Sea urchin harvest inside marine protected areas: an opportunity to investigate the effects of exploitation where trophic upgrading is achieved (#63164)

First submission

Guidance from your Editor

Please submit by 14 Sep 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

10 Figure file(s)

3 Table file(s)

1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Sea urchin harvest inside marine protected areas: an opportunity to investigate the effects of exploitation where trophic upgrading is achieved

Giulia Ceccherelli ^{Corresp., 1}, Pierantonio Addis ², Fabrizio Atzori ³, Nicoletta Cadoni ³, Marco Casu ¹, Stefania Coppa ⁴, Mario De Luca ¹, Giuseppe Andre De Lucia ⁴, Simone Farina ⁵, Nicola Fois ⁶, Francesca Frau ³, Vittorio Gazale ⁷, Daniele Grech ⁸, Ivan Guala ⁸, Mariano Mariani ⁹, Massimo SG Marras ¹⁰, Augusto Navone ¹¹, Arianna Pansini ¹, Pieraugusto Panzalis ¹¹, Federico Pinna ¹, Alberto Ruiu ⁹, Fabio Scarpa ¹, Luigi Piazzi ¹

```
    University of Sassari, Sassari, Italy
    University of Cagliari, Cagliari, Italy
```

Corresponding Author: Giulia Ceccherelli Email address: cecche@uniss.it

Background. Marine protected areas (MPAs) have both positive effects of protection for the fisheries' target species and indirect negative effects for sea urchins. Moreover, often in MPAs sea urchin human harvest is restricted, but allowed. This study is aimed at estimating the effect of these restrictions on human harvest of the sea urchin *P. lividus* on the total and commercial abundances. Our hypothesis tested that sea urchins in restricted harvest (RH) sites are less abundant than those at no harvest (NH) and unrestricted (UH) sites because of natural and human predation cumulative effects. Accordingly, we expected the fasted regression in the RH sites, rather than in UH and NH sites.

Methods. At this aim, a collaborative database gained across five MPAs in Sardinia (Western Mediterranean, Italy) and areas outside was gathered collecting sea urchin abundance and size data in a total of 106 sites (33 NH, 37 RH and 36 UH). Furthermore, as estimates made in past monitoring efforts (since 2005) were available for 75 of the sampled sites, the rate of variation in the total sea urchin abundance was estimated at the NH, RH and UH sites.

Results. Results have highlighted that the least sea urchin total and commercial abundances were found in RH sites, likely for the cumulative effects of human harvest and natural predation. The overall rate of change in sea urchin abundance over time indicates that only NH conditions promoted the increase of sea urchin abundance and that current local management of the MPAs has driven towards a relevant regression of populations. Overall, results suggest that complex mechanisms may occur on sea urchin populations and the assessment of MPA effects on *P. lividus* populations would be crucial to guide management decisions on regulating harvest permits. Overall, the need to ban sea urchin harvest in the

³ Capo Carbonara – Villasimius Marine Protected Area, Villasimius (CA), Italy

⁴ Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino (IAS) – Consiglio Nazionale delle Ricerche (CNR), Torre Grande (OR), Italy

⁵ SZN - Stazione Zoologica Anton Dohrn, Napoli, Italy

⁶ AGRIS, Bonassai (SS), Italy

⁷ Isola dell'Asinara Marine Protected Area, Porto Torres (SS), Italy

⁸ International Marine Centre, Torre Grande (OR), Italy

⁹ Capo Caccia – Isola Piana Marine Protected Area, Alghero (SS), Italy

 $^{^{10}}$ Penisola del Sinis - Isola di Mal di Ventre Marine Protected Area, Cabras (OR), Italy

Tavolara Punta Coda Cavallo Marine Protected Area, Olbia (SS), Italy

MPAs to avoid extreme reductions is encouraged, as inside the MPAs sea urchin populations are likely under natural predation pressures for the trophic upgrading.

Sea urchin harvest inside marine protected areas: an

2 opportunity to investigate the effects of exploitation

where trophic upgrading is achieved

4

- 5 Giulia Ceccherelli¹, Pierantonio Addis², Fabrizio Atzori³, Nicoletta Cadoni³, Marco
- 6 Casu⁴, Stefania Coppa⁵, Mario De Luca¹, Giuseppe Andrea de Lucia⁵, Simone Farina⁶,
- 7 Nicola Fois⁷, Francesca Frau³, Vittorio Gazale⁸, Daniele Grech⁹, Ivan Guala⁹, Mariano
- 8 Mariani¹⁰, Massimo SG Marras¹¹, Augusto Navone¹², Arianna Pansini¹, Pieraugusto
- 9 Panzalis¹², Federico Pinna¹, Alberto Ruiu¹⁰, Fabio Scarpa⁴, Luigi Piazzi¹

10

- ¹ Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100
- 12 Sassari (Italy)
- 13 ² Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via Fiorelli 1,
- 14 09126 Cagliari (Italy)
- 15 ³ Capo Carbonara Villasimius Marine Protected Area, Via Roma 60, 09049
- 16 Villasimius, CA (Italy)
- ⁴ Dipartimento di Medicina Veterinaria Sez. Fisiologia della Nutrizione e Zoologia,
- 18 Università di Sassari, 07100 Sassari (Italy)
- 19 ⁵ Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino (IAS) –
- 20 Consiglio Nazionale delle Ricerche (CNR), Loc. Sa Mardini, 09170 Torre Grande, OR
- 21 (Italy)
- 22 ⁶ SZN Stazione Zoologica Anton Dohrn, Villa Comunale Napoli (Italy)
- ⁷ Agris Agricultural Research Agency of Sardinia Bonassai SS 291 km 18.6, 07100
- 24 Sassari (Italy)
- ⁸ Isola dell'Asinara Marine Protected Area, via Ponte Romano 81, 07046 Porto Torres
- 26 SS (Italy)
- ⁹ IMC International Marine Centre, Loc. Sa Mardini, 09170 Torre Grande, OR (Italy)
- 28 ¹⁰ Capo Caccia Isola Piana Marine Protected Area, Loc. Tramariglio SP 55, 07041
- 29 Alghero, SS (Italy)
- 30 11 Penisola del Sinis Isola di Mal di Ventre Marine Protected Area, Corso Italia 108,
- 31 09072 Cabras, OR (Italy)
- 32 ¹² Tavolara Punta Coda Cavallo Marine Protected Area, Via S. Giovanni 14, 07026
- 33 Olbia, SS (Italy)

34

- 35 Corresponding Author:
- 36 Giulia Ceccherelli1
- 37 Via Piandanna 4, 07100 Sassari, Italy
- 38 Email address: cecche@uniss.it

Abstract

Background. Marine protected areas (MPAs) have both positive effects of protection for the
fisheries' target species and indirect negative effects for sea urchins. Moreover, often in MPAs
sea urchin human harvest is restricted, but allowed. This study is aimed at estimating the effect
of these restrictions on human harvest of the sea urchin P. lividus on the total and commercial
abundances. Our hypothesis tested that sea urchins in restricted harvest (RH) sites are less
abundant than those at no harvest (NH) and unrestricted (UH) sites because of natural and
human predation cumulative effects. Accordingly, we expected the fasted regression in the RH
sites, rather than in UH and NH sites.
Methods. At this aim, a collaborative database gained across five MPAs in Sardinia (Western
Mediterranean, Italy) and areas outside was gathered collecting sea urchin abundance and size
data in a total of 106 sites (33 NH, 37 RH and 36 UH). Furthermore, as estimates made in past
monitoring efforts (since 2005) were available for 75 of the sampled sites, the rate of variation in
the total sea urchin abundance was estimated at the NH, RH and UH sites.
Results. Results have highlighted that the least sea urchin total and commercial abundances
were found in RH sites, likely for the cumulative effects of human harvest and natural predation.
The overall rate of change in sea urchin abundance over time indicates that only NH conditions
promoted the increase of sea urchin abundance and that current local management of the
MPAs has driven towards a relevant regression of populations.
Overall, results suggest that complex mechanisms may occur on sea urchin populations and the
assessment of MPA effects on P. lividus populations would be crucial to guide management
decisions on regulating harvest permits. Overall, the need to ban sea urchin harvest in the
MPAs to avoid extreme reductions is encouraged, as inside the MPAs sea urchin populations
are likely under natural predation pressures for the trophic upgrading.

Introduction

65	Unsustainable harvesting is now the most prevalent issue affecting threatened marine
66	species (Di Minin et al., 2019). In fact, about one-third of commercial wild fish stocks are
67	currently being overfished (FAO, 2016) and global marine fishery catches are declining (Pauly
68	and Zeller, 2016). The general overexploitation of species has consequences on food webs and
69	ecosystem functioning, firstly due largely to the widespread declines in marine predators. When
70	high trophic level predators are removed from ecosystems the 'trophic downgrading' (sensu
71	Estes et al., 2011) leaves greater proportions of low trophic level species. This leads to an
72	imbalance in the regulation of coastal systems (Britten et al., 2014).
73	Marine protected areas (MPAs) have emerged as a promising management tool for the
74	conservation and recovery of marine coastal ecosystems (Russ et al., 2004; Gaines et al., 2010;
75	Giakoumi et al., 2017). Although it was evidenced that the enforcement level is the essential
76	requirement for the reestablishment of lost predatory interactions (Guidetti, 2006; Giakoumi et
77	al., 2017; Giakoumi et al., 2018), encouraging data for managing the marine coastal
78	environments have been provided even by small, well-enforced, fully protected (integral)
79	reserve) areas that have had relevant ecological effects (i.e. Guidetti et al., 2008; Giakoumi et
80	al., 2017). In MPAs where reserve effectiveness has been achieved, the density of prey
81	species, whether fish or invertebrates, can be drastically reduced by the increased abundance
82	of predators (e.g. Willis and Anderson, 2003; Sala et al., 2013; Giakoumi et al., 2017; Guidetti et
83	al., 2019).
84	In temperate reefs, sea urchins play a key role in the transmission of top-down effects
85	(Pinnegar et al., 2000; Filbee-Dexter and Scheibling, 2014; Ling et al., 2015; Carr and Reed,
86	2016; Melis et al., 2019). Despite the importance of recruitment and other conditions such as
87	refuge availability, storms and temperature (Hereu et al., 2012; Clemente et al., 2013; Yeruham

89 2020), sea urchin density is mainly controlled by predation through consumptive and non-90 consumptive effects (e.g. Sih et al., 1998; Guidetti, 2006; McClananhan et al., 2006; Hernández 91 et al., 2007; Guidetti and Sala, 2007; Seytre et al., 2013; Pessarrodona et al., 2019). On the 92 other hand, the benthic community structure is controlled by sea urchin grazing effects (e.g. 93 Filbee-Dexter and Schibling, 2014; Piazzi and Ceccherelli, 2019). 94 In the Mediterranean, the sea urchin *Paracentrotus lividus* (Lamarck, 1816) (Echinoidea: 95 Parechinidae) is a key herbivore of the shallow subtidal rocky habitats, playing a central role in 96 the trophic cascade (Micheli et al., 2005; Giakoumi et al., 2012). Its high-density populations, 97 due to the lack of predators (overexploited areas), can have dramatic effects on rocky 98 macroalgal communities, producing barren grounds (Guidetti and Dulcjc, 2007; Gianguzza et 99 al., 2011; Boada et al., 2017). However, in MPAs where the recovery of natural predators is 100 widely achieved (Pinnegar et al., 2000; Guidetti et al., 2014), sea urchin abundance can be 101 shaped by multiple predator effects, due to fish (Guidetti, 2005) and benthic invertebrates 102 (Bonaviri et al., 2009, 2012; Boada et al., 2015; Farina et al., 2016). Predation mostly affects 103 sea urchins up to 40 mm in size (Pessarrodona et al., 2019), therefore reserve effectiveness 104 usually leads to higher frequency of large P. lividus compared to no protected areas (Hereu et 105 al., 2005; Loi et al., 2017). 106 However, natural predation is not the only pressure controlling *P. lividus* populations. 107 Since it is an edible species, human harvest of this sea urchin has recently intensified (Furesi et 108 al., 2016), making P. lividus one of the most exploited benthic invertebrate species in the 109 Mediterranean (Gianguzza et al., 2006; Ceccherelli et al., 2011). Thus, there is growing interest 110 concerning the maintenance of *P. lividus* populations both for ecological and commercial aims. 111 This interest has led to an increase in the knowledge of mechanisms regulating *P. lividus* 112 abundances (e.g. Guidetti, 2004; Hereu et al., 2008; Ceccherelli et al., 2009; Prado et al., 2012; 113 Boada et al., 2015; Oliva et al., 2016; Farina et al., 2018) in order to define sustainable harvest 114 (e.g. Ceccherelli et al., 2011; Bertocci et al., 2014). The current regulation varies on a local

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

scale and acts on the harvest season, the number of fishermen, the minimum size. Thus, the perception of an inherent trade-off between achieving conservation and fishing goals may be far from being reduced or eliminated (Gaines *et al.*, 2010). Particularly severe conflicts may arise from multiple-use MPAs that are used for conservation purposes: their goal is to allow a variety of human activities that are managed comprehensively to support compatible uses while at the same time protecting key habitats and resources.

In Sardinia (central-western Mediterranean Sea, Italy), sea urchin roe is a common ingredient in several dishes and harvesting has been historically carried out both by professional and non-professional fishermen (Furesi et al., 2016). To minimise the risk of overexploitation the Regional Government of Sardinia has imposed restrictions on the commercial fishing of the edible sea urchin: i) by granting a limited number of firms (about 200) authorisation for this activity; ii) by limiting the fishing season from November to May; iii) by fixing daily catch quotas (1500 to 3000 sea urchins per day for each professional fisherman); and iv) by providing a minimum sea urchin size to harvest (test diameter of 50 mm without spines). These restrictions are effective on the whole Island, MPAs included, where a specific number of authorized fishermen have been addressed. However, each MPA, based on its own management plan, has independently allowed harvesting in partially protected zones (both B and C zones, according to the Italian designation) by allowing a fixed number of authorized professional fishermen. They are not given access to the fully protected zone (integral reserves, A zone) where harvest has never been allowed (Table 1). Therefore, the effectiveness of protection is not obvious since the effects of human and natural predation may detrimentally cumulate inside the MPAs where sea urchin harvest is allowed, while outside the MPAs (commonly overfished areas) the harvest is likely to be the pressure most affecting *P. lividus* populations. Moreover, both natural and manmade predation pressures should have the opposite shaping effect on the sea urchin population structure, as humans should exploit only large-sized individuals because of regulations (>50 mm) while fish attacks are more frequent on small-sized urchins (Guidetti

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

2004). Thus, complex mechanisms may occur and the assessment of MPA effects on *P. lividus* populations is crucial to guide management decisions on regulating sea urchin harvest permits (Coppa *et al.*, 2021), with the intention of avoiding their local extinction. In particular, in Sardinia the demand for *P. lividus* has grown significantly in the last two decades (Furesi *et al.*, 2016) so that studies have focused on the effect of harvest restrictions (*i.e.*, Pais *et al.*, 2007; Ceccherelli *et al.*, 2011; Loi *et al.*, 2017), and data are now available for observing patterns of change depending on the management. In this way, Sardinia may represent a suitable case to assess the management effectiveness of MPA management in the maintenance of sea urchin populations in order to obtaining useful information for the conservation of ecosystems functioning and the sustainable harvest of the resource.

The present study is aimed at comparing the P. lividus total (any size urchin) and commercial (only urchins larger than 50mm) abundance in different harvest conditions in Sardinia (Italy). This goal was achieved by two approaches: a spatial evaluation and a temporal evaluation. For the spatial evaluation, we compared total and commercial P. lividus abundance at sites with different harvest regulations using data collected in 2018-2019. The prediction we formulated was that the smallest densities of commercial sea urchins would be found where human harvest is allowed and where the harvest is restricted, compared to where the harvest is forbidden. Our prediction for the whole population of P. lividus was that the smallest total abundance of sea urchins would be found in protected zones where the effect of human harvest (even if restricted) and natural predation can cumulate. For the temporal evaluation, only the sites where past monitoring data on P. lividus abundance were available (overall since 2005) were considered, so that the variability of the total abundance of *P. lividus* over time was also estimated depending on the harvest level, with the expectation that the greatest changes would be found in areas where both human and natural predation have occurred. For both evaluations, a collaborative database was produced by integrating information taken at different times by several research institutions involved in monitoring Sardinian MPAs and non-protected areas.

Results can provide important information for addressing both the MPAs and Regional management of the sea urchin harvest and may also give insights into the successful management of any sustainable exploitation of resource in danger of being depleted.

170171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

167

168

169

Materials & Methods

Study locations

P. lividus abundance and size were assessed at 106 sites located along the coast of Sardinia (Italy, Mediterranean Sea, Fig. 1, Fig S1-S5): 33 no harvest sites (NH, harvest never been allowed), 37 restricted harvest sites (RH, exploitation of sea urchins is restricted by the MPA) and 36 harvested unrestricted sites (UH, no limits for an overall exploitation, outside the MPA) sites. The NH and RH sites are located in the main Sardinian MPAs (Table 1): Penisola del Sinis-Isola di Mal di Ventre (SN MPA), Capo Caccia-Isola Piana (CI MPA), Isola dell'Asinara (AS MPA), Tavolara Punta Coda Cavallo (TV MPA), and Capo Carbonara (CC MPA). These multiple-use MPAs differ significantly in their establishment dates, in the extension of zones with different degrees of protection (A, B and C zones), in reserve effectiveness and in their management of the sea urchin harvest (Table 1). However, their no-take areas (A zones) have recently shown a higher biomass of commercial fish compared to other protected areas (Natura) 2000 sites) or unprotected sites (Guidetti et al., 2019). Each MPA management body has authorized a number of fishermen to harvest sea urchins inside the boundaries, therefore affecting pressure on the local P. lividus density and territorial use rights, as for example in the SN MPA (Coppa et al., 2021) and TV MPA (Table 1). Furthermore, in MPAs where sea urchin harvest is allowed the number of catches is monitored, but the data collected in the logbooks are unfortunately not reliable (e.g. Coppa et al., 2021). UH sites are located outside the MPAs, where the exploitation of sea urchins is regulated by the regional government, and urchins can be harvested by both professional and recreational fishermen (i.e. any permanent resident in Sardinia, is allowed to harvest up to 50 sea urchins per day). Therefore, outside the MPAs, sea

urchins can indeed be harvested unrestrictedly, as there are no limits for an overall exploitation (except for the minimum size allowed) and often the only determining restriction on harvesting is the accessibility of sites (Ceccherelli *et al.*, 2011).

Data collection

For the spatial evaluation, sampling was done between May 2018 and November 2019 at 106 sites (33, 37, and 36 for NH, RH and UH, respectively). At each site, sea urchin abundance was estimated visually in the field using 1 m² frames (randomly placed meters of distance apart) and the size of each individual (test diameter without spines) in the quadrat was measured with callipers to the closest mm. To obtain comparable data, values collected on rocky substratum at a depth of 5 m were selected from the available dataset: this led to dealing with a different number of quadrats (10-30) for each site, for an overall dataset of 886 quadrats.

For the temporal evaluation, only the sites for which past monitoring data (since 2005) were available were considered. Among these, based on the consistency in the methodology used (5m of depth using 1 m² quadrat size), 75 could be selected (32, 28, and 15 for NH, RH and UH, respectively).

For both evaluations the short temporal variability due to the month of sampling was neglected and data analyses were done on the average values obtained from quadrats (the sites were replicates). This allowed us to limit the exclusion of data (due to the unbalanced number of replicate quadrats), though it has prevented us from estimating the variability at the scale of the site.

Data analyses

Data were analyzed using univariate permutational analyses of variance based on Euclidean distance measure (Terlizzi et al., 2007; Anderson, 2001). In this analysis, P-values associated with F statistics are obtained by permutation (Clarke and Gorley, 2006). For the spatial evaluation, two one-way univariate permutational analysis of variance (PERMANOVAs) were run to estimate the effects of the harvesting conditions (NH, RH, and UH) on the total and

220

221

222

223

224

225

226

227

228

229

230

231

232

commercial sea urchin abundances where the mean value at each site was used as replicate (n=33, 37, and 36, respectively). A posteriori, pair-wise tests were run to identify alternative hypotheses. For the temporal evaluation, a one-way univariate PARMANOVA was run to compare the rate of change in total urchin abundance at the different harvesting conditions (NH, RH, and UH), where the mean change/year at each site was used as replicate (32, 28, and 15, respectively).

The effect of the harvesting conditions was also visually examined by quantifying the natural logarithm of the ratio between the values of each response variable (i.e sea urchin total and commercial abundances) at NH and RH conditions versus UH conditions (response ratio In RR, Micheli et al., 2004). With this approach, the observed effect is independent of the absolute abundance at each location. Positive RRs indicate greater values under either NH or RH than in UH conditions, whereas negative values indicate greater values in UH than in protected conditions (NH or RH). A ratio of zero, instead, means that similar values were found between protected and control conditions.

233

234

235

236

237

238

239

240

241

242

243

Results

The spatial evaluation has evidenced that *P. lividus* total and commercial abundances were significantly affected by the harvesting conditions, where NH is the condition that promoted the highest response (Fig. 2 and Table 2). Particularly, the lowest density of urchins was found inside the MPAs in the RH, rather than in the NH and UH, while commercial P. lividus was differently affected by the harvest: commercial abundance was ranked among harvesting conditions as being highest in the NH and lowest in the RH. In terms of In RR, both sea urchin variables had a positive response in NH and a negative one in RH conditions (Fig. 3).

The temporal variability in the total urchin abundance has evidenced an overall decrease

in sea urchin abundance since 2005 in NH, as well as in RH and UH conditions. This general

pattern was derived from a graphical inspection of total urchin abundance in each condition over time (obtained by averaging all data available from all sites sampled), although the sample size has changed considerably (Fig. 4). However, the comparison of the rate of temporal variability in total *P. lividus* abundance (change in # of urchins/yr per site) among conditions has revealed different effects of harvesting conditions. In fact, there has been an overall increase (positive effect) in mean density per year in NH, whereas in RH and UH the urchin abundance has decreased (negative effect) in a similar manner (Table 3 and Fig. 5).

Discussion

A few clear results have been gained from this collaborative database. The spatial evaluation has highlighted differences between harvesting conditions. Although *P. lividus* total abundance is presently higher in NH conditions, evidence gained for RH, where values were even lower than in UH, suggests that the local management of the MPAs has driven the urchin density to be lower than in unprotected areas (UH). Although total urchin abundance was similar in NH and UH, relevant differences were revealed: in fact, the commercial sea urchin abundance was significantly higher in NH than in UH conditions, suggesting a natural predation effect in selecting large-sized individuals where no harvest is allowed (Pessarrodona *et al.*, 2019). However, the overall type of RH effect on commercial abundance was again of extreme reduction compared to the other conditions, indicating that RH is the condition where the overall abundance of urchins and the commercial portion have regressed the most. Moreover, the same indication was gained from ln RR, as negative values (for both variables) were only found for the RH condition.

Therefore, the prediction that in RH human predation effects would cumulate with natural

predation in RH has been proved true. This finding offers a further example of the unexpected

effect of fishing when natural trophic webs are not considered (Scheffer et al., 2005). This

269 phenomenon has been observed worldwide (Daskalov, 2002; Loh et al., 2015; Stuhldreier et al., 270 2015) and the increase in resource depletion has led to the development of holistic approaches 271 to fisheries management (ecosystem-based fisheries management, Link, 2010) and 272 multispecies models of predation, where trophic pressures vary and the assumption of constant 273 natural mortality is neglected (Jurado-Molina et al., 2005; Kinzey and Punt, 2009). Moreover, 274 recent investigations have explicitly highlighted how ignoring natural trophic interactions affects 275 stock assessment model performance and fisheries management (Farina et al., 2020; Trijoulet 276 et al., 2020). 277 Understanding the *P. lividus* spatial variability in Sardinia can be greatly facilitated by the 278 analysis of the change in abundance over time. Indeed, although there were wide differences in 279 the encompassed time, a general overall decreasing pattern was observed. However, the 280 analysis has evidenced that the temporal variability depended on the harvesting conditions, with 281 a decreased rate in RH and UH conditions and an increased rate only at NH. This NH effect 282 provides the precious indication that restrictions (and probably enforcement) allowed P. lividus 283 abundance to increase and there are no environmental threats, such as global warming or 284 acidification (Yeruham et al., 2015; Asnaghi et al., 2013; Asnaghi et al., 2020), that can justify 285 the deep change in sea urchins that occurred in RH. Consequently, although context-dependent 286 features related to the site such as nutrient supply, larvae dispersion and substrate 287 characteristics affect sea urchin processes enormously (Pinna et al., 2012; Prado et al., 2012; 288 Oliva et al., 2016), harvest restriction remains the most relevant driver affecting sea urchins. 289 Furthermore, the deep changes that have occurred over time are worrisome for the 290 species conservation, as the general depletion of urchins may lead to a stable state by 291 triggering some feed-back mechanisms (Filbee-Dexter and Schiebling, 2014; Guarnieri et al., 292 2020). Local density of adult sea urchins depends on the recruitment success and thus it is 293 constrained by natural predation pressure (targeting the small-sized individuals, Guidetti and 294 Sala, 2007). At the same time, recruitment depends on the occurrence of adults (Oliva et al.,

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

2016) and becomes impeded by human harvest (which removes the most effective reproducers, Loi et al., 2017). This scenario highlights the need for more in-depth knowledge of the fate of P. *lividus* coastal populations. In fact, although harvest and natural predation affect different portions of the same sea urchin populations, they might also be seen as synergistic pressures on the same resource. Overall, the rate of change in sea urchin density in RH and UH conditions calls for a better management; for the former, by effectively excluding human predation within the MPAs in order to restore the urchin populations, and for the latter, by defining harvest limits for a sustainable exploitation. The use of MPAs for fisheries management has become popular in the last decades (e.g. Pelc et al., 2010; Di Lorenzo et al., 2020) as they can enhance fishery yield and improve stock sustainability through spillover effects. They increase adult density, and thus the production of eggs and larvae. However, to obtain such goals, an assessment of the spatial distribution of resources such as sea urchins, that have a complex spatial structure, is fundamental for addressing the spatial scales of management (Ouréns et al., 2015). Therefore, fishery management failures are often due to a mismatch between the spatial scale of exploited populations and the scale of their management. This might be the case in Sardinia, where wide

As a matter of fact, many wildlife populations are now well below equilibrium levels in many industrial countries, and humans provide their predominant preying control as food webs are so depleted that natural predators are lacking. However, humans can regulate themselves by defining catch limits, prohibiting the harvest of individuals of a certain size, and restricting hunting seasons. An interesting debate has recently arisen for sea urchins because the demand and economic interest are evidently contrasting with the species conservation and harvest sustainability. Because of the possible cumulating effects of multi predators on urchins, this should only be achieved by considering a stage-structure and predator-urchin modeling (Panja,

areas of most of the MPAs (TV, CI and SN) have been offered to the fisheries for several years

2018) in order to provide context-dependent estimates of urchin stock assessment. This would also possibly lead to considering whether setting the threshold size for urchin harvest should depend on the overall sea urchin abundance and population structure (*i.e.* proportion of adults). Efforts addressing such goals should be encouraged to ensure sustainable resource exploitation on the basis of natural mortality, whose rate is expected to increase with reserve effects. Therefore, appropriate conservation measures are needed to contrast unsustainable harvesting, especially where other restrictions are been taken to achieve trophic upgrading.

Conclusions

This study was aimed at estimating the effect of restrictions on the human harvest of the sea urchin *P. lividus*. By a spatial evaluation we tested the hypothesis that sea urchins total and commercial abundances in restricted harvest (RH, inside MPAs) sites were less abundant than those at no harvest (NH, MPA reserves) and unrestricted (UH, outside MPAs) sites because of natural and human predation cumulative effects. Expectations were met and the least sea urchin total and commercial abundances were found in RH sites. Furthermore, by a temporal evaluation, we evidenced the rate of change in sea urchin abundance over time indicating that only NH conditions promoted the increase of sea urchin abundance and that current local management of the MPAs has driven towards a relevant regression of populations. Overall, results suggest that complex mechanisms may occur on sea urchin populations and the assessment of MPA effects on *P. lividus* populations would be crucial to guide management decisions on regulating harvest permits. However, the need to ban sea urchin harvest in the MPAs to avoid extreme reductions is encouraged, as inside the MPAs sea urchin populations are likely under natural predation pressures for the trophic upgrading.

Acknowledgements

346	None
347	
348	References
349	Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance.
350	Austral Ecology 26, 32-46.
351	Asnaghi, V., Chiantore, M., Mangialajo, L., Gazeau, F., Francour, P., et al., 2013. Cascading
352	effects of ocean acidification in a rocky subtidal community. PLoS ONE 8, 4.
353	Asnaghi, V., Chindris, A., Leggieri, F., Scolamacchia, M., Brundu, G., et al., 2020. Decreased
354	pH impairs sea urchin resistance to predatory fish: a combined laboratory-field study to
355	understand the fate of top down processes in future oceans. Marine Environmental
356	Research 162, 105194.
357	Bertocci, I., Dominguez, R., Machado, I., Freitas, C., Domínguez Godino, J., et al., 2014.
358	Multiple effects of harvesting on populations of the purple sea urchin Paracentrotus lividus
359	in north Portugal. Fisheries Research 150, 60-65.
360	Boada, J., Arthur, R., Farina, S., Santana, Y., Mascaró, O., et al., 2015. Hotspots of predation
361	persist outside marine reserves in the historically fished Mediterranean Sea. Biological
362	Conservation 191, 67-74.
363	Boada, J., Arthur, R., Alonso, D., Pagès, J.F., Pessarrodona, A., et al., 2017. Immanent
364	conditions determine imminent collapses: nutrient regimes define the resilience of
365	macroalgal communities. Proceedings of the Royal Society B 284, 20162814.
366	Bonaviri, C., Vega Fernández, T., Badalamenti, F., Gianguzza, P., Di Lorenzo, M., 2009. Fish
367	versus starfish predation in controlling sea urchin populations in Mediterranean rocky
368	shores. Marine Ecology Progress Series 382, 129-138.
369	Bonaviri, C., Gianguzza, P., Pipitone, C., Hereu, B., 2012. Micropredation on sea urchins as a
370	potential stabilizing process for rocky reefs. Journal of Sea Research 73, 18-23.

- 371 Britten, G.L., Dowd, M., Minto, C., Ferretti, F., Boero, F., et al., 2014. Predator decline leads to
- decreased stability in a coastal fish community. *Ecology Letters* 17, 1518-1525.
- 373 Carr, M., Reed, D., 2016. Shallow rocky reefs and kelp forests. p. 311-336. In: Ecosystem of
- California. Mooney, H., and Zavaleta, E. (Eds). University of California Press, Berkeley,
- 375 California, USA.
- 376 Ceccherelli, G., Pinna, S., Sechi, N., 2009. Evaluating the effects of protection on *Paracentrotus*
- 377 lividus distribution in two contrasting habitats. Estuarine, Coastal and Shelf Science 81,
- 378 59-64.
- 379 Ceccherelli, G., Pais, A., Pinna, S., Sechi, N., Chessa, L.A., 2011. Human impact on
- 380 Paracentrotus lividus: the result of harvest restrictions and accessibility of locations.
- 381 *Marine Biology* 158, 845-852.
- 382 Clarke, K.R., Gorley, R.N., 2006. PRIMER v6: User manual/tutorial. Plymouth, UK: PRIMER+E.
- 383 Clemente, S., Hernandez, JC, Montano-Moctezuma, G., Russel, M.P., Ebert, T.A., 2013.
- Predators of juvenile sea urchins and the effect of habitat refuges. *Marine Biology* 160,
- 385 579-590.
- 386 Coppa, S., Pronti, A., Massaro, G., Brundu, R., Camedda, A., Palazzo, L., Nobile, G.,
- Pagliarino, E., de Lucia, G., 2021. Fishery management in a marine protected area with
- 388 compliance gaps: socio-economic and biological insights as a first step on the path of
- sustainability. *Journal of Environmental Management* 280, 111754.
- 390 Daskalov, G.M., 2002. Overfishing drives a trophic cascade in the Black Sea. Marine Ecology
- 391 *Progress Series* 225, 53-63.
- 392 Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A., Claudet, J., 2020. Assessing spillover from
- marine protected areas and its drivers: A meta-analytical approach. Fish and Fisheries 21,
- 394 906–915.
- 395 Di Minin, E., Brooks, T.M., Toivonen, T., Butchart, S.H.M., Heikinheimo, V., et al., 2019.
- 396 Identifying global centers of unsustainable commercial harvesting of species. Science

- 397 Advances 5(4), eaau2879.
- 398 Estes, J., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., et al., 2011. Trophic
- 399 downgrading of planet Earth. Science 333, 301-306.
- 400 FAO 2016. The State of World Fisheries and Aquaculture.
- 401 Farina, S., Quattrocchi, G., Guala, I., Cucco, A., 2018. Hydrodynamic patterns favouring sea
- 402 urchin recruitment in coastal areas: a Mediterranean study case. *Marine Environmental*
- 403 Research 139, 182-192.
- 404 Farina, S., Guala, I., Oliva, S., Piazzi, L., Pires da Silva, R., Ceccherelli, G., 2016. The seagrass
- 405 effect turned upside down changes the prospective of sea urchin survival and landscape
- 406 implications. *PLoS ONE* 11(10), e0164294.
- 407 Farina, S., Baroli, M., Brundu, R., Conforti, A., Cucco, A., De Falco, G., Guala, I., Guerzoni, S.,
- 408 Massaro, G., Quattrocchi, G., Romagnoni, G., Brambilla, W., 2020. The challenge of
- 409 managing the commercial harvesting of the sea urchin Paracentrotus lividus: advanced
- approaches are required. *PeerJ* 8, e10093.
- 411 Filbee-Dexter, K., Schibling, R.E., 2014. Sea urchin barrens as alternative stable states of
- 412 collapsed kelp ecosystems. *Marine Ecology Progress Series* 495, 1-25.
- 413 Furesi, R., Madau, F.A., Pulina. P., Sai, R., Pinna, M.G., Pais, A., 2016. Profitability and
- 414 sustainability of edible sea urchin fishery in Sardinia (Italy). Journal of Coastal
- 415 *Conservation* 20, 299-306.
- 416 Gaines, S.D., White, C., Carr, M.H., Palumbi, S.R., 2010. Designing marine reserve networks
- for both conservation and fisheries management. *Proceedings of the National Academy of*
- Science of the United States of America 107, 286–293.
- 419 Giakoumi, S., Cebrian, E., Kokkoris, G.D., Ballesteros, E., Sala, E., 2012. Relationships
- between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral
- communities in the Cyclades, Eastern Mediterranean. Estuarine, Coastal and Shelf
- 422 Science 109, 1-10.

- 423 Giakoumi, S., Scianna, C., Plass-Johnson, J., Micheli, F., Grorud-Colvert, K., et al., 2017.
- 424 Ecological effects of full and partial protection in the crowded Mediterranean Sea: A
- regional meta-analysis. *Scientific Reports* 7, 8940.
- 426 Giakoumi, S., McGowan, J., Mills, M., Beger, M., Bustamante, R.H., et al., 2018. Revisiting
- 427 "success" and "failure" of Marine Protected Areas: a conservation scientist perspective.
- 428 Frontiers in Marine Science 5, 223.
- 429 Gianguzza, P., Chiantore, M., Bonaviri, C., Cattaneo-Vietti, R., Vielmini, I., 2006. The effects of
- recreational *Paracentrotus lividus* fishing on distribution patterns of sea urchins at Ustica
- 431 Island MPA (Western Mediterranean, Italy). Fisheries Research 81, 37-44.
- 432 Gianguzza, P., Agnetta, D., Bonaviri, C., Di Trapani, F., Visconti, G., et al., 2011. The rise of
- thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea.
- 434 Chemistry and Ecology 27, 129-134.
- 435 Guarnieri, G., Bevilacqua, S., Figueras, N., Tamburello, L., Fraschetti, S., 2020. Large-scale sea
- urchin culling drives the reduction of subtidal barren grounds in the Mediterranean Sea.
- 437 Frontiers in Marine Science 7, 519.
- 438 Guidetti, P., 2004. Consumers of sea urchins, Paracentrotus lividus and Arbacia lixula, in
- 439 shallow Mediterranean rocky reefs. *Helgoland Marine Research* 58, 110-116.
- 440 Guidetti, P., 2006. Marine reserves reestablish lost predatory interactions and cause community
- changes in rocky reefs. *Ecological Applications* 16, 963-976.
- 442 Guidetti, P., Dulcic, J., 2007. Relationships among predatory fish, sea urchins and barrens in
- 443 Mediterranean rocky reefs across a latitudinal gradient. Marine Environmental Research
- 444 63, 178-184.
- 445 Guidetti, P., Sala, E., 2007. Community-wide effects of marine reserves in the Mediterranean
- Sea. Marine Ecology Progress Series 335, 43-56.
- 447 Guidetti, P., Bussotti, S., Boero F., 2005. Evaluating the effects of protection on fish predators
- and sea urchins in shallow artificial rocky habitats: a case study in the northern Adriatic

- Sea. Marine Environmental Research 59, 333-348.
- 450 Guidetti, P., Milazzo, M., Bussotti, S., Molinari, A., Murenu, M., et al., 2008. Italian marine
- reserve effectiveness: Does enforcement matter? *Biological Conservation* 141, 699-709.
- 452 Guidetti, P., Baiata, P., Ballesteros, E., Di Franco, A., Hereu, B., et al., 2014. Large-scale
- 453 assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS
- 454 *ONE* 9, e91841.
- 455 Guidetti, P., Addis, P., Atzori, F., Bussotti, S., Calò, A., et al., 2019. Assessing the potential of
- 456 marine Natura 2000 sites to produce ecosystem-wide effects in rocky reefs: a case study
- from Sardinia Island (Italy). Aquatic Conservation: Marine and Freshwater Ecosystems 29,
- 458 537-545.
- 459 Hereu, B., Zabala, M., Linares, C., Sala, E., 2005. The effects of predator abundance and
- habitat structural complexity on survival of juvenile sea urchins. Marine Biology 146, 293-
- 461 299.
- 462 Hereu, B., Zabala, M., Sala, E., 2008. Multiple controls of community structure and dynamics in
- a sublittoral marine environment. *Ecology*. 89, 3423-3435.
- 464 Hereu, B., Linares, C., Sala, E., Garrabou, J., Garcia-Rubies, A., Diaz, D., Zabala, M. 2012.
- 465 Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on
- 466 Mediterranean Rocky Reefs. *PLoS ONE* 7(5), e36901.
- 467 Hernández, J.C., Clemente, S., Sangil, C., Brito, A., 2007. Actual status of the sea urchin
- 468 Diadema aff. antillarum populations and macroalgal cover in marine protected areas
- 469 compared to a highly fished area (Canary Islands eastern Atlantic Ocean). Aquatic
- 470 Conservation: Marine and Freshwater Ecosystems 18, 1091-1108.
- 471 Jurado-Molina, J., Livingston, P.A., Ianelli, J.N., 2005. Incorporating predation interactions in a
- statistical catch-at-age model for a predator-prey system in the eastern Bering Sea.
- 473 Canadian Journal of Fisheries and Aquatic Science 62, 1865-1873.
- 474 Kinzey, D., Punt, A.E., 2009. Multispecies and single-species models of fish population

- dynamics: comparing parameter estimates. *Natural Resource Modeling* 22, 67-104.
- Ling, S., Scheibling, R.E., Rassweiler, A., Johnson, C.R., Shears, N., et al., 2015. Global regime
- 477 shift dynamics of catastrophic sea urchin overgrazing. *Philosophical Transactions of the*
- 478 Royal Society B 370, 20130269.
- 479 Link, J., 2010. Ecosystem-based fisheries management: Confronting tradeoffs. Cambridge
- 480 University Press, Cambridge, UK.
- 481 Loh, T.L., McMurray, S.S., Henkel, T.P., Vicente, J., Pawlik, J.R., 2015. Indirect effects of
- overfishing on Caribbean reefs: sponges overgrow reef-building corals. *PeerJ.* 3, e901.
- 483 Loi, B., Guala, I., da Silva, R.P., Brundu, G., Baroli, M., 2017. Hard time to be parents? Sea
- 484 urchin fishery shifts potential reproductive contribution of population onto the shoulders of
- 485 the youngest. *PeerJ.* 5, e3067.
- 486 Medrano, A., Linares, C., Aspillaga, E., Capdevila, P., Montero-Serra, I., Pagès-Escolà, M.,
- Hereu, B., 2019. No-take marine reserves control the recovery of sea urchin populations
- after mass mortality events. *Marine Environmental Research* 145, 147-174.
- 489 Melis, R., Ceccherelli, G., Piazzi, L., Rustici, M., 2019. Macroalgal forests and sea urchin
- 490 barrens: structural complexity loss, fisheries exploitation and catastrophic regime shifts.
- 491 Ecological Complexity 37, 32-37.
- 492 McClananhan, T.R., Verheij, E., Maina, J., 2006. Comparing the management effectiveness of a
- 493 marine park and a multiple-use collaborative fisheries management area in east Africa.
- 494 Aquatic Conservation: Marine and Freshwater Ecosystems 16, 147-165.
- 495 Micheli, F., Halpern, B.S., Botsford, L.W., Warner, R.R., 2004. Trajectories and correlates of
- 496 community change in no-take marine reserves. *Ecological Applications* 14, 1709-1723.
- 497 Micheli, F., Benedetti-Cecchi, L., Gambaccini, S., Bertocci, I., Borsini, C., et al., 2005.
- Cascading human impacts, marine protected areas, and the structure of Mediterranean
- reef assemblages. *Ecological Monographs* 75, 81-102.

- 500 Oliva, S., Farina, S., Pinna, S., Guala, I., Agnetta, D., et al., 2016. Determinants of
- 501 Paracentrotus lividus sea urchin recruitment under oligotrophic conditions: implications for
- 502 conservation management. *Marine Environmental Research* 117, 13-20.
- 503 Ouréns, R., Naya, I., Freire, J., 2015. Mismatch between biological, exploitation, and
- 504 governance scales and ineffective management of sea urchin (*Paracentrotus lividus*)
- fisheries in Galicia. *Marine Policy* 51, 13-20.
- Pais, A., Chessa, L.A., Serra, S., Ruiu, A., Meloni, G., et al., 2007. The impact of commercial
- and recreational harvesting for *Paracentrotus lividus* on shallow rocky reef sea urchin
- communities in North-western Sardinia, Italy. Estuarine, Coastal and Shelf Science 73,
- 509 589-597.
- 510 Panja, P., 2018. Stability and dynamics of a fractional-order three-species predator-prey model.
- 511 Theory in Biosciences 138, 251-259.
- 512 Pauly, D., Zeller, D., 2016. Catch reconstructions reveal that global marine fisheries catches are
- 513 higher than reported and declining. *Nature Communications* 7, 10244.
- 514 Pelc, R.A., Warner, R.R., Gaines, S.D., Paris, C.B., 2010. Detecting larval export from marine
- 515 reserves. Proceedings of the National Academy of Sciences 107, 18266-18271.
- 516 Pessarrodona, A., Boada, J., Pagès, J., Arthur, R., Alcoverro, A., 2019. Consumptive and non-
- 517 consumptive effects of predators vary with the onthogeny of their prey. *Ecology* 100,
- 518 e02649.
- 519 Piazzi, L., Ceccherelli, G., 2017. Concomitance of oligotrophy and low grazing pressure is
- 520 essential for the resilience of Mediterranean subtidal forests. *Marine Pollution Bulletin* 123,
- 521 197-204.
- 522 Piazzi, L., Ceccherelli, G., 2019. Effect of sea urchin human harvest in promoting canopy
- forming algae restoration. *Estuarine, Coastal and Shelf Science* 219, 273.
- 524 Pinna, S., Pais, A., Campus, P., Sechi, N., Ceccherelli, G., 2012. Habitat preferences of the sea
- 525 urchin Paracentrotus lividus. Marine Ecology Progress Series 445, 173-180.

- 526 Pinnegar, J.K., Polunin, N.V.C., Francour, P., Badalamenti, F., Chemello, R., et al., 2000.
- 527 Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area
- 528 management. *Environmental Conservation* 27, 179-200.
- 529 Prado, P., Tomas, F., Pinna, S., Farina, S., Roca, G., et al., 2012. Habitat and scale shape the
- 530 demographic fate of the keystone sea urchin *Paracentrotus lividus* in Mediterranean
- macrophyte communities. *PLoS ONE* 7, e35170.
- Russ, G.R., Alcala, A.C., Maypa, A.P., Calumpong, H.P., White, A.T., 2004. Marine reserve
- benefits local fisheries. *Ecological Applications* 14, 597-606.
- 534 Sala, E., Costello, C., Dougherty, D., Heal, G., Kelleher, K., et al., 2013. A general business
- model for marine reserves. *PLoS ONE* 8, e58799.
- 536 Scheffer, M., Carpenter, S., de Young, B., 2005. Cascading effects of overfishing marine
- 537 systems. Trends in Ecology and Evolution 20, 579-581.
- 538 Seytre, C., Vanderklift, M.A., Bodilis, P., Cottalorda, J.M., Gratiot, J., et al., 2013. Assessment of
- commercial and recreational fishing effects on trophic interactions in the Cap Roux area
- (north-western Mediterranean). Aquatic Conservation: Marine and Freshwater
- 541 *Ecosystems* 23, 189-201.
- 542 Sih, A., Englund, G., Wooster, D., 1998. Emergent impacts of multiple predator effects. *Trends*
- 543 *in Ecology and Evolution* 13, 350-355.
- 544 Stuhldreier, I., Bastian, P., Schönig, E., Wild, C., 2015. Effects of simulated eutrophication
- and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf
- of Thailand. *Marine Pollution Bulletin* 92, 35-44.
- 547 Terlizzi, A., Anderson, M.J., Fraschetti, S., Benedetti-Cecchi, L., 2007. Scales of spatial
- variation in Mediterranean subtidal sessile assemblages at different depths. *Marine*
- 549 Ecology Progress Series 332, 25-39.
- 550 Trijoulet, V., Fay, G., Miller, T.J., 2020. Performance of a state-space multispecies model: what
- are the consequences of ignoring predation process errors in stock assessments? *Journal*

552	of Applied Ecology 57, 121-135.
553	Willis, T.J., Anderson, M.J., 2003. Structure of cryptic reef fish assemblages: relationships with
554	habitat characteristics and predator density. Marine Ecology Progress Series 257, 209-
555	221.
556	Yeruham, A., Rilov, G., Shpigel, M., Abelson, A., 2015. Collapse of the echinoid <i>Paracentrotus</i>
557	lividus populations in the Eastern Mediterranean: result of climate change? Scientific
558	Reports 5, 13479.
559	

Table 1(on next page)

MPA features in terms of: year of establishment and relative zonation (*i.e.* surface covered by different degree of protection); regulation of sea urchin harvest and fishery.

SN: Penisola del Sinis-Isola di Mal di Ventre, CI: Capo Caccia-Isola Piana, AS: Isola dell'Asinara, TV: Tavolara Punta Coda Cavallo and CC: Capo Carbonara. For each MPA the # of NH (no harvest=not allowed) and RH (restricted harvest=allowed, but restricted) sites useful for the current evaluation are also given.

2

	SN MPA	CI MPA	AS MPA	TV MPA	CC MPA
Year of establishment	1997	2002	1997	1997	1998
Area protected in A zone (Km²)	3.5	0.4	5.4	5.3	1.0
Area protected in B zone (Km ²)	9.7	4.1	70.2	25.6	16.9
Area protected in C zone (Km²)	229.2	20.5	32.4	127.9	66.0
Urchin harvest in A zone	NH	NH	NH	NH	NH
Urchin harvest in B zone	NH	RH	NH	RH	NH
Urchin harvest in C zone	RH	RH	NH	RH	NH
# Authorized urchin fishers	282 (2005)		None	-	None
through years in RH	276 (2007)	10 (2007)	None	-	None
	184 (2012)	10 (2012)	None	-	None
	119(2015)	10 (2015)	None	17 (2015)	None
	74 (2018)	10 (2018))	None	14 (2018)	None
	40 (2019)	10 (2019)	None	2 (2019)	None
Natural predators fishery in A zone	Not allowed				
Natural predators fishery in B zone	Allowed	Allowed	Allowed	Allowed	Allowed
Natural predators fishery in C zone	Allowed	Allowed	Allowed	Allowed	Allowed
# NH sites for the spatial evaluation	6	1	19	2	5
# RH sites for the spatial evaluation	8	9	-	20	_

Table 2(on next page)

Spatial evaluation: PERMANOVA results on the effect of harvest type on total *P. lividus* abundance and commercial abundance. Significant results (p<0.05) are given in bold. Harvest: NH=no harvest, RH=restricted harvest and UH=unrestricted harvest.

PeerJ

1						
		Total		Commercial		
		abu	abundance		abundance	
	df	MS	Pseudo-F	MS	Pseudo-F	
Harvest	2	34.99	6.71	12.30	8.30	
Residual	103	5.21		1.48		
Pair wise tests		NH=UH>RH		NH>UH>RH		

Table 3(on next page)

Temporal evaluation: PERMANOVA results on the effect of harvest type on the variation rate of total *P. lividus* abundance (yr⁻¹). Harvest: NH=no harvest, RH=restricted harvest and UH=unrestricted harvest.

PeerJ

1

		variation in total abundance			
	df	MS	Pseudo-F	Р	
Harvest Residual	2 72	1.51 0.33	4.54	0.014	
Pair wise test		NH>			

2 3

Map of Sardinia Island with zonation in the studied MPAs. CI: Capo Caccia-Isola Piana, AS. Isola dell'Asinara, SN: Penisola del Sinis-Isola di Mal di Ventre, TV: Tavolara Punta Coda Cavallo, CC: Capo Carbonara.

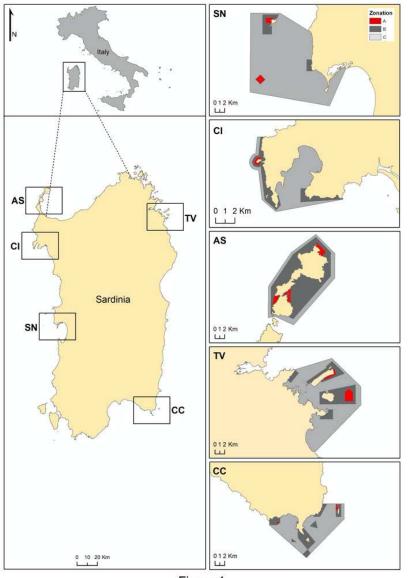
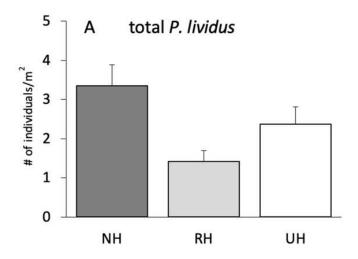



Figure 1

Paracentrotus lividus. A) total and B) commercial abundance (mean+SE) at the NH (no harvest), RH (restricted harvest) and UH (unrestricted harvest) sites (n=33, 37, and 36, respectively).

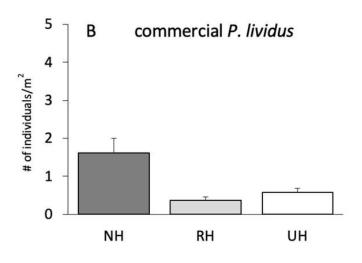
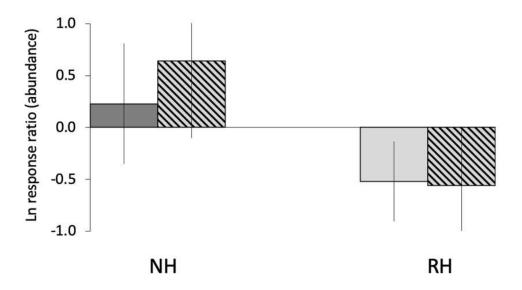
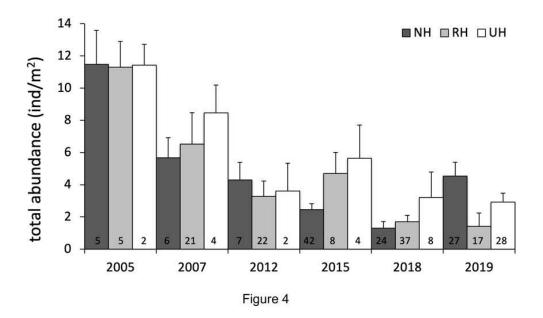


Figure 2

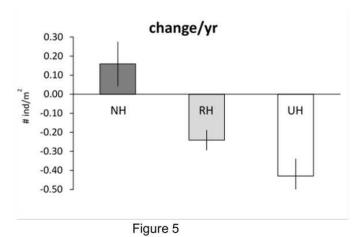
Paracentrotus lividus. Variability in the response of total abundance (solid) and commercial abundance (striped) to no harvest (NH) and restricted harvest (RH) conditions.




Figure 3

Paracentrotus lividus. Temporal variability in total abundance/m² at NH=no harvest, RH=restricted harvest and UH=unrestricted harvest conditions.

Numbers at the bottom of the histograms indicate the number of sites from which the mean (and SE) was calculated.



Paracentrotus lividus. Rate of variation (mean+SE change in abundance of individuals/ m^2 yr) at NH (no harvest), RH (restricted harvest) and UH (unrestricted harvest) conditions (n=27, 28, and 13, respectively).

