
(5 µm particles, 10 mm ID, 250 mm length). According the standard analytical procedure,
peptides were firstly separated with a gradient of 8% to 32% acetonitrile (pH 9.0) over
60min into 60 fractions, then combined into 18 fractions and 6 fractions, respectively, and
dried by vacuum centrifugation.

LC-MS/MS analysis
The tryptic peptides were dissolved in 0.1% formic acid (solvent A), directly loaded onto a
home-made reversed-phase analytical column (15 cm length, 75 µm ID). The gradient was
increased from 6% to 23% solvent B (0.1% formic acid in 98% acetonitrile) over 26min,
from 23% to 35% in 8min and climbing to 80% in 3min then holding at 80% for the last
3min. The constant flow rate was 400 nL/min with the EASY-nLC 1000 UPLC system.

Intact peptides were detected in the Orbitrap at a resolution of 70,000. Peptides were
selected for MS/MS using a normalized collision energy setting of 28; the Peptides and
peptide fragments were detected in theOrbitrap at a resolution of 17,500. A data-dependent
procedure that MS scan were followed by 20 MS/MS scans was applied for the top 20
precursor ions above a threshold ion count of 1.5E4 in the MS survey scan with 15.0s
dynamic exclusion. An electrospray voltage of 2.0 kV was applied. Automatic gain control
(AGC) was used to prevent overfilling of the iontrap; 5E4 ions were accumulated for
generation of the MS/MS spectra. For MS scans, the m/z scan range was 350 to 1,600. Data
are available via ProteomeXchange with identifier PXD030745.

Protein identification and analysis
Maxquant software (v 1.6.4) was used for MS/MS data peptide identification and
quantitation against UniProt Proteomes-Sus scrofa (UP000008227) with the following
parameters: enzyme—Trypsin, peptide mass tolerance—± 10 ppm, fragment mass
tolerance—± 0.02 Da, max missed cleavage—2, fixed modification—carbamidomethyl
(C), variable modification—oxidation (M) and deamidated (NQ), quantification
method—TMT10 plex report ionMS2, database pattern—decoy.Maximum false discovery
rates (FDRs) were set to 1% for peptide and protein identification.

Screening differentially expressed proteins
TheMS data validation was by mass error distribution of all identified peptides and peptide
length distribution. Firstly, we checked the mass error of all the identified peptides. The
distribution of mass error is near zero and most of them are less than 0.02Da which
means the mass accuracy of the MS data fit the requirement. Secondly, the lengths of
most peptides were distributed between 8 and 20, which agree with the property of tryptic
peptides, meaning sample preparation reach the standard. The proteins with a log 2 (fold
change) ≥1.3 and a P value < 0.05 were considered as differentially expressed protein.
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Quantification validation of MS data
Only peptides unique for a certain protein were considered for TMT relative quantification,
which was normalized using the average ratio of all the unique peptides in each sample.
A two-tailed Fisher’s exact test was employed to test the enrichment of the differentially
expressed protein against all identified proteins. A corrected P value < 0.05 was considered
significant. For further hierarchical clustering based on different protein functional
classification, the cluster membership was visualized by a heat map using the ‘‘heatmap.2’’
function from the ‘‘gplots’’ R-package.

Functional enrichment analysis
The different expressed proteins were performed to Gene Ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis
using DAVID (version 6.7). The protein functional annotation was derived from
the UniProt-GOA database (http://www.ebi.ac.uk/GOA/) (Ashburner et al., 2000). The
functional annotation and descriptions of identified protein domains were annotated
by InterProScan (a sequence analysis application) based on protein sequence the
InterPro (http://www.ebi.ac.uk/interpro/) domain database. The identified proteins domain
functional descriptionwas annotated by InterProScanbased (http://www.ebi.ac.uk/interpro/)
on protein sequence alignment.

Protein-protein interaction network
All differentially expressed proteins interactions, were analyzed against the Sus scrofa
database by STRING version 10. Only the confidence score ≥ 0.7 (high confidence) of
interactions was fetched. Interaction network form STRING was visualized in R package
‘‘networkD3’’. Cytoscape was used for the visualization of the networks.

Statistical analysis
One-way ANOVA and Duncan’s multiple comparisons in SPSS 26.0 software were used to
test the significance of difference between diarrhea scores of piglets, the weight of piglets
before euthanasia, and the weight of heart, liver, spleen, lung and kidney after euthanasia
in the groups of SR, SS and SC, Differences with a P < 0.05, the log2-transformed ratio is
larger than 1.3 were considered as significant difference. Results were shown as the means
and standard errors (mean ± SE).

RESULTS
Phenotypic characterization of piglets infected with C. perfringens
type C
After the infection of C. perfringens type C, the inoculated piglets presented the varying
degrees of diarrhea symptom. As shown in Fig. 1, the bodyweight, heart, liver, spleen, and
kidney of inoculated piglets in the SS and SR groups were significantly lower than those of
control group (SC) (P < 0.01). Meanwhile, the weights of body and heart, spleen, kidney
and liver in SS group were the lightest. In addition, lung weight in SS and SR groups were
significantly higher than that in SC group (P < 0.01, P < 0.05), and SS group has the
heaviest lung weight.
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Figure 1 The difference of bodyweight, heart, liver, spleen, lung and kidney of the piglets in SS, SR and
SC groups. * P < 0. 05, representing meaningful difference; ** P < 0.01, representing a significant differ-
ence.

Full-size DOI: 10.7717/peerj.13006/fig-1

Quantitative identification of spleen proteins for piglets
To comprehensively profile the landscape of spleen protein expression before and after C.
perfringens infection, we had identified and quantified the differential proteome dynamics
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in three replicates during the C. perfringens infection. According to the experimental
workflow (Fig. S1), we achieved comprehensive proteome profiling with deep coverage
using TMT-labeled LC-MS/MS combined with pre-fractionation by HPLC, allowing for
identification and quantification simultaneously. In total, 6,145 proteins can be identified,
among which 4,958 proteins were quantified in the global proteome (Supplemental Table
S1). In addition,many uncharacterized proteins were identified according to bioinformatics
comparison results and the comprehensive annotation (Supplemental Table S2).

QC validation of MS data
To validate the quality of MS and MS/MS profiling, the mass error of all the identified
peptides were checked, results demonstrated that the mass accuracy of the MS data and
sample preparation fit the experiment requirement standard. The repeatability among
the three groups was assessed by principal component analysis (PCA), relative standard
deviation (RSD) and Pearson correlation coefficient, results indicated that there were the
higher aggregation degree and correlation among SS, SR and SC groups (Figs. S2A, S2B,
S2C), which proved that the proteomic analysis was robust and all data would be used for
the following analysis with high quality.

Differentially quantified proteins identified among SC, SR and SS
The differentially expressed proteins and specific number for differential proteins between
SR, SS and SC were analyzed. The proteins exhibiting a log 2 (fold change) > 1.3 and a P
value < 0.05 were regarded as DEPs, then a total of 115 DEPs were identified in SR vs SC, of
which 48 were up-regulated proteins and 67 were down-regulated proteins, 176 DEPs were
identified with 83 up-regulated proteins and 93 down-regulated proteins in SS vs SC, 83
DEPs were identified, with 40 were up-regulated proteins and 43 down-regulated proteins
in SR vs SC (Fig. 2, Table S3). The above differentiation of protein expression indicated
molecular changes and potential functional transformation underlined C. perfringens
infected piglets.

Bioinformatic analysis of differentially expressed proteins
The proteins with diverse biological processes and distinct subcellular locations performed
significantly different molecular functions. There was a wide range of functional
distribution of the DEPs among SS, SR and SS groups for each module, the three top
were mainly located in extracellular, cytoplasm and nucleus, and detailly, extracellular
enriched the most differential proteins for SR vs SC, cytoplasm for SS vs SC, and nucleus
for SS vs SR (Fig. 3).
The heatmap comparisons of SS vs SC, SR vs SC, SS vs SR groups were shown in Fig. 4

and Table S4, which divided into biological process, cellular component and molecular
function. The DEPs with same expression pattern were clustered together.

Functional enrichment analysis of DEPs
To explore the function of DEPs among SS, SR and SC groups, GO and KEGG functional
enrichment analysis were performed. GO catalogs analysis of the DEPs among SR vs SC,
SS vs SC and SR vs SS groups revealed that the most significantly enriched biological
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Figure 2 The differential expressed proteins identified in piglet spleen of SR vs SC, SS vs SC and SS vs
SR. Red represents the up-regulated proteins, blue represents the down-regulated proteins, grey repre-
sents the nondifferential proteins.

Full-size DOI: 10.7717/peerj.13006/fig-2
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Figure 3 Wolfpsort-based subcellular localization prediction of the differentially abundant proteins of SR, SS and SC groups.
Full-size DOI: 10.7717/peerj.13006/fig-3

processes as acute inflammatory response, defense response to bacterium, leukocyte
aggregation, defense response, cellular oxidant detoxification, antimicrobial response,
positive regulation of cellular metabolic process, the main cellular component functions as
extracellular space, protein-lipid complex, and the main molecular functions as tyrosine
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Biological Process

intermediate filament cytoskeleton organization
reproductive system development
regulation of protein localization to nucleus
regulation of cytokine−mediated signaling pathway
immune response−regulating signaling pathway
regulation of nucleocytoplasmic transport
animal organ development
regulation of programmed cell death
positive regulation of cellular metabolic process
regulation of apoptotic process
regulation of neuron death
regulation of cellular protein metabolic process
regulation of protein metabolic process
cellular response to zinc ion
antimicrobial humoral response
hormone transport
positive chemotaxis
response to zinc ion
retina homeostasis
positive regulation of signal transduction
positive regulation of cell communication
membrane fission
vitamin transport
cellular response to type I interferon
mitochondrial fission
endosome localization
response to type I interferon
defense response to virus
negative regulation of viral process
regulation of inflammatory response
response to virus
defense response to other organism
acute−phase response
acute inflammatory response
cellular oxidant detoxification
cellular detoxification
defense response to fungus
response to fungus
defense response to bacterium
negative regulation of lipid metabolic process
negative regulation of hydrolase activity
leukocyte aggregation
iron coordination entity transport
regulation of lipid catabolic process
positive regulation of hemostasis
positive regulation of coagulation
lipoprotein metabolic process
response to bacterium
regulation of proteolysis
cell chemotaxis
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Molecular Function

enzyme regulator activity
iron ion transmembrane transporter activity
kinase binding
protein kinase binding
histone methyltransferase activity
protein−lysine N−methyltransferase activity
histone−lysine N−methyltransferase activity
lysine N−methyltransferase activity
protein tyrosine kinase binding
receptor tyrosine kinase binding
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kinase binding, kinase binding, iron ion transmembrane transporter activity, Toll-like
receptor 4 binding, RAGE receptor binding, nucleosomal DNA binding (Fig. 5, Table S4).

Specially, in the SS vs SR groups, the biological process included many immune and
metabolism associated functions, such as defense response to virus, inflammatory response,
regulation of response to virus immune response, defense response to other organism,
antimicrobial humoral response, regulation of cytokine-mediated signaling pathway,
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A
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Figure 6 Protein domain analysis of the DEPs identified in piglet spleen among SR vs SC (A), SS vs SC (B) and SS vs SR (C) comparison groups.
Full-size DOI: 10.7717/peerj.13006/fig-6

regulation of apoptotic process and so on. The cellular components were mainly cell and
organelle. And the molecular function mainly enriched in binding and enzyme catalytic
activity of methyltransferase, enzyme regulator, peptidase regulator and endopeptidase
inhibitor, translation initiation factor receptor binding.

Functional domains related to immunoglobulin-like fold, MHC classes I/II-like antigen
recognition protein, calciumS100/CaBP-9k-type, Ferritin/DPS protein domain, Fibrinogen
were conspicuously enriched in these DEPs (Fig. 6, Table S5).

KEGG analysis was performed to investigate the enriched pathways participated by
the DEPs. A total of 30 KEGG signaling pathways were enriched among them, detailly,
13 signaling pathways for SR vs SC, 20 signaling pathways for SS vs SC and 5 signaling
pathways for SS vs SR (Fig. 7, Table S6). In which, PPAR signaling pathway, IL-17 signaling
pathway were highly enriched in SR vs SC and SS vs SC after C. perfringens infection,
antigen processing and presentation, intestinal immune network for IgA production,
hematopoietic cell lineage was specifically significantly in SS vs SC, RIG-I-like receptor
signaling pathway were specifically significantly enriched in SS vs SR, these identified
significantly signaling pathways were involved in the process of piglet spleen immune
responses against C. perfringens infection.

Analysis of protein interaction network
In order to clearly display the interactions between proteins, a network constitute of top
50 closest interactions proteins of functional protein-protein interactions was built using
STRING v.10.0 online software against the Sus scrofa database (Ashburner et al., 2000). A
total of 34, 47 and 10 known or predicted interactions (PPI enrichment P-value < 1.0e−16)
were formed among DEPs in the PPI network (Fig. 8). The prediction of the protein
interaction network of DEPs showed that P09571, A0A287AMK0, A0A287AQG3, C3S7K6,
Q6S4N2, F1RQW9, and Q8SPS7 all had the pivotal role in each PPI network. The highest
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Figure 8 The protein-protein interaction network of DEPs among SR, SS and SC groups infected by C. perfringens type C. The network nodes
represent numbers of proteins (up regulated in red; down regulated in green). Rounded rectangles represent candidate biological processes.
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number of interactions was observed for Fibronectin 1 (FN1), Serum albumin (Manyes et
al., 2014).

DISCUSSION
PigletDiarrhea is an important factor affecting the healthy development of the pig industries
worldwide (Zhao et al., 2016), C. perfringens type C has become the increasing threaten
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bacterial infections to lead pig diarrhea with characteristic of high morbidity and mortality,
especially in newborn and suckling piglets (Uzal & McClane, 2011), even in domestic
animals and humans (Diab et al., 2016), resulting in great economic loss. Our previous
studies found that C. perfringens type C infection caused to the significantly up-regulations
of immune genes TLR4, TNF-α and NF-κB, inflammatory cytokine factors IFN- γ , IL-1β,
IL-6 and IL-12, and serum immunoglobulin IgA and IgG in tolerance and susceptible
piglets (Shi et al., 2019). Histopathological findings the morphology of the intestines and
spleens of piglets infected by C. perfringens type C were abnormal obviously, such as
infection caused edema of the lamina propria and submucosa, inflammatory cell and
neutrophile granulocytes infiltration in piglet intestines (Yan et al., 2019), and infiltration
with neutrophilic granulocytes in the red pulp of spleen tissues (Yan et al., 2018). These
studies had provided that there were significantly immune and inflammatory responses
of piglet spleen in response to C. perfringens type C infection. However, it is still limited
that the molecular mechanism of piglet spleen immune responses against to C. perfringens
type C-infected diarrhea disease, which can improve to understand mechanism of piglet
resistance to C. perfringens type C infection and may help to prevent and control pig
bacterium diarrhea. Therefore, we had comprehensively profiled and characteristed the
spleen proteomic dynamics of piglet against to C. perfringens infection by the TMT-labeled
LC-MS/MS combined with pre-fractionation by HPLC.

In this study, a total of 6,145 identified proteins, including 4,958 quantified proteins
were in piglet spleen tissues from SR, SS and SC groups suffered from C. perfringens
infection. Differential expression analysis totally identified 115 DEPs (48 upregulated and
67 down-regulated proteins) identified in SR vs SC group, 176 DEPs (83 upregulated
and 93 down-regulated proteins) in SS vs SC group, 83 DEPs (40 upregulated and 43
downregulated proteins) in SR vs SC group, in which, some immune-related proteins also
identified, including P80310 (coded by S100A12) and C3S7K6 (coded by S100A9) both
up-expressed in SR vs SC and SS vs SC groups, Q764N2 (coded by CD3D) up-expressed
in SR vs SC group, F1SNY4 (coded by TAB1) down-expressed in SS vs SC group, K7GPC8
(Leukocyte receptor LENG8), and P49932 (antibacterial peptide PMAP37) down-expressed
in SR vs SS group, which may play the important regulatory roles in the process of piglet
spleens in response to C. perfringens type C-infected diarrhea diseases.

GO enrichment analysis of DEPs suggested that the biological processes of immune
response, regulation of cytokine, acute inflammatory response, programmed cell death,
antimicrobial humoral response, apoptotic, defense response, transport and metabolic
process were enriched. In addition, as shown in Fig. 5, the biological processes of the
immune and inflammatory response might play core role in the development of piglet
against C. perfringens type C infected diarrhea, as it could interact more with the remaining
other biological processes. These results may hint that host immune responses were highly
active against inflammation. Meanwhile, metabolic processes and transport were gradually
complemented to supply the needs for materials and energy consumption, showing
dynamic responses of piglet spleen during C. perfringens type C infection. Consistent with
the biological process, the enrichment of cellular component and molecular function
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focused on immunoglobulin complex, oxidoreductase activity, hydrolase activity and
immunoglobulin receptor binding, suggesting the transport and metabolism were active.

The protein abundance is the ultimate trait and functional phenotype. The down-
regulated ALB (A0A287AMK0) and ORM1 (F1SN68) in SR vs SC group, the up-regulated
HP (Q8SPS7) in SR vs SC, SR vs SS groups were the central hub of protein-protein
interaction network, as they were both involved in protein biosynthesis, suggesting the
potential functions of them participating in piglet resistant against diarrhea disease during
C. perfringens type C infection. There were also many up-regulated key proteins were
located in the node of network, such as LOC396684 (A0A287BM11), LOC100153899
(A0A287AVA9) and LOC106504547 (A0A287AJE3), through without characterized, they
may also have some certain roles in the piglet resistant to C. perfringens type C infection,
and it need to be explored in deep.

Haptoglobin (HP) is an acute phase reaction protein, it can play important roles in
inhibiting bacteria, promoting angiogenesis, involving clearance of toxic and mediating
host immune regulation (Griffiths et al., 2020). Study has been reported that HP not only
can bind haemoglobin to counteract host inflammatory responses, but also interact with
pro-inflammatory factor high mobility group box 1 (HMGB1) to elicit anti-inflammatory
effects (VanPatten & Al-Abed, 2018; Wan et al. 2021). The differential expression of
certain proteins may be the potential marker to discriminate pathological changes.
Serum HP was significantly increased in chronic pancreatitis patients and pancreatic
ductal adenocarcinoma patients, which was considered to be a potential biomarker for
pancreatitis disease diagnosis (Ueda et al., 2016). Importantly, in this study, HP was all
up-regulated in SR vs SC, SS vs SC and SS vs SR comparative groups, in the other word,
C. perfringens infection caused the up-regulation of HP protein of piglets in SR and SS
groups, meanwhile, the protein level of the susceptible piglets was higher than that in the
tolerance piglets. The results may hint that HP was activated and involved in regulating
the immune inflammatory response of piglet diarrhea, which may become a promising
candidate marker for C. perfringens infection.

The most prominent differential expressed proteins among the DEPs identified in SR vs
SC and SS vs SC were MXRA8, HP, S100A9, PMAP37, MX1, LENG8, and so on. Zhang et
al. found that Matrix Remodeling Associated 8 (MXRA8) protein was a surface-exposed
region and cellular receptor, anti-Mxra8 blocking antibodies may reduce the certain virus
infection (Zhang et al. 2018), human monoclonal antibodies (mAbs) neutralize virus in
vitro by preventing virus entry and spread and is protective in vivo in mouse models,
which may have potential as a therapeutic agent or target of vaccine design against
virus infections (Powell et al. 2020). The proteins S100A8, S100A9 and S100A12 were the
members of calcium binding family S100, which pro-inflammatory alarmin associated with
several inflammation-related diseases. They can bind to varieties of binding proteins or
targets (such as enzymes, receptors, transcription factors, etc.) to regulate cell proliferation,
induce cell apoptosis, participate in inflammatory response, and resist to pathogen invasion
(Kerkhoff et al. 2005). Zhao et al. (2021) found that S100A9 protein was upregulated in the
lung tissues of LPS-treated mice, inhibition of S100A9 protein alleviated LPS-induced
lung injury. S100A9 protein blockade also attenuated the inflammatory responses and
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apoptosis in the lungs of LPS-challenged mice, S100A9 protein downregulation mitigated
LPS-induced inflammation in vitro (Zhao et al. 2021), which were in accordance with our
study, the S100A9 protein was expressed in piglet spleen tissue in SR and SS groups, the
protein change level of S100A9 protein in SS group was higher than that in SR group,
which may indicate that S100A9 protein could be considered as a potential candidate in
infection disease.

Protein function can be predicted by using a database of protein domains and functional
sites, in which, protein domain is applied to annotation of proteins with unknown function.
Similarly, according to the enrichment of protein domain in Fig. 6, immunoglobulin
subtype, heat shock protein and MHC class I-like antigen were significantly enriched in
SR vs SC and SS vs SC, as well as GTPase domain and cytosolic fatty-acid binding. Further,
many Immune inflammatory related functions were identified in SR vs SC, SS vs SC, and SS
vs SR comparative groups, such as T-cell surface glycoprotein CD3, serotransferrin, serum
albumin, MHC class I antigen 2 precursor, interferon-induced GTP-binding protein,
lysozyme, haptoglobin.

Many studies have reported that PPAR-γ played a key role in mediating the
anti-inflammatory effects (Mohamed et al. 2021; Choi et al., 2017; Chung et al. 2003).
Specifically, the PPAR signaling pathway was the most significantly higher and activated in
the SR and SS groups than SC group, the results suggested that PPAR signaling pathway was
sustained to relatively high level, when resistant to C. perfringens infection. which may be a
potential target against C. perfringens infection. Study had reported that PPAR- γ agonist
seemed to enhance Fas-mediated apoptosis by affecting the way between caspase-8 and
caspase-3, which was is also related to regulation of inflammation and cell proliferation
(Chung et al. 2003). PPAR has the important regulation of cytokine production and
cytokine-mediated signal transduction pathways in immune cells and cancer (Yang et al.,
2008).Manoharan et al. (2016)had demonstrated that the PPARpathway in innate immune
cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the
expression of IL-22 and the antimicrobial peptides and calprotectin, suggesting that the
PPAR signaling pathway played important innate immune function in regulating intestinal
inflammation, mucosal immunity, and commensal homeostasis (Manoharan et al. 2016).

Further, according to bioinformatics comparison results, we identified many
uncharacterized proteins (Table S3). These proteins identified possible genes by
comparison. However, the bioinformatic analysis could not identify the roles of these
proteins, and their functions remain unclear. Moreover, further studies of the molecular
mechanism need to be performed to examine the underlying mechanism of the regulation
of immune response networks and other biological processes.

CONCLUSION
To summarize, we first analyzed the comparative proteomics in piglets after of C.
perfringens infection, and found that PPAR signaling pathway and haptoglobin may
play an important role in C. perfringens infection. This study offers information towards
a deeper understanding of the immune inflammatory response of piglets to C. perfringens
infection.
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