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Background: Markerless motion capture has the potential to perform movement analysis
with reduced data collection and processing time compared to marker-based methods.
This technology is now starting to be applied for clinical and rehabilitation applications and
therefore it is crucial that users of these systems understand both their potential and
limitations. This literature review aims to provide a comprehensive overview of the current
state of markerless motion capture for both single camera and multi camera systems.
Additionally, this review explores how practical applications of this technology are being
applied in clinical and rehabilitation settings, and examines the future challenges and
directions markerless research must explore to facilitate full integration of this technology
within clinical biomechanics. Methodology: A scoping review is needed to examine this
emerging broad body of literature and determine where gaps in knowledge exist, which is
key to developing motion capture methods that are cost effective and practically relevant
to clinicians, coaches and researchers around the world. Literature searches were
performed to examine studies that report accuracy of markerless motion capture methods,
explore current practical applications of markerless motion capture methods in clinical
biomechanics and determine what gaps in the knowledge exist that a relevant to the
future directions and limitations of this developing technology. Results: Markerless
methods provide improved versatility of the data, enabling datasets to be re-analyzed
using updated pose estimation algorithms and may even provide clinicians with the
capability to collect data while patients are wearing normal clothing. While it appears that
markerless temporospatial measures generally appear to be equivalent to marker-based
motion capture, joint center locations and joint angles are not yet sufficiently accurate.
Current pose estimation algorithms appear to be approaching similar error rates of
marker-based motion capture. However, without comparison to a gold standard, such as

bi-planar videoradiography, it is unknown how these two systems truly compare.
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Conclusions: Current open-source pose estimation algorithms were never designed for
biomechanical applications, therefore, datasets on which they have been trained are
inconsistently and inaccurately labelled. Improvements to labelling of open-source training
data will be a vital next step in the development of this technology.
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Abstract

Background: Markerless motion capture has the potential to perform movement analysis with reduced data
collection and processing time compared to marker-based methods. This technology is now starting to be applied
for clinical and rehabilitation applications and therefore it is crucial that users of these systems understand both
their potential and limitations. This literature review aims to provide a comprehensive overview of the current
state of markerless motion capture for both single camera and multi camera systems. Additionally, this review
explores how practical applications of this technology are being applied in clinical and rehabilitation settings, and
examines the future challenges and directions markerless research must explore to facilitate full integration of this
technology within clinical biomechanics. Methodology: A scoping review is needed to examine this emerging
broad body of literature and determine where gaps in knowledge exist, which is key to developing motion capture
methods that are cost effective and practically relevant to clinicians, coaches and researchers around the world.

Literature searches were performed to examine studies that report accuracy of markerless motion capture
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27  methods, explore current practical applications of markerless motion capture methods in clinical biomechanics and
are
28 determine what gaps in the knowledge exist that a relevant to the future directions and limitations of this
29  developing technology. Results: Markerless methods provide improved versatility of the data, enabling datasets to
30 be re-analyzed using updated pose estimation algorithms and may even provide clinicians with the capability to
31 collect data while patients are wearing normal clothing. While it appears that markerless temporospatial measures
32 generally appear to be equivalent to marker-based motion capture, joint center locations and joint angles are not
33 yet sufficiently accurate. Current pose estimation algorithms appear to be approaching similar error rates of
34  marker-based motion capture. However, without comparison to a gold standard, such as bi-planar
or “the true accuracy of markerless systems remains unknown.”
35 videoradiography, it is unknown how these two systems truly compare. Conclusions: Current open-source pose

36 estimation algorithms were never designed for biomechanical applications, therefore, datasets on which they have

37  been trained are inconsistently and inaccurately labelled. Improvements to labelling of open-source training data

Possibly include mention of the further work required
to assess the accuracy of markerless motion capture
against gold standard bi-planar videoradiography in
39 this conclusion.

38  will be a vital next step in the development of this technology.

40 Keywords

41  Marker-based, deep learning, computer vision, pose estimation, clinical gait analysis, OpenPose, DeeplLabCut,

42

43 Introduction the

44  Movement analysis seeks to understand the cause of altered movement patterns, assisting with prevention,
45 identification and rehabilitation of a wide array of diseases, disabilities and injuries (Astephen et al. 2008; Franklyn-
46  Miller et al. 2017; Hausdorff et al. 2000; Heesen et al. 2008; King et al. 2018; Pavao et al. 2013; Salarian et al. 2004;
47  Sawacha et al. 2012; Vergara et al. 2012). In modern medicine, early identification now plays a major role in
48 combating disease progression, facilitating interventions using precise measurements of small changes in
49  movement characteristics (Buckley et al. 2019; Noyes & Weinstock-Guttman 2013; Rudwaleit et al. 2005; Swash
50 1998). Movement analysis may also assist with injury prevention in athletes (Paterno et al. 2010), improve

51 rehabilitation treatment and adherence (Knippenberg et al. 2017), and may inform surgical intervention methods
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to optimize outcomes and reduce additional surgeries and healthcare costs (Arnold & Delp 2005; Jalalian et al.

2013; Loftergd et al. 2007; Wren et al. 2009).

Traditional movement analysis commonly relies on patient self-reports, along with practitioner observations and
visually assessed rating scales to diagnose, monitor and treat musculoskeletal diseases (Berg et al. 1992; Jenkinson
et al. 1994; Zochling 2011). Unfortunately, these measures are often subjective and prone to error, as they are
based on each individual’s interpretation (Muro-de-la-Herran et al. 2014). Alternatively, video-based motion
capture records and processes video images to identify limb location and orientation, enabling calculation of output
variables such as temporospatial measures and joint angles. Describing the position and orientation or 'pose' of
body segments in three-dimensions (3D) requires calculation of the limbs’ translation (sagittal, frontal and
transverse position, Figure 1) and rotation (flexion/extension, abduction/adduction, rotation about the longitudinal
axis, Figure 1). These three translational and three rotational descriptions of a segment are commonly referred to
as six degrees of freedom (DoF). The current gold standard for non-invasive, video-based motion capture, is bi-
maybe “multiple x-ray views” or “concurrent x-ray views”
planar radiovideography, which uses multi-view x-rays to capture video of bone movement (Kessler et al. 2019;
Miranda et al. 2011). Software is used to outline the bones and recreate their three-dimensional structure (Kessler
et al. 2019), enabling 3D joint center locations and angles to be extracted with high precision. However, even this
method has joint center translational errors of 0.3 mm and rotational errors of 0.44 °(Miranda et al. 2011).

Additionally, high costs, small capture volume (single joint) and exposure to radiation make clinical or sporting

applications highly impractical.

Figure 1: This figure demonstrates the six degrees of freedom needed to describe position and orientation (pose) of
the human body, with the red dot indicating the location (translation) of the segment center of mass and blue
arrows indicating rotation in three planes. A) The reference standing posture, B) thigh segment
adduction/abduction, C) thigh segment flexion/extension, D) thigh segment rotation about the longitudinal axis.

videoradiography de
Due to bi-planar radiovideography limitations, the De facto video-based motion capture method is marker-based

motion capture, which identifies human poses using near-infrared cameras and reflective markers placed on the
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during calibration only

skin (Figure 2). Marker locations can be detected with sub-millimeter accuracy (Buckley et al. 2019; Topley &
Richards 2020) and are used to identify location and orientation of body segments for calculation of joint positions
and angles. However, marker-based motion capture has significant drawbacks, requiring a controlled environment
apostrophe their awareness of being
(Buckley et al. 2019; Chen et al. 2016) that may alter participants movements due to being aware they are under
observation (Robles-Garcia et al. 2015). Marker-based systems are cheaper to acquire and run compared to
biplanar videoradiography, but are generally still too expensive for many clinical applications, as highly trained
personnel are required to operate them (Simon 2004). Marker-based motion capture also suffers from human error
when placing markers on the participant (Gorton et al. 2009), and marker placement is very time intensive which

can be a significant barrier in clinical or sporting environments, particularly with specific population groups (Whittle

1996).

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view of the markers in 3D
space.

While highly popular, marker-based motion capture is not a gold standard, despite often being treated as such.
Comparisons of marker-based motion capture against bi-planar videoradiography reveal joint center position errors
as high as 30 mm, with averages between 9-19 mm, and joint rotation errors as high as 14 °, with averages
between 2.2-5.5 ° (Miranda et al. 2013). For all motion capture methods, rotation about the longitudinal axis
(Figure 1D) produces the greatest errors of all rotational planes (Kessler et al. 2019; Miranda et al. 2013) as
measurement devices placed on the skin (i.e., markers) are much closer to the axis of rotation, for example hip

internal-external rotational errors are possibly as high as 21.8 ° (Fiorentino et al. 2017)).

Marker-based errors are partially due to an assumption that markers on the skin represent movement of the bone,
leading to soft tissue artefact errors as muscle, fat and skin move beneath markers (Camomilla et al. 2017;
Cappozzo et al. 1996; Peters et al. 2010; Reinschmidt et al. 1997). Compared to bi-planar videoradiography, errors
for markers placed over shank soft tissue were 5-7 mm, while markers placed over bony landmarks on the foot

were 3-5 mm (Kessler et al. 2019). Soft tissue errors for hip joint range of motion may be on average between 4-8 °
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during walking, stair descent and rising from a chair. (D'Isidoro et al. 2020). Procedures such as filtering the marker
data can help to reduce some of this soft tissue error (Camomilla et al. 2017; Peters et al. 2010), although without
invasively attaching markers to bone this error cannot be eliminated (Benoit et al. 2006) and therefore soft tissue

artefact will continue to limit the accuracy of marker-based methods.

There is a need for motion capture methods that are less time intensive, do not require specialist personnel, and
“are” in place of “may be” (there is a need for methods that are less impacted by errors...)
may be less impacted by errors associated with markers-based methods (e.g., soft tissue artefact). Markerless
motion capture uses standard video to record movement without markers, often leveraging deep learning-based
software to identify body segment positions and orientations (pose). However, this technology has been slow to
transfer to biomechanics, likely due to the requirement of advanced coding skills and in-depth computer science
knowledge. As such, researchers, clinicians and coaches using this technology need to be informed of the benefits
and limitations of these methods. Currently, there are no reviews targeted at applications of markerless motion
capture for clinical biomechanics and sports medicine, which we aim to resolve within this review. This scoping
review is intended to inform clinical biomechanical researchers, clinicians and coaches of current markerless
motion capture performance, explore how this technology can be used in real world applications and discuss future

directions and limitations that need to be overcome for markerless systems to become viable for clinical,

rehabilitation and sporting applications.

Survey Methodology

A scoping review is needed to examine this emerging broad body of literature and determine where gaps in
knowledge exist (Munn et al. 2018), which is key to developing motion capture methods that are cost effective and
practically relevant to clinicians, coaches and researchers around the world. Literature searches were performed to
target studies that report accuracy of markerless motion capture methods compared to marker-based motion
capture or manually labelled methods. Literature searches were then performed to target current practical
applications of markerless motion capture methods in clinical biomechanics. Finally, examination of markerless

motion capture literature was performed to determine what gaps in the knowledge exist and discuss future
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132  directions and limitations of this developing technology. Literature was obtained using Google Scholar and Scopus,
133  which were surveyed using different combinations of the keywords ‘markerless’, ‘motion capture’, ‘pose
134  estimation’, ‘gait analysis’, ‘clinical biomechanics’, ‘accuracy’, ‘2D’ and ‘3D’, without limits on publication date.

135  Literature was also obtained from references lists of identified articles. Could include date(s) of database searches.

136

137 Markerless Motion Capture

138  Markerless motion capture uses standard video and often relies on deep learning-based software (pose estimation
139  algorithms) to describe human posture for each individual image within the video, or videos for multiple cameras
140  (Figure 3). Because pose estimation algorithms are not dependent on markers attached to the skin, soft tissue
artefact (for consistency)
141  deformation errors may be reduced compared to marker-based methods, although this is yet to be examined
142  experimentally. Pose estimation algorithms can be applied to new or old videos, providing sufficient image
143  resolution, and while marker-based methods are limited by the marker-set used during data collection, old
144  markerless video data could be reprocessed with new pose estimation algorithms to improve accuracy or extract
145 more in-depth measures. Accurate application of this technology could therefore facilitate streamlined monitoring

146  of changes in disease progression (Kidzinski et al. 2020), rehabilitation (Cronin et al. 2019; Natarajan et al. 2017),

147  athletic training and competition (Evans et al. 2018), and injury prevention (Zhang et al. 2018).
148

149  Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a single image.

150

151 Hardware

152  The two main types of camera hardware employ either depth cameras or standard video cameras and may be used
now the Microsoft Azure Kinect

153 in single or multi-camera systems. Depth cameras, such as the Microsoft Kinect, record standard video and

154  additionally also record the distance between each pixel and the camera (depth). While depth cameras are

155  relatively cheap and accessible, research has demonstrated large differences compared to marker-based methods

156 (Dolatabadi et al. 2016; Mentiplay et al. 2015; Natarajan et al. 2017; Otte et al. 2016; Pantzar-Castilla et al. 2018;

157 Rodrigues et al. 2019; Tanaka et al. 2018). Additionally, depth cameras have limitations on capture rate, capture
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volume and data collection may require controlled lighting conditions (Clark et al. 2019; Sarbolandi et al. 2015).
There have been several in-depth reviews of these systems (Clark et al. 2019; Garcia-Agundez et al. 2019;
Knippenberg et al. 2017; Mousavi Hondori & Khademi 2014; Webster & Celik 2014) and while depth cameras are
still an active area of research, this review will focus on single and multi-camera markerless systems that use
standard video cameras, as these systems are relatively new and have recently started to be employed for clinical,

rehabilitation and injury prevention applications.

Markerless motion capture using standard video hardware does have some limitations similar to marker-based
systems, as the capture volume is still limited by the number of cameras and high-speed cameras require increased
lighting demands. However, compared to marker-based systems that rely on infrared cameras, markerless motion
capture is not limited by sunlight or multiple systems running simultaneously. Zoom lenses or high-resolution video
can enable data collection from long distances and is currently being used during sporting competitions such as
tennis (Hawk-Eye) and baseball (Kinatrax) to track the ball and players. Low-cost systems could employ webcams or
smartphones to record video data, facilitating motion capture by clinicians and coaches in real world applications.
Higher end multi-camera systems that record synchronized video at high frame rates may be used for collection of
high precision data, akin to current marker-based motion capture laboratories. However, extracting meaningful
information (joint centers) from recorded images using software is a very difficult task to perform with high

accuracy
missing period

Software
Once video data is collected, software in the form of pose estimation algorithms are employed to detect and

extract joint center locations. Pose estimation algorithms typically use machine learning techniques that allow

them to recognize patterns associated with anatomical landmarks. These algorithms are 'trained' using large scale
this is not relevant

datasets that provide many examples of the points of interest. or even estimate the temperature and time of day.

However, to a computer, video data is comprised of pixels that are essentially a grid of numbers, with each number

in the grid describing color and brightness in a given video frame, which makes identifying keypoints a very difficult
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task. Training a pose estimation algorithm generally requires the creation of a dataset containing thousands of
manually labelled keypoints (Figure 4) (Chen et al. 2020; lonescu et al. 2014; Lin et al. 2014; Sigal et al. 2010). Deep
learning-based pose estimation algorithms perform mathematical calculations on each image in the training data,
using a layered network (Convolutional Neural Network) where the output of one layer becomes the input of the
next layer (Figure 4), and may be many layers deep (Mathis et al. 2020b). In doing this, a pose estimation algorithm
learns to identify keypoints (e.g., joint centers) as patterns of pixel color, gradient and texture from the training
data. Distance between the manually labelled and estimated keypoint locations are then examined by an
optimization method, which updates filters within each layer of the pose estimation algorithm to reduce the
distance between keypoints (Figure 4). This process is repeated using the entire training dataset until
improvements between each iteration become negligible (Figure 4). The pose estimation algorithm is then tested
on new images and compared to manually labelled data or marker-based joint center locations to determine how
well it performs on images it has never seen. As such, deep learning-based pose estimation will only ever be as

good as the training data used.

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled training dataset. Stage
Two: Using the unlabeled images from stage one, the pose estimation algorithm estimates the desired keypoint
locations (joint centers). Estimated keypoint locations are compared to the manually labelled training data to
determine the distance is between the estimated keypoint and the manually labelled keypoint. The optimization
method then adjusts filters within the layers of the algorithm to try to reduce this distance and new estimated
keypoints are calculated. This process is repeated until improvements to the pose estimate4ion algorithm are
negligible.

Two pose estimation algorithms that have become very popular for biomechanical applications are OpenPose (Cao
et al. 2018) and DeepLabCut (Insafutdinov et al. 2016; Mathis et al. 2018). OpenPose is a powerful pose estimation
algorithm that can track multiple people in an image and is very easy to use. DeeplLabCut enables users to
retrain/refine a pre-trained pose estimation algorithm by providing the algorithm with a subset of manually
labelled images that are specific to the desired task (~200 images) (Mathis et al. 2018), which can be especially

useful for uncommon movements (e.g., clinical gait or sporting movements). For an in-depth review of pose

Peer] reviewing PDF | (2021:11:68362:0:1:NEW 3 Dec 2021)



PeerJ

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

estimation algorithm designs, readers are directed to numerous alternative reviews (Chen et al. 2020; Colyer et al.

2018; Dang et al. 2019; Mathis et al. 2020a; Sarafianos et al. 2016; Voulodimos et al. 2018).

While marker-based motion capture relies heavily on hardware (markers physically placed on the skin) to extract
segment poses (location and orientation), markerless motion capture relies on complex software to process the
most, not all
complicated image data obtained by standard video hardware (as explained above). Unfortunately, current pose
estimation algorithms have generally been trained to only extract two points on each segment (proximal and distal
joint center locations), whilst three keypoints are required to calculate 6DoF (e.g., proximal and distal end of a
segment, and a third point placed somewhere else on the segment). Two keypoints can provide information about
the sagittal and coronal planes (Figure 1B and C), while the third keypoint is needed to determine rotation about
the segment’s longitudinal axis (Figure 1D). Thus, markerless methods that only identify joint center locations are
limited to 5DoF, which only enables examination of 2D planar joint angles. This may be overcome to some degree
by combining 5DoF methods with musculoskeletal modelling to constrain the movement and estimate movement
in 6DoF (Chen & Ramanan 2017; Gu et al. 2018), however, manually relabeling training data with an additional third

keypoint location on each segment may produce improved results with less processing of the data (Needham et al.

2021b).

Markerless motion capture has been slow in transferring to biomechanics, primarily due to inaccuracy of detecting

joint center locations (Harsted et al. 2019) and requiring knowledge of computer vision and advanced programming

skills. In this review we have classified markerless motion capture into two broad categories: monocular markerless

motion capture which uses a single camera, and multi-camera markerless motion capture which obtains video data
outlined

from two or more synchronized cameras. Despite its previously outline faults, marker-based motion capture has

generally been used as the reference method when assessing accuracy of markerless motion capture, and this

should be kept in mind when comparing results between systems.
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Performance of Current Markerless Applications

Monocular Markerless Motion Capture
2D monocular markerless motion capture obtains joint center locations from a single image or video using 2D pose

estimation algorithms (Figure 5), making it cost and space efficient. However, self-occlusion errors are a major
issue, often causing joint center locations to be missing for one or more frames and contribute to instances where
the opposite limb is incorrectly detected (e.g., right knee labelled as the left knee) (Serrancoli et al. 2020; Stenum et
al. 2021). Similar to marker-based methods, obtaining biomechanically relevant 2D planar joint angles requires an
assumption that the camera is perfectly aligned with frontal or sagittal plane movements (Stenum et al. 2021). If
correctly aligned with the plane of action (1DoF), the pose estimation method detects the translational horizontal
and vertical joint center coordinates (2DoF), which are then combined with coordinates of neighboring joints to

calculate 2D rotational segment and joint angles (3DoF).

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion capture (2D keypoints
detected using OpenPose Cao et al. (2018), 3D pose estimation from monocular motion capture (adapted from
Cheng et al. (2020) with license from the Association for the Advancement of Artificial Intelligence, Copyright © 20)
and 3D pose estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with permission from
Springer Nature).

Three studies have examined 2D monocular applications (25 - 60 Hz) of DeepLabCut against manual labelling or
marker-based methods for the leg closest to the camera (sagittal view), in underwater running (Cronin et al. 2019),
countermovement jumping (Drazan et al. 2021) and walking in stroke survivors (Moro et al. 2020). Markerless joint
center differences were 10-20 mm greater than marker-based motion capture, but no significant differences were
found between methods for temporospatial and joint angle outcome measures during walking and underwater
running, and therefore this method may be a suitable alternative to 2D marker-based motion capture (Cronin et al.
2019; Moro et al. 2020). Strong correlations were found for joint angles during countermovement jumping
compared to marker-based methods, however this study had to perform a knee and hip correction based on
marker-based results (5.6 °). Therefore, it is unknown if these systematic offsets would be applicable for future

applications.
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While not strictly monocular, Serrancoli et al. (2020) and Stenum et al. (2021) used two video cameras (25- 60 Hz),
placed on either side of a person, to extract information of the side closest to each camera without occlusion errors
during walking over-ground or cycling on an ergometer. During walking, temporal differences were on average
within 1 frame and spatial differences were less than 1 cm, although maximum differences were as high has 20 cm
(Stenum et al. 2021). For both studies, lower limb joint angle differences were 3-11 degrees greater than marker-
based methods and thus are too large to detect small changes needed for real world applications. Both studies also
required additional manual input to fix incorrectly detected joints (e.g., right knee labelled as the left knee)
(Serrancoli et al. 2020; Stenum et al. 2021). Therefore, some 2D monocular methods may obtain temporospatial
(DeepLabCut and OpenPose) and planar 2D joint angles (DeeplLabCut) with accuracy similar to marker-based
motion capture (Miranda et al. 2013), but this has only been examined for the side closest to the camera. 2D
motion capture will likely have the most value in general clinical or rehabilitation environments, where data
collection can be tightly controlled to reduce occlusion issues and decreasing data collection and processing time is

paramount.

Obtaining 3D joint center locations from monocular markerless motion capture (Figure 5) seeks to estimate joint
locations in 3D using a single camera (Mehta et al. 2017). However, because the participant may move in any
direction (plane), entire limbs may be occluded for significant periods. Additionally, depth must be estimated from
2D video data to determine which joints are closer to the camera (Chen et al. 2020). Obscured 3D joint locations
may be estimated using past or future un-occluded frames, or from the position of un-occluded neighboring joints
in the current frame (Cheng et al. 2020; Cheng et al. 2019; Khan et al. 2020; Mehta et al. 2017; Moon et al. 2019;
Yang et al. 2018). Alternatively, 2D monocular methods may be combined with musculoskeletal modelling (Chen &
Ramanan 2017; Gu et al. 2018) or estimation of forces (Rempe et al. 2020), to restrict the limb position in 3D and
assist with unnatural leaning angles towards or away from the camera (Rempe et al. 2020). Multi-camera marker-
based motion capture can be used to help train pose estimation methods in making an educated guess about
where a joint is most likely to be in 3D, however due toafundamental lack of data, this will only ever be an estimate.

Finally, as mentioned earlier, current pose estimation methods generally only detect two points on a segment
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(proximal and distal joint center locations) (Cao et al. 2018; Mathis et al. 2018), which can only measure 5DoF.

Thus, manually relabeling training data to detect a third point on each segment could improve estimates of 6DoF.

3D monocular joint center location differences compared to reference methods are generally 40-60 mm (Chen et
al. 2020), with some algorithms producing 30-40 mm differences when specifically trained to overcome occlusion
issues (Cheng et al. 2020; Cheng et al. 2019). 3D monocular ankle joint angle differences during walking are
between -10 and 10 ° for normal walking with maximal differences of 30 ° compared to marker-based methods.
Two studies have examined temporospatial measures (step length, walking speed and cadence) using 2D
Monocular methods combined with projection mapping (Shin et al. 2021) or a 3D musculoskeletal model (Azhand
et al. 2021), finding strong correlations when compared to the GAITRite pressure walkway (Azhand et al. 2021; Shin
et al. 2021). Therefore, while temporospatial measures may have sufficient accuracy for real world applications,
significant improvements to identification of joint center location and angle are needed. Applications of this
method will likely also require the user to minimize instances where limbs are fully occluded (e.g. setting up the

camera in the frontal plane) (Shin et al. 2021).

Multi-camera Markerless Motion Capture
Multi-camera markerless motion capture is a progression of 2D monocular methods that minimizes joint occlusion

errors by employing multiple cameras (Figure 5). This method combines 2D pose estimation with an additional
multi-camera reconstruction step to estimate 3D joint center locations (Nakano et al. 2020; Needham et al. 2021a;
Slembrouck et al. 2020). Compared to monocular systems, multi-camera systems are more costly due to additional
hardware and require more space, thus this method generally seeks to replicate the results obtained from current

high-end marker-based systems (e.g., Qualisys/Vicon).

Several studies have examined multi-camera markerless systems using the OpenPose pose estimation algorithm
(30-120 Hz), reporting joint center location differences ranging between 10-50 mm (Nakano et al. 2020;

Slembrouck et al. 2020; Zago et al. 2020) and temporospatial differences of 15 mm compared to marker-based
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methods(Zago et al. 2020). Slower movements performed better, with walking joint center differences compared to
marker-based methods of 10-30 mm, while faster jumping and throwing movements were 20-40 mm (Nakano et al.
2020), which may be exacerbated with slow video frame rates (Slembrouck et al. 2020; Zago et al. 2020). Manual
adjustments were required when OpenPose incorrectly detected joints (e.g. detects left knee as the right) for one
study (Nakano et al. 2020). Needham et al. (2021b) performed a recent comparison of OpenPose (Cao et al. 2018),
DeepLabCut (Mathis et al. 2018) and a third pose estimation algorithm (AlphaPose (Fang et al. 2017)) using 9 video
cameras and 15 marker-based cameras, both collecting at 200 Hz. Compared to marker-based methods, 3D lower
limb joint center differences were smallest for OpenPose and AlphaPose at 16-34 mm during walking, 23-48 mm
during running and 14-36 mm during jumping. It should be noted that they did not retrain models using
DeeplLabCut and instead used the DeeplLabCut standard human pose estimation algorithm (Mathis et al. 2018).
While these results are now approaching error rates of marker-based motion capture identified by Miranda and
colleagues (Miranda et al. 2013), Needham and colleagues demonstrated that there were systematic differences
for all markerless methods, with the largest systematic differences occurred at the hip. Their paper suggested this
could be the product of poorly labelled open access datasets, which may limit detection of accurate and reliable

joint center locations.

While previous studies have used open-source pose estimation algorithms and therefore may be considered as
standalone experimental setups, commercial systems have been developed. Joint angles were compared between
an 8 camera (50 Hz) Captury markerless system (Captury) and a 16 camera marker-based system, although Captury
identifies the silhouette of a person instead of using deep learning to extract joint center locations (Harsted et al.
2019). The authors stated that planar joint angles could not be considered interchangeable between motion
capture systems, with lower limb joint angle differences of 4-20 °. Another commercial system (SIMI Reality Motion
Systems) recorded multiple movements with 8 cameras (100 Hz) and then was processed using Simi Motion
software which detects markers placed on the skin and Simi Shape 3D software, a markerless software which uses
silhouette-based tracking similar to Captury (Becker 2016). Standard deviations of lower limb joint angles were
between 3-10 degrees with the markerless method compared to marker-based, and correlations for hip and ankle

frontal and rotation planes were poor (0.26-0.51), indicating high variability of this system. Most recently, Thiea3D
Theia3D
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markerless software (Theia Markerless Inc.) which uses a proprietary pose estimation algorithm was compared
between an 8 camera markerless system (85 Hz) and a 7 camera marker-based system (85 Hz) (Kanko et al. 2021b;
Kanko et al. 2021c). They reported no bias or statistical difference for walking spatial measures (e.g., step length,
step width, velocity) and a small difference in temporal measures (e.g., swing time and double support time) (Kanko
et al. 2021c). A follow-on study using the same data found average differences of 22-36 mm for joint centers and
2.6-11 degrees for flexion/extension and abduction/adduction, although rotation about the longitudinal axis
differences were 6.9-13.2 degrees compared to marker-based methods (Kanko et al. 2021b). Importantly, the lower
ranges of these translational and rotational differences are within errors identified by previous research (Fiorentino
et al. 2017; Kessler et al. 2019; Miranda et al. 2013). These strong results appear to be due to Theia3D having
labelled their own biomechanically applicable data set which identifies 51 keypoints on the body (Kanko et al.
2021b; Kanko et al. 2021c), compared to OpenPose which only identifies 25 points (Cao et al. 2018). However,
Theia3D software is somewhat of a black box, as it is unknown exactly what keypoints are being used, how much
the data is being smoothed or exactly how rotations are being computed. Now that markerless systems may be
approaching the accuracy of marker-based methods which have known errors discussed previously, future
examination of markerless accuracy will require comparison to a gold standard method such as bi-planar

videoradiography (Miranda et al. 2013).

Practical applications

While markerless systems may still be considered in their infancy, there have been several studies that
demonstrate markerless potential for clinical applications. DeepLabCut was used to extract walking sagittal 2D joint
angles in stroke survivors, showing significant differences between the affected and unaffected side (Moro et al.
2020). Cunningham et al. (2019) examined 2D monocular segment angles of a multi-segmented trunk and head in
young children with cerebral palsy to automate application of a clinical test. Baldewijns et al. (2016) measured
walking speed recorded unobtrusively in patient’s homes using a webcam, demonstrating how markerless methods
could provide continuous monitoring of patients as they go about their daily lives. Martinez et al. (2018) used a 2D

monocular markerless system with OpenPose to examine walking cadence and automate calculation of an anomaly
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score for Parkinson’s disease patients, providing clinicians with an unbiased general overview of patient disease
progression. Finally, Shin et al. (2021) retrospectively analyzed monocular frontal videos of Parkinson’s patients for
temporospatial outcome measures (step length, walking velocity and turning time) (Shin et al. 2021). They
demonstrated high correlations between subjective clinical gait tests and were able to detect minor gait

disturbances unnoticed by the clinician.

In one significant clinical example, Kidzinski et al. (2020) analyzed 2D outcomes of cerebral palsy gait collected from
a single camera (30 Hz) between 1994 and 2015 (~1800 videos). OpenPose derived 2D joint centers were used as
the input for a secondary deep learning-based neural network that predicted parameters of clinical relevance, such
as walking speed, cadence and knee flexion angle. However, direct comparisons to marker-based methods could
not be performed due to data collection methods and therefore, new test data collected simultaneously with
marker-based motion capture is needed to examine the accuracy of their system. Nevertheless, this study compiled
outcome measures into a gait report that was automatically generated for the clinician, providing strong rationale
for the future of clinical biomechanics and its ability to analyze gait in a cost and time efficient manner.
Furthermore, the applications by Kidzinski et al. (2020) and Shin et al. (2021) highlight the value of markerless
motion capture to extract new information from old datasets. Without the need to place markers on participants or
manually process results, quantitatively tracking patients throughout disease progression and rehabilitation

becomes a much more viable option.

While some markerless systems may be approaching the accuracy of marker-based methods, some applications
may not need highly accurate data and instead, numerous trials (e.g., numerous walking strides) could be averaged
to obtain reliable average results (Pantzar-Castilla et al. 2018). Unfortunately, this approach may be unable to
detect small changes over time and it is not always be possible to collect many trials in a clinical, rehabilitation or
sport setting. Alternatively, using markerless motion capture as a motivational tool to perform rehabilitation
exercises does not require highly accurate results. Markerless motion capture can be used to control a game or

move around a virtual environment, which can increase adherence and motivation to perform repetitive or
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potentially painful rehabilitation exercises (Knippenberg et al. 2017; Vonstad et al. 2020). This could lead to
improved rehabilitation methods, as interaction with virtual environments has also been shown to reduce pain felt
by patients (Gupta et al. 2017; Scapin et al. 2018). While this application has been used with depth cameras (e.g.,
Microsoft Kinect) (Chanpimol et al. 2017; Knippenberg et al. 2017), current applications using standard cameras

and pose estimation algorithms are limited (Clark et al. 2019).

Future challenges and applications

Clothing
Currently, markerless systems are assessed while participants wear tight fitting clothing, as marker-based motion

capture cannot be used with normal/baggy clothing. However, normal clothing is often loose fitting and may
change shape during movement, which may or may not impact a pose estimation algorithms ability to accurately
extract joint center locations (Sarafianos et al. 2016). If markerless systems are resistant to this issue, it could
greatly improve data collection in clinical and real-world applications. Using 8 cameras (60 Hz) with Theia3D’s pose
estimation, inter-trial and inter-session joint angle variability during walking was examined compared to previously
reported marker-based results (Kanko et al. 2021a). Participants wore their own clothing which generally consisted
of shoes, long trousers, shirt and sweater. Markerless inter-trial joint angle variability was on average 2.5 °,
compared to 1.0 ° from marker-based methods (Kanko et al. 2021a; Schwartz et al. 2004), while markerless inter-
session variability was on average 2.8 ° compared to 3.1 ° for marker-based methods (Kanko et al. 2021a; Schwartz
remove “of”
et al. 2004). Therefore, markerless joint angle variability of may be similar to marker-based data collected on
multiple days (inter-session). Testing across multiple days or changes of clothing had no impact on the overall
variability of the markerless system. However, the higher inter-trial variability suggests that markerless methods do
produce greater errors during the same session. Unfortunately, because they did not examine marker-based
walking variability of their participants, it is unknown if variability from previous marker-based studies was identical
to the participants included within this study. Importantly, markerless data collection was able to be completed in

5-10 minutes, demonstrating the benefits of this system for applications where time is limited (Kanko et al. 2021a).

Based on these results, markerless systems could one day collect data on patients at home during daily life, without
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423  the need of an operator or tight-fitting clothing. Such systems could also be set up in common areas of care homes,
that
424  facilitating data collection of numerous patients in an environment this is less likely to alter their gait (Robles-Garcia

425 et al. 2015). Additionally, applications that do not require high accuracy will likely cope better with loose clothing.
or, “Additionally, some current systems’ results may be sufficient for applications that do not require high accuracy.”

426

427 Diversity of human shapes and movements
428  While pose estimation algorithms are good at identifying keypoints from images they have been trained on, they

429  can be poor at generalizing to identify keypoints in images that differ substantially from the training dataset (Cronin
430  2021; Mathis et al. 2020b; Seethapathi et al. 2019). Image databases (Chen et al. 2020; lonescu et al. 2014; Lin et al.
431  2014; Sigal et al. 2010) may be biased towards humans of a certain race or a specific type of movement, and
432  therefore, pose estimation algorithm performance may decrease when movements and people do not have
433  sufficient representation (e.g., gymnastic movements (Seethapathi et al. 2019)). Manually labelled training datasets
434  need to be diverse to account for varied movements of daily life (e.g., walking, standing from a chair, picking up
435  objects), sporting movements (e.g., figure skating, gymnastics and weightlifting) and clinical movements (e.g.,
436  neurological disorders and amputations), visual differences of participants (e.g., age, race, anthropometrics) and
437  visual differences of markerless setups (e.g., lighting levels, scale of participant, camera angle). Because current
438 pose estimation algorithms are trained to label each image in a video independently, they may perform well at
439  detecting keypoints of patients with pathological gait abnormalities such as cerebral palsy and stroke, while
440  physical abnormalities such as amputations will likely present a more difficult challenge. Clinical datasets could be
441  collectively sourced from clinical research studies worldwide, however as standard video will be used to collect
442  data, challenges in the form of patient confidentiality and ethical considerations must be overcome at the ethical

443  application stage to achieve this.

444

445  Shortcomings of current training datasets
446  Currently available open-source training datasets were never designed with biomechanical applications in mind.

447  While these datasets encompass millions of images and thousands of manually labelled poses [55-58, 102], only a
448  subset of major joint centers have been labelled (ankle, knee, hip, shoulder, etc.), which increases errors as major

449  joints are treated as a rigid segment (Zelik & Honert 2018). For example, when walking with a fixed ankle/toe
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orthosis, markerless ankle joint angle (OpenPose) differences compared to marker-based methods were reduced
relative to normal walking, as toe flexion was not accounted for in normal walking by the markerless algorithm
(Takeda et al. 2020). Additionally, open-source pose estimation algorithms that only detect joint centers struggle to

identify more than 5DoF, as detecting rotation about the longitudinal axis requires three points on a segment.

Open-source manually labelled pose estimation training datasets (Andriluka et al. 2014; Chen et al. 2020; lonescu
et al. 2014; Lin et al. 2014; Sigal et al. 2010) have recruited labelers from the general population who likely do not
possess anatomical knowledge. As such, these datasets have not been labelled with the accuracy required for
biomechanical applications, leading to errors in joint center locations and angles (Needham et al. 2021b).
Furthermore, joints such as the hip or shoulder may appear very different from the side compared to a frontal or 45
°angle (Figure 6). Evidence of this can be seen in the systematic offset of joint center locations and segment lengths
outlined by Needham et al. (2021b). Furthermore, open-source labelled datasets generally do not require all
images to pass a second verification step, therefore two people may have very different interpretations of a joint
center, which may lead to inconsistency in the labelled images (Cronin 2021). It is unwise to expect pose estimation
algorithms to match marker-based methods when the labelled data they are trained on is fundamentally flawed.
Several commercial companies have created their own propriety datasets (Kanko et al. 2021b; Kanko et al. 2021c),
with Theia3D employing trained labelers who likely have anatomical knowledge, labelling multiple points on each
segment and integrating a verification step by an expert labeler (Kanko et al. 2021c). This two-step labelling process
may produce a more biomechanically accurate dataset, enabling the strong results discussed previously (Kanko et

al. 2021a; Kanko et al. 2021b; Kanko et al. 2021c).
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Large open-source datasets have labelled keypoints even when joints are occluded (Figure 6). This is a requirement
for entertainment applications as it would be unacceptable for limbs to suddenly go missing in video games or
virtual reality. However, this results in occluded joints being labelled onto points that are biomechanically incorrect
(Lin et al. 2014), for example, the right knee may be occluded by the left leg and thus labelled as being located
somewhere on the left thigh. This results in two potential issues, firstly, the labeler must guess the location of the
occluded joint, which reduces the accuracy of the dataset and secondly, the algorithm may learn that it is possible
for joints to appear on locations that are biomechanically incorrect (Cronin 2021). Finally, Seethapathi et al. (2019)
highlighted that training and testing datasets often do not include temporal information (sequentially labelled
images) and therefore current pose estimation algorithms can vary wildly in estimation of joint center locations
between consecutive frames. It is possible to reduce these differences using Kalman filtering (Needham et al.
2021a) and therefore, improving current open-source data sets (e.g., COCO (Lin et al. 2014)) may be a more viable
solution to improving accurate detection of joint center locations. New open-source datasets for biomechanical
applications should include at least three points for each body segment, are labelled by trained labelers who
possess anatomical and biomechanical knowledge, include a verification step by a secondary subset of expert users

and additionally ignore or account for occluded joints.

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded joint centers, however
this requires users to guess where these locations are, as they are not visible (adapted from (COCO 2021; Lin et al.
2014) under creative commons license by (COCO 2020)).

Evaluation
Current publicly available video datasets with synchronized marker-based motion capture, often use limited or sub-

optimal marker placements, have low frame rates and camera resolution and thus may result in overestimating
differences between systems compared to when run on private higher quality datasets (Colyer et al. 2018; Corazza
et al. 2009). Publicly available, highspeed, high resolution evaluation datasets are needed for true comparisons
between markerless and marker-based motion capture. While Needham and colleagues (Needham et al. 2021b)
demonstrated that OpenPose had a greater difference on average between 16-48 mm, joint center location

differences could be as high as 80 mm or even higher for some joints during running. Examining not only the
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accuracy, but the reliability of a system to accurately measure joint center locations is crucial, as systems are
beginning to obtain average results that rival marker-based methods. However, we also need to question whether
improving markerless motion capture to align closer to marker-based motion capture is the best solution. Marker-

based motion capture has inherent errors discussed previously and markerless motion capture may potentially

out-perform

outcompete marker-based methods in some areas (e.g., soft tissue artefact). As such, markerless methods that

reach a similar level of accuracy to marker-based methods next need to be assessed with bi-planar

videoradiography

radiovideography or similarly accurate methods, to determine the true accuracy and reliability of these methods.

Decision making
Previous work has demonstrated the potential for markerless systems to automatically process video data and

report quantitative results that could be immediately used by a clinician (Kidzinski et al. 2020; Martinez et al. 2018).
While pose estimation algorithms are learning to detect human poses, they are not able to think on their own.
Desired outcome measures (e.g., temporospatial measures and joint angles) extracted using pose estimation
algorithms are still decided by humans. Emerging applications of markerless motion capture are therefore likely to
require outcome measures to be chosen by the user prior to data collection, after which the markerless system will
collect and process the data, similar to current implementations of commercial IMU systems (i.e., Mobility Lab
ADPM Inc.). As such, the clinician is still needed to interpret the results and their applicability to the patient. Deep
learning methods could potentially be applied to this problem in the future (Simon 2004), however, speculating on

how this would be achieved is beyond the scope of this review.

Usability
Current applications of open-source pose estimation algorithms require in-depth knowledge of deep learning-

based neural networks and computer vision methods. As such, this technology requires usability improvements for
users who do not have programming or computer science backgrounds. Some commercial systems such as Theia3D
have made their software highly accessible by enabling data to be collected and processed with leading video-

based motion capture companies (e.g., Qualisys and Vicon). However, because they have a proprietary dataset and
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pose estimation algorithm, it is not possible for a user to determine what keypoints their algorithm is extracting,

nor how the raw pose estimation data is being filtered and processed.

While previous pose estimation algorithms have required substantial processing power housed in high end
computers, new pose estimation algorithms can run on standard computers with modest graphical processing units
(Cao et al. 2018) or even smaller devices such as mobile phones (Bazarevsky et al. 2020). As pose estimation
software develops, it will become more feasible to integrate both the phone camera and processor to provide
compact and affordable markerless motion capture (Steinert et al. 2020). Alternatively, cloud-based computing
could be harnessed to record video using a smartphone, which is then uploaded to a server for processing and
results are returned to the user (Zhang et al. 2021). Clinicians, researchers and coaches could one day perform
automatic markerless motion capture in real time, without large setup costs. Finally, pose estimation algorithms
have the potential to be used with cameras that move freely during data collection (Elhayek et al. 2015), which

could allow accurate examination of how patients move through the natural environment.

Conclusion

Markerless motion capture has the potential to perform movement analysis with decreased data collection and
processing time compared to marker-based methods. Furthermore, markerless methods provide improved
versatility of the data, enabling datasets to be re-analyzed using updated pose estimation algorithms and may even
provide clinicians with the capability to collect data while patients are wearing normal clothing. While it appears
that markerless temporospatial measures generally appear to be equivalent to marker-based motion capture, joint
center locations and joint angles are not yet sufficiently accurate. Current pose estimation algorithms appear to be
approaching similar error rates of marker-based motion capture. However, without comparison to a gold standard,
or “the true accuracy of these markerless systems is unknown.”
such as bi-planar videoradiography, it is unknown how these two systems truly compare. Current open-source pose
estimation algorithms were never designed for biomechanical applications, therefore, datasets on which they have

been trained are inconsistently and inaccurately labelled. Improvements to labelling of open-source training data

will be a vital next step in the development of this technology.

Peer] reviewing PDF | (2021:11:68362:0:1:NEW 3 Dec 2021)


Robert Kanko
Some of this technical information about Theia3D is publicly available, such as their filtering method (GCVSPL/Woltring lowpass filter of the segment pose quaternions, with a selectable cutoff frequency), although you are correct that it is otherwise a black box, with no options to view keypoints or adjust model parameters, etc.

Robert Kanko
or “the true accuracy of these markerless systems is unknown.”
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Figure Captions

Figure 1: This figure demonstrates the six degrees of freedom needed to describe position and orientation (pose) of
the human body, with the red dot indicating the location (translation) of the segment center of mass and blue
arrows indicating rotation in three planes. A) The reference standing posture, B) thigh segment
adduction/abduction, C) thigh segment flexion/extension, D) thigh segment rotation about the longitudinal axis.

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view of the markers in 3D
space.
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Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a single image.

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled training dataset. Stage
Two: Using the unlabeled images from stage one, the pose estimation algorithm estimates the desired keypoint
locations (joint centers). Estimated keypoint locations are compared to the manually labelled training data to
determine the distance is between the estimated keypoint and the manually labelled keypoint. The optimization
method then adjusts filters within the layers of the algorithm to try to reduce this distance and new estimated
keypoints are calculated. This process is repeated until improvements to the pose estimate4ion algorithm are
negligible.

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion capture (2D keypoints
detected using OpenPose Cao et al. (2018), 3D pose estimation from monocular motion capture (adapted from
Cheng et al. (2020) with license from the Association for the Advancement of Artificial Intelligence, Copyright © 20)
and 3D pose estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with permission from
Springer Nature).

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded joint centers, however
this requires users to guess where these locations are, as they are not visible (adapted from (COCO 2021; Lin et al.
2014) under creative commons license by (COCO 2020)).
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Figure 1

Six degrees of freedom

Figure 1: This figure demonstrates the six degrees of freedom needed to describe position
and orientation (pose) of the human body, with the red dot indicating the location
(translation) of the segment center of mass and blue arrows indicating rotation in three
planes. A) The reference standing posture, B) thigh segment adduction/abduction, C) thigh

segment flexion/extension, D) thigh segment rotation about the longitudinal axis.
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Figure 2

Optoelectronic motion capture markers

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view

of the markers in 3D space.
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Figure 3

Figure 3

Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a

single image.
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Figure 4

Pose estimation algorithm training workflow

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled
training dataset. Stage Two: Using the unlabeled images from stage one, the pose estimation
algorithm estimates the desired keypoint locations (joint centers). Estimated keypoint
locations are compared to the manually labelled training data to determine the distance is
between the estimated keypoint and the manually labelled keypoint. The optimization
method then adjusts filters within the layers of the algorithm to try to reduce this distance
and new estimated keypoints are calculated. This process is repeated until improvements to

the pose estimate4ion algorithm are negligible.
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Figure 5

2D and 3D pose estimation

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion
capture (2D keypoints detected using OpenPose Cao et al. (2018) , 3D pose estimation from
monocular motion capture (adapted from Cheng et al. (2020) with license from the
Association for the Advancement of Artificial Intelligence, Copyright ©y§%r)?and 3D pose
estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with

permission from Springer Nature).

2D Pose Estimation from Monocular Motion Capture

3D Pose Estimation from Multi-camera Motion Capture
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Figure 6

Current open-source labelled dataset

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded
joint centers, however this requires users to guess where these locations are, as they are not

visible (adapted from (COCO 2021; Lin et al. 2014) under creative commons license by

(COCO 2020) ).
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