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Abstract 17 

Background. Animal behaviour is under strong selection. However, sSelection on behaviour, 18 

however, might not act in isolation from other fitness-related traits. Since predators represent 19 

outstanding selective forces, animal behaviour could covary with antipredator defences, such that 20 

individuals better suited against predators could afford facing the costs of riskier behaviours. 21 

Moreover, not all individuals undergo equivalent degrees of predation pressure, which can vary 22 

across sexes or habitats. Individuals under lower predation pressure might also exhibit riskier 23 

behaviours.  24 

Methods. In this work, I tested these hypotheses on natterjack toads (Epidalea calamita). 25 

Specifically, I gauged activity time, exploratory behaviour, and boldness in standard laboratory 26 
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conditions, and assessed whether they correlated with body size and antipredator strategies, 27 

namely sprint speed, parotoid gland area, and parotoid gland colour contrast. Additionally, I 28 

compared these traits between sexes and individuals from an agrosystem and pine grove, since 29 

there is evidence that males and agrosystem individuals are subjected to greater predation 30 

pressure.  31 

Results. Sprint speed as well as parotoid gland contrast and size appeared unrelated to the 32 

behavioural traits studied. In turn, body mass was negatively related to activity time, boldness, 33 

and exploration. This trend is consistent with the fact that larger toads could be more detectable 34 

to their predators, which are mostly gape unconstrained and could easily consume them. As 35 

predicted, females exhibited riskier behaviours. Nonetheless, agrosystem toads did not differ 36 

from pine grove toads in the behavioural traits measured, despite being under stronger predation 37 

pressure. 38 

 39 

Introduction 40 

Animal behaviour is strongly subjected to selection, and thus represents a fundamental 41 

component of fitness (Dingemanse & Réale, 2005; Dugatkin, 2020). Traits such as sexual 42 

selection (Schuett, Tregenza & Dall, 2010), reproductive success (Zhao et al., 2016), 43 

productivity (Biro & Stamps, 2008), contest outcome (Briffa, Sneddon & Wilson, 2015), and 44 

even mortality (Stamps, 2007), are known to be linked to traits such as boldness (i.e., willingness 45 

to engage in activities that involve exposure) or exploratory behaviour  (i.e., willingness to 46 

investigate a novel environment), although these traits oftentimes exert opposing fitness 47 

consequences. Indeed, selection on behaviour can hardly be regarded as directional, since the 48 

fitness consequences of behavioural traits are context-dependent (Smith & Blumstein, 2008; 49 

MacPherson et al., 2017). For instance, bold red squirrels (Sciurus vulgaris) survive better in 50 



food-restrictive habitats, but worse in sites where food supplies are stable, whereas exploratory 51 

behaviour has a consistent negative relationship with survivorship and female reproductive 52 

success across habitats (Santicchia et al., 2018). This case illustrates how the diversity of 53 

contexts animals can face could be key in maintaining the enormous variation in behavioural 54 

traits documented (Nettle, 2006; Briffa & Sneddon, 2016; Roche, Careau & Binning, 2016). 55 

Nevertheless, the contextual components of animal behavioural traits are poorly understood and 56 

remain an eminent subject of debate among scientists (Koski, 2014; Weiss, 2018; Wilson et al., 57 

2019).  58 

 Particularly relevant are the fitness consequences of behavioural traits that affect 59 

mortality. With predators being among the most frequent causes of mortality in many animals 60 

(Lima, 2002; Beauchamp, Wahl & Johnson, 2007), the huge substantial effect of antipredator 61 

behaviour on prey fitness comes as no surprise (Lind & Cresswell, 2005). Prey’s behavioural 62 

traits are tuned to, and affected by, predation pressure in intricate ways (Toscano & Griffen, 63 

2014; Belgrad & Griffen, 2016). On the one hand, predators may trigger plastic behavioural 64 

responses in their prey (Quinn & Cresswell, 2005; Dingemanse et al., 2010). For instance, 65 

Euricea nana salamanders reduce their activity time in the presence of predators (Davis & 66 

Gabor, 2015). Likewise, great tits (Parus major) exposed to predators have a lower tendency to 67 

explore than non-exposed controls (Abbey-Lee, Mathot & Dingemanse, 2016), and juvenile 68 

Negaprion brevirostris sharks that exhibit more exploratory behaviour forage in riskier habitats, 69 

but only under low predation pressure (Dhellemmes et al., 2021). On the other hand, the 70 

relationships between predation risk and behavioural traits may transcend plasticity, as behaviour 71 

can be persistent across environments (Dosmann & Mateo, 2016). In such a scenario, the ways in 72 

which behaviour affects predation risk can be complex. For example, shy Rutilus rutilus roaches 73 



are more likely to be preyed on by ambushing predators than bold conspecifics (Blake et al., 74 

2018), whereas bolder Panopeus herbstii crabs experience greater mortality rates (Belgrad & 75 

Griffen, 2018).  76 

Despite the fact that some trends have been detected, inter-individual variation in 77 

antipredator behavioural traits is oftentimes high (López et al., 2005; Brown et al., 2014; 78 

Cremona et al., 2015). Such variation could be maintained by spatial differences in predation 79 

pressure driving diverging behavioural traits. Supporting this possibility, Phoxinus phoxinus 80 

minnows from a population under greater predation pressure are bolder but less active than 81 

conspecifics from a population where predators are less abundant (Kortet et al., 2015). Indeed, 82 

how animals make use of space affects their success against predators (Leblond, Dussault & 83 

Ouellet, 2013). Moreover, whenever the sexes are subjected to differential predation pressures, 84 

sexual disparities in behaviour could be expected. For instance, highly active males of Perca 85 

fluviatilis perches perch males face greater mortality than females (Yli-Renko, Pettay & 86 

Vesakoski, 2018), and male guppies (Poecilia reticulata) guppy males are significantly bolder 87 

than females (Harris et al., 2010).  88 

However, oOther potential sources of variation in antipredator behaviour, however, 89 

remain underexplored – such as locomotion, chemical deterrents, and colour.  90 

For instance, tThe protection lent by antipredator defences of different kinds could buffer 91 

the effects of predation on behavioural traits. One of the most widespread antipredator defences 92 

is locomotion, as an active flight can be efficient in avoiding predators (Watkins, 1996; McGee et 93 

al., 2009). Although locomotion has a behavioural component, as animals tune their investment 94 

on locomotion according to the benefits it can yield in different situations (Zamora-Camacho, 95 

García-Astilleros & Aragón, 2018), it may also function as a capability that is dependent on 96 
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traits other than behaviour (Zamora-Camacho, 2018). Other antipredator defences are neatly 97 

non-behavioural and passive. Such is the case with chemical deterrents, which are toxic or 98 

distasteful substances that repel predator attacks (Mebs, 2001; Brodie, 2009; Savitzky et al., 99 

2012). Aposematic coloration (i.e., conspicuous colours and patterns that potential predators 100 

associate with unpalatability and actively avoid) can be frequently found alongside chemical 101 

deterrents (Saporito et al., 2007; Zvereva & Kozlov, 2016; Ruxton et al., 2018), thus providing 102 

their carriers with additional defence from predators (Skelhorn & Rowe, 2006; Prudic, Skemp & 103 

Papaj, 2007).  104 

The relationship between body size and predation is particularly interesting. On the one 105 

hand, larger prey could be easier to detect (Mänd, Tammaru & Mappes, 2007; Karpestam, 106 

Merilaita & Forsman, 2014). ), while Oon the other hand, larger prey can be more difficult to 107 

handle (Díaz & Carrascal, 1993; Kalinkat et al., 2013). In fact, survivorship of Hyla 108 

chrysoscelis tadpoles to attacks by Tramea lacerata dragonfly nymphaea increases with body 109 

size (Semlitsch, 1990). Similarly, larger grasshoppers are better defended against a wide array of 110 

predators (Whitman & Vincent, 2008). However, larger predators do not necessarily prefer larger 111 

prey (Tsai, Hsieh & Nakazawa, 2016), although they can exploit prey of a wider size range 112 

(Radloff & du Toit, 2004). The influence of the morphology of a predator’s mouthparts is also of 113 

the essenceimportant, with gape-limited predators preferring smaller prey, while gape-114 

unconstrained predators are less dependent on their prey’s body size (Jobe, Montaña & Schalk, 115 

2019). Furthermore, the role of prey body size may depend on other antipredator strategies. For 116 

example, whereas detectability of cryptic prey can appear unrelated to body size, conspicuous 117 

prey might be more detectable at larger body sizes (Mänd et al., 2007). Moreover, toxins are 118 

more efficient antipredator defences in smaller prey (Smith, Halpin & Rowe, 2016). 119 
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Consequently, antipredator behaviour is not independent from body size, but such relationships 120 

are intricate (Preisser & Orrock, 2012). 121 

In this work, I studied activity, exploratory behaviour, and boldness in the natterjack toad, 122 

Epidalea calamita. Specifically, I tested whether these traits co-vary with other antipredator 123 

strategies, including locomotion. This toad is cursorial, and uses quick runs to flee from its 124 

predators (Zamora-Camacho, 2018). I also checked examined the potential effects of body size 125 

on these behavioural traits. Additionally, this species has notable parotoid glands, which are a 126 

pair of swollen structures located dorsally behind the eyes in many amphibian species. The size 127 

of these glands is directly proportional to the quantity of chemical deterrents they are capable of 128 

ejecting (Zechmeister, 1948; Llewelyn et al., 2012). The parotoid glands of E. calamita are 129 

aposematic: , with predators avoid plasticine models with highly colour-contrasting parotoid 130 

glands (Zamora-Camacho, 2021). Therefore, I tested whether the aforementioned traits are 131 

correlated with sprint speed and parotoid gland area and colour contrast. In addition, predation 132 

pressure is subjected to spatial variation, according to an experiment with where toad plasticine 133 

toad models that received more attacks in an agrosystem than in a natural habitat (Zamora-134 

Camacho, 2021). Moreover, agrosystem toads are larger than those from a natural habitat 135 

(Zamora-Camacho & Comas, 2017), which could be an adaptive response to greater predator 136 

pressure. Accordingly, I tested whether the aforementioned traits vary between these habitats. 137 

Finally, the fact that males in this species are faster (Zamora-Camacho, 2018) and have larger 138 

parotoid glands than females (Zamora-Camacho, 2021) supports the notion that the formermales 139 

are under greater predation pressure than the latterfemales, as detected – which aligns with 140 

reports from in other related species (e.g., Frétey et al., 2004). Therefore, I tested whether the 141 

aforementioned traits vary between sexes. I predict that individuals that are better suited against 142 



predators (i.e., those that are faster, more massivelarger in body size, or have larger and more 143 

contrasting parotoid glands) will display riskier behavioursbehavioural traits, including being 144 

more active, bolder, and more more exploratory behaviours. Similarly, I expect pine grove toads 145 

and females to be more active, bolder, and more exploratory, as they are under reduced predation 146 

pressure.  147 

 148 

 149 

Materials & Methods 150 

Study species 151 

Epidalea calamita is a bufonid toad that thrives in diverse habitats, including unaltered as well as 152 

human-modified systems, in extensive areas in the centre central and western of Europe (Gomez-153 

Mestre, 2014). Owing to the variable climatic conditions throughout this vast area, the phenology 154 

of this species is asynchronous, with aestivation being common in hot regions and hibernation 155 

occurring in cold climates (Gomez-Mestre, 2014). This species is primarily nocturnal, and its 156 

activity and reproduction take place during wet and not excessively cold weather, which happens 157 

during winter in warmer areas’ wintersregions, but and in the spring in colder regions  areas’ 158 

springs (Gomez-Mestre, 2014). Under adverse circumstances, they rest under rocks or logs, or in 159 

dens they burrow in loose soils, safe from predators (Gomez-Mestre, 2014). These toads are 160 

potential prey of a wide array of predators, including snakes (e.g. Natrix maura and Natrix 161 

astreptophora), birds (e.g. Larus ridibundus and Pica pica) and mammals (e.g. Meles meles), 162 

among others (see Gomez-Mestre, 2014). When under attack, toads use intermittent runs to flee 163 

(Zamora-Camacho, 2018). However, wWhen escape is not possible, however, they commonly 164 

arch their loins and exhibit their parotoid glands, which can release great amounts of toxins 165 

(Stawikowski & Lüddecke, 2019).   166 



 167 

Animal capture and management 168 

Toads were captured in the pine grove “Pinares de Cartaya” (SW Spain: 37º20’ N, 7º09’ W) and 169 

in the agrosystem nearby. The forest is an 11 000-ha extension dominated by Pinus pinea and an 170 

undergrowth of Mediterranean bushes such as Pistacea lentiscus, Cistus ladanifer and 171 

Rosmarinus officinalis. Even Although whether this plant assemblage could be considered is 172 

autochthonous or introduced in this region is a moot point, its predominance dates back at least 173 

4 000 years (Martínez & Montero, 2004), and as such so it is deemed a natural whatever the 174 

casehabitat for the purposes of this study (Martínez & Montero, 2004). The agrosystem is 175 

Around about 5 km away from the pine grove, and is alies a 2 800-ha agricultural area, where 176 

extensive vegetable crops have gradually given way to intensive orange tree, blueberry, and 177 

strawberry fields (among others)  fields all throughout the last few decades. In these croplands, 178 

landowners apply fertilizers, fungicides, herbicides, and pesticides at their discretion, and 179 

artificial watering softens the three-to-four-month-long summer droughts.  Animal capture and 180 

management was according to permits by the Junta de Andalucía government (Reference 181 

AWG/mgd GB-369-20). 182 

 Due to the mild local climate, E. calamita breeds in the winter there. Accordingly, toad 183 

capture was conducted from December 2018 to March 2019. I caught 22 females and 20 males in 184 

the agrosystem, plus 21 females and 25 males in the pine grove. Toads were captured by hand 185 

while active in nights of suitable weather, then transported to the laboratory in plastic buckets 186 

with well-ventilated lids and a substrate of humid earth. When they were in the laboratory, I used 187 

their sexual dimorphism in coloration (females have browner backs and greyish throats, whereas 188 

males have greener backs and purplish or pinkish throats; Zamora-Camacho & Comas, 2019) 189 



and the presence of blackish nuptial pads exclusively ion males’ forelimbs (Gomez-Mestre, 190 

2014), to sex them. Next, I allocated them to individual plastic terraria (20 x 13 x 9 cm) with wet 191 

peat as a substrate and an opaque plastic shelter. Toads were undisturbed in these terraria at all 192 

times, except during the trials. Photos were taken approximately 24 hours after capture (see 193 

below). Then, 24 hours after the photos, toad activity trials were recorded (see below). Finally, 194 

24 hours after the activity trials, sprint speed tests were performed (see below). Toads were 195 

released at their capture sites shortly afterward.     196 

 197 

Measurements of coloration and morphology 198 

I used a ruler to measure toad snout-vent length (hereafter, SVL) to the nearest mm, and a scale 199 

(model CDS-100) to weigh them to the nearest 0.01 g. No later than 24 hours after capture, I 200 

orthogonally photographed each toad’s back using a photo camera Canon EOS 550D, set at 18 201 

megapixels of resolution, F10 of shutter-aperture, and a focal length fixed at 53 mm. Only 202 

exposure time was allowed to be automatically adjusted by the device, to optimize sharpness in 203 

each individual photo. The camera was secured to a tripod, which guaranteed perpendicularity, 204 

steadiness, and a constant distance of 40 cm from the lens to the photographed area. This area 205 

was a square (30 -cm-side), white piece of paper that lay horizontal. On both lateral and the rear 206 

sides (considering that the tripod was located opposite to the front side), three square (30 -cm-207 

side), white pieces of white polyester sat vertically, conforming an incomplete cube which 208 

lacked the front (allowing toad handling) and the upper sides (allowing photograph taking). In 209 

order to avoid all parasitic lights (i.e., any uncontrolled source of light), photos were taken at 210 

night in a completely closed room, where the only sources of light were two 80W white-light 211 

bulbs, one next to each lateral side of the cube, externally to it, at a height of 20 cm, so that 212 



shades on the photographed area were prevented and the white polyester of the lateral, vertical 213 

squares filtered the light. This setting is depicted in Fig. S1 in Supplementary Material. 214 

Immediately prior to taking the photos, once the set was fixed as described, I calibrated white 215 

balance to a spotless piece of paper, after which I added a standardized colour chart (IMAGE 216 

Photographic) for digital calibration of white balance, and a piece of graph paper to calibrate 217 

length. Any remainder of humidity and dirt was gently removed from the toads’ skins with a 218 

disposable napkin before each photo.  219 

 Afterwards, these photos were processed with the software Adobe Photoshop CS5. 220 

Firstly, I calibrated white balance one more time in each photo by using the tool eyedropper in 221 

the white calibration function on the colour chart. Furthermore, colour mode was set to the 222 

L*a*b* colour space preconized by the Commision Internationale d’Eclairage (CIE) 223 

(Montgomerie, 2006). This is a three-dimensional colour space were L* quantifies lightness, and 224 

varies from 0 (pure black) to 100 (pure white); a* quantifies the green-red axis (positive values 225 

represent red and negative values represent green); and b* quantifies the blue-yellow axis 226 

(positive values represent yellow and negative values represent blue). I calibrated length using 227 

the piece of graph paper, and manually outlined both parotoid glands making use of the lasso 228 

tool, which allowed me to calculate the sum of the areas of each. After this, parotoid gland 229 

relative area was calculated as the residuals of regression of parotoid gland area against SVL. 230 

Next, once the parotoid glands were outlined, I calculated their average colour and, with the 231 

histogram tool, retrieved their average values of L*, a*, and b*. Lastly, I followed the same steps 232 

to trace the dorsum (excluding the parotoid glands and the limbs) and retrieve its average L*, a* 233 

and b* values. The average L*, a*, and b* parotoid gland and dorsum values were used to 234 



calculate parotoid gland contrast (ΔE*) as in the CIE formula to assess difference in colour: ΔE* 235 

= (ΔL*2 + Δa*2 + Δb*2)1/2 (Nguyen, Nol & Abraham, 2007; Moreno-Rueda et al., 2019).  236 

 237 

Measurements of activity and sprint speed 238 

Starting 24 hours after the photos were taken, toads were recorded for activity and sprint speed 239 

trials (see details below), in this order. Videos were filmed with a camera Canon EOS 550D, at 240 

25 frames per second. The camera was attached to a 2.5 -m-high tripod, with a 90º angle, at all 241 

times. In both trials, only one individual was recorded at a time. To remove the effect that 242 

temperature may have on amphibian activity (Muller, Cade & Schwarzkopf, 2018) and 243 

locomotion (Preest & Pough, 2003), the room was at approximately 19ºC at all times. Light 244 

conditions were standardized, as the only light source during all trials was a 60W white light 245 

bulb 2.5 m high at the centre of the container where the toad was performing the trial in question 246 

(see below). All videos were recorded at night (approximately between 09pm 21:00-and 02:00 247 

amh, local time), when these toads are naturally active (Gomez-Mestre, 2014).  248 

 249 

Measurement of activity 250 

Activity trials were recorded while these toads were freely moving in a plastic arena (54 x 27 x 251 

40 cm). A grid of 9- cm-side squares was painted with non-toxic ink on the bottom of this arena. 252 

Prior to the recordings, toads were placed at the centre of the arena, enclosed within a vertical 253 

hollow cylinder (50 cm high, 15 cm diameter) open at its lower end. The cylinder was built with 254 

a metal mesh (5 mm light), which allowed acclimation to the experimental setting. After two 255 

minutes, the cylinder was gently removed in the vertical plane, and the toad’s activity was 256 

recorded for 10 minutes (Chajma, Kopecký & Vojar, 2020).  257 



 Videos were then analysed with the program Tracker v. 4.92. I measured several 258 

variables as surrogates of different traits of alleged relevance in the behaviour of animals in 259 

general (Réale et al., 2007) and of amphibians in particular (Kelleher, Silla & Byrne, 2018). 260 

Activity time was the amount of time (in s) the toad spent moving (Chajma et al., 2020). 261 

Exploration behaviour was estimated as the number of squares visited (excluding squares that 262 

had been visited before; Chajma et al., 2020) and the number of square visits (counting the 263 

number of times any square was visited, including repeated visits; Carlson & Langkilde, 2013). 264 

These measures differ in the fact that the former assumes that the individual distinguishes and 265 

keeps track of the areas that have already been visited, whereas the latter assumes the opposite 266 

(Carlson & Langkilde, 2013). Time until the first move (i.e., latency) was also recorded, as a 267 

surrogate of the shyness/boldness gradient, as bolder individuals are expected to start moving 268 

sooner (Chajma et al., 2020). However, the use of space is also widely considered a surrogate of 269 

the shyness/boldness gradient, in amphibians (Réale et al., 2007; Carlson & Langkilde, 2013; 270 

Chajma et al., 2020) and other taxa (Burns, 2008; Harris, D’Eath & Healy, 2009). Specifically, 271 

thigmotaxis, the tendency for some individuals to remain in the periphery of their enclosures 272 

next to the walls rather than in the open areas, has been regarded as an anxiety-like, predator-273 

avoidance behaviour as opposed to the boldness subjacent to the use of open areas (Harris et al., 274 

2009; Carlson & Langkilde 2013; Chajma et al., 2020). Therefore, I also estimated the 275 

shyness/boldness gradient by counting independently the number of external and internal squares 276 

visited (excluding squares that had been visited before) and the number of external and internal 277 

square visits (counting the number of times squares of these types were visited, including 278 

repeated visits). Then, I divided the number of external squares visited by the total number of 279 

squares visited (external squares visited ratio), as well as the number of external square visits by 280 



the total number of square visits (external square visit ratio). Both ratios have a direct 281 

relationship with boldness. These measurements are relevant in an ecological context, as 282 

laboratory surrogates of animal behaviour mirror actual behaviour in the wild (Herborn et al., 283 

2010). 284 

 285 

Measurement of sprint speed 286 

Prior to conducting and recording of the sprint speed trials, I emptied toad bladders by firmly - 287 

but gently - pressing their lower abdomens, which eliminates any potential effect of different 288 

bladder water burden by reducing it to zero (Preest & Pough, 1989; Walvoord, 2003; Prates et 289 

al., 2013). Next, I allowed toads to rest in their terraria for one hour. After that, they were 290 

recorded (with the same camera already described) while running along a brownish cardboard 291 

linear raceway (200 x 15 x 15 cm). On its bottom, one transversal white stripe of insulating tape 292 

was placed every 10 cm, so that the raceway was longitudinally divided into 10-cm stretches 293 

delimited by contrasting-colour stripes easy to visualize in the videos. Locomotor performance 294 

may depend on the substrate where the race takes place (Vanhooydonck et al., 2015): cardboard 295 

provided a surface rough enough to facilitate an appropriate traction. I also set a dark background 296 

at one end of the raceway, which could be viewed as a shelter and encourage toads’ moving 297 

forward (Zamora-Camacho, 2018; González-Morales et al., 2021). Individuals were placed at 298 

the opposite end of the raceway, and continuously pursued as a way of encouraging running, 299 

until they covered the raceway. Once these trials were completed, toads were released at their 300 

capture sites within 24 hours. No visible damage was inflicted on toads because of this 301 

investigation.  302 



 The footages produced were analysed with the program Tracker v. 4.92, which allows 303 

frame-by-frame video handling. For each toad, I registered the time (to the nearest 0.01 s) needed 304 

to cover each stretch in the raceway, which equals the time elapsed between the moments when 305 

the snout of a toad surpassed two consecutive white stripes (Martín & López, 2001; Zamora-306 

Camacho et al., 2014; Zamora-Camacho, 2018). As the distance covered was 10 cm in all cases, 307 

I calculated the speed (in cm/s) reached in each stretch by dividing 10 cm by the time (in s) it 308 

took for the toad to cover it. I considered each individual’s sprint speed as its highest speed 309 

value. Finally, relative speed was calculated as the residuals of regression of sprint speed against 310 

SVL.  311 

 312 

Statistics  313 

Firstly, I built two correlation matrices, one including the behavioural traits measured (number of 314 

squares visited, number of square visits, external squares visited ratio, external square visits 315 

ratio, activity time, and time until the first move) and another including the antipredator defences 316 

measured (body mass, parotoid gland contrast, parotoid gland relative area, and relative sprint 317 

speed). The aim of these matrices was to detect collinearity between both sets of data. Most 318 

behavioural traits measured were highly correlated, except for time until the first move (Table S1 319 

in Supplementary Material). On the contrary, the antipredator defences measured were mostly 320 

uncorrelated, except for relative sprint speed and parotoid gland relative area, which were 321 

positively and significantly correlated (Table S2 in Supplementary Material). 322 

Then, to condense the correlated variables into fewer, uncorrelated variables, and solve 323 

the limitation caused by the high collinearity among the variables measured, I conducted a 324 

Principal Component Analysis (PCA; Jongman, Braak & Tongeren, 1995) including the 325 



behavioural traits measured that were correlated (number of squares visited, number of square 326 

visits, external squares visited ratio, external square visits ratio, and activity time; Table S3a in 327 

Supplementary Material) and another PCA including the antipredator defences measured that 328 

were correlated (parotoid gland relative area and relative sprint speed; Table S3b in 329 

Supplementary Material). In both cases, only Principal Components (PC) with an eigenvalue 330 

greater than 1 were selected, according to the Guttmann-Kaiser Criterion (Yeomans & Golder, 331 

1982).  332 

  333 

Then, I conducted three separate ANCOVAs, where habitat, sex and their interaction were 334 

included as factors, and all PC with an eigenvalue greater than 1 in the second PCA (namely, 335 

PC1, see Results below), as well as body mass and parotoid gland contrast, were included as 336 

covariates. The response variable of the first ANCOVA was time until the first move. In the 337 

second and the third ANCOVAs, the variable responses were each PC with an eigenvalue greater 338 

than 1 in the first PCA (namely, PCa and PCb, see Results below). Stepwise backward selection 339 

was applied to these ANCOVAs. Tests were conducted with the package “nlme” (Pinheiro et al., 340 

2012) in the software R (R Development Core Team, 2012). Before conducting parametric 341 

statistical analyses, I checked that the data met the criteria of homoscedasticity and residual 342 

normality (Quinn & Keough, 2002). Since no transformation could make body mass 343 

homoscedastic, I implemented the function “varIdent” (Zuur et al., 2009).  344 

 345 

Results 346 

Variable grouping according to PCAs 347 

In the PCA including the behavioural traits, the only two PC with eigenvalues greater than 1, 348 

named PCa and PCb, explained jointly 88.99% of the total variance. PCa was strongly and 349 



positively correlated with the number of squares visited, the number of square visits, and activity 350 

time, whereas its correlations with the external squares visited ratio and the external square visits 351 

ratio were strong and negative (Table 1). Therefore, PCa was positively correlated with 352 

exploration behaviour, activity, and boldness. In turn, PCb was negatively correlated with all 353 

behavioural traits measured (Table 1). Therefore, PCb was negatively correlated with exploration 354 

behaviour and activity, and positively correlated with boldness. 355 

 In the PCA including parotoid gland relative area and relative sprint speed, the only PC 356 

with an eigenvalue greater than 1, named PC1, explained 68.20% of the total variance. PC1 was 357 

strongly and positively correlated with relative sprint speed and relative parotoid gland area 358 

(Table 2). 359 

 360 

ANCOVAs  361 

After stepwise backward selection was applied to the ANCOVA including PCa as the response 362 

variable, sex had a significant effect, with PCa being greater in females than in males (Mean ± 363 

SE; females: 0.387 ± 0.220; males: -0.349 ± 0.300; Χ2
1, 85 = 3.910; P = 0.048; Fig. 1). Moreover, 364 

body mass had a negative, significant relationship with PCa (Χ2
1, 85 = 8.122; β = -0.045; P = 365 

0.004). 366 

 After stepwise backward selection was applied to the two ANCOVAs including either 367 

PCb or time until the first move as response variables, no factor or covariate appeared significant 368 

in either case.  369 

 370 

Discussion 371 

These results support some of the predictions formulated, but not others. For example, relative 372 

speed as well as parotoid gland contrast and size were not related to the traits studied. In contrast 373 
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with other bufonids, such as Rhinella marina, whose jumping distance is directly proportional to 374 

body length (Hudson et al., 2020), sprint speed of E. calamita is unrelated to body size (Zamora-375 

Camacho, 2018), which allows for a separate evaluation of both parameters. The absence of 376 

correlations between speed and the behavioural traits tested as a part of this study is aligned with 377 

findings on Zootoca vivipara (Le Galliard et al., 2013) and Phrinocephalus vlangalii lizards 378 

(Chen et al., 2019), but not with findings on Myotomis unisulcatus (Agnani et al., 2020) and 379 

Tamias striatus rodents (Newar & Careau, 2018). It is worth mentioning that all toads in this 380 

sample engaged in flight behaviour. However, the tonic immobility observed in other cases, 381 

especially in taxa that rely on their toxins against attacks, can also be considered an expression of 382 

boldness (Edelaar et al., 2012; Hudson, Brown & Shine, 2017). In turn, relationships between 383 

overall coloration and different behavioural traits have been described in taxa as disparate as 384 

tortoises (Mafli, Wakamatsu & Roulin, 2011), fish (Schweitzer, Motreuil & Dechaume-385 

Moncharmont, 2015) and birds (Costanzo et al., 2018). However, there is a lack of such studies 386 

on amphibians (reviewed in Kelleher et al., 2018) and, to the best of my knowledge, the potential 387 

relationship between aposematism and behaviour at the individual level remains unexplored thus 388 

far. Nonetheless, according to these results, the degree of aposematism is unrelated to behaviour 389 

in these toads. A decoupling between colour and behaviour, albeit in a reproductive context, has 390 

also been described in phrysonomatid lizards (Wiens, 2000). These mismatches between some 391 

antipredator defences and behaviour could suggest that the success of these traits is independent 392 

of each other, or simply that they have evolved separately. 393 

 Similarly, parotoid gland size was not associated with a more exploratory and bolder 394 

behaviour nor increased activity time. These are considered risky behaviours behavioural traits 395 

that increase conspicuousness to predators (Hall et al., 2015; Reader, 2015). Therefore, this 396 



finding does not support the prediction that more extensive parotoid glands, capable of releasing 397 

greater amounts of toxins (Zechmeister, 1948; Llewelyn et al., 2012), could better protect their 398 

bearers against predators, thus reducing the potential costs of risky behaviours with regard to 399 

their benefits (Smith & Blumstein, 2008; Niemelä, Lattenkamp & Dingemanse, 2015). However, 400 

the amount of toxin contained in the glands at the moment of the trials could not be assessed. 401 

This could represent a limitation of the experimental design, as closely-related R. marina toads 402 

adjust their antipredator behaviour after parotoid gland toxin depletion (Blennerhassett et al., 403 

2019). On the contrary, body mass was negatively related to exploratory behaviour, boldness, 404 

and activity time. Although larger prey individuals could be better suited against gape-limited 405 

predators (Turesson, Persson & Brönmark, 2002; Urban, 2007), this is not necessarily true when 406 

predators are non-gape-limited (Jobe et al., 2019; Stretz, Andersson & Burkhart, 2019). Indeed, 407 

gape unconstrained predators such as mammals (Owen-Smith & Mills, 2008) or birds (Comay & 408 

Dayan, 2018) can and do handle remarkably voluminous prey. Although some local snakes 409 

(mainly Natrix astreptophora and Natrix N. maura; Gomez-Mestre, 2014), which are gape-410 

limited, have been described as predators of these toads, their activity seldom overlap, as those 411 

snakes are mainly diurnal and hibernate in the winter (Santos, 2015; Pleguezuelos, 2018), 412 

whereas E. calamita natterjack toads are primarily active in winter nights (Gomez-Mestre, 2014). 413 

Therefore, the most likely predators of E. calamita adults are birds and mammals (Gomez-414 

Mestre, 2014), to which larger toads could be more conspicuous, but not less vulnerable. In this 415 

context, the less risky behaviour of larger toads could be advantageous against their main 416 

predators. Variation in the relative pressure exerted by dissimilar predator preferences on body 417 

size might underlie the apparently contradictory relationships between body size and behaviour 418 

found among this and other studies: . For example, whereas bold male Lacerta monticola lizard 419 



males are smaller (López et al., 2005), there is a positive relationship between body size and 420 

boldness in juvenile Tropidonophis mairii snakes (Mayer, Shine & Brown, 2016) and between 421 

body size and exploratory behaviour in Pseudophryne corroboree frogs (Kelleher et al., 2017). 422 

 Moreover, females exhibited a bolder behaviour than did males. This finding is aligned 423 

with the assumption that female toads are under milder predation pressure (Frétey et al., 2004), 424 

and can thus afford riskier behaviours. Indeed, E. calamita males in this system are faster 425 

(Zamora-Camacho, 2018), brighter (Zamora-Camacho & Comas, 2019), and have larger 426 

parotoid glands than females (Zamora-Camacho, 2021), which could be interpreted as 427 

antipredator defences triggered by a harsher predation pressure. Remarkably, other toads, such as 428 

R. marina (Gruber et al., 2018) or Sclerophrys gutturalis (Baxter-Gilbert, Riley & Measey, 429 

2021) do not appear to differ in these behavioural traits. Sexual differences in boldness, 430 

moreover, vary notably in other taxa: male dogs (Starling et al., 2013) and Brachyraphis 431 

episcopi fish (Brown, Jones & Braithwaite, 2007) are bolder than females, female Diomeda 432 

exulans albatross are bolder than males (Patrick, Charmantier & Weimerskirch, 2013), and 433 

Diploptera punctata male and female cockroaches do not diverge in boldness (Stanley, Mettke-434 

Hofmann & Preziosi, 2017). 435 

 Lastly, habitat did not affect the behavioural traits measured, despite the fact that this 436 

species is under greater predation pressure in agrosystem than in pine grove (Zamora-Camacho, 437 

2021). Other traits seem to be aligned with this spatial pattern of predation pressure: agrosystem 438 

toads have a more intermittent locomotion mode (Zamora-Camacho, 2018), are brighter 439 

(Zamora-Camacho & Comas, 2019), and have larger and more contrasting parotoid glands than 440 

pine grove conspecifics (Zamora-Camacho, 2021), which could signify greater antipredator 441 

defences, likely triggered by more intense predation pressure. Remarkably, while habitat alone 442 



does not innately affect boldness behaviour of S. gutturalis tadpoles (Mühlenhaupt et al., 2022), 443 

predation pressure can explain spatial divergence in behavioural and morphological traits of 444 

other anurans, such as Bombina variegata toads (Kang et al., 2017). Spatial differences in 445 

boldness may have implications at other levels.  446 

 447 

 448 

Conclusions 449 

To conclude, rRelative speed as well as parotoid gland contrast and size appeared unrelated to 450 

the behavioural traits studied. In turn, body mass was negatively related to activity time, 451 

boldness, and exploration. This trend is consistent with the fact that most predators of this 452 

species are gape unconstrained and could more easily find and hunt larger toads. Females were 453 

bolder, which matches the assumptions that males and agrosystem toads are under harsher 454 

predation pressure. Nonetheless, the behavioural traits measured did not vary between habitats, 455 

which is not aligned with previous findings that agrosystem toads are under greater predation 456 

pressure. Jointly, these results partly support the predictions that behaviour is tuned to 457 

antipredator defences and to differential predation pressure in this toad.  458 
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