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Background: Markerless motion capture has the potential to perform movement analysis
with reduced data collection and processing time compared to marker-based methods.
This technology is now starting to be applied for clinical and rehabilitation applications and
therefore it is crucial that users of these systems understand both their potential and
limitations. This literature review aims to provide a comprehensive overview of the current
state of markerless motion capture for both single camera and multi camera systems.
Additionally, this review explores how practical applications of this technology are being
applied in clinical and rehabilitation settings, and examines the future challenges and
directions markerless research must explore to facilitate full integration of this technology
within clinical biomechanics. Methodology: A scoping review is needed to examine this
emerging broad body of literature and determine where gaps in knowledge exist, which is
key to developing motion capture methods that are cost effective and practically relevant
to clinicians, coaches and researchers around the world. Literature searches were
performed to examine studies that report accuracy of markerless motion capture methods,
explore current practical applications of markerless motion capture methods in clinical
biomechanics and determine what gaps in the knowledge exist that a relevant to the
future directions and limitations of this developing technology. Results: Markerless
methods provide improved versatility of the data, enabling datasets to be re-analyzed
using updated pose estimation algorithms and may even provide clinicians with the
capability to collect data while patients are wearing normal clothing. While it appears that
markerless temporospatial measures generally appear to be equivalent to marker-based
motion capture, joint center locations and joint angles are not yet sufficiently accurate.
Current pose estimation algorithms appear to be approaching similar error rates of
marker-based motion capture. However, without comparison to a gold standard, such as
bi-planar videoradiography, it is unknown how these two systems truly compare.
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Conclusions: Current open-source pose estimation algorithms were never designed for
biomechanical applications, therefore, datasets on which they have been trained are
inconsistently and inaccurately labelled. Improvements to labelling of open-source training
data will be a vital next step in the development of this technology.
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Abstract
Background:  Markerless  motion  capture  has  the  potential  to  perform  movement  analysis  with  reduced  data

collection and processing time compared to marker-based methods. This technology is now starting to be applied

for clinical and rehabilitation applications and therefore it is crucial that users of these systems understand both

their potential and limitations. This literature review aims to provide a comprehensive overview of the current

state of markerless motion capture for both single camera and multi camera systems. Additionally, this review

explores how practical applications of this technology are being applied in clinical and rehabilitation settings, and

examines the future challenges and directions markerless research must explore to facilitate full integration of this

technology within clinical  biomechanics.   Methodology:  A scoping review is  needed to examine this emerging

broad body of literature and determine where gaps in knowledge exist, which is key to developing motion capture

methods that are cost effective and practically relevant to clinicians, coaches and researchers around the world.

Literature  searches  were  performed  to  examine  studies  that  report  accuracy  of  markerless  motion  capture
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methods, explore current practical applications of markerless motion capture methods in clinical biomechanics and

determine  what  gaps  in  the  knowledge  exist  that  a  relevant  to  the  future  directions  and  limitations  of  this

developing technology. Results: Markerless methods provide improved versatility of the data, enabling datasets to

be re-analyzed using updated pose estimation algorithms and may even provide clinicians with the capability to

collect data while patients are wearing normal clothing. While it appears that markerless temporospatial measures

generally appear to be equivalent to marker-based motion capture, joint center locations and joint angles are not

yet  sufficiently  accurate.  Current  pose  estimation  algorithms  appear  to  be  approaching  similar  error  rates  of

marker-based  motion  capture.  However,  without  comparison  to  a  gold  standard,  such  as  bi-planar

videoradiography, it is unknown how these two systems truly compare.  Conclusions: Current open-source pose

estimation algorithms were never designed for biomechanical applications, therefore, datasets on which they have

been trained are inconsistently and inaccurately labelled. Improvements to labelling of open-source training data

will be a vital next step in the development of this technology.

Keywords
Marker-based, deep learning, computer vision, pose estimation, clinical gait analysis, OpenPose, DeepLabCut, 

Introduction
Movement  analysis  seeks  to  understand  the  cause  of  altered  movement  patterns,  assisting  with  prevention,

identification and rehabilitation of a wide array of diseases, disabilities and injuries (Astephen et al. 2008; Franklyn-

Miller et al. 2017; Hausdorff et al. 2000; Heesen et al. 2008; King et al. 2018; Pavão et al. 2013; Salarian et al. 2004;

Sawacha et  al.  2012;  Vergara et  al.  2012).  In  modern medicine,  early identification now plays a major role in

combating  disease  progression,  facilitating  interventions  using  precise  measurements  of  small  changes  in

movement characteristics  (Buckley et al. 2019; Noyes & Weinstock-Guttman 2013; Rudwaleit et al. 2005; Swash

1998).  Movement  analysis  may  also  assist  with  injury  prevention  in  athletes  (Paterno  et  al.  2010),  improve

rehabilitation treatment and adherence (Knippenberg et al. 2017), and may inform surgical intervention methods
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to optimize outcomes and reduce additional surgeries and healthcare costs  (Arnold & Delp 2005; Jalalian et al.

2013; Lofterød et al. 2007; Wren et al. 2009).

Traditional movement analysis commonly relies on patient self-reports, along with practitioner observations and

visually assessed rating scales to diagnose, monitor and treat musculoskeletal diseases (Berg et al. 1992; Jenkinson

et al. 1994; Zochling 2011). Unfortunately, these measures are often subjective and prone to error, as they are

based  on  each  individual’s  interpretation  (Muro-de-la-Herran  et  al.  2014).  Alternatively,  video-based  motion

capture records and processes video images to identify limb location and orientation, enabling calculation of output

variables such as temporospatial measures and joint angles. Describing the position and orientation or 'pose' of

body  segments  in  three-dimensions  (3D)  requires  calculation  of  the  limbs’  translation  (sagittal,  frontal  and

transverse position, Figure 1) and rotation (flexion/extension, abduction/adduction, rotation about the longitudinal

axis, Figure 1). These three translational and three rotational descriptions of a segment are commonly referred to

as six degrees of freedom (DoF). The current gold standard for non-invasive, video-based motion capture, is bi-

planar radiovideography, which uses multi-view x-rays to capture video of bone movement  (Kessler et al. 2019;

Miranda et al. 2011). Software is used to outline the bones and recreate their three-dimensional structure  (Kessler

et al. 2019), enabling 3D joint center locations and angles to be extracted with high precision. However, even this

method  has  joint  center  translational  errors  of  0.3  mm and  rotational  errors  of  0.44  ° (Miranda  et  al.  2011).

Additionally, high costs, small  capture volume (single joint)  and exposure to radiation make clinical or sporting

applications highly impractical. 

Figure 1: This figure demonstrates the six degrees of freedom needed to describe position and orientation (pose) of

the human body, with the red dot indicating the location (translation) of the segment center of mass and blue

arrows  indicating  rotation  in  three  planes.  A)  The  reference  standing  posture,  B)  thigh  segment

adduction/abduction, C) thigh segment flexion/extension, D) thigh segment rotation about the longitudinal axis.

Due to bi-planar radiovideography limitations, the De facto video-based motion capture method is marker-based

motion capture, which identifies human poses using near-infrared cameras and reflective markers placed on the
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skin (Figure 2).  Marker locations can be detected with sub-millimeter accuracy  (Buckley et  al.  2019;  Topley &

Richards 2020) and are used to identify location and orientation of body segments for calculation of joint positions

and angles. However, marker-based motion capture has significant drawbacks, requiring a controlled environment

(Buckley et al. 2019; Chen et al. 2016) that may alter participants movements due to being aware they are under

observation  (Robles-García  et  al.  2015).  Marker-based  systems  are  cheaper  to  acquire  and  run  compared  to

biplanar videoradiography, but are generally still  too expensive for many clinical applications, as highly trained

personnel are required to operate them (Simon 2004). Marker-based motion capture also suffers from human error

when placing markers on the participant (Gorton et al. 2009), and marker placement is very time intensive which

can be a significant barrier in clinical or sporting environments, particularly with specific population groups (Whittle

1996). 

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view of the markers in 3D

space.

While highly popular, marker-based motion capture is not a gold standard, despite often being treated as such.

Comparisons of marker-based motion capture against bi-planar videoradiography reveal joint center position errors

as high  as 30 mm, with  averages between 9-19 mm, and joint  rotation errors  as  high as  14 °,  with  averages

between 2.2-5.5 °  (Miranda et al.  2013).  For all  motion capture methods,  rotation about the longitudinal  axis

(Figure 1D)  produces the greatest  errors  of  all  rotational  planes  (Kessler  et  al.  2019;  Miranda et  al.  2013) as

measurement devices placed on the skin (i.e., markers) are much closer to the axis of rotation, for example hip

internal-external rotational errors are possibly as high as 21.8 ° (Fiorentino et al. 2017)).

Marker-based errors are partially due to an assumption that markers on the skin represent movement of the bone,

leading  to  soft tissue  artefact  errors  as  muscle,  fat  and  skin  move  beneath  markers  (Camomilla  et  al.  2017;

Cappozzo et al. 1996; Peters et al. 2010; Reinschmidt et al. 1997). Compared to bi-planar videoradiography, errors

for markers placed over shank soft tissue were 5-7 mm, while markers placed over bony landmarks on the foot

were 3-5 mm (Kessler et al. 2019). Soft tissue errors for hip joint range of motion may be on average between 4-8 °
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during walking, stair descent and rising from a chair. (D'Isidoro et al. 2020). Procedures such as filtering the marker

data can help to reduce some of this soft tissue error (Camomilla et al. 2017; Peters et al. 2010), although without

invasively attaching markers to bone this error cannot be eliminated (Benoit et al. 2006) and therefore soft tissue

artefact will continue to limit the accuracy of marker-based methods.

There is a need for motion capture methods that are less time intensive, do not require specialist personnel, and

may be less impacted by errors associated with markers-based methods (e.g.,  soft tissue artefact).  Markerless

motion capture uses standard video to record movement without markers, often leveraging deep learning-based

software to identify body segment positions and orientations (pose). However, this technology has been slow to

transfer to biomechanics, likely due to the requirement of advanced coding skills and in-depth computer science

knowledge. As such, researchers, clinicians and coaches using this technology need to be informed of the benefits

and limitations of these methods. Currently, there are no reviews targeted at applications of markerless motion

capture for clinical biomechanics and sports medicine, which we aim to resolve within this review. This scoping

review  is  intended  to  inform clinical  biomechanical  researchers,  clinicians  and  coaches  of  current  markerless

motion capture performance, explore how this technology can be used in real world applications and discuss future

directions  and  limitations  that  need  to  be  overcome  for  markerless  systems  to  become  viable  for  clinical,

rehabilitation and sporting applications. 

Survey Methodology
A scoping review is  needed to  examine this  emerging broad body of  literature and determine where gaps in

knowledge exist (Munn et al. 2018), which is key to developing motion capture methods that are cost effective and

practically relevant to clinicians, coaches and researchers around the world. Literature searches were performed to

target studies that report  accuracy of  markerless motion capture methods compared to marker-based motion

capture  or  manually  labelled  methods.  Literature  searches  were  then  performed  to  target  current  practical

applications of markerless motion capture methods in clinical biomechanics.  Finally,  examination of markerless

motion  capture  literature  was  performed  to  determine  what  gaps  in  the  knowledge  exist  and  discuss  future
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directions and limitations of this developing technology. Literature was obtained using Google Scholar and Scopus,

which  were  surveyed  using  different  combinations  of  the  keywords  ‘markerless’,  ‘motion  capture’,  ‘pose

estimation’,  ‘gait  analysis’,  ‘clinical  biomechanics’,  ‘accuracy’,  ‘2D’ and ‘3D’, without limits on publication date.

Literature was also obtained from references lists of identified articles.

Markerless Motion Capture
Markerless motion capture uses standard video and often relies on deep learning-based software (pose estimation

algorithms) to describe human posture for each individual image within the video, or videos for multiple cameras

(Figure 3). Because pose estimation algorithms are not dependent on markers attached to the skin, soft tissue

deformation errors may be reduced compared to marker-based methods, although this is yet to be examined

experimentally.  Pose  estimation  algorithms  can  be  applied  to  new  or  old  videos,  providing  sufficient  image

resolution,  and  while  marker-based  methods  are  limited  by  the  marker-set  used  during  data  collection,  old

markerless video data could be reprocessed with new pose estimation algorithms to improve accuracy or extract

more in-depth measures. Accurate application of this technology could therefore facilitate streamlined monitoring

of changes in disease progression (Kidziński et al. 2020), rehabilitation (Cronin et al. 2019; Natarajan et al. 2017),

athletic training and competition (Evans et al. 2018), and injury prevention (Zhang et al. 2018).

Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a single image.

Hardware
The two main types of camera hardware employ either depth cameras or standard video cameras and may be used

in  single  or  multi-camera  systems.  Depth  cameras,  such  as  the  Microsoft Kinect,  record  standard  video  and

additionally  also  record  the  distance  between  each  pixel  and  the  camera  (depth).  While  depth  cameras  are

relatively cheap and accessible, research has demonstrated large differences compared to marker-based methods

(Dolatabadi et al. 2016; Mentiplay et al. 2015; Natarajan et al. 2017; Otte et al. 2016; Pantzar-Castilla et al. 2018;

Rodrigues et al. 2019; Tanaka et al. 2018). Additionally, depth cameras have limitations on capture rate, capture
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volume and data collection may require controlled lighting conditions  (Clark et al. 2019; Sarbolandi et al. 2015).

There  have  been  several  in-depth  reviews  of  these  systems  (Clark  et  al.  2019;  Garcia-Agundez  et  al.  2019;

Knippenberg et al. 2017; Mousavi Hondori & Khademi 2014; Webster & Celik 2014) and while depth cameras are

still  an active area of research, this review will  focus on single and multi-camera markerless systems that use

standard video cameras, as these systems are relatively new and have recently started to be employed for clinical,

rehabilitation and injury prevention applications.

Markerless motion capture using standard video hardware does have some limitations similar to marker-based

systems, as the capture volume is still limited by the number of cameras and high-speed cameras require increased

lighting demands. However, compared to marker-based systems that rely on infrared cameras, markerless motion

capture is not limited by sunlight or multiple systems running simultaneously. Zoom lenses or high-resolution video

can enable data collection from long distances and is currently being used during sporting competitions such as

tennis (Hawk-Eye) and baseball (Kinatrax) to track the ball and players. Low-cost systems could employ webcams or

smartphones to record video data, facilitating motion capture by clinicians and coaches in real world applications.

Higher end multi-camera systems that record synchronized video at high frame rates may be used for collection of

high precision data, akin to current marker-based motion capture laboratories. However, extracting meaningful

information  (joint  centers)  from recorded images  using  software is  a  very  difficult  task  to  perform with  high

accuracy

Software
Once video data is collected,  software in the form of pose estimation algorithms are employed to detect and

extract  joint center locations.  Pose estimation algorithms typically  use machine learning techniques that  allow

them to recognize patterns associated with anatomical landmarks. These algorithms are 'trained' using large scale

datasets that provide many examples of the points of interest. or even estimate the temperature and time of day.

However, to a computer, video data is comprised of pixels that are essentially a grid of numbers, with each number

in the grid describing color and brightness in a given video frame, which makes identifying keypoints a very difficult

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

PeerJ reviewing PDF | (2021:11:68362:0:1:NEW 3 Dec 2021)

Manuscript to be reviewed

Robert Kanko
missing period

Robert Kanko
this is not relevant



task.  Training a pose estimation algorithm generally requires the creation of a dataset containing thousands of

manually labelled keypoints (Figure 4) (Chen et al. 2020; Ionescu et al. 2014; Lin et al. 2014; Sigal et al. 2010). Deep

learning-based pose estimation algorithms perform mathematical calculations on each image in the training data,

using a layered network (Convolutional Neural Network) where the output of one layer becomes the input of the

next layer (Figure 4), and may be many layers deep (Mathis et al. 2020b). In doing this, a pose estimation algorithm

learns to identify keypoints (e.g., joint centers) as patterns of pixel color, gradient and texture from the training

data.  Distance  between  the  manually  labelled  and  estimated  keypoint  locations  are  then  examined  by  an

optimization method,  which  updates  filters  within  each layer  of  the pose estimation algorithm to  reduce the

distance  between  keypoints  (Figure  4).  This  process  is  repeated  using  the  entire  training  dataset  until

improvements between each iteration become negligible (Figure 4). The pose estimation algorithm is then tested

on new images and compared to manually labelled data or marker-based joint center locations to determine how

well it performs on images it has never seen. As such, deep learning-based pose estimation will only ever be as

good as the training data used.

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled training dataset. Stage

Two: Using the unlabeled images from stage one, the pose estimation algorithm estimates the desired keypoint

locations (joint  centers).  Estimated keypoint  locations are compared to  the manually  labelled training data  to

determine the distance is between the estimated keypoint and the manually labelled keypoint. The optimization

method then adjusts filters within the layers of the algorithm to try to reduce this distance and new estimated

keypoints  are calculated. This process  is  repeated until improvements  to the pose estimate4ion algorithm are

negligible.

Two pose estimation algorithms that have become very popular for biomechanical applications are OpenPose (Cao

et al. 2018) and DeepLabCut (Insafutdinov et al. 2016; Mathis et al. 2018). OpenPose is a powerful pose estimation

algorithm that  can  track  multiple  people  in  an  image  and  is  very  easy  to  use.  DeepLabCut  enables  users  to

retrain/refine  a  pre-trained  pose  estimation  algorithm  by  providing  the  algorithm  with  a  subset  of  manually

labelled images that are specific to the desired task (~200 images)  (Mathis et al. 2018), which can be especially

useful  for  uncommon  movements  (e.g.,  clinical  gait  or  sporting movements).  For  an  in-depth review of  pose
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estimation algorithm designs, readers are directed to numerous alternative reviews (Chen et al. 2020; Colyer et al.

2018; Dang et al. 2019; Mathis et al. 2020a; Sarafianos et al. 2016; Voulodimos et al. 2018).

While marker-based motion capture relies heavily on hardware (markers physically placed on the skin) to extract

segment poses (location and orientation), markerless motion capture relies on complex software to process the

complicated image data obtained by standard video hardware (as explained above). Unfortunately, current pose

estimation algorithms have generally been trained to only extract two points on each segment (proximal and distal

joint center locations), whilst three keypoints are required to calculate 6DoF (e.g., proximal and distal end of a

segment, and a third point placed somewhere else on the segment). Two keypoints can provide information about

the sagittal and coronal planes (Figure 1B and C), while the third keypoint is needed to determine rotation about

the segment’s longitudinal axis (Figure 1D). Thus, markerless methods that only identify joint center locations are

limited to 5DoF, which only enables examination of 2D planar joint angles. This may be overcome to some degree

by combining 5DoF methods with musculoskeletal modelling to constrain the movement and estimate movement

in 6DoF (Chen & Ramanan 2017; Gu et al. 2018), however, manually relabeling training data with an additional third

keypoint location on each segment may produce improved results with less processing of the data (Needham et al.

2021b). 

Markerless motion capture has been slow in transferring to biomechanics, primarily due to inaccuracy of detecting

joint center locations (Harsted et al. 2019) and requiring knowledge of computer vision and advanced programming

skills. In this review we have classified markerless motion capture into two broad categories: monocular markerless

motion capture which uses a single camera, and multi-camera markerless motion capture which obtains video data

from two or more synchronized cameras. Despite its previously outline faults, marker-based motion capture has

generally been used as the reference method when assessing accuracy of markerless motion capture, and this

should be kept in mind when comparing results between systems.
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Performance of Current Markerless Applications

Monocular Markerless Motion Capture
2D monocular markerless motion capture obtains joint center locations from a single image or video using 2D pose

estimation algorithms (Figure 5), making it cost and space efficient. However, self-occlusion errors are a major

issue, often causing joint center locations to be missing for one or more frames and contribute to instances where

the opposite limb is incorrectly detected (e.g., right knee labelled as the left knee) (Serrancolí et al. 2020; Stenum et

al. 2021). Similar to marker-based methods, obtaining biomechanically relevant 2D planar joint angles requires an

assumption that the camera is perfectly aligned with frontal or sagittal plane movements (Stenum et al. 2021). If

correctly aligned with the plane of action (1DoF), the pose estimation method detects the translational horizontal

and vertical joint center coordinates (2DoF), which are then combined with coordinates of neighboring joints to

calculate 2D rotational segment and joint angles (3DoF). 

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion capture (2D keypoints

detected using OpenPose  Cao et al. (2018), 3D pose estimation from monocular motion capture (adapted from

Cheng et al. (2020) with license from the Association for the Advancement of Artificial Intelligence, Copyright © 20)

and 3D pose estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with permission from

Springer Nature).

Three studies have examined 2D monocular applications (25 - 60 Hz) of DeepLabCut against manual labelling or

marker-based methods for the leg closest to the camera (sagittal view), in underwater running (Cronin et al. 2019),

countermovement jumping (Drazan et al. 2021) and walking in stroke survivors (Moro et al. 2020). Markerless joint

center differences were 10-20 mm greater than marker-based motion capture, but no significant differences were

found between methods for temporospatial and joint angle outcome measures during walking and underwater

running, and therefore this method may be a suitable alternative to 2D marker-based motion capture (Cronin et al.

2019;  Moro  et  al.  2020).  Strong  correlations  were  found  for  joint  angles  during  countermovement  jumping

compared to  marker-based methods,  however this  study had to perform a knee and hip correction based on

marker-based results (5.6 ˚). Therefore, it is unknown if these systematic offsets would be applicable for future

applications. 
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While not strictly monocular, Serrancolí et al. (2020) and Stenum et al. (2021) used two video cameras (25- 60 Hz),

placed on either side of a person, to extract information of the side closest to each camera without occlusion errors

during walking over-ground or cycling on an ergometer. During walking, temporal differences were on average

within 1 frame and spatial differences were less than 1 cm, although maximum differences were as high has 20 cm

(Stenum et al. 2021). For both studies, lower limb joint angle differences were 3-11 degrees greater than marker-

based methods and thus are too large to detect small changes needed for real world applications. Both studies also

required  additional  manual  input  to  fix  incorrectly  detected  joints  (e.g.,  right  knee  labelled  as  the  left knee)

(Serrancolí et al. 2020; Stenum et al. 2021). Therefore, some 2D monocular methods may obtain temporospatial

(DeepLabCut  and  OpenPose)  and  planar  2D  joint  angles  (DeepLabCut)  with  accuracy  similar  to  marker-based

motion capture  (Miranda et al.  2013), but this has only been examined for the side closest to the camera. 2D

motion  capture  will  likely  have  the  most  value  in  general  clinical  or  rehabilitation  environments,  where  data

collection can be tightly controlled to reduce occlusion issues and decreasing data collection and processing time is

paramount.

Obtaining 3D joint center locations from monocular markerless motion capture (Figure 5) seeks to estimate joint

locations in 3D using a single camera  (Mehta et al. 2017). However, because the participant may move in any

direction (plane), entire limbs may be occluded for significant periods. Additionally, depth must be estimated from

2D video data to determine which joints are closer to the camera (Chen et al. 2020). Obscured 3D joint locations

may be estimated using past or future un-occluded frames, or from the position of un-occluded neighboring joints

in the current frame (Cheng et al. 2020; Cheng et al. 2019; Khan et al. 2020; Mehta et al. 2017; Moon et al. 2019;

Yang et al. 2018). Alternatively, 2D monocular methods may be combined with musculoskeletal modelling (Chen &

Ramanan 2017; Gu et al. 2018) or estimation of forces (Rempe et al. 2020), to restrict the limb position in 3D and

assist with unnatural leaning angles towards or away from the camera (Rempe et al. 2020). Multi-camera marker-

based motion capture can be used to help train pose estimation methods in making an educated guess about

where a joint is most likely to be in 3D, however due to fundamental lack of data, this will only ever be an estimate.

Finally, as mentioned earlier, current pose estimation methods generally only detect two points on a segment

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

PeerJ reviewing PDF | (2021:11:68362:0:1:NEW 3 Dec 2021)

Manuscript to be reviewed

Robert Kanko
a



(proximal and distal joint center locations)  (Cao et al. 2018; Mathis et al. 2018), which can only measure 5DoF.

Thus, manually relabeling training data to detect a third point on each segment could improve estimates of 6DoF. 

3D monocular joint center location differences compared to reference methods are generally 40-60 mm (Chen et

al. 2020), with some algorithms producing 30-40 mm differences when specifically trained to overcome occlusion

issues  (Cheng  et  al.  2020;  Cheng  et  al.  2019).  3D monocular  ankle  joint  angle  differences  during walking are

between -10 and 10 ° for normal walking with maximal differences of 30 ° compared to marker-based methods.

Two  studies  have  examined  temporospatial  measures  (step  length,  walking  speed  and  cadence)  using  2D

Monocular methods combined with projection mapping (Shin et al. 2021) or a 3D musculoskeletal model (Azhand

et al. 2021), finding strong correlations when compared to the GAITRite pressure walkway (Azhand et al. 2021; Shin

et al. 2021). Therefore, while temporospatial measures may have sufficient accuracy for real world applications,

significant  improvements  to  identification  of  joint  center  location  and  angle  are  needed.  Applications  of  this

method will likely also require the user to minimize instances where limbs are fully occluded (e.g. setting up the

camera in the frontal plane) (Shin et al. 2021).

Multi-camera Markerless Motion Capture
Multi-camera markerless motion capture is a progression of 2D monocular methods that minimizes joint occlusion

errors by employing multiple cameras (Figure 5). This method combines 2D pose estimation with an additional

multi-camera reconstruction step to estimate 3D joint center locations (Nakano et al. 2020; Needham et al. 2021a;

Slembrouck et al. 2020). Compared to monocular systems, multi-camera systems are more costly due to additional

hardware and require more space, thus this method generally seeks to replicate the results obtained from current

high-end marker-based systems (e.g., Qualisys/Vicon). 

Several studies have examined multi-camera markerless systems using the OpenPose pose estimation algorithm

(30-120  Hz),  reporting  joint  center  location  differences  ranging  between  10-50  mm  (Nakano  et  al.  2020;

Slembrouck et al. 2020; Zago et al. 2020) and temporospatial differences of 15 mm compared to marker-based
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methods(Zago et al. 2020). Slower movements performed better, with walking joint center differences compared to

marker-based methods of 10-30 mm, while faster jumping and throwing movements were 20-40 mm (Nakano et al.

2020), which may be exacerbated with slow video frame rates (Slembrouck et al. 2020; Zago et al. 2020). Manual

adjustments were required when OpenPose incorrectly detected joints (e.g. detects left knee as the right) for one

study (Nakano et al. 2020). Needham et al. (2021b) performed a recent comparison of OpenPose (Cao et al. 2018),

DeepLabCut (Mathis et al. 2018) and a third pose estimation algorithm (AlphaPose (Fang et al. 2017)) using 9 video

cameras and 15 marker-based cameras, both collecting at 200 Hz. Compared to marker-based methods, 3D lower

limb joint center differences were smallest for OpenPose and AlphaPose at 16-34 mm during walking, 23-48 mm

during  running  and  14-36  mm  during  jumping.  It  should  be  noted  that  they  did  not  retrain  models  using

DeepLabCut and instead used the DeepLabCut standard human pose estimation algorithm  (Mathis et al. 2018).

While these results are now approaching error rates of marker-based motion capture identified by Miranda and

colleagues (Miranda et al. 2013), Needham and colleagues demonstrated that there were systematic differences

for all markerless methods, with the largest systematic differences occurred at the hip. Their paper suggested this

could be the product of poorly labelled open access datasets, which may limit detection of accurate and reliable

joint center locations.

While previous studies have used open-source pose estimation algorithms and therefore may be considered as

standalone experimental setups, commercial systems have been developed. Joint angles were compared between

an 8 camera (50 Hz) Captury markerless system (Captury) and a 16 camera marker-based system, although Captury

identifies the silhouette of a person instead of using deep learning to extract joint center locations (Harsted et al.

2019).  The  authors  stated  that  planar  joint  angles  could  not  be  considered  interchangeable  between  motion

capture systems, with lower limb joint angle differences of 4-20 °. Another commercial system (SIMI Reality Motion

Systems)  recorded multiple  movements  with  8  cameras (100  Hz)  and  then was  processed using Simi  Motion

software which detects markers placed on the skin and Simi Shape 3D software, a markerless software which uses

silhouette-based tracking similar to Captury  (Becker 2016). Standard deviations of lower limb joint angles were

between 3-10 degrees with the markerless method compared to marker-based, and correlations for hip and ankle

frontal and rotation planes were poor (0.26-0.51), indicating high variability of this system. Most recently, Thiea3D
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markerless software (Theia Markerless Inc.) which uses a proprietary pose estimation algorithm was compared

between an 8 camera markerless system (85 Hz) and a 7 camera marker-based system (85 Hz) (Kanko et al. 2021b;

Kanko et al. 2021c). They reported no bias or statistical difference for walking spatial measures (e.g., step length,

step width, velocity) and a small difference in temporal measures (e.g., swing time and double support time) (Kanko

et al. 2021c). A follow-on study using the same data found average differences of 22-36 mm for joint centers and

2.6-11  degrees  for  flexion/extension  and  abduction/adduction,  although  rotation  about  the  longitudinal  axis

differences were 6.9-13.2 degrees compared to marker-based methods (Kanko et al. 2021b). Importantly, the lower

ranges of these translational and rotational differences are within errors identified by previous research (Fiorentino

et al. 2017; Kessler et al. 2019; Miranda et al. 2013). These strong results appear to be due to Theia3D having

labelled their own biomechanically applicable data set which identifies 51 keypoints on the body  (Kanko et al.

2021b; Kanko et al. 2021c), compared to OpenPose which only identifies 25 points  (Cao et al. 2018). However,

Theia3D software is somewhat of a black box, as it is unknown exactly what keypoints are being used, how much

the data is being smoothed or exactly how rotations are being computed. Now that markerless systems may be

approaching  the  accuracy  of  marker-based  methods  which  have  known  errors  discussed  previously,  future

examination  of  markerless  accuracy  will  require  comparison  to  a  gold  standard  method  such  as  bi-planar

videoradiography (Miranda et al. 2013).

Practical applications

While  markerless  systems  may  still  be  considered  in  their  infancy,  there  have  been  several  studies  that

demonstrate markerless potential for clinical applications. DeepLabCut was used to extract walking sagittal 2D joint

angles in stroke survivors, showing significant differences between the affected and unaffected side (Moro et al.

2020). Cunningham et al. (2019) examined 2D monocular segment angles of a multi-segmented trunk and head in

young children with cerebral palsy to automate application of a clinical test.  Baldewijns et al. (2016) measured

walking speed recorded unobtrusively in patient’s homes using a webcam, demonstrating how markerless methods

could provide continuous monitoring of patients as they go about their daily lives. Martinez et al. (2018) used a 2D

monocular markerless system with OpenPose to examine walking cadence and automate calculation of an anomaly
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score for Parkinson’s disease patients, providing clinicians with an unbiased general overview of patient disease

progression. Finally, Shin et al. (2021) retrospectively analyzed monocular frontal videos of Parkinson’s patients for

temporospatial  outcome  measures  (step  length,  walking  velocity  and  turning  time)  (Shin  et  al.  2021).  They

demonstrated  high  correlations  between  subjective  clinical  gait  tests  and  were  able  to  detect  minor  gait

disturbances unnoticed by the clinician.

In one significant clinical example, Kidziński et al. (2020) analyzed 2D outcomes of cerebral palsy gait collected from

a single camera (30 Hz) between 1994 and 2015 (~1800 videos). OpenPose derived 2D joint centers were used as

the input for a secondary deep learning-based neural network that predicted parameters of clinical relevance, such

as walking speed, cadence and knee flexion angle. However, direct comparisons to marker-based methods could

not be performed due to data collection methods and therefore, new test  data collected simultaneously with

marker-based motion capture is needed to examine the accuracy of their system. Nevertheless, this study compiled

outcome measures into a gait report that was automatically generated for the clinician, providing strong rationale

for  the  future  of  clinical  biomechanics  and  its  ability  to  analyze  gait  in  a  cost  and  time  efficient  manner.

Furthermore, the applications by  Kidziński et al.  (2020) and  Shin et al.  (2021) highlight the value of markerless

motion capture to extract new information from old datasets. Without the need to place markers on participants or

manually  process  results,  quantitatively  tracking  patients  throughout  disease  progression  and  rehabilitation

becomes a much more viable option.

While some markerless systems may be approaching the accuracy of marker-based methods, some applications

may not need highly accurate data and instead, numerous trials (e.g., numerous walking strides) could be averaged

to obtain reliable average results  (Pantzar-Castilla et al.  2018).  Unfortunately, this approach may be unable to

detect small changes over time and it is not always be possible to collect many trials in a clinical, rehabilitation or

sport  setting.  Alternatively,  using  markerless  motion  capture  as  a  motivational  tool  to  perform rehabilitation

exercises does not require highly accurate results. Markerless motion capture can be used to control a game or

move  around  a  virtual  environment,  which  can  increase  adherence  and  motivation  to  perform  repetitive  or
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potentially  painful  rehabilitation  exercises  (Knippenberg  et  al.  2017;  Vonstad  et  al.  2020).  This  could  lead  to

improved rehabilitation methods, as interaction with virtual environments has also been shown to reduce pain felt

by patients (Gupta et al. 2017; Scapin et al. 2018). While this application has been used with depth cameras (e.g.,

Microsoft Kinect)  (Chanpimol et al. 2017; Knippenberg et al. 2017), current applications using standard cameras

and pose estimation algorithms are limited (Clark et al. 2019).

Future challenges and applications

Clothing
Currently, markerless systems are assessed while participants wear tight fitting clothing, as marker-based motion

capture cannot be used with  normal/baggy clothing.  However,  normal  clothing is  often loose fitting and may

change shape during movement, which may or may not impact a pose estimation algorithms ability to accurately

extract joint center locations  (Sarafianos et al.  2016).  If  markerless systems are resistant to this issue, it could

greatly improve data collection in clinical and real-world applications. Using 8 cameras (60 Hz) with Theia3D’s pose

estimation, inter-trial and inter-session joint angle variability during walking was examined compared to previously

reported marker-based results (Kanko et al. 2021a). Participants wore their own clothing which generally consisted

of  shoes,  long  trousers,  shirt  and  sweater.  Markerless  inter-trial  joint  angle  variability  was  on  average  2.5  °,

compared to 1.0 ° from marker-based methods (Kanko et al. 2021a; Schwartz et al. 2004), while markerless inter-

session variability was on average 2.8 ° compared to 3.1 ° for marker-based methods (Kanko et al. 2021a; Schwartz

et al.  2004).  Therefore,  markerless  joint  angle variability  of  may be similar  to marker-based data collected on

multiple days (inter-session). Testing across multiple days or changes of clothing had no impact on the overall

variability of the markerless system. However, the higher inter-trial variability suggests that markerless methods do

produce  greater  errors  during  the  same  session.  Unfortunately,  because  they  did  not  examine  marker-based

walking variability of their participants, it is unknown if variability from previous marker-based studies was identical

to the participants included within this study. Importantly, markerless data collection was able to be completed in

5-10 minutes, demonstrating the benefits of this system for applications where time is limited (Kanko et al. 2021a).

Based on these results, markerless systems could one day collect data on patients at home during daily life, without
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the need of an operator or tight-fitting clothing. Such systems could also be set up in common areas of care homes,

facilitating data collection of numerous patients in an environment this is less likely to alter their gait (Robles-García

et al. 2015). Additionally, applications that do not require high accuracy will likely cope better with loose clothing.

Diversity of human shapes and movements
While pose estimation algorithms are good at identifying keypoints from images they have been trained on, they

can be poor at generalizing to identify keypoints in images that differ substantially from the training dataset (Cronin

2021; Mathis et al. 2020b; Seethapathi et al. 2019). Image databases (Chen et al. 2020; Ionescu et al. 2014; Lin et al.

2014; Sigal et al.  2010) may be biased towards humans of a certain race or a specific type of movement, and

therefore,  pose  estimation  algorithm  performance  may  decrease  when  movements  and  people  do  not  have

sufficient representation (e.g., gymnastic movements (Seethapathi et al. 2019)). Manually labelled training datasets

need to be diverse to account for varied movements of daily life (e.g., walking, standing from a chair, picking up

objects),  sporting  movements  (e.g.,  figure skating,  gymnastics  and  weightlifting)  and clinical  movements  (e.g.,

neurological disorders and amputations), visual differences of participants (e.g., age, race, anthropometrics) and

visual differences of markerless setups (e.g., lighting levels, scale of participant, camera angle). Because current

pose estimation algorithms are trained to label each image in a video independently, they may perform well at

detecting  keypoints  of  patients  with  pathological  gait  abnormalities  such  as  cerebral  palsy  and  stroke,  while

physical abnormalities such as amputations will likely present a more difficult challenge. Clinical datasets could be

collectively sourced from clinical research studies worldwide, however as standard video will be used to collect

data, challenges in the form of patient confidentiality and ethical considerations must be overcome at the ethical

application stage to achieve this.

Shortcomings of current training datasets
Currently available open-source training datasets were never designed with biomechanical applications in mind.

While these datasets encompass millions of images and thousands of manually labelled poses [55-58, 102], only a

subset of major joint centers have been labelled (ankle, knee, hip, shoulder, etc.), which increases errors as major

joints are treated as a rigid segment  (Zelik & Honert 2018). For example, when walking with a fixed ankle/toe
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orthosis, markerless ankle joint angle (OpenPose) differences compared to marker-based methods were reduced

relative to normal walking, as toe flexion was not accounted for in normal walking by the markerless algorithm

(Takeda et al. 2020). Additionally, open-source pose estimation algorithms that only detect joint centers struggle to

identify more than 5DoF, as detecting rotation about the longitudinal axis requires three points on a segment.

Open-source manually labelled pose estimation training datasets (Andriluka et al. 2014; Chen et al. 2020; Ionescu

et al. 2014; Lin et al. 2014; Sigal et al. 2010) have recruited labelers from the general population who likely do not

possess anatomical  knowledge. As such, these datasets have not been labelled with the accuracy required for

biomechanical  applications,  leading  to  errors  in  joint  center  locations  and  angles  (Needham  et  al.  2021b).

Furthermore, joints such as the hip or shoulder may appear very different from the side compared to a frontal or 45

°angle (Figure 6). Evidence of this can be seen in the systematic offset of joint center locations and segment lengths

outlined  by  Needham et  al.  (2021b).  Furthermore,  open-source  labelled  datasets  generally  do not  require  all

images to pass a second verification step, therefore two people may have very different interpretations of a joint

center, which may lead to inconsistency in the labelled images (Cronin 2021). It is unwise to expect pose estimation

algorithms to match marker-based methods when the labelled data they are trained on is fundamentally flawed.

Several commercial companies have created their own propriety datasets (Kanko et al. 2021b; Kanko et al. 2021c),

with Theia3D employing trained labelers who likely have anatomical knowledge, labelling multiple points on each

segment and integrating a verification step by an expert labeler (Kanko et al. 2021c). This two-step labelling process

may produce a more biomechanically accurate dataset, enabling the strong results discussed previously (Kanko et

al. 2021a; Kanko et al. 2021b; Kanko et al. 2021c). 
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Large open-source datasets have labelled keypoints even when joints are occluded (Figure 6). This is a requirement

for entertainment applications as it would be unacceptable for limbs to suddenly go missing in video games or

virtual reality. However, this results in occluded joints being labelled onto points that are biomechanically incorrect

(Lin et al. 2014), for example, the right knee may be occluded by the left leg and thus labelled as being located

somewhere on the left thigh. This results in two potential issues, firstly, the labeler must guess the location of the

occluded joint, which reduces the accuracy of the dataset and secondly, the algorithm may learn that it is possible

for joints to appear on locations that are biomechanically incorrect (Cronin 2021). Finally, Seethapathi et al. (2019)

highlighted that training and testing datasets  often do not include temporal  information (sequentially labelled

images) and therefore current pose estimation algorithms can vary wildly in estimation of joint center locations

between consecutive frames. It  is  possible to reduce these differences using Kalman filtering  (Needham et al.

2021a) and therefore, improving current open-source data sets (e.g., COCO (Lin et al. 2014)) may be a more viable

solution to improving accurate detection of joint center locations. New open-source datasets for biomechanical

applications should include at  least  three points  for each body segment,  are  labelled  by trained labelers  who

possess anatomical and biomechanical knowledge, include a verification step by a secondary subset of expert users

and additionally ignore or account for occluded joints.

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded joint centers, however

this requires users to guess where these locations are, as they are not visible (adapted from (COCO 2021; Lin et al.

2014) under creative commons license by (COCO 2020)).

Evaluation
Current publicly available video datasets with synchronized marker-based motion capture, often use limited or sub-

optimal marker placements, have low frame rates and camera resolution and thus may result in overestimating

differences between systems compared to when run on private higher quality datasets (Colyer et al. 2018; Corazza

et al. 2009). Publicly available, highspeed, high resolution evaluation datasets are needed for true comparisons

between markerless and marker-based motion capture. While Needham and colleagues  (Needham et al. 2021b)

demonstrated  that  OpenPose  had  a  greater  difference  on  average  between  16-48  mm,  joint  center  location

differences could be as high as 80 mm or even higher for some joints during running. Examining not only the
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accuracy,  but the reliability of  a system to accurately measure joint center locations is  crucial,  as systems are

beginning to obtain average results that rival marker-based methods. However, we also need to question whether

improving markerless motion capture to align closer to marker-based motion capture is the best solution. Marker-

based motion capture has inherent errors discussed previously and markerless motion capture may potentially

outcompete marker-based methods in some areas (e.g.,  soft tissue artefact).  As such, markerless methods that

reach  a  similar  level  of  accuracy  to  marker-based  methods  next  need  to  be  assessed  with  bi-planar

radiovideography or similarly accurate methods, to determine the true accuracy and reliability of these methods.

Decision making
Previous work has demonstrated the potential for markerless systems to automatically process video data and

report quantitative results that could be immediately used by a clinician (Kidziński et al. 2020; Martinez et al. 2018).

While pose estimation algorithms are learning to detect human poses, they are not able to think on their own.

Desired  outcome  measures  (e.g.,  temporospatial  measures  and  joint  angles)  extracted  using  pose  estimation

algorithms are still decided by humans. Emerging applications of markerless motion capture are therefore likely to

require outcome measures to be chosen by the user prior to data collection, after which the markerless system will

collect and process the data, similar to current implementations of commercial IMU systems (i.e.,  Mobility Lab

ADPM Inc.). As such, the clinician is still needed to interpret the results and their applicability to the patient. Deep

learning methods could potentially be applied to this problem in the future (Simon 2004), however, speculating on

how this would be achieved is beyond the scope of this review.

Usability
Current applications of  open-source pose estimation algorithms require  in-depth knowledge of  deep learning-

based neural networks and computer vision methods. As such, this technology requires usability improvements for

users who do not have programming or computer science backgrounds. Some commercial systems such as Theia3D

have made their software highly accessible by enabling data to be collected and processed with leading video-

based motion capture companies (e.g., Qualisys and Vicon). However, because they have a proprietary dataset and
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out-perform

Robert Kanko
videoradiography

Robert Kanko
I agree that this should be a next step in evaluating markerless motion capture systems, but it is also important to note that results from a concurrent test of markerless motion capture and bi-planar videoradiography would be inherently limited by the foreign lab environments in which bi-planar videoradiography is performed. This would lead to images that are not sufficiently represented by the training dataset, and may produce results that underestimate the accuracy of markerless methods.



pose estimation algorithm, it is not possible for a user to determine what keypoints their algorithm is extracting,

nor how the raw pose estimation data is being filtered and processed. 

While  previous  pose  estimation  algorithms  have  required  substantial  processing  power  housed  in  high  end

computers, new pose estimation algorithms can run on standard computers with modest graphical processing units

(Cao et al.  2018) or even smaller devices such as mobile phones  (Bazarevsky et al.  2020).  As pose estimation

software develops, it will become more feasible to integrate both the phone camera and processor to provide

compact and affordable markerless motion capture  (Steinert et al.  2020). Alternatively,  cloud-based computing

could be harnessed to record video using a smartphone, which is then uploaded to a server for processing and

results are returned to the user  (Zhang et al. 2021). Clinicians, researchers and coaches could one day perform

automatic markerless motion capture in real time, without large setup costs. Finally, pose estimation algorithms

have the potential to be used with cameras that move freely during data collection  (Elhayek et al. 2015), which

could allow accurate examination of how patients move through the natural environment.

Conclusion
Markerless motion capture has the potential to perform movement analysis with decreased data collection and

processing  time  compared  to  marker-based  methods.  Furthermore,  markerless  methods  provide  improved

versatility of the data, enabling datasets to be re-analyzed using updated pose estimation algorithms and may even

provide clinicians with the capability to collect data while patients are wearing normal clothing. While it appears

that markerless temporospatial measures generally appear to be equivalent to marker-based motion capture, joint

center locations and joint angles are not yet sufficiently accurate. Current pose estimation algorithms appear to be

approaching similar error rates of marker-based motion capture. However, without comparison to a gold standard,

such as bi-planar videoradiography, it is unknown how these two systems truly compare. Current open-source pose

estimation algorithms were never designed for biomechanical applications, therefore, datasets on which they have

been trained are inconsistently and inaccurately labelled. Improvements to labelling of open-source training data

will be a vital next step in the development of this technology.
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Some of this technical information about Theia3D is publicly available, such as their filtering method (GCVSPL/Woltring lowpass filter of the segment pose quaternions, with a selectable cutoff frequency), although you are correct that it is otherwise a black box, with no options to view keypoints or adjust model parameters, etc.

Robert Kanko
or “the true accuracy of these markerless systems is unknown.”
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Figure Captions
Figure 1: This figure demonstrates the six degrees of freedom needed to describe position and orientation (pose) of

the human body, with the red dot indicating the location (translation) of the segment center of mass and blue

arrows  indicating  rotation  in  three  planes.  A)  The  reference  standing  posture,  B)  thigh  segment

adduction/abduction, C) thigh segment flexion/extension, D) thigh segment rotation about the longitudinal axis.

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view of the markers in 3D

space.
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Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a single image.

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled training dataset. Stage

Two: Using the unlabeled images from stage one, the pose estimation algorithm estimates the desired keypoint

locations (joint  centers).  Estimated keypoint  locations are compared to  the manually  labelled training data  to

determine the distance is between the estimated keypoint and the manually labelled keypoint. The optimization

method then adjusts filters within the layers of the algorithm to try to reduce this distance and new estimated

keypoints  are calculated. This process  is  repeated until improvements  to the pose estimate4ion algorithm are

negligible.

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion capture (2D keypoints

detected using OpenPose  Cao et al. (2018), 3D pose estimation from monocular motion capture (adapted from

Cheng et al. (2020) with license from the Association for the Advancement of Artificial Intelligence, Copyright © 20)

and 3D pose estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with permission from

Springer Nature).

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded joint centers, however

this requires users to guess where these locations are, as they are not visible (adapted from (COCO 2021; Lin et al.

2014) under creative commons license by (COCO 2020)).
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Figure 1
Six degrees of freedom

Figure 1: This figure demonstrates the six degrees of freedom needed to describe position
and orientation (pose) of the human body, with the red dot indicating the location
(translation) of the segment center of mass and blue arrows indicating rotation in three
planes. A) The reference standing posture, B) thigh segment adduction/abduction, C) thigh
segment flexion/extension, D) thigh segment rotation about the longitudinal axis.
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Figure 2
Optoelectronic motion capture markers

Figure 2: Optoelectronic motion capture. Left - markers placed on the subject. Right - view
of the markers in 3D space.
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Figure 3
Figure 3

Figure 3: Twenty-five keypoints detected using the OpenPose (Cao et al. 2018) applied to a
single image.
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Figure 4
Pose estimation algorithm training workflow

Figure 4: Training a pose estimation algorithm. Stage One: Creation of manually labelled
training dataset. Stage Two: Using the unlabeled images from stage one, the pose estimation
algorithm estimates the desired keypoint locations (joint centers). Estimated keypoint
locations are compared to the manually labelled training data to determine the distance is
between the estimated keypoint and the manually labelled keypoint. The optimization
method then adjusts filters within the layers of the algorithm to try to reduce this distance
and new estimated keypoints are calculated. This process is repeated until improvements to
the pose estimate4ion algorithm are negligible.
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Figure 5
2D and 3D pose estimation

Figure 5: Markerless motion capture examples: 2D pose estimation from monocular motion
capture (2D keypoints detected using OpenPose Cao et al. (2018) , 3D pose estimation from
monocular motion capture (adapted from Cheng et al. (2020) with license from the
Association for the Advancement of Artificial Intelligence, Copyright © 20) and 3D pose
estimation from multi-camera motion capture (adapted from Sigal et al. (2010) with
permission from Springer Nature).
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Figure 6
Current open-source labelled dataset

Figure 6: Keypoints of large open-source datasets have been labelled to estimate occluded
joint centers, however this requires users to guess where these locations are, as they are not
visible (adapted from (COCO 2021; Lin et al. 2014) under creative commons license by
(COCO 2020) ).

PeerJ reviewing PDF | (2021:11:68362:0:1:NEW 3 Dec 2021)

Manuscript to be reviewed


	Authors
	Affiliation
	Corresponding Author
	Abstract
	Keywords
	Introduction
	Survey Methodology
	Markerless Motion Capture
	Hardware
	Software

	Performance of Current Markerless Applications
	Monocular Markerless Motion Capture
	Multi-camera Markerless Motion Capture

	Practical applications
	Future challenges and applications
	Clothing
	Diversity of human shapes and movements
	Shortcomings of current training datasets
	Evaluation
	Decision making
	Usability

	Conclusion
	Competing Interests statement
	Acknowledgements
	Author Contributions
	Figure Captions
	References

